
1. Perspective . 2
1.1 Perspective Sessions . 7

1.1.1 Ignition Perspective App . 18
1.1.2 Session Properties . 32

1.2 Perspective Design Principles . 39
1.2.1 Navigation Strategies in Perspective . 42

1.3 Pages in Perspective . 52
1.4 Views and Containers in Perspective . 62

1.4.1 Coordinate Containers . 69
1.4.2 Column Containers . 77
1.4.3 Tab Containers . 87
1.4.4 Breakpoint Containers . 93
1.4.5 Flex Containers . 99
1.4.6 Test Your Responsive Design Using Chrome's Developer Tools . 111

1.5 Perspective Designer Interface . 114
1.6 Working with Perspective Components . 126

1.6.1 Perspective Component Properties . 140
1.6.1.1 Ignition Server Migration Best Practices . 160

1.6.2 Images, SVGs, and Icons in Perspective . 161
1.6.3 Localization in Perspective . 172
1.6.4 Component Events and Actions . 176

1.7 Perspective Project Properties . 185
1.8 Styles . 193

1.8.1 Copy of Perspective Themes . 199
1.8.2 Perspective Themes . 215
1.8.3 Style Classes . 229

1.9 Bindings in Perspective . 246
1.9.1 Tag Bindings in Perspective . 260
1.9.2 Property Bindings in Perspective . 272
1.9.3 Expression Bindings in Perspective . 279
1.9.4 Expression Structure Bindings in Perspective . 284
1.9.5 Query Bindings in Perspective . 289
1.9.6 Tag History Bindings in Perspective . 291
1.9.7 HTTP Bindings in Perspective . 298
1.9.8 Transforms . 300

1.9.8.1 Map Transform . 301
1.9.8.2 Format Transform . 306
1.9.8.3 Script Transform . 309
1.9.8.4 Expression Transform . 312

1.10 Scripting in Perspective . 313
1.10.1 Perspective Component Methods . 315
1.10.2 Component Message Handlers . 325
1.10.3 Perspective Property Change Scripts . 330
1.10.4 Perspective Session Event Scripts . 334

1.11 Security in Perspective . 349
1.12 Alarming in Perspective . 354

1.12.1 Perspective Alarm Status Table - Common Tasks . 356
1.12.1.1 Perspective Alarm Status - User Interaction . 357
1.12.1.2 Perspective Alarm Status - Configuring Properties in Designer . 360
1.12.1.3 Perspective Alarm Status - Filtering . 367
1.12.1.4 Perspective Alarm Status - Acknowledgement . 371
1.12.1.5 Perspective Alarm Status - Shelving . 376
1.12.1.6 Perspective Alarm Status - Row Styles . 381

1.12.2 Perspective Alarm Journal Table - Common Tasks . 390
1.12.2.1 Perspective Alarm Journal - User Interaction . 392
1.12.2.2 Perspective Alarm Journal - Configuring Properties in Designer . 394
1.12.2.3 Perspective Alarm Journal - Filtering . 399
1.12.2.4 Perspective Alarm Journal - Row Styles . 407

1.13 Reporting in Perspective . 413
1.14 Common Tasks in Perspective . 418

1.14.1 Popup Views . 420
1.14.2 Navigating with the Horizontal Menu Component . 426
1.14.3 Displaying a SubView in a Table . 435
1.14.4 Self-Hiding Navigation Drawer . 445
1.14.5 Configuring a Dashboard . 455
1.14.6 Download and Upload Files . 465
1.14.7 Table Column Configurations . 469
1.14.8 Carousel Component Example . 476

Perspective

Overview
Perspective is the next generation system for industrial applications, optimized visualization
specifically for mobile devices. Perspective puts the power of your plant floor in the palm of your
hand by empowering you to create beautiful, mobile-responsive industrial applications that run

The Perspective Module has full and natively on any mobile device and web browser. HMI SCADA
capabilities and marks the beginning of truly mobile-optimized, touch-responsive, easily accessible
applications for monitoring, control, analysis and data gathering in industrial systems.

Perspective sits within the existing architecture so it can take advantage of our years of Ignition
development and work flawlessly with external databases, PLCs, reports, and so forth. It was
designed from the ground up as a means to deliver first-class mobile responsive applications and
offer a browser-based design environment.

The following are some key features of the Perspective Module.

Responsive Design - Perspective is mobile responsive so it responds to changes in
screen size and orientation, giving users a personalized view into their processes that are
automatically optimized for whatever device they are on.
Browser-based - Perspective lives in a browser instead of a client. No ModulJava Mobile
e is required.
Device Compatibility - Designers can create applications that run on any device that
can support a modern web browser using any major operating system: Windows, macOS,
and Linux. The native App runs on both iOS and Android devices.
Designed for Touch - Perspective employs multi-touch technology to work with touchpad
and touch-screen interfaces allowing users to utilize commonly used gestures such as
pinching, panning, zooming, and scrolling.
Sensor Information - Perspective is able to take advantage cameras and GPS
information that are natively provided by mobile devices.
Cascading Style Sheets HTML5/CSS3 technology - Enables users to control their
application on any device type such as smartphones, tablets, touchscreens, laptops, and
desktop computers.
Transforms - Let you easily take the value coming into a binding, manipulate it even
further, and then it to the output of your choice.transform

On this page

...

Overview
Views and
Containers
Components
Bindings
Styles and Style
Classes
Security in
Perspective

Perspective Project
Elements

Watch the Video

Views and Containers
Views and Containers are an integral part of the Perspective design experience because they work
together to create your screens - the into your application. The View is the primary HMI windows
unit of design and the Container provides a way of laying out and organizing child withicomponents
n a View.

Anatomy of a View

Watch the Video

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.0
https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.0

Components
Components are what give you flexibility in designing and that reflect your company's design and your site's layout. HMI SCADA
Components are the widgets you deal with every day: buttons, text areas, dropdowns, charts, gauges, linear displays, and so on. The
Perspective Module comes with a host of built-in that you can select from for use in your project. There are many ways to components
manipulate and arrange when working in the .components Designer

Bindings
A is a mechanism that allows a on a component to change based on a a change to a value elsewhere in . For binding property Ignition
example, with binding, the liquid level displayed in a tank graphic can be bound to the realtime liquid level in a tank. The value of a could Tag
be bound to a linear scale, a meter, or a label on your window. The power of bindings comes from the variety of binding types.

Click on the following links for complete information about binding types:

Tag - Binds a directly to a which sets up a subscription for that property Tag, Tag Tag.
Property - Binds one to another. property
Expression - A powerful type of binding that uses simple expression language to calculate a value.property
Expression Structure - A binding that uses the structure to pass data.property property
Query - A binding type that runs a structured Query against connections.polling database

 HistoryTag - Used for type properties. It runs a query against the .dataset HistorianTag
HTTP - Used for passing data directly to and from a link.URL

https://legacy-docs.inductiveautomation.com/display/DOC80/Designer
https://docs.inductiveautomation.com/display/DOC80/Tag+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Structure+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Query+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://docs.inductiveautomation.com/display/DOC80/HTTP+Bindings+in+Perspective

Styles and Style Classes
ou can Perspective gives you the power to style your project in just about any way and easily edit styles across your entire project instantly. Y

use powerful and flexible CSS3 to change the appearance and position of anything in your application. By combining styles into styles
themes, you'll be able to apply and edit styles across multiple applications in an instant.

Security in Perspective
Perspective’s approach to security covers a wide array of topics, including authentication, authorization and permission modeling, and
transport layer security (TLS).

Uses single sign-on () with existing corporate to get access to all of your assigned accounts and applications in one SSO credentials
place.
Clients launched from the Perspective Module are secured using cutting-edge encrypting technologies and communication protocols
to provide the most secure web-based data transfer.
Strongly enforced “guest mode” access to prevent against unauthorized writes on the .Gateway
Integrates with existing corporate identity infrastructure that uses two-factor authentication to verify the identity of users, thus adding
extra protection against phishing and brute-force attacks.

 now has Levels (instead of/similar to Roles) that are assigned to users. This makes defining permissions Ignition security
simple. The hierarchy of levels can be used to simplify the settings, because users with more specific levels security security security
also “inherit” the more general levels (i.e., a user granted the level of “Operator / LineB” also has the level of security security security
“Operator”).

 can now use popular authentication methods in addition to . It uses trusted federated identity technologies Ignition Active Directory
such as , OAuth, OpenID, and others.SAML

For more information, see .Security in Perspective

Related Topics ...

Working with Perspective Components
Views and Containers in Perspective
Pages in Perspective
Quick Start - Perspective Session

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Quick+Start+-+Perspective+Session

Perspective Sessions

Session Overview
A Perspective represents one instance of a project running on a web browser or mobile Session
app. The term "session" might be new to some users, where "client" or " " may sound more runtime
familiar. So anytime we refer to a session, we are talking about a application in runtime
Perspective.

Now that you know that a session is effectively running an instance of the application, it can have
multiple in the same web browser. Perspective Sessions work the same way as web pages Pages
do on your favorite website on the internet. You can log into your favorite shopping website and
then open several new tabs, where each tab is aware of your user without having to credentials
retype them.

A session appears fairly simplistic, but there is actually a rich hierarchy of elements to be aware of.
This page details the various moving pieces that comprise a session.

Session Anatomy
A Perspective Session contains a hierarchy of logical elements, as shown in the example below.

A session can have any number of pages at a time, pages can have any number of views, and
containers can have any number of , including other containers as children, which can components
also be nested to support multiple layout strategies. In this section, we discuss each building block
of this hierarchy, starting at the bottom and working our way up. When describing each element, it
helps to understand the smallest piece first which is a component, and then move up the hierarchy
simply because that's where the design process begins in Perspective.

On this page

...

Session Overview
Session Anatomy

Component
Container
View
Page
Properties
A Simple
Example

Launching a
Perspective Session

Launching a
Session from the
Designer
Launching a
Session from the
Gateway
Webpage
Launching a
Session using
the Web Address

Session App Bar
Project Updates
Page URLs
Browser Caching

Cache-Control
Browser Version
Requirements

Perspective Project
Elements

Watch the Video

Component

Components are elements that you can select from to design your project. Perspective has a host of built-in components such as displays,
buttons, charts, and other elements that display information to the user viewing a session. There is also an Embedded View component that
allows you to include a view in the place of any component in the above structure.

Container

Containers are elements that contain . You can nest one container inside of another container. It is important to note that components
containers do more than simply contain , they also define a layout strategy of how inside a container resize and components components

 . reposition. Because of this, there are several different types of containers and each behave differently, and support different layout strategies

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.0
https://docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-Containers

View

Views are the primary unit of design in Perspective. Views are unique in that they can act as both a top level screen (a whole page in your
into folders in the session) or a component (embedded in another view). Each View is a project , which are named and organized resource Ign

 Designer’s Project Browser tree. These folders/paths are important not only for organization and referencing, but also because these ition
paths uniquely identify each view, and are used in the session () for navigation. Each View has a container type that decides how the runtime

 inside it will behave. Multiple Views can be present within the same page, and views can also be nested. Parameters can be components
passed into a view from an external source.

Page

A represents a collection of views that are displayed in a single space such as a browser window or tab, and is the main navigation Page
element in a session. Each page consists of a primary view, but multiple views can be defined from within a single page. Some views can be
docked to specific edges of the page, or “popups” floating on top of the other views. Multiple pages can be open as part of the same session,
but can show different information. A URL is defined for a page, which means the Forward and Back buttons in a web browser can be used
to navigate to pages that have already been visited.

Properties

A session has its own properties that can be customized. For information, see .Session Properties

A Simple Example

If you are just starting to explore Perspective, you will most likely create a single view, add a few components (no containers), and then
launch a session. In this case, our structure seems much simpler than the diagram above, but your session has one page, which is
displaying one view, which has a few components. As you add to your project, it will become more complex and start to resemble the image
above.

Launching a Perspective Session
There are three ways to launch a Perspective Session:

From the Designer
From the Gateway Webpage
By entering the web address of the project in your web browser

Launching a Session from the Designer

Launching a Perspective Session from the Designer is a great method if you're testing your
changes. When you're in the Designer, simply click the Tools > Launch Perspective > Launch

 from the top menubar. This opens a session for the project you are working on directly Session
from the Designer.

Launching a Session from the Gateway Webpage

On the Gateway Webpage, you'll notice the page is the home page. Under the Get Started
Perspective logo, click . View Projects

Launching a
Session

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective
https://www.inductiveuniversity.com/videos/launching-a-session/8.0/8.0

The window will window refresh with a list of Perspective projects. Find your project and click the L
 button. This opens your project in a browser tab.aunch Project

Launching a Session using the Web Address

In your web browser, enter the web address of your project. This address follows a special pattern
and can either take an IPAddress:port, or if you have redirection set up on your network, it could
be very simple. If you are using a local Ignition instance, you can use localhost:8088. This will take
you to the Ignition installed on your computer.

Possible Project Links

Generic Project Link
http://<IP Address>:<port>/data/perspective/client/<Project Name>

IP Address Project Link
http://10.20.30.40:8088/data/perspective/client/QuickStart

Redirection Project Link
http://demo.ia.io

Local Project Link
http://Localhost:8088/data/perspective/client/QuickStart

Session App Bar
At the bottom of every Perspective Session, there is an app bar with a few options that provide

information about Ignition and the current session. To display the app bar, click the Maximize
icon in the lower right corner of the screen.

Session App Bar

Watch the Video

https://www.inductiveuniversity.com/videos/session-app-bar/8.0/8.0

This brings up the app bar at the bottom of the window.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

You can change the location of the Maximize/Minimize icon on the app bar in the Property Editor.
Scroll down the list of properties and expand the appBar property. Right click on the togglePosition
 property and select one of the three options: left, right or hidden.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

On the lower left of the app bar, click the Ignition icon to open the About Ignition information pop up. This screen has a short
introduction to Ignition and a link to the Inductive Automation website. Use the scroll bar on the right to scroll down.

Here you'll see the number of modules installed on the Gateway, along with a list of those a modules, their version numbers, and whether
they are currently running.

In the middle of the app bar at the bottom of the window, the current Gateway ID is displayed. Click on this for additional information. The
popup screen shows the current user and connected Gateway. If no user is signed in, a Sign In button is displayed in the upper right corner.

Click on the right arrow or anywhere on the Gateway name to open the Session Status popup.

The Session Status popup has two tabs: Gateway and Project. Under the Gateway tab, you can see the connection status, Gateway URL,
Session ID, and Page ID. The Visit Gateway button is a shortcut to the Gateway Homepage.

Under the Project tab, you see the name of the project, the last modified date for the project, and whether the project is up to date.

Project Updates

If you have a Perspective Session open and a change was made in the Designer that was saved
and published, one of two things may happen. Either the project will silently update, or an Update
Notification window will appear in your session. Your session will automatically update in 30
seconds or you can click . Update Now

In order to receive update notifications in a Perspective Session the Update Notification option
must be enabled. To access the Project Properties, in the , click on tab on the Designer Project
menu bar. Then select . Scroll down to and then checkProject Properties Perspective > General

. Enable Update Notification

Session Update
Notifications

Watch the Video

Page URLs
Because Perspective is designed to operate in a web browser, each page must be “mounted” at a given URL. The URL setting of the page
will be reflected in the browser’s URL bar if the session is running in a consumer web browser. To learn more, refer to the section on Page

 in Pages in Perspective.URLs

Pages can be mounted at URLs that also include parameters. These parameters are used to allow a page to be mounted at a dynamic URL,
allowing information in the URL to be interpreted as input parameters to the page’s primary view. Go to the section on to Passing Parameters
get more detailed information on passing URL parameters.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Browser Caching
Perspective Sessions cache assets (our CSS, JS, fonts, and images) to reduce load times after the first time opening the project. Sessions
will cache assets, but some browsers will attempt to re-download assets on refresh. This is mostly controlled by the browser instead of
Ignition so there are some important differences between browsers.

Chrome and Safari handle browser cache differently than Edge and Firefox when it comes to hitting the ‘refresh’ or ‘reload’ button. Edge and
Firefox both seem to send a request for new copies of the resources with header of max-age=0 instead of pulling from the cache. Navigating
via a 'back’ button or entering in the URL bar and pressing ‘enter’ will load from cache. This seems to simply be a design difference by these
two browsers, in which both are working as intended.

https://www.inductiveuniversity.com/videos/session-update-notifications/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-PageURLs
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-PageURLs
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLparams)
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

Cache-Control

Caching can be disabled via a flag in the ignition.conf file by using a jvm parameter:

Dperspective.gateway.disableClientCaching=true

Users can also control what gets cached via the `Cache-Control` flag. Response header’s Cache-Control value defaults to:

public, max-age=2419400, no-transform

You can set your own cache-control header via another env var:

-Dperspective.gateway.cacheControl=<some alternative cache control settings>

You can learn more about the Cache-Control flag through online resources like the .MDN Web Docs

Browser Version Requirements
Browser version requirements are hard to define since each major or minor browser versions may introduce new CSS specifications which
are leveraged by individual features in Perspective. For example, a container component built around a relatively new and exciting CSS
layout system will likely require a more recent browser version. In general however, the supported browser listed below do a good job at
staying up to date with implementation and support of these new specifications.

Our general policy is to only use features that have been supported for some time, whenever possible. We are currently using features that
have been standardized for a few years before Perspective was even released. Overall, we will always recommend that you keep your
browser up to date to take advantage of browser features, fixes, and most importantly for security updates.

We, along with browsers, are constantly evolving and leveraging new APIs to provide you with the best experience possible, so it's difficult to
pin down minimum versions for 100% of Perspective's functionality. We do take care to ensure Perspective sessions will always work on the
browsers and versions listed below. Perspective sessions may very likely work for some browsers that are not even listed below, but we do
not test against them, and thus cannot guarantee their behavior.

Some browsers that are not listed below may also work, but we cannot guarantee them.

Basic Session Functionality Requirements for Ignition 8.0.0

Browser Minimum Version Required

Chrome 57

Firefox 52

Safari 11

Edge 16

Related Topics ...

Pages in Perspective

In This Section ...

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

1.
2.

3.

Ignition Perspective App

Overview
The Ignition Perspective App is a native mobile application that can be downloaded and installed
on Android and iOS mobile devices. It provides users with a single location to access all of their
Perspective projects. While a Perspective Session can be launched from a mobile device's web
browser, the Perspective App enables the use of many built in pieces of hardware within your
mobile device, such as the camera, the accelerometer, or the NFC Scanner. Data from these tools
can be pulled into the Perspective Session and used in various ways: a barcode can be scanned
and the data inserted into a database, the accelerometer can be used to remote control a device
with motion rather than buttons, or an NFC tag can provide vital information about a system. For
information about setting up native app actions in Perspective, see .Perspective Events and Actions

Download the App
You can download the Ignition Perspective App from a local online app stores, such as the Google
Play Store for Android or the App Store for iOS.

In your app store, search for Ignition Perspective.
Click the button.Install

Once installation is complete, click the button, or click on the icoOpen Perspective
n on your device's home screen.

On this page

...

Overview
Download the App
Launch a
Perspective Session

Launch the
Online Demo
Launch a Project
Switch to a
Different
Application

Additional Options
Managed
Configurations

Sample PLIST
Template

Perspective App

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/the-ignition-perspective-app/8.0/8.0

3.

3.

4. The homepage is displayed. This will show a list of your projects. Initially, just the
OnlineDemo is listed.

Launch a Perspective Session
On the home screen, you can launch the Online Demo, which is on the Ignition 8.0 Demo Server or launch a project on a different Gateway.

Launch the Online Demo

To launch the demo, just click the icon or click on the demo description.Perspective

1.
2.

3.

Launch a Project

To launch a different project, click the Plus icon in the lower right corner of your screen.
You then have two options:

Scan a QR Code
Search for an available Gateway with Perspective projects.

For this example, we'll search for available Gateways. Click on .Gateway Search

3.

4.

Select the Gateway you want to connect to.

4.

a.

b.

If the Perspective App doesn't find the Gateway automatically, you can manually input a Gateway host name and port. Click
on .Manually Input Gateway
Type in the host name including the port, for example: https://10.10.115.3.8088.

4.

b.

5.

Click on the project you want to open.

5.

6.

1.

2.

If security is set up on the project, you'll be prompted to sign in with your credentials.

Switch to a Different Application

When you are running a project or the demo app, you can switch to a different application, as follows:

Click the icon (down arrow in the lower right corner. App Bar

Click the icon. Exit

3. At the confirmation prompt, click . Exit

Additional Options

Click on the icon at the top of the screen to filter the project list.Search

Click on the icon at the top of the screen to view the settings for the Perspective app. Here you can organize your list of Settings
available Gateways. You can also turn the Auto-Launch option on and select a project that will be automatically launched when the
Perspective App is opened on this device.

Managed Configurations
The Ignition Perspective App can be configured via iOS and Android enterprise services, allowing third-party tools to install the app with
some initial configurations. The actual configurations are pushed out by the Enterprise Mobile Management (EMM) solution, so there are no
configurations to be made on the Ignition side.

For Android devices, EMMs pull the keys from the APK and manages the configuration from a console in the EMM software.

For iOS devices, you will need to provide the EMM software with a sample PLIST. See further down. Sample PLIST Template

The following keys will be made available to the EMM solution.

Key Description

auto_launch Contains keys that control the auto-launch capability of the app, allowing you to determine if the app should immediately
launch into a project or not. Contains the following keys:

Key Description

auto_launch_l
ocked

If true, prevents user from disabling auto-launch or changing the auto-launch URL within the app.

prevent_exit If true, prevents the user from exiting the auto launched project.

auto_launch_u
rl

If set with a project URL, auto launch is enabled and the project specified in the URL will automatically
launch upon startup of the app.

hide_demo If true, the built-in demo project will become hidden.

initial_appli
cations

Allows you to add projects to the main app page. Each application has the following keys:

Key Description

project_url A URL leading directly to the application, for example:

http://www.someurl.com:8088/data/perspective/client/myproj

OR

perspective://www.someurl.com:8088/myproj

alias The name for the application, as it will appear in the project list.

is_favorite Sets this project as a favorite.

initial_gate
ways

Allows you to add Gateways to the Recent Gateways list. Each gateway has the following key:

Key Description

gateway_url A URL to the Gateway you'd like to add to the list, for example:

http://www.someurl.com:8088

Sample PLIST Template

Below is a sample PLIST template that can be used when applying managed configurations for iOS.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <!-- Launches the project immediately upon starting the app -->
 <key>auto_launch</key>
 <dict>
 <!-- URL of project to Auto Launch -->
 <key>auto_launch_url</key>
 <string>https://demo.ia.io:443/data/perspective/client/OnlineDemo</string>
 <!-- Prevents user from changing auto launch setting -->
 <key>auto_launch_locked</key>
 <true/>
 <!-- Prevent user from leaving auto launch project to use rest of app -->
 <key>prevent_exit</key>
 <false/>
 </dict>
 <key>hide_demo</key>
 <true/>
 <!-- Applications that will be available to user on start of app -->
 <key>initial_applications</key>
 <array>
 <dict>
 <!-- URL of project -->
 <key>project_url</key>
 <string>https://demo.ia.io:443/data/perspective/client/OnlineDemo</string>
 <!-- Add the project to favorites -->
 <key>is_favorite</key>
 <true/>
 <!-- Provide an alternative name user will see when viewing project, in this
 case project name will be 'Perspective Demo' instead of 'OnlineDemo' -->
 <key>alias</key>
 <string>Perspective Demo</string>
 </dict>
 </array>

 <!-- Gateways that will be available to user on start of app. User's still need to
 add individual projects from each gateway. Gateways from projects included in
 initial_applications will already be included and don't need to specified again here. -->
 <key>initial_gateways</key>
 <array>
 <dict>
 <!-- URL of gateway -->
 <key>gateway_url</key>
 <string>https://demo.ia.io:443</string>
 </dict>
 </array>
 </dict>
</plist>

Session Properties

Session Props
Session Properties, as the name implies, are available for use throughout Perspective Sessions.
Sessions of a given project will have the same list of properties, however, the actual values are
unique and independent for each running Session.

Each Session creates its own instance of these properties. This makes them very useful as in-
project variables for passing information between views or browser tabs, and between other parts
of the Session, such as scripting.

The Property Editor displays Session Properties when viewed from the Perspective Start
Screen. Each session contains a series of properties with unique values. These properties provide
some useful information about where the session is running. Additionally, custom properties may
be added, providing a way for a session to store additional values which can be used in bindings
and scripts, and are also important for passing parameters from one view to another.

System Properties

Some session props are intentionally restricted with a System property and cannot be changed or

removed. These properties have a icon displayed next to them in the Property Editor System
as you can see in the image below.

On this page

...

Session Props
System
Properties

Session Properties
Table

Session Props

Watch the Video

https://www.inductiveuniversity.com/videos/session-props/8.0/8.0

Session Properties Table

Name Description

id Unique session identifier.

host
The following feature is new in Ignition version 8.0.1

 to check out the other new featuresClick here

Reflects the connecting system's IP address or hostname.

theme The to use in the session. The default theme is . Writing a theme name to this property will change the theme for the session. theme light

locale The current locale of this session.

timeZ
oneId

Timezone identification code, for example America/Los_Angeles.

auth Represents the user's authentication and authorization for this session.

Name Description

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.1

 This feature was removed from Ignition in version

8.0.6

authe
nticat
ed

True if the user is authenticated. False if the user is unauthenticated. Null if the user's authentication status is unknown.

user Contains information about the user, if they are authenticated.

Name Description Property
Type

id The IdP's unique identifier for this user. Null if the user is not authenticated. value:
string

user
Name

The user's username. Null if the user is not authenticated. value:
string

firstN
ame

The user's first name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if no
mapping was configured for this attribute.

value:
string

lastN
ame

The user's last name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if no
mapping was configured for this attribute.

value:
string

email The user's email address. Null if the user is not authenticated, if the IdP did not provide this attribute, or if
no mapping was configured for this attribute.

value:
string

roles The roles that the IdP assigned this user. Null if the user is not authenticated, if the IdP did not provide
this attribute, or if no mapping was configured for this attribute.

value:
string

times
tamp The following feature is new in Ignition version 8.0.14

 to check out the other new featuresClick here

A timestamp representing the last time the current user authenticated against the Identity Provider.

value:
timestamp

secur
ityLev
els

The deepest in the tree The security levels granted to the current user, starting with the children of the Public security level.
Public security level is never shown since all sessions include Public.

Name Description Property Type

name The name for this security level. Must be unique among its siblings. value: string

children Security levels which descend from this security level. array

idpId

The identity provider's ID. Replaced by the idp property

idp The name of the Identity Provider configuration set on the project.

idpAtt
ributes The following feature is new in Ignition version 8.0.16

 to check out the other new featuresClick here

Represents the JSON object returned by the identity provider after logging in. The structure of this object will match that of the
JSON provided by the page. Test Login Identity Provider

The Designer does not authenticate against identity providers in Ignition 8.0, so this object will always appear empty
in the designer. Use the Test Login page to determine the shape of this property, or use a simple binding to
something visual (i.e. a label) display and parse the results while developing your project.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.14
https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Levels
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
https://legacy-docs.inductiveautomation.com/display/DOC80/Test+Login+and+Logout

gate
way

The value of this property will not be saved with the view. Properties for the Gateway that this session is running on. Does not persist by default.

Name Description

addre
ss

Remote host address of the connected Gateway.

timez
one

Document providing time zone information.

Name Description Property Type

id Time zone identification code, for example America/Los_Angeles. value: string

name Name of the timezone. value: string

utcOffset Offset of the current timezone relative to UTC, in hours. value: numeric

conn
ected The following feature is new in Ignition version 8.0.2

 to check out the other new featuresClick here

True when connected to a websocket. All tabs in the session must have a connected websocket to become true. If a session
disconnects but is still open in the browser, the property will not change, as the property write from the Gateway can't write to
the disconnected session.

device Properties for the device that is running the session.

Name Description

type Type of device that created this session. Read only. Options are ios, android, designer, browser. Empty string if device is
unknown during loading.

identifier Unique ID representing this device. This is a convenience property not intended/suited for security purposes. May change
via device/application re-installs or browser cache clears.

timezone Document providing time zone information.

Name Description Property Type

id Time zone identification code, for example America/Los_Angeles. value: string

utcOffset Offset of the current timezone relative to UTC, in hours. value: numeric

userAge
nt

User agent string of the connected device.

settings
The following feature is new in Ignition version 8.0.7

 to check out the other new featuresClick here

Array of settings for the device.

Name Description

preventSleep Prevents the device from sleeping while viewing project in the mobile . Default is false.Perspective App

accelero
meter

When continuous read mode is active, represents values retrieved from the accelerometer.

Name Description Property Type

timestamp Timestamp represented as standard 'milliseconds since unix epoch'. value: string

x Acceleration force (in m/s) along the x axis (including gravity).2 value: numeric

y Acceleration force (in m/s) along the y axis (including gravity).2 value: numeric

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.2
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7

z Acceleration force (in m/s) along the z axis (including gravity).2 value: numeric

bluet
ooth The following feature is new in Ignition version 8.0.5

 to check out the other new featuresClick here

Options and data provided by device Bluetooth services.

Name Description

enabl
ed

If true, enables bluetooth capability.

optio
ns

Bluetooth options.

Name Description Property
Type

updateI
nterval

How often should the session check for new data packets. Duration in ms to buffer Bluetooth data
before sending to Perspective.

value:
numeric

limit Maximum number of packets to display. The order of packets is strongest RSSI (Received Signal
to weakest.Strength Indicator)

value:
numeric

filter Bluetooth filtering options.

Name Description Property
Type

enabled If true, will enable filtering on the packets. value:
boolean

minimu
mRSSI

Minimum strength of RSSI to return. Enter 0 to ignore. value:
numeric

altBeac
on

AltBeacon format.

Name Description Property
Type

exclu
sive

Exclude other beacon types that are not altBeacon. value:
boolean

uuid The 16 byte beacon identifier. Ignores packets that
don't match the value specified.

value:
string

object

eddysto
ne

Eddystone open beacon format.

Name Description Property
Type

exclusive Exclude other beacon types that are not eddystone. value:
boolean

nameSp
aceID

Namespace identifier. Ignores packets that don't
match the value specified.

value:
string

object

iBeacon iBeacon format.

Name Description Property
Type

exclu
sive

Exclude other beacon types. value:
boolean

uuid 16 byte proximity uuid of iBeacon. On iOS this must value:

object

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

be specified in order to receive iBeacon data. string

data Will populate with most recent packets from any detected beacons.

geolo
cation

Options and data provided by web or native device geolocation services.

Name Description

enabl
ed

If true, will attempt to populate location data into the 'data' property.

permi
ssion
Grant
ed

If geolocation is enabled and a geolocation permission prompt is requested, this field populates true if the user allowed
permission. Otherwise, it is false. Read only.

optio
ns Name Description Property

Type

accur
acy

Indicates the mode of accuracy the application uses to receive results: max, balanced, and low.

Name Description Property
Type

max Maximum accuracy (and highest battery use). Accurate to the level allowed by
the environment/device.

value:
string

balan
ced

Balanced accuracy - accuracy resolves ~100m (about a city block) using a more
efficient poll rate and supplementing with device data. Balanced is the default
value.

value:
string

low Low accuracy typically does not use a GPS sensor, but relies on environmental
meta data (such as cell tower information, Wi-Fi connectivity, etc.). Most efficient,
accurate to approximately town/3 kilometers.

value:
string

value:
boolean

maxi
mum
Age

A positive long value indicating the maximum age in milliseconds of a possible cached position that is
acceptable to return. If set to 0, it means that the device cannot use a cached position and must attempt
to retrieve the real current position. If set to infinity, the device must return a cached position regardless
of its age. Default is 0.

value:
numeric

data If geolocation is enabled and the device can provide geolocation data, this will hold information about location.

Name Description Property
Type

latitu
de

A floating point value representing the position's latitude in decimal degrees. Null if location is disabled. value:
float

longit
ude

A floating point value representing the position's longitude in decimal degrees. Null if location is disabled. value:
float

altitu
de

A double representing the position's altitude in meters, relative to sea level. This value can be null if the
implementation cannot provide the data.

value:
double

accur
acy

A double representing the accuracy of the latitude and longitude properties, expressed in meters. value:
double

altitu
deAc
curacy

A double representing the accuracy of the altitude expressed in meters. May be null if device fails to
provide or if geolocation is disabled.

value:
double

headi
ng

Returns a double representing the direction in which the device is traveling. This value, specified in
degrees, indicates how far off the device is from heading true north. 0 degrees represents true north, and
the direction is determined clockwise (which means that east is 90 degrees and west is 270 degrees). If
speed is 0, heading is NaN. If the device is unable to provide heading information, this value is null.

value:
double

speed Returns a double representing the velocity of the device in meters per second. This value can be null. value:
double

times
tamp

Time the last location update was received. value:
string

appB
ar

Settings relevant to the bottom-docked "App Bar" which lists Gateway information.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

Name Description Property Type

togglePosition The position of the overlaid toggle button that shows the app bar: , or .right left hidden value: string

Related Topics ...

Perspective Component Properties

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

Perspective Design Principles

Overview
There are many things to consider when designing for mobile-responsive applications that can run
in a web browser. Designs must work everywhere, on any device from a small smartphone to an
oversized desktop, in an optimized format, using one design. Unfortunately, there is no one design
strategy that fits all projects, but you can have a single design for a project that works well across
many different screen sizes based on content and context.

On this page

...

Overview
Designing for
Mobile-Responsive
Applications
Design Principles

Touch and
Ergonomics
Mobile-First
Design Approach
Fluid Content
Content as UI
Declutter

Understanding
Views and
Containers

With mobile devices ranging from smartphones to tablets, understanding how your website will display on the variety of formats is critical. This
page provides some design principles to consider when designing in Perspective, but it only scratches the surface. You can augment these
design principles with the design processes from your company.

Before designing your first project in Perspective, understanding terms like mobile optimized, responsive design, and user experience are
sure to come up in conversation when defining the requirements for your project.

Responsive Design - is a method of developing web pages that are completely flexible and renders on any device type.
Responsive designed websites "respond" to the screen size of the device being used from smartphones to industrial monitors.
Mobile Optimized - means the website will reformat itself for mobile devices such as smartphones and tablets.
User Experience - can separate a good a successful app from an unsuccessful one. You want users to have a quality experience
using your app such as fast loading time, easy to use, and navigation for starters.

Building a good mobile-responsive app starts with defining specific goals and objectives to clearly identify the problem you're trying to solve
whether your starting a new project or redesigning an exising one. Equally important is understanding the needs of the users and integrators.
Some things to ask your users about is, what types of devices they plan to use to access the project, what type of data they want to see, are
they viewing data, entering data, or controlling equipment. Do they need to work What do they want the components on the screen to do.
offline.

It's extremely important to capture and document all the user requirements. When doing requirements gathering, it's also important to audit
the workflow process. This way you get to see firsthand what the users are doing so you can define requirements prior to entering the design
phase. This doesn't mean that you can't refine requirements as you progress through the design process. You most certainly can!

Designing for Mobile-Responsive Applications
You have choices when it comes to designing in Perspective. You can design for desktop or mobile devices, or both. Ignition Perspective
allows you to design your apps to work well across many different screen sizes, whether a user is seated in the control room, grabbing a
tablet to walk into the field, or receiving a notification to respond to a crisis after hours.

One of the first considerations when tackling a design project is to determine the types of devices your users are going to use to access the
project. This often dictates whether you design for a desktop, mobile devices, or both. Something to keep in mind, is designing for multiple
screen sizes at the start of your project will be far easier, less time consuming, and less costly than adding it on later. This way you have one
design that adapts to many screen sizes.

Think of a responsive design as a layout strategy, allowing your apps to work well across many screen sizes. It's a single design that
reorganizes and responds to the available browser space to display the same content in a more usable way whether your using a
smartphone, table or desktop. You also get a consistent UI and functionality across various screens, and it works everywhere. If you open a
responsive site on the desktop and then change the size of the browser window, the content will move dynamically and arrange itself
optimally for the browser window. On mobile devices, this process is automatic; the site checks for the available space and the reformats
itself in the size matching the device while optimizing the content for an ideal arrangement. This is responsive design!

Design Principles
We all know what good design looks like in the desktop world. Now let's expand our knowledge to mobile devices using the following design
principles.

Touch and Ergonomics

Good design begins with touch and ergonomics. On mobile devices all input is touch driven and have smaller touch targets. The smaller the
target, the harder they are to use, and the more chance for errors. For example, turning on/off an industrial motor or some other critical
process can lead to serious repercussions in the event the wrong button is inadvertently pressed.

When designing for mobile devices like smartphones and tablets, it's important to make touch targets big enough so they are easy for users
to tap. As a good rule of thumb for sizing touch targets; 25 pixels is considered touchable, 40 pixels is optimal, and at a minimum, 10 pixels
between elements.

Next, let's talk about the ergonomics of mobile devices. Designing for mobile devices isn't only about making targets big enough, it's also
about considering the way we hold our devices. There is a comfortable area for touch on a screen called the 'thumb zone'. A touch device
like a smartphone, the bottom of the screen is the best area for your most important actions because it's easy and most comfortable to reach
with your thumb. You might consider placing destructive actions in hard to reach areas such as the top of the screen if you don't want them
pressed accidentally. Also, keep in mind that the bigger the display area is on a smartphone, more of the screen is less easily accessible.

Be sure to test your applications on different operating systems and devices, including all sizes of smartphones and tablets. Even better, is to
have some of your users do some testing. Nothing works better than getting some real feedback from your users.

Mobile-First Design Approach

The Mobile-First design approach prioritizes the app design on smaller devices instead of designing a desktop app and then forcing it to fit
mobile first approach designinginto a mobile box. A - is exactly as it sounds: for the smallest screen and working your way up. It is one of the

designbest strategies to create either a responsive or adaptive . This design strategy focuses on progressive enhancement of features and
content as browser size and available space increases. Mobile-first design can lower development costs over the lifetime of your
applications because single data model is maintained instead of maintaining several specific solutions for specific devices.

Fluid Content

Fluid design offers users a consistent experience across multiple devices and screen sizes. In responsive design, you want to design your
app with a fluid layout that works good on small and large screens. You don't want them to look too busy on small screens and too empty on
big ones. Think of web content as a box. In a responsive app, these boxes are going to move and change depending on their container.
Perspective containers This is really important because containers and provide a way of laying out and organizing components within a view.
views are an integral part of the Perspective design experience and play a major role in creating fluid content. Not only does Perspective
containers and views allow you to create fluid content, but they also provide reusability throughout your existing project and other projects.

Content as UI

You can't talk about content without talking about design. Together, they both create a great user experience. By including design techniques
in your discussions about content, you truly discover what is important and how to communicate to the user. We are all familiar with how
various interface elements behave on a screen and how to directly interact with the content, but each design is different.

As a designer, the content UI focuses on what interface elements the user needs to understand to easily access content, so you want to be
consistent and predictable. There are many different types of interface elements such as input controls, navigational and informational
elements to name a few. It's important to know your users so you make the right choices so here are a few things to keep in mind:

Keep the content UI simple.
Be purposeful when designing your page layout.
Create consistency and use common UI elements.
Provide visual clues about behavior before actions are taken.

Declutter

Good UI design is about delivering relevant information and avoiding irrelevant information. By cluttering your interface with elements and
content, you overwhelm users with too much information. Every element you add makes the screen more complicated, and if looks
complicated on a desktop, it's even worse on mobile devices where there's not a lot of real estate. It's imperative to remove anything in the UI
that isn't absolutely necessary. Decluttering the screen will improve the user's comprehension. A good rule of thumb is "less is more."

With limited screen space, you have to create focused content. Here's a couple things to remember:

Keep content to a minimum and present the user with only what they need to know.
Keep interface elements to a minimum. A simple design will make your UI more intuitive and ultimately more productive.

Understanding Views and Containers
We covered some of the basic design principles for designing mobile responsive apps, but we must also stress that views and containers are
an integral part of the Perspective design experience because they work together to create your HMI screens, the windows into your
application. The View is the primary unit of design and the Container provides a way of laying out and organizing child within a Vcomponents i

 Perspective has an associated layout, simply put, it is a way of defining and describing the way that ew. Every view and container in
elements inside the container interact.

A container is also a component that contains other components. They also indicate what layout strategy should be used to control the size
and shape of any housed components. The layout strategy defines how the container displays each of its child components in the view.
There are a variety of container types that support different layout strategies.

It's also important to understand how each of the container types behave when they are big and small. This dictates what container types you
should use for your design. There is a bit of learning curve so you will need to experiment with each container type and physically test them
out.

To learn more about each container type, refer to the section on .Views and Containers in Perspective

Related Topics ...

Views and Containers in Perspective
Coordinate Containers
Column Containers
Tab Containers
Breakpoint Containers
Flex Containers

In This Section ...

1.
2.

3.

4.

5.

Navigation Strategies in Perspective

In addition to traditional navigation, Perspective offers a variety of new approaches, including
many that might look familiar to smartphone users. In designing Perspective, we incorporated a
few common trends in UI design, particularly those favored in responsive design. The strategies
below should help phone-savvy users navigate easily in a Perspective project.

There are many ways to set up your navigation, and the best looking projects will mix several
types together. In this section we'll walk through a few examples:

Simple Buttons
Drill Down in Views
Navigation Drawers
Single-Page Projects
Back Buttons
Navigating to External Websites

Configuring a Docked View
In setting up navigation, most projects will call for one or more . These are views docked views
that sit flush with one of the four edges of the page.

To dock a view you created:

Click the Settings icon in the Designer.
If you want your docked view to appear on all pages, select the option in Shared settings
the menu, otherwise select the page you want the view to appear on.

Click one of the four icons, corresponding to where you want your view to be Add
docked.

Select the path to your view in the dropdown.View

You may also want to configure other properties on this dialog. Click on the Edit icon
You have many options, we'll just discuss a few:next to the docked view name.

On this page

...

Configuring a
Docked View
Navigation Actions

Other Resources
Basic Page
Navigation

Buttons and
Clickables
Tab Container
and Menu
Component
Navigation Tree

Drill-Down
Navigation

Clicking on
Components or
Containers

Same-Page
Navigation

Side Scrolling /
Carousel
Tab Containers

Back Buttons
Navigating to Other
Websites

Links

5.

a.

b.

c.

Pay particular attention to the property, as this controls how far the view Size
protrudes toward the center of your page.
If you want to show or hide the docked view from an event action or script, you'll
need to specify a . This can just be a keyword (like "menu") that you'll Dock ID
provide again later when you want to control this view.
Handle Icon can be used to provide a small icon for a user to show or hide your
docked view at will.

Navigation Actions
Throughout Perspective development, you'll have the opportunity to set in response to Actions Ev

. Simply put, an event is something that happens on a component or session, and an action is ents
how we respond to it. Many of the navigation options you'll have in Perspective depend on events
and actions. Select the navigation action that works best for your needs:

Navigation is the most self-evident. It allows us to open a new (either in our current Page
browser tab or a new one), (overriding our current view), or (again, either View main URL
in our browser tab or a new one).
Popup allows us to open (or close) a popup view that hovers over our page's existing
views. Configurable options include parameters to pass to the view, a title, where to open
it and how big to make it, and some behavior options. The behavior options are
straightforward apart from two:

Modal indicates whether the user should be allowed to interact with the page
behind the popup. Essentially, should the user be able to move the popup to the
side and continue working?
Background dismissible indicates whether the popup should be automatically
closed if you click on the page area behind the popup.

1.

2.
3.

4.

Dock allows you to open or close a docked view. Note that the view needs to be
preconfigured as a docked view, complete with a that the action requires. Dock Id Dock

You can configure a for a view by clicking the icon in the Dock Id Settings

Designer, adding the view using one of the four icons, then selecting Add
the view to configure it.

Script allows you to configure a script, from which you are free to call any of the built-in
Perspective navigation functions. See in the scripting section of the system.perspective
Appendix for details.

The section has more info about configuring events and actions.Component Events and Actions

Other Resources

The section provides a couple of examples specific to navigation:Common Perspective Tasks

Creating Popup Views
Horizontal Menu Component
Self-Hiding Navigation Drawer

Basic Page Navigation

Buttons and Clickables

Before we get into fancier strategies, it's worth noting that we can use Button components (or any other components or containers you want
users to click) to easily navigate from one page to another.You can use buttons on each main view, or create a docked view with buttons for
each your main pages. This is one of the simplest ways to do navigation and will help you get a project started very quickly.

Let's walk through a quick example of how to make a button navigate when clicked:

For a more consistent and hassle-free project, configure a for your buttons. See above for docked view Configure a Docked View
a walkthrough.
Drag a Button component onto the container.
Right-click on the component and select .Configure Events...

 Expand . As you can see, Perspective provides a multitude of ways to interact with your component. Select .Mouse Events onClick

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective
https://docs.inductiveautomation.com/display/DOC80/Common+Perspective+Tasks
https://docs.inductiveautomation.com/display/DOC80/Creating+Popup+Views
https://docs.inductiveautomation.com/display/DOC80/Self-Hiding+Navigation+Drawer

4.

5.

6.

Click the icon to add a new action to the event. Select an action you'd like to use for the navigation. See the Add Navigation
 section above for details about each action.Actions

Repeat Steps 2 through 5 for each new Button that you want.

Tab Container and Menu Component

A Tab Strip or Menu is an effective upgrade to the basic button navigation strategy, particularly when you want an indicator that shows which
page is selected.

There's a caveat to this approach, however; the tab offered in Perspective cycles between views, not pages. This means that, if container
you'd like to organize your project into pages (and you probably should), the tab layout doesn't quite do what we need in terms of tabbed top-
level navigation. There are of course other options, from using a row of buttons to using a with a "tab" view. Flex Repeater

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Repeater
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

1.
2.
3.

a.
b.
c.

d.

The component enables you to build a menu structure by setting up multiple links to different page URLs from the Horizontal Menu
component. An example is provided in .Common Tasks in Perspective

Navigation Tree

If you're looking for a pre-configured navigation option that is sleek and customizeable, the component allows you to create a Menu Tree
menu that has expandable sections with buttons that users can click through. The Menu Tree works best inside a docked view (see Configuri

 above), or, if you're feeling fancy, within a . ng a Docked View Navigation Drawer

Only one property on a menu tree, the property, controls the of the tree, all others control its look and feel. The items structure items
property can become fairly complex, but fundamentally each element in has five sub-properties:items

target is where clicking on the item in the menu should take you. It can be a page URL, or an external (non-project) URL.
items provides an opportunity to (instead of navigating) when this option in the menu is clicked. A conshow another menu one-menu
figuration will ignore this sub-property.
navIcon and control the content of the menu item.label
showHeader controls what is at the top of a submenu when it is shown.

Simple Menu

In a simple menu, you have a list of pages you'd like to navigate to, and you want them displayed in a column. The Menu Tree component
can accommodate this without much fuss.

Drag the Menu Tree component into the view you'd like to use. Again, using a docked view is probably the best approach.
Click on the menu tree. We'll be walking through its properties in the Property Editor.
The property on our menu tree will contain an entry for each page we'd like to navigate to. We won't walk through configuring items
those pages; here we'll just use the page URLs , , and ./ /Page2 /Page3

The default menu tree has two entries, add a third one by right clicking on or ().0 1 not items
Configure the properties on the three entries to point to the appropriate page URLs.target
Configure the property on each entry to show desired text. label

You can customize the icon accompanying the label by changing the property (not to be confused with icon navIcon
).
You can also delete the icon property if you'd prefer not to have one.

The property can be customized or removed. It controls the right-most icon in the menu item.navIcon

Here's how the final structure should look. We deleted unnecessary properties for clarity.items

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Menu+Tree
https://docs.inductiveautomation.com/display/DOC80/Self-Hiding+Navigation+Drawer

3.

Here's our new menu tree:

Editor notes are only visible to logged in users
Insert Bottom Navigation Bar section here - I have to shelve this one, because it isn't possible right now to make a docked view show up
only on small sessions. FB 12876

Drill-Down Navigation
"Drill down" (also known as) navigation strategies follow their namesake: they allow you to "drill" into a project page or view from an forward
overview page. They also allow you to proceed to the option in a chain. Most of the time, these strategies will feel quite natural: for next

1.
2.

3.

4.

1.

example, an operator clicks on a line or machine on an overview screen, or they have finished scanning a barcode and want to record the
data using a "Save" button. You could use a button press to complete tasks like this, but any component or container can be configured to
handle mouse (and touch) events. In fact, you may wish to create a custom view and/or style for this purpose, since the way that you
navigate will be closely tied in with the needs of your project.

Clicking on Components or Containers

Very similar to adding navigation to a Button component, simple navigation can be added upon clicking (or touching) any component:

Drag in an instance of a desired component, view, or container.
Right-click on the component and select . Expand . Select .Configure Events... Mouse Events onClick

Click the icon to add a new action to the event. Select the navigation option that works best for your needs. See Navigation Add
Actions above for details.
Add your script to navigate to the new page. You will often be passing a value into a re-usable view that uses indirection to show a
specific tank, motor, etc.

Editor notes are only visible to logged in users
Once we have table extension functions we can give them a brief mention them here. IE: clicking on a row in the table to open a screen
with details about that record.

Same-Page Navigation
In this section we'll talk about a couple navigation strategies that explicitly take you to a new page of your project. They are good for can't
navigating between views on the same page.

Side Scrolling / Carousel

Perspective offers strategies for dragging (or swiping) left and right as a way of navigating between views. The component is Carousel
specifically for this strategy, which is perfect when working with several instances of the same view (including a dynamic number of them).
Maybe your managers make a daily To Do list, and you'd like to scroll between them for different dates. Or you're looking for a way of
collapsing a lot of content onto a small screen, and need a way of scrolling through it. Configuring side scrolling through a carousel is pretty
straightforward:

1.

2.
3.

1.
2.

a.

Create the view you'd like to embed in a Carousel, and configure it as you'd like. It's probably a good idea to put something on the
view that will distinguish it from other views on the Carousel (like a creation date, or distinct title).
Drag in a Carousel component, and position it.
Select the Carousel component. To add views to the carousel, click the icon below the property on the Add Array Element... views
Carousel. Each created object has five properties, the most important of which are and . Select a view from viewPath viewParams
the dropdown, and configure any necessary view parameters in .viewParams

Tab Containers

Tabs are an effective primary navigation strategy, particularly when you don't have many items to choose from. There's a caveat to this
approach, however; the tab layout cycles between views, not pages. This means that, if you'd like to organize your project into pages (and
you probably should), the tab layout doesn't quite do what we need in terms of tabbed top-level navigation.

Tab Containers can be effective tools in designing complex single pages. In Perspective, they're easy to configure - you can use the Tab
Container for simple drag-and-drop configuration; you don't even need to set up a docked view to control it. In these settings, the tab layout is
perfect because it swaps between any views, containers, or you provide. It's also easy to set up:components

Drag a Tab Container into an existing view, and position it how you'd like.
Select the Tab Container. Add or remove tabs as needed by adjusting the array. Note that if you're adding a tab, you'll want to tabs
click the icon. From there, you have two options:Add Array Element...

 Choose as the type. The string you enter will be displayed on the tab header.Value

2.

a.

b.

3.

If you feel like being extra fancy, you can nest a view of your choosing in the tab (not to be confused with displaying header
a view in the tab itself). Choose as the type, then add a element to the new object. The element's key should Object Value
be , and the value should be a path to a view to render in place of the typical tab header. You can include an viewPath
additional object if parameters are needed. In the example below, we've added icons with the iconPath viewParams
property.

Click on a Tab Header and drag in a view, container, or component to connect it to that tab.

Back Buttons
A Back button or reverse navigation generally refers to how a user might retrace their steps in an application, or move to a higher level page
in the session. In Perspective, you will probably include "back" and "cancel" buttons and links in contexts where they seem appropriate (like
navigating out of a view designed for a specific task). Since your project is being run in a browser, users will likely have access to the
browser's back button, or a hardware back button on a phone. These buttons will typically navigate to the most recently visited of your page
application. With this in mind, there are some good rules of thumb for developing browser-ready applications:

Don't on the browser or phone's back buttons for project navigation. Many people aren't in the habit of using it.depend
Don't assume your users use a back button. The back button is a valuable resource, and in most use cases, your project won't
should gracefully handle navigation to any of its page URLs at any time.
Break up your content into different pages when called for. If your entire project exists at the root page URL, an unfortunate use of
the back button will leave a user outside their Perspective session, when maybe all they wanted was to return to a previous dialog.
Don't make something a page if you don't want the back button to land you on it. For instance, if you have 50 PLCs and an operator
needs to click through a page on each one, it may prove frustrating and disorienting to have to use the back button 50 times to
navigate out of the list.

Navigating to Other Websites

Links

The provides an easy navigation option when you want to invite users to view another network or internet resource from componentLink
your project. The property on the component dictates whether the page will open in the current tab or a new one. Tabs within the target Horiz

 can also be set to navigate to a different website.ontal Menu Component

Related Topics ...

Perspective Components

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Link
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components

Pages in Perspective

Pages are the main method of navigation in Perspective. A page represents a collection of views
that are displayed in a single space. Just like a single tab of a web browser, this represents a
single page (at a time). Each configured page specifies a primary view, which is the view which will
fill the available space of the page. Other views may be configured to be displayed “docked” to the
sides of the page, or “popups” floating on top of the other views. Each page has a URL associated
with it, which is how the browser navigates to and displays that specific page.

Page Layout
 Page layout has specific UI regions where you can place instances of your views. Depending on

screen size and orientation, the UI regions have different behavior. There are six primary content
regions: Center area, Top Dock, Bottom Dock, Left Dock, and Right Dock. There is also the Popup
region that floats on top of the other content regions.

The Primary View is in the center of each page taking all available space in the browser window.
Each page must have a single view configured to be its primary view.

Docked views, on the other hand, can have multiple views on each side of the page or no views at
all, but only one view may be shown at a time for a given dock position. In a session, docked views
can appear permanently along the edges or the browser, as small handles that look like tabs on
the edges of the browser, or the can auto . auto-hide themselves

On this page

...

Page Layout
Page Configuration

Corner Priority
Configure
Docked View
Configure
Docked View
Parameters
Docked View
Parameter
Example

Page URLs
Configuring a
View to a Page
URL

Configuring Docked
Views

Shared Views
Page-Specific
Docked Views

Passing Parameters
(URL Parameters)

Creating Pages

Watch the Video

Page Configuration
All page configuration happens on the Perspective Page Settings tab. Any number of pages can be created for a project each with their own
Primary View and Docked Views. When configuring a docked view in Page Configuration, you can choose to dock the view on a specific
Page URL with a set primary view, or you can choose to share the view across all pages under Shared Settings. Each project can configure
a that will be “inherited” by all pages in that project, such as docked views and corner priority settings. This is intended to Shared Settings
provide an easy way to configure a project such as using a docked header across all pages in the project without having to configure a
header on each page individually.

You can open the from any view in your project by clicking on the Settings icon at the bottom left of the Designer Page Configuration
window. Here you can assign the Page URLs to your primary views and add docked views to your pages. You can even create a new view
without going to the Project Browser.

Below is an image of a screen. The Page Configuration column on the left side shows all the Page URLs assigned to Page Configuration
views in your project. You can click on the to see all docked views that are shared across all pages of your project. To see Shared Settings
docked views that are specific to a Page, navigate through each page of your project. In the following example, you'll notice that the TopNav
view is a shared view across all pages, and the Plant 1 view has one docked view called, RightNav, which is specific to this page and only
visible when this page is open in your browser.

https://www.inductiveuniversity.com/videos/creating-pages/8.0/8.0

Corner Priority

The Corner Priority setting determines which docked sides push all the way to the corners when the user navigates to that page: whether the
top and bottom docked views get the full width of the page or whether the left and right docked views get the full height of the
page. Whichever sides have priority, those docked views will extend on those sides to the edges of the page, thus shrinking the opposing
sides down to fit within the page. If the Inherited option is selected, then the page will inherit the Corner Priority setting from the Shared
Settings.

Configure Docked View

Once a view has been docked, it can be further customized via the popupConfigure Docked View
by left-clicking on the docked view's pencil icon next to the name (i.e.,).RightNav

Docked Views in
Perspective

Watch the Video

https://www.inductiveuniversity.com/videos/docked-view-properties/8.0/8.0

Configure Docked View Properties

Property
Name

Description

View The currently selected view. Changing this will change which view is mounted to this position.

Display This property allows you to show or hide the docked view. Options are:

Option Description

visible The docked view is always expanded/displayed.

onDe
mand

The docked view is collapsed, but allows the user to display the view by clicking on the docked view's
handle.

auto Automatically shows or hides the docked view depending on how much space is available in the session:
showing the view if the page is wider than the width specified in the auto-breakpoint setting. (Works in
conjunction with the Auto Breakpoint property).

Resizabl
e?

Determines whether the docked view may be resized or not.

Modal? Determines if the view should be modal, meaning users will not be able to directly interact with other views while the
modal view is present. This property is only enabled when the property is set to .Display onDemand

Content Determines how the docked view interacts with other views on the page.

Option Description

push Opening or closing the docked view causes the content in the center to resize: the center view will be
'pushed' out of the way.

cover When opening the dock, it slides in front of the center view, obscuring part of the center view: the dock
will 'cover' part of the center view.

auto
The following feature is new in Ignition version 8.0.6

 to check out the other new featuresClick here

Acts like the cover option when the viewport is smaller than the Auto Breakpoint value. Acts like the push
option when the viewport is larger than the Auto Breakpoint value.

Anchor Allows you to make a view always visible while scrolling. Only available on North docked view configurations.

Docked View
Properties

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://www.inductiveuniversity.com/videos/docked-view-properties/8.0/8.0

1.

2.

3.

Option Description

fixed The docked view will remain in a fixed position, relative to the page. Useful when a north-docked view
should stay at the top of a page. Select this option if a docked view is acting as a header that should
always be present.

scrolla
ble

The docked view will not stay in a fixed position as the user scrolls down in the page. Select this option if
the north dock should move along with the page as the user scroll down.

Size Determines the size, in pixels, of the view.

If the view is docked to the North or South edge, then size determines the height.
If the view is docked to the East or West edge, then size determines the width.

Auto
Breakpoi
nt

Controls the minimum page width for Auto docked views to be visible. When the session is smaller than this width,
these views will be hidden and able to be displayed on demand.

This property is enabled when the property is set to .Display auto

Dock ID An optional arbitrary string that can be used to reference a docked view through other parts of Perspective such as in
an action or as a scripting call.

Handle Allows you to show or hide a handle for users to expand/collapse the view.

Option Description

Show Show handle at all times.

Hide Hide handle at all times.

AutoHide Hide handle when page is not active.

Handle
Icon

Path to an icon used to identify the view when the view is hidden.

View
Paramet
ers

Allows specific parameters to be passed to the view when the page is called.

Remove Deletes the view from the page.

Configure Docked View Parameters

In Perspective, you can pass parameters to Docked Views. This basically enables you to specify
one or more Params properties on the View that's docked, and pass a view to the docked view
when the page is accessed. This is mostly used to modify content in a docked view based on the
page it is being accessed from.

Docked View Parameter Example

Click on Perspective node in the Project Browser to view the Page configuration.

Click on the icon next to the docked view name (in our example it is named West Edit
Dock). If your project does not contain any docked views, refer to the corresponding

 on this page. section
Under View Parameters, click Add Object Member.

Docked View
Parameters

Watch the Video

https://www.inductiveuniversity.com/videos/docked-view-parameters/8.0/8.0

3.

4.

5.
6.
7.

8.

9.

You will see a popup allowing you to select the type of the property. Ideally, this should
match the property type on the view. Additionally, the property should be located under
the .Params category
Enter the name of the view parameter.
Enter a value, for example, "one." Then click OK.
Save the Project.

Under Page Configuration, right click on the Page and click on Launch Url .

When the page opens, any components bound to the view parameter will now use the
value "one".

Page URLs
Perspective is designed to operate in a web browsing environment. A Page is the main navigational element in a Perspective Session, so
when a Perspective Session starts, it typically begins at the page mounted to the Page URL "/". The exception to this being cases where the
user manually enters a different Page's URL into the address bar of their browser.

The primary view on the Page Configuration screen denotes that it's the main view attached to the Page URL. Everything else surrounding
the primary view are docks if they are set. If you have Shared settings selected, these settings are shared for all pages. If you have a
particular page selected, these settings are page-specific. In the following section, you'll see how to configure a view to a Page URL and
create docked views.

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

In version 8.0.4 a page.props.title property has been added. You can use the pages.props.title in a script to set a different title for the page.
By default, the browser tab displays the project title (or the project name if the title is blank). You can also create bindings to the page title by
selecting it as a Property Binding under the page properties on the Edit Binding screen.

Configuring a View to a Page URL

To configure a view to a Page URL, follow these simple steps. Note that this example requires that you have a view created.

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ViewProperties
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4

1.

2.
3.
4.

1.
2.

3.

4.

Open the Page Configuration by clicking the icon at the bottom of your Designer window.Settings

Under the Page Configuration column, click the icon to add a new page. Add
In the Page URL field, enter the name of your Page URL (i.e.,).test
Select the from the dropdown list (i.e.,).Primary View Production/test

Configuring Docked Views
You have the option of making a docked view shared across all pages of your project or only on specific pages.

Shared Views

Let's configure a docked view under so it is shared across all pages of your project. Shared Settings

Open your Page Configuration if it's not already open.
Under the Page Configuration area, select .Shared Settings

Click the icon on the Top Dock. From the dropdown, select the view you want to be displayed on all pages of your project (i.Add
e.,). TopNav
Click . OK

Note

If you configured a Page URL at the time you created your view, you're done. The Page URL is already configured for your view.

This example requires that you have one or more primary views created with an assigned Page URL(s), and a docked view.

5.

1.
2.

3.

4.

5.

If you want to customize your view, click on the TopNav pencil to open the window. Configure Dock View

Page-Specific Docked Views

You can choose to dock a view on a specific page URL with a set primary view. Let's add a view to the right dock.

Open your if it's not already open. Page Configuration
Select a primary page from the Page Configuration column to add a docked view (i.e.,). /Plant 1

Click the icon on the Right Dock. From the dropdown, select the view you want to be displayed on the specific page of your Add
project.(i.e.,). RightNav
Click . OK

If you want to customize your view, click on the TopNav to open the Configure Dock ViewEdit icon next to window.

Here is an example of Docked Views. Plant 1 and Plant 1 Report are two different pages displayed in a browser. The Top Dock view is
shared across both pages. The Right Dock view shows only on the Plant 1 page because it is specific to this one page.

Plant 1 Plant 1 Report

This example requires that you have one or more primary views created with assigned Page URL(s), and a docked view.

Passing Parameters (URL Parameters)
Pages can be mounted at URLs that include parameters. These parameters are used to allow a
page to be mounted at a dynamic URL, allowing information in the URL to be interpreted as input

 parameters to the page’s primary view. For example, suppose we had a page that displayed
information about a Tower site and our system had many Tower sites. Each Tower has an ID
number that uniquely identifies it.

Passing
Parameters to
Pages

Watch the Video

We configured our project to have a page, and set the page’s primary view to .Towers We now need to configure the page’s URL so that a
user can navigate to any Tower using their browser’s URL bar. To do this, we mount the page at a special URL using a parameter
replacement syntax as follows: <page> /:towerNumber. Our dynamic URL mounting uses a colon to signify that a portion of the URL is

 meant to by dynamic and map to an input parameter on the page’s primary view.

Our Tower site view, called Towers, has an input parameter called towerNumber that is
used in indirect bindings throughout the view configuration to allow this view to correctly
display information about any Tower.

https://www.inductiveuniversity.com/videos/passing-parameters-to-pages/8.0/8.0

Perspective understands this URL format. Therefore if the user were to navigate to the <URL> /Tower2, Perspective would display our page
and render " /" as the primary view with an input parameter mapping of towerNumber = Tower2 .

 Using the example above, the primary view contained a parameter named towerNumber, and the value in the URL (i.e., Tower2) was
passed to the parameter. Now, all the information about Tower2 is shown in the image below.

Adding parameter passing to an existing set of pages follows a strict formula. The table below assumes your project is named: ProjectName.

Original Page URL
Property

Parameter Name New Page URL Sample URL in Browser

/ param /:param http://localhost:8088/data/perspective/client
/ProjectName/value

/new-page param /new-page/:param http://localhost:8088/data/perspective/client
/ProjectName/new-page/value1

/new-page areaNumber and line
Number

/new-page/:areaNumber/:
lineNumber

http://localhost:8088/data/perspective/client
/ProjectName/new-page/100/101

Related Topics ...

Views and Containers in Perspective
Navigation Strategies in Perspective

Views and Containers in Perspective

Views and Containers are an integral part of the Perspective design experience because they
work together to create your HMI screens - the windows into your application. The view is the
primary unit of design and the Container provides a way of laying out and organizing child
components within a View. Let's see how views and containers work.

Views
Perspective Views are unique in that they can act as both a top level screen (taking up a whole
page in your session) or a component (embedded in another view). Each view is a project
resource, which are named and organized into folders in the Ignition Designer’s Project Browser
tree. These folders/paths are important not only for organization and referencing, but also because
these paths uniquely identify each view, and are used in the session (runtime) for navigation. Each
view has a Container type that decides how the components inside it will behave.

While views themselves are not strictly components, there are components that can display an
instance of a View, such as nesting views inside of other views. There are also repeater
components that may dynamically create view instances at runtime.

Views can be as a primary, docked, or popup views. For more information on mounted in a Page
how pages work, see .Pages in Perspective

Embedded Views

An Embedded View is an instance of a view that is used as a component within another
view. Similar to how containers can be added inside another container. An embedded view in

 Perspective is actually created using the Embedded View component , which internally opens the
view. You'll notice when you nest a view inside another that the Embedded View component has
some properties that are distinct from those of the view you're nesting:

path is the path to the view you wish to embed.
params is an object in which you'll put any parameters you wish to pass through to the
embedded view
useDefaultViewWidth and are two very critical properties when useDefaultViewHeight
nesting a view. They control whether a view's default configured dimensions are carried
into the embedded view (using scrollbars if the defaults are too large for the embedded
setting), or whether the view is scaled from its defaults to its new setting. Typically match
if you're finding unwanted scrollbars, unchecking these properties often achieves the
desired result.

When designing your project, views need not be specified as embedded. It is possible that a
single view may end up being instantiated as a regular view and an embedded view, even
simultaneously in the same session. For example, you may have a view that shows 10 tanks using
a view repeater as well as a popup that shows the details for just tank 1. This is common when the
properties of a view are used to pass in parameters.

For complete description of each of the view properties, see . To access Perspective - View Object
the properties for a view, select the view in the Project Browser, for example:

On this page

...

Views
Embedded Views
View Properties
Input/Output
Parameters
Popup Views

Configuring Views
Containers

Breakpoints
Nesting Layouts
Using Containers

Anatomy of a View

Watch the Video

Docked Views in
Perspective

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+View+Object
https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.0
https://www.inductiveuniversity.com/videos/docked-views-in-perspective/8.0/8.0

The property types will be displayed in the Perspective Property Editor.

View Properties

Views, like components, have properties. They are organized into a few types: props , params , and custom . Custom properties can be
defined for views. They act just like custom properties of a component and are internal to the View, and can be referenced by all child
components and containers in that view.

Each view contains exactly one “root” level container, which may be any of the available container types: Column , Coordinate , Tab , Brea
 kpoint , or Flex . Therefore, the design experience of a View is simply the design of the selected container type.

The view properties have three categories:

 - Properties used to configure the component's visual appearance, behavior, and data.Props
 - Properties defined by the user. They have no direct effect on the component, but are used as variables for the application Custom

designer's convenience.
 - Properties only found on views. They define the parameters that may be passed in or out of that view. Params

Root level containers have properties are unique to the container type. For more
information, see Root Container Properties .

https://docs.inductiveautomation.com/display/DOC80/Column+Containers
https://docs.inductiveautomation.com/display/DOC80/Coordinate+Containers
https://docs.inductiveautomation.com/display/DOC80/Tab+Containers
https://docs.inductiveautomation.com/display/DOC80/Breakpoint+Containers
https://docs.inductiveautomation.com/display/DOC80/Breakpoint+Containers
https://docs.inductiveautomation.com/display/DOC80/Flex+Containers
https://legacy-docs.inductiveautomation.com/pages/createpage.action?spaceKey=DOC80&title=Position+Properties+on+Perspective+Components&linkCreation=true&fromPageId=24445088

For complete description of each of the view properties, see . To access the properties for a view, select the view Perspective - View Object
in the Project Browser, for example:

The property types will be displayed in the Perspective Property Editor.

Input/Output Parameters

The properties inside of the params collection define parameters for the view. This is how views interchange information with other entities,
such as a parent view or the Page. Parameters must be defined as "input", "output" or "in/out". The default direction will be "input".

An input is not bindable from within the configuration of a view. The purpose of an input parameter is to receive parameter
information from an external entity. For example, when a view is opened, it may receive parameter values which will become the

 values of its input parameters. Or, if a view is placed inside another container, that instance of the view will show the input
properties, and they will be bindable.
An output is the opposite. These parameters are bindable from within the configuration of the view. If an instance of parameter
that view is then placed inside another container, the output values will appear as properties, but not be bindable; they will be read-
only from the outside.
An in/out combines the features of both input and output. An in/out parameter is bindable from both inside the definition parameter
of a view, and from the outside. This can be useful when making a view that acts as a decorator around an input, for example.
Suppose you had a view that contained a Text Field component and an Image component, and the image displayed whether or not
the text in the Text Field meets some criteria. You would use an in/out parameter to mirror the text across the view boundary.

https://docs.inductiveautomation.com/display/DOC80/Perspective+-+View+Object

1.
a.
b.
c.

d.

Popup Views

Popup Views float on top of a primary view and docked views. They are not part of a page’s initial
configuration, but may be opened using a popup action or scripting call. An easy way to create a
popup view is by using a Button component to open and close the popup view in the primary view.

 A popup view can be opened and closed at the user's discretion in a Session. To learn more, go to
 Popup Views .

Popup Views

Watch the Video

Configuring Views
Views can be configured in many different ways. They can be displayed as the entire browser window if it is configured to be the primary
view of a page. Views can also be displayed across the top, bottom, or sides of the browser window if it is configured to be a docked view. A

 view can also be displayed floating on top of the page as a popup view. A view can also be embedded within another view in various ways
 using a variety of components that are able to display embedded views. talks more about page layout and how views Pages in Perspective

are configured on a page.

When you start designing your project in Perspective, the first thing you'll do is create a view and how you want to configure it. You can
configure it as a primary view attached to a Page URL, or as a docked view on a specific Page URL with a primary view, or you can choose
your docked view to be shared across all pages in your project. You also have the option of creating folders for your views or simply leaving
all your views in the Views folder.

In the Project Browser, right click on the Views folder and select New View.
In the New View window, give your view a name.
Select a root container type.
Make sure to check the checkbox if you want your view attached to the Page URL. Perspective will match the Page URL Pa

 with the View's folder structure upon creation.ge URL
Click .Create View

In release 8.0.8 the New View screen was updated to clarify the selection of container types.

https://www.inductiveuniversity.com/videos/popup-views/8.0/8.0

1.

d.

2.

3.

When creating additional views, the Page URL will automatically get filled out for you if the Page URL option is checked. If
you use a space in your view name, the Page URL will replace the space with a hyphen as shown in the image below.

Once you create your view, the view will open in the Designer workspace, and you can begin adding and configuring components.

If you want to add additional containers, simply select another container type and drag it to your workspace. The container type
added in this example is a Flex container.

To add components to this container, double click on the container to it. Then you can drag components into deep select
the container. Notice that the properties are now in the Flex container.

https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection

3.

Once you create your view, the next step is to set up your navigation using .Pages

Containers
The is a special kind of component. True to its namesake, a container is a component that contains other components. Within Container
every created view is a container that cannot be removed or renamed. The dimensions of this container will span the entirety of the root
view. If you wish to change the container type for a view, you'll need to create a new view. In the Project Browser, next to the root there will
be an icon representing the type of container it is. There are types used in Perspective:

In Perspective containers enable you to have a to control the size and shape of any housed components. The layout strategy layout strategy
defines how the container displays each of its child components in the view. There are a variety of container types that support different
layout strategies.

Root
Container
Type

Icon Description

Coordinate This is the most simple container type. Components inside this type use basic X, Y, Width, and Height position
properties. They can be fixed in size, or be configured to grow and shrink proportionally when the view is
stretched. To see the properties and scripting functions available, got to and Perspective - Coordinate Container Coor

.dinate Containers

Column The Column type shows a column-based layout and has three breakpoints. Breakpoints help manage a view when
the devices using your session are very different sizes. Components inside this container type can span one or more
columns, and you can add as many rows as you want. Row heights are determined by the tallest component in that
row. To see the properties and scripting functions available, got to and Perspective - Column Container Column

.Containers

Tab The Tab type is used to show multiple views in the same page, while cycling through them all by clicking on each tab.
You can add a single component, container, or view to each tab space. Each child element uses a tabIndex property
for its position. To see the properties and scripting functions available, got to and Perspective - Coordinate Container T

.ab Containers

Breakpoint A Breakpoint container type allows you to create multiple versions of a single container using a pixel width as the
cutoff. This allows you to completely change the look or structure for displays on mobile versus desktop sessions. To
see the properties and scripting functions available, got to and Perspective - Breakpoint Container Breakpoint

.Containers

Flex The Flex type shows a single row of components spanning the height of the container. It allows you to set each
component to either stretch to fill the available width, or to use a static width. The components in this view type will
reposition and realign based on the size of the view. To see the properties and scripting functions available, got to Per

 and .spective - Flex Container Flex Containers

https://docs.inductiveautomation.com/display/DOC80/Coordinate+Containers
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container
https://docs.inductiveautomation.com/display/DOC80/Coordinate+Containers
https://docs.inductiveautomation.com/display/DOC80/Coordinate+Containers
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Column+Container
https://docs.inductiveautomation.com/display/DOC80/Column+Containers
https://docs.inductiveautomation.com/display/DOC80/Column+Containers
https://docs.inductiveautomation.com/display/DOC80/Tab+Containers
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container
https://docs.inductiveautomation.com/display/DOC80/Tab+Containers
https://docs.inductiveautomation.com/display/DOC80/Tab+Containers
https://docs.inductiveautomation.com/display/DOC80/Breakpoint+Containers
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Breakpoint+Container
https://docs.inductiveautomation.com/display/DOC80/Breakpoint+Containers
https://docs.inductiveautomation.com/display/DOC80/Breakpoint+Containers
https://docs.inductiveautomation.com/display/DOC80/Flex+Containers
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Container
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Container
https://docs.inductiveautomation.com/display/DOC80/Flex+Containers

Breakpoints

A simple strategy to accommodate radically different screen sizes is to design a view or container in several different ways, with each design
tailored to different screen sizes. The column and breakpoint types accommodate this design strategy, by picking one of two or three
different containers to open based on a specific range of pixel widths for the session. The term "Breakpoint" is a common piece of
terminology used to describe this design - it is the width in pixels at which the Perspective session decides to use one container over another.

Using Column Containers

The is a good option when you want to have the same and views for every screen size, and simply want to Column container components
lay them out differently at smaller or larger sizes.

Selecting one of the sizes will give you the opportunity to configure ' layouts for that size. For instance, selecting will allow components Small
you to position the , embedded views, and containers in your view in a way that makes sense for mobile devices, since most components
mobile phones will sport a session width less than 480 pixels. Rearranging the same in the container would provide a components Medium
nice design for larger smartphones, many tablets, and some desktops, while the configuration will yield a container that works for high-Large
resolution monitors and televisions.

Using Breakpoint Containers

The Column container is an easy-to-use option for simple layouts, but more involved ones might require more customization. Perhaps you
want desktop, tablet, and mobile sessions to look and feel quite different, or you want to use one of Perspective's new navigation components
, but only for mobile devices. Even in these circumstances, you don't have to design several sets of pages, or even several projects, to all
implement the same task.

Breakpoint containers enable you to design views tuned to different screen widths, but unlike a column container, where a single view can
take on three forms, in a breakpoint container you actually specify two distinct views, each with their own and functionality. components
Breakpoint containers are thus the more flexible option; as long as your "mobile" views share an essentially similar framework with your
"larger" views, you will be able to develop the views concurrently, and the Perspective session will decide at which set of views to runtime
use. You can think of a breakpoint container as bundling together two views that serve a similar purpose, but are tailored to different screen
sizes.

Nesting Layouts Using Containers
Sometimes you may want to compartmentalize a view or container in a particular way, either to modify the component layout or organize the
structure of your components in the Project Browser. Containers are a special kind of component that can contain children and can also be
nested, which supports multiple layout strategies. This means that application designers can nest containers inside of other containers to
compose layout strategies that are more complex and capable than any one container can provide.

You might want to have nested containers to create a more complex layout. For example, you could have a Tab container that has several
tabs with very different information in each tab. In one tab, you might have a table that looks great on a desktop but terrible on a phone.
Using a Breakpoint container inside of only one tab in a Tab container will allow you to make a more useful mobile experience while still
showing a table on a desktop computer.

Single-Component Containers

Sometimes you'll want to make a very simple view for use inside a higher-level setting, like a Carousel or a Breakpoint container. If you only
need a view to hold a single component that fills the container, you can:

Use a coordinate container in mode, and give the component and of , and and of 1.percent X Y 0 width height
Use a flex container, giving the component a basis of or .100% auto

Repeated Containers

Sometimes you'll need to repeat the same container a specific number of times in a row or column, or you want to a grid of child create
containers. For this purpose, you can:

Use a component, in the specific instance that you only need a row of instances of a specific view.Flex Repeater
Use a component, when you want to use more than one container or view.Flex Repeater

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Breakpoint+Container
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Repeater
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Repeater

Coordinate Containers

A container creates a traditional yet simple type of layout to use in Perspective. Each Coordinate
element (i.e., component or nested container) inside the layout has the familiar x, y, width, and
height properties for each component. The way these properties work depends on the Position mo

 property of the layout, specified on the Coordinate container.de

Position Properties
The position properties are always named the same, but have two different modes that drive how
they work: and . These two modes change how the width and height values work in Fixed Percent
respect to the view size.

Fixed mode - The width and height are a fixed number of pixels. The component will not
stretch or shrink as the view size changes.

X and specify the offset, in pixels, of the top left corner of the element, relative Y
to the top left corner of the coordinate container. A component flush with the top
and left sides of its parent will have coordinates x = 0, y = 0.
width and specify the size of the element in pixels.height

Percent mode - The width and height are a variable percentage of the width and height of
the view. The component stretch or shrink as the view size changes.will

X and specify the offset of the top left corner as a ratio of the width and height Y
of the coordinate container. For example, x=0.1, y=0.1 will set the top left corner
of the element at 10% across, 10% down.
width and specify the width and height as a ratio of the width and height height
of the coordinate container.

To change the Mode property, select the object under the View in the Project Browser. The Root
Mode property is the first in the list.

On this page

...

Position Properties
Root Properties
Configuring a
Coordinate Layout

Fixed Mode (No
Stretching)
Percent Mode
(Simple
Stretching)
Using the
Coordinate
Container as a
Component

Coordinate
Container

Watch the Video

The position properties control the location of a component on the view and the width and height of the component. The rotate property sets
the angle of rotation for a component and the point (anchor) around which it should be rotated. For more information on rotating components,
see Working with Perspective components.

Mode: Fixed

Position
Property

Description Data
Type

https://www.inductiveuniversity.com/videos/coordinate-container/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components

x Specifies the horizontal positioning of a component in pixels. valu
e:
num
eric

y Specifies the vertical positioning of a component in pixels. valu
e:
num
eric

width Specifies the width of a component in pixels. valu
e:
num
eric

height Specifies the height of a component in pixels. valu
e:
num
eric

rotate Settings that set the anchor and angle of rotation.

Position
Property

Description Data Type

anchor The point around which the rotation happens. Either as an {x:number, y:number} object
where x and y represent percentages such that {x:0, y:0} represents the (0%, 0%) or top-
left corner of the component, or as a valid CSS transform-origin string.

value:
string, or
object of
numbers

angle How much to rotate the component. Valid values include numbers (as degrees), and valid
CSS angle strings such as '45deg', '2rad', '0.5turn', etc.

value:
numeric
or string

obje
ct

Mode: Percent

Position
Property

Description Data
Type

x Specifies the horizontal positioning of a component in pixels. valu
e:
num
eric

y Specifies the vertical positioning of a component in pixels. valu
e:
num
eric

width Specifies the width of a component as a percent from 0 to 1 where 1.0 means 100% of the view width. valu
e:
num
eric

height Specifies the width of a component as percent from 0 to 1 where 1.0 means 100% of the view height. valu
e:
num
eric

rotate Settings that set the anchor and angle of rotation.

a
n
c
h
or

The point around which the rotation happens. Either as an {x:number, y:number} object where x
and y represent percentages such that {x:0, y:0} represents the (0%, 0%) or top-left corner of the
component, or as a valid CSS transform-origin string.

value:
string, or
object of
numbers

a
n
g
le

How much to rotate the component. Valid values include numbers (as degrees), and valid CSS
angle strings such as '45deg', '2rad', '0.5turn', etc.

value:
numeric or
string

obje
ct

1.

Root Properties
Root properties are accessed by selecting the folder for a Perspective View on the Project Browser tree.root

Root
Property

Description Data
Type

mode Whether child layouts should always be in fixed coordinate space, or should stretch relative to different container
sizes. Options are fixed or percent.

value:
string

aspectR
atio

Only applies in percent mode. Optional dimension, in x:y format, to apply to maintain container aspect ratio for
different sizes. Empty string (or non x:y input) will disable this mode.

value:
string

style Sets a style for this view. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous. You can also specify a .style class

object

Configuring a Coordinate Layout

Fixed Mode (No Stretching)

The default behavior of all new Coordinate Layouts is Fixed mode (no stretching). In the mode components are given x, y, width, and Fixed
height values in pixels and will strictly stick to those. This mode will not adjust its size or shape regardless of screen size. If you want to plan
out your views to the pixel, coordinate layouts serve this purpose well. If you plan to launch your Perspective Sessions on a variety of
different screen sizes, the Coordinate Layout is not very flexible.

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Styles+and+Style+Classes

1.

2.

3.

Let's create a new view using the Coordinate layout with a Page URL.

Drag a component into your view. In this example, we used the component. You'll notice the Coordinate container's propeIcon mode
rty defaults to . Place your components and sub-containers however you see fit. Use the edge handles of the component or fixed
position properties to change the width and height.

Let's open a Perspective Session by clicking on the icon. Right click on your Page for your Coordinate Page Configuration URL
View to launch a Perspective Session.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Icon

3.

4. A Perspective Session will never move, stretch, or shrink the components on the screen.

5.

1.
2.

If you resize the session to make the screen narrower, you'll notice that the components will not resize, and you'll get scroll bars at
the bottom of the screen.

Percent Mode (Simple Stretching)

The mode on coordinate layouts provides a simple and intuitive scaling option for screens of different sizes. As a special case, you'll Percent
often want to make a component or container fill its parent container entirely, regardless of the final dimensions of the parent. A Coordinate
Layout is one way to accomplish this:

If working in a Coordinate View, select the view's root container, otherwise select the Coordinate Container component.
In the Perspective Property Editor, set the container's property to .mode percent

2.

3.

4.
5.

6.

From the Component Palette, drag a new component to the top left corner of the parent of your Designer workspace. For this
example, we used a Table component.
Set the the and position properties to 0.x y
Set the and properties to 1. width height

Percent mode allows your components to resize and completely fill the space as you can see in this Perspective Session.

6.

Using the Coordinate Container as a Component

The also works well as a separate component. You can use it as a small container to hold components that you don't Coordinate container
want to move around, and place it inside a more responsive container such as a or . This works extremely Flex container Column container
well if you are looking for a more responsive design for your project.

Related Topics ...

Pages in Perspective
Perspective Coordinate Container

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Container
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Column+Container
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container

Column Containers

In a Column Layout, the view or container is divided into consistently-sized and spaced columns.
By default, there are 12 columns. Each component's width is described only by how many of these
columns it spans. Since these columns will grow wider or narrower to accommodate changes in
the width of the parent container, elements in a column layout can stretch horizontally. To this end,
each component has two properties that control its size and position:

height for components in a column layout does not scale with the height of the layout
itself. It is specified in pixels, and unlike width will not stretch or shrink based on the parent
container. A height of will tell a component to keep the same vertical size as other auto
elements in its row.
breakpoints contains three sets of information about the component's positioning. Which
set is used is based on which is active (more on breakpoints follows). Each breakpoint
set consists of:

name is "sm", "md" or "lg". The name simply corresponds the the breakpoint that
the particular set of positioning data refers to.
span refers to how many columns wide the entity should be in the current
breakpoint.
rowIndex and refer to the X and Y coordinates of the leftmost cell that colIndex
the element occupies in the given breakpoint.
order refers to the order of the element in its row. This property will be set and
updated automatically.

On this page

...

Easy Screen
Flexibility
Column Container
Position and Root
Properties

Position
Properties
Root Properties

Configure a Column
Container

Column Container

Watch the Video

Easy Screen Flexibility
A Column Layout is a simple approach to what could be termed responsive design - the process of developing the same view, or similar
ones, in different ways to seamlessly accommodate everything from phone screens to 4K televisions in a single project and set of pages.

Breakpoints encapsulate this strategy in Perspective. The column layout offers the opportunity to establish three different versions of your
view, which will then be used at different ranges of screen widths. You can find and configure these versions from the top of the Perspective
Property Editor for a Column container; they are:

Small (default 0 px)
Medium (default 480 px)
Large (default 996 px)

The px values denote at what minimum screen width (in pixels) the view or container should use a given configuration. Selecting one of the
sizes will give you the opportunity to configure component positions and spans for that size. This gives more refined control over how a given
view or container scales. A column layout is appropriate when your view or container meets some specific criteria:

You don't need your components to scale vertically, outside of the three provided breakpoints.
You want to include the same components in the view regardless of screen size.
You want the components to behave the same way at any size (in terms of scripting, navigation, bindings, etc.)
You don't need screens at different sizes to use different views.

Here is an example of a column view, configured with small, medium, and large breakpoints.

https://www.inductiveuniversity.com/videos/column-container/8.0/8.0

Column Container Position and Root Properties

Position Properties

Position properties in for a Column container indicate the height of the component placed in each column and the name and order of the
breakpoints. For more information, see . Perspective - Column Container

Position
Property

Description Data
Type

height Height, in pixels of the component placed in the column. int

breakpoi
nts Position

Property
Description Data

Type

name Name of a breakpoint defined in container. If this matches the currently applied breakpoint,
these rules determine child layout. Options are sm (small), md (medium), or lg (large).

value:
string

span Number of columns the child's width will span. value:
numer
ic

rowIndex Row index (starting from 0) in which to place child. Children may wrap lines within a row.
Children in separate rows don't affect each other's layout.

value:
numer
ic

colIndex Column number upon which the child's span should begin unless forced to wrap. value:

array

https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Column+Container

numer
ic

order Where component is places among its siblings within its row. Ordering is independent per row. value:
numer
ic

Root Properties

Root properties are accessed by selecting the folder for a Column view on the Project Browser tree. root

Root
Property

Description Data
Type

columns Number of column spacings the container is divided into. Children plot layouts across groups of columns, or wrap to
the next line when space does not allow. Default is 12.

value:
numeric

breakpoi
nts

Width breakpoints declarations for child layouts. When container is sized below minWidth, child position rules will
fall back to the next set breakpoint rules.

Position
Property

Description Data Type

name Name of the breakpoint. Options are sm (small), md (medium), or lg
(large).

value: string

minWidth Minimum width of container, in pixels. value:
numeric

array

gutters Amount of space, in pixels, to place between child components.

Position Property Description Data Type

vertical Vertical space, in pixels, to place between child components. value: numeric

horizontal Horizontal space, in pixels, to place between child components. value: numeric

object

style Sets a style for this view. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous. You can also specify a .style class

object

Configure a Column Container

https://docs.inductiveautomation.com/display/DOC80/Style+Reference

1.

2.

a.
b.
c.

3.

4.

The allows you to switch between three different views depending on the size of your Perspective Session. In this Column container
example, let's create a data entry form for the company's client list. We'll create a view and add components, then we'll switch between the
views to arrange the components for each layout size.

Create a new view using a Column container.

With the new Column container selected, you'll see the column breakpoints at the top of the Property Editor. Set each of the
breakpoints to the following:

Small breakpoint - 0
Medium breakpoint - 500
Large breakpoint - 1000

Select the breakpoint in the the Property Editor. Small

Click and drag the square handle on the right side of the view to shrink the width of the container to just under 500 px wide. Arrow
guidelines along the top of the component show where the small breakpoint ends and medium breakpoint begins at 500 px.

Selecting Breakpoints

It's important to pay attention to which Breakpoint is selected. Any changes you make will be applied only to the currently
selected breakpoint.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Column+Container

4.

5.
a.
b.
c.
d.

Let's add some components to the Column container.
Drag a Label component on to the container and expand it to fill all 12 columns in the first row.
Drag a Text Field component on to the container and expand it to fill all 12 columns of the second row.
Repeat Steps a and b until you have four Labels and four Text Fields.
Add a Button component at the bottom of the screen and expand it to fill all 12 columns.

5.

d.

6.
a.
b.
c.
d.
e.

In the Property Editor, update the property of the Label and Button components and assign them a useful description:text
First Label: Company Name
Second Label: City
Third Label: State
Fourth Label: Industry
Button: Add Record

6.

e.

7.
8.

9.

10.
11.
12.
13.

14.
15.

16.

17.
18.
19.

This is a good time to your project before continuing.Save
Now, let's switch to the Medium breakpoint. Select the breakpoint at the top of the Property Editor. Notice that all of the Medium
components are still showing, but they are now unorganized.
Using the square handle on the right side of the view, click and drag it to expand the width of the container to approximately 500 px
wide. This will give you a better idea of what the view will look like in the browser.
Move the components around so each row has Label and one Text Field.
Set each Label to the first four columns.
Set each Text Field to be the last eight columns.
Keep the Button component in its own row at the bottom and shrink it to be centered with eight columns.

Save your project.
Now, select the breakpoint in the Property Editor. Once again, you'll notice that the all the components are showing, but they Large
are unorganized.
Using the square handle on the right side of the view, click and drag it to expand the width of the container. This will give you a
better idea of what the Large view will look like in the browser.
Move the components around so each row has two Labels and two Text Fields on each row.
Set each Label to be two columns wide and each Text Field to be four columns wide.
Keep the component on its own row at the bottom and shrink it to be centered with four columns.Button

19.

20.

21.

22.

23.

Save your project.

Let's launch a Perspective Session to test our breakpoint views. Click on the icon at the bottom of the Page Configuration
Designer window.
Right click on your column container and select . Launch Url

With your Perspective Session open, stretch and shrink your browser window and you'll see the views change depending on the
width of your browser.

Small Breakpoint

23.

Medium Breakpoint

23.

Large Breakpoint

Related Topics ...

Pages in Perspective
Perspective Column Container

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Column+Container

Tab Containers

A Tab container can be used for a relatively simple layout type. Tabs run along the top of the
layout. You can configure and select a distinct embedded view, container, or component in each
tab. The tab headers themselves can be configured to show text or even embedded views. A menu

 property on the tab container offers two basic appearances for the tabs: andType classic modern
.

Critically, each element in a Tab container has only a single position property, . The tabIndex
edges of the enclosed element will be stretched to fill the entire tab, allowing easy dragging and
dropping of different subviews. Of course, you can nest containers inside of a tab layout to provide
whatever functionality you'd like.

For details on the properties in a Tab component, see .Perspective - Tab Container

On this page

...

Tab Container Root
Properties
Tab Navigation
Nested Tabs

Tab Container

Watch the Video

Tab Container Root Properties
Root properties are accessed by selecting the for a View with a Tab container on the Project Browser tree.root

Root
Property

Description Data Type

tabs Content to display in the menu as tabs. Each tab in this array may be either a string to display as the tab text or
an object with viewPath and optionally viewParams. If the latter, a view will render as the tab in place of text.

array

currentT
ableIndex

Which index in the tabs property is currently active. value:
numeric

menuTy If the type is 'classic', a traditional menu with boxed tabs is shown. The 'modern' type has no borders around each value:

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Tab+Container
https://www.inductiveuniversity.com/videos/tab-container/8.0/8.0

1.

pe tab and shows selection with an underline. Options are classic or modern. string
dropdown

tabSize Default size allotted to a single tab. If container width does not allow, tab width will shrink from this size
accordingly.

Root Property Description Data Type

width Width of tab, in pixels. Default is 96. value: numeric

height Height of tab, in pixels. Default is 36. value: numeric

object

menuSty
le

Additional styling to apply to the menu.

Root Property Description Data Type

backgroundColor Background color for the menu. color

object

tabStyle Additional styling to apply to all tabs depending on active (selected) or inactive state.

Root
Property

Description Data
Type

active Style for all tabs when active. Full menu of style options is available for text, background,
margin and padding, border, shape and miscellaneous.

object

inactive Style for all tabs when inactive. Full menu of is available for text, background, style options
margin and padding, border, shape and miscellaneous.

object

object

style Sets a style for this view. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous. You can also specify a .style class

value:
numeric

Tab Navigation
The Tab Layout is a way to allow your users to swap between several views easily. However, this is not a navigation strategy that works for
anything other than a very small project. This navigation strategy is intrinsically limited. You cannot use a tab layout to navigate to a new
page, only to cycle between different views on the page. As such, the page URL will never change, and the forward and back buttons same
on your browser will not navigate through the tabs.

For complex pages, this type of layout can work very well. When we talk about using tabs to organize a page, we are talking about a single
page that has a lot of information on it. A good example is an customer details screen. You may need to know all about your own customers,
location, contacts, order information, and payment. If each of these items is a new tab on a single page, you can show much more
information in a smaller space. If this sort of tab structure suits your page's organizational needs, the tab layout can integrate that structure
without complicated scripting or bindings.

Nested Tabs
If you're after a nested tab structure, all this requires is nesting another tab container inside of each of the tabs in a parent container:

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

1.

2.
a.
b.
c.

3.

4.

5.

Create a new view with a container type, and create a . Tab Page URL

Next we added headers to the tabs.
Select the root container.
In the Property editor, select the first element in the tabs array. Enter the name "Region".
In the second element, enter the name "Events".
You'll see the names appear on the tabs as you enter them in the Property Editor.

Next we'll configure some nested tabs under the Region tab. Double click to deep select the Tab Container component for the
nested tabs.
From the Perspective component palette, drag a Tab component onto the View.

5.
6.

7.
8.

9.

10.
11.

12.

In the Property Editor, click the icon twice to add two more tabs to the component.Add
Name the tabs North, South, East and West.

Select the tab you want to add a component to (i.e., West).
Drag a component onto the tab. In this example, we added a on the tab labeled West. When you drag a component Map component
into a tab, the component fills up the entire space. If you want to add multiple components on a sub-container/nested tab, go to Step
10.
The example now shows the Map component when the West tab is selected.

To add multiple components on a sub-container, let's use a different tab (i.e., East) from our example above.
Double click to deep select the Tab component (i.e., East) and drag a from the component palette into the Coordinate container
sub-container.
Now you can drag multiple components into the container. This example drags in a and components. You can resize and Map Table
organize the components within the tab. Here's what the components look like within the tab.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Map
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Map
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Table

12.

13. Now, lets open it up in a Perspective Session by clicking on the icon. Right click on your Page URL for your Page Configuration
Tab View to launch a Perspective Session.

14. Here's what your Tab container layout will look like in a Perspective Session.

Related Topics ...

Pages in Perspective
Perspective Tab Container

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Tab+Container

Breakpoint Containers

The Breakpoint container consists of a single , with two child views. In other words, breakpoint
using a Breakpoint container offers you a layout with the opportunity to create two different views
that are shown at two distinct ranges of layout widths.

The breakpoint is configured by selecting the Small and Large breakpoints at the top of the
Perspective Property Editor, then dragging in a subview, container, or component. However, little
additional structure is provided; each of the two breakpoint configurations expects a single
component, container, or view.

On this page

...

Flexibility without
Limits
Breakpoint Position
and Root Properties

Position
Properties
Root Properties

Configuring a
Breakpoint
Container

Breakpoint
Container

Watch the Video

Flexibility without Limits
The breakpoint layout is the most comprehensive choice when you want to develop a project that works for sessions of many shapes and
sizes. Unlike column and flex layouts, which offer ways of controlling how a fixed set of components respond to changes in screen size, a
breakpoint layout expects two entirely distinct subviews. This makes the breakpoint layout a powerful, but more involved choice of layout.

There are many circumstances that call for this layer of abstraction. Maybe operators using mobile phones need different control options than
desktop computers at a coordinating hub. Or more fundamentally, maybe you can't quite pack as much functionality per view into a mobile
screen as you can in its desktop counterpart, and need to add a couple more views to your mobile version to bridge the gap.

A breakpoint layout might be a good idea if you want small and large versions of your session to have:

Differing components
Differing properties, bindings, or layout behavior
Differing navigation options

When designing pages for mobile and desktop applications, it's important to consider not only the type of layout, but if your design fits nicely
on a page in a mobile session. Some pages may work for a desktop session, but may not work for a mobile device such as expecting a user
to enter data into multiple tables on a mobile session that don't fit seamlessly across a page.

Breakpoint Position and Root Properties

Position Properties

https://www.inductiveuniversity.com/videos/breakpoint-container/8.0/8.0

Position properties in a Breakpoint container indicate simply whether the component is in the large version of the container or the small
version. For more information, see . Perspective - Breakpoint Container

Position Property Description Data Type

size Indicates small or large. boolean

Root Properties

Root properties are accessed by selecting the folder for a Breakpoint View on the Project Browser tree.root

Root
Property

Description Data
Type

breakpoi
nt

Width (in pixels) breakpoint declarations for child layouts. When the container is sized below minWidth, child
position rules will fall back to the next set breakpoint rules.

value:
numeric

style Sets a style for this view. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous. You can also specify a .style class

object

Configuring a Breakpoint Container
A Breakpoint container can switch between two configurations based on how wide the container is. Here is a simple example of creating a
Breakpoint layout using two different views. The components on each view are laid out a little differently because they both represent two
different distinct ranges of layout widths: small and large. We are going to use the two views below to add as children to our Breakpoint
container. Since you can only add a single component to each child in a Breakpoint container, we'll place each of these views, containing
multiple components, in their own Embedded View. This example assumes you have a small view and large view already configured.

https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Breakpoint+Container
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

1.

2.

3.

a.
b.
c.
d.
e.

Create a new view using a Breakpoint container.

Let's configure the Breakpoint container to show the small view when the screen size is narrow, like on your mobile device, and the
large view when you're on your desktop.
In the Property Editor, the breakpoint is determined by using the Small and Large properties, or the slider at the top of the Designer
workspace. In this example, the Breakpoint is set at 800 px. When the Breakpoint container is sized below minimum width, child
position rules will fall back to the next set breakpoint rules.

With the Breakpoint container open, click on the property in the Property Editor.Small
Drag an Embedded View component onto the Breakpoint container.
Select the in the Project Browser.EmbeddedView
Set the property to the name of your small view (i.e., Sml View) from the dropdown.path
Set the Position property to small. size Note: This lets the embedded view component know which child rule it is linked to,
Small or Large.

3.

e.

4.
a.
b.
c.
d.
e.

5.

6.

7.

Now let's repeat the steps above for the large view.
With the Breakpoint container open, click on the property in the Property Editor.Large
Drag an Embedded View component onto the Breakpoint container.
Select the first in the Project Browser.EmbeddedView_0
Set the property to the name of your large view (i,e., Big View) from the dropdown.path
Set the Position property to large. : This lets the embedded view component know which child rule it is linked to, size Note
Small or Large.

Now, when you toggle the Small and Large properties in the Property Editor, you'll see the window switch between the two different
Small and Large views.

Now, let's open a Perspective Session by clicking on the Configuration icon at the bottom of the Designer window to test Page
your Breakpoint layout.

7.

8.

Right click on your Breakpoint container (i.e., bpview), and click on Launch Url.

With your Perspective Session open, stretch and shrink your browser window. You'll see the views change depending on the width
of your browser.

Related Topics ...

Pages in Perspective
Perspective Breakpoint Container

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Breakpoint+Container

Flex Containers

The layout is a powerful layout, with many configuration options, based on the CSS flex
Flexbox layout. The flex layout consists of a single series of adjacent components or containers,
configured as either a column or a row. To this end, the layout has five properties:

direction controls whether the flex layout appears as a row or a column.
wrap controls what happens when the components are too big for the container. For
instance, if the property is set to , but the components in the row are too direction row
wide to fit in the flex container, this property controls whether a new row should be
created, or scrollbars should be used.
justify controls where extra space is located when the components are not large enough
to fill the container along the main axis. i.e. the space at the end or a row, or on the
bottom of a column. If the components do not fully fill the space, the remaining gap can be
placed at the beginning, the end, evenly on both sides, or evenly distributed between the
components.
alignItems controls where extra space is located when the components are not large
enough to fill the container along the alternative axis, i.e. the space below a row, or on the
right of a column. If the components do not fully fill a row, the remaining gap can be
placed above, below, evenly on both sides, or evenly distributed between the
components. For a column it is left, right, both, or evenly distributed.
alignContent controls what happens to items that have been wrapped.

In addition, each component in a flex layout contains three properties:

basis controls the default size of a component along the flex container's . You direction
can enter the value in pixels (e.g.,), as a percentage of the total length of the 75px
container (e.g.,), or you can use . All components configured to will equally 50% auto auto
share the available space in the container.
grow and control the way that a component responds to changes in the flex shrink
container's width (for rows) or height (for columns). controls what happens when grow
additional space is available, and controls what happens when the component shrink
does not have enough space to fulfill its basis.

Grow and are interpreted relative to other components in the Flex container, and are best shrink
understood through some simple principles:

A value of 0 will prevent the component from stretching beyond its . A vgrow basis shrink
alue of 0 will prevent the component from shrinking beneath its .basis
If all components in a row have the same (nonzero) value, they will all grow equally grow
to accommodate more space. If they have the same value, they will all shrink shrink
evenly.
Components with higher and values will grow and shrink more. Specifically, grow shrink
a grow or shrink value is evaluated relative to the sum of all grow and shrink values in the
container.

On this page

...

Growing and
Shrinking

Static Widths
Even Scaling
Position
Properties
Root Properties

Configuring a Flex
Layout

Creating a Main
View
Creating a
Header View

Flex Container

Watch the Video

Growing and Shrinking
The flex container's and properties allow a great deal of control over how different components expand and shrink. To grow shrink
demonstrate, here are three components nested inside a flex container, with a direction of :row

All three components have the same , so at this session width, they all have the same size. However, the blue component has a much basis
larger value than the other two components. So, when we increase the length of the flex container along its property:grow direction

https://www.inductiveuniversity.com/videos/flex-container/8.0/8.0

The blue component does most of the stretching. Specifically, since the sum of all grow properties is 1 + 1 + 5 = 7, and the blue component
has a grow property of 5, for every 7 pixels the flex container grows, the blue component will grow by 5. Now let's try shrinking the container,
noting that the red component has a shrink value of 5:

As you can see, a larger shrink value will make the container shrink more. For every 7 pixels the flex container loses, the red component will
lose 5.

Static Widths

Now let's try the same example again, but with some different and values:grow shrink

We've given the red and green components identical values, so they should stretch and shrink at the same rate. Meanwhile, the blue
component's and values are both 0, so when we make the flex container wider, it stays the same size:grow shrink

Even Scaling

Now let's say we start off with a blue component twice the of the others:basis

In order to maintain this ratio as the width of the container increases, it must have a value twice that of the others:grow

Position Properties

Position properties for a Flex container indicate whether the container is allowed to grow or shrink in relation to its siblings. For more
information, see . Perspective - Flex Container

Position
Property

Description

grow Ability to grow in 'direction' dimension as needed, relative to siblings. If space is available and grow is not zero, it may stretch, depending on sibling rules. This value is relative to other components, meaning
that two components with the same grow value will grow at the same rate.

shrink Ability to shrink in 'direction' dimension as needed, relative to siblings. If space is available and grow is not zero, it may stretch, depending on sibling rules. This value is relative to other components, meaning
that two components with the same shrink value will shrink at the same rate.

basis Space filled by component by default, before 'grow', 'shrink' and sibling considerations are evaluated. This is the component's base width when the direction property is set to 'row', and it is the component's
base height when the direction property is set to 'column'.

https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Container

display Determines if the component will be displayed in the container or not. Components that are not displayed won't just be invisible, but will actually be removed from the flex container, readjusting all other
components to fit.

Root Properties

Root properties are accessed by selecting the folder for a Perspective View on the Project Browser tree.root

Root
Property

Description Data
Type

direction Direction of the child layout. Options are row, row-reverse, column, column-reverse value:
string
dropdown

wrap Whether the container allows children to wrap to the next line if space has run out. Options are wrap, no-wrap,
wrap-reverse.

value:
string
dropdown

justify Adjusts placement of children along the main axis hen there is extra space, which may be used to fill areas
before, after, or in-between. Options are flex-start, flex-end, center, space-between, space-around, or space
evenly.

value:
string
dropdown

alignIte
ms

Adjusts placement of children along the cross axis when there is extra space. Options are flex-start, flex-end,
center, baseline, or stretch.

value:
string
dropdown

alignCon
tent

Adjusts alignment of wrapped content when there is free space in the cross axis. Options are flex-start, flex-end,
center, baseline, or stretch.

value:
string
dropdown

style Sets a style for this view. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous. You can also specify a .style class

object

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Styles+and+Style+Classes

1.

2.

Configuring a Flex Layout
The is ideal when designing mobile responsive applications because it lets you set dynamic sizes to accommodate various Flex container
screen sizes. By using the Flex container properties, it allows components to grow and shrink dynamically relative to each other. In the
following examples, we'll use the Flex Container to create two types of views similar to the descriptions above:

a main view containing three components where only the bottom two stretch
a header view that has components pushed to both the left and right of the view with empty space between them

Creating a Main View

In this first example, we are going to configuring three Label components using a Flex container to demonstrate how to freeze the size of the
first label and allow the second and third Labels to stretch to fill the remaining space. We can do this by setting the and Position grow shrink
properties to a non zero number. The first Label component will not be allowed to grow or shrink because both properties are set to 0.

Create a new view using the Flex container.

The new view will open in the Designer. The Flex view will have some preset properties so you might want to look at the GUI and the
PROPS in the Property Editor. These can be modified based on your design requirements.

Grow and Shrink Properties

When the grow and shrink properties are set to non-zero numbers, they are allowed to change size. If they are set to zero, they are
not allowed to grow or shrink, they will always match their basis value.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Container

2.

3.

4.

a.
b.
c.

5.
a.
b.
c.

6.

a.
b.

c.

Using the square handles, set your view to by . 300px 300px

With the root selected, drag three components onto the view from the Component Palette. Since the direction property is set Label
to column, all three labels are placed in a column starting at the top of the view. The default property settings for all three Position
Labels are:

grow: 0 - the component can not grow
shrink: 1 - allows the component to shrink
basis: 32px - is the ideal size for the component

We want the first label to be a static size and never change. Select the first Label and set the following properties:
grow: 0
shrink: 0
basis: 100px

Modify the component style for the Label component any way you want. We used the following settings:

Click the icon next to the property.Modify Style style
Expand the category and set the to . Background Background color Orange

6.

c.

7.
a.
b.
c.

8.

a.
b.
c.
d.

9.
a.
b.
c.

10.

a.
b.
c.

11.

Close the style popup and set the text property of the Label component to .Orange Label

Select the second Label component and set the following properties:
grow: 1
shrink: 1
basis: 100px

Modify the component style for the Label component. We used the following settings:

Click the icon next to the property.Modify Style style
Expand the category and set the to Text color White
Expand the category and set the toBackground Backgroundcolor Blue.
Close the style popup and set the text property of the Label component to .Blue Label

Select the third Label and set the following properties:
grow: 1
shrink: 1
basis: 100px

Modify the component style for the Label component. We used the following settings:

Click the icon next to the property.Modify Style style
Expand the category and set the toBackground Background color Green.
Close the style popup and set the text property of the Label component to . Green Label

Once all the Label properties are set, your view should look like the image below.Position

Now, let's resize the components in the same direction as the container. Select the container in the Project Browser. Using the root
square handle at the bottom of the view, drag the view down the length of your workspace. You'll notice that the Orange Label
component didn't grow, and because the Blue and Green Label components were give the same grow values, they were stretched
at the same rate.

11.

12. Select the container in the Property Editor, and grab the square handle at the bottom and shrink your view. As the container root
gets smaller, the bottom two Labels will start to shrink. As you can see in the image below, because the Orange Label shrink
property is set to zero, it didn't shrink.

You can use this example to modify the different Properties and Position properties to see how the behavior of the Label components
change. If you don't want them to shrink past their basis, change the shrink property to zero.

Creating a Header View

In this example, we'll use the Flex Container to create a header view that contains several components pushed to the far left and right of the
header. Then we'll show the header view on top of the Flex View (from the previous example) in a Perspective Session.

1.

2.
a.
b.

3.

4.

5.

Create a new view using a Flex container.

The new view will automatically open in the Designer. With the view selected, set the following size properties so it is wide and short:
width: 600
height: 60

Select the container in the Project Browser.root

In the Property Editor, set the property to . Notice how the GUI at the top of the Property Editor also changed. You can direction row
use either the or the to modify the containers properties. GUI PROPS

4.

5.
6.

a.
b.
c.
d.

7.
a.
b.
c.
d.

a.
b.
c.

8.
a.
b.
c.
d.

a.
b.
c.

9.
a.
b.
c.
d.

10.

11.

12.

From the Component Palette, drag an component and place it on the left side of the view.Icon
With the Icon selected, set the following properties:Position

iconPath: material/menu
grow: 0
shrink: 0
basis: 60px

Next, add a Label component and set the following properties:Position
text: My First Project
grow: 1
shrink: 1
basis: 150px

While we still have the selected, let's modify the text style:Label

Click the icon next to the property and expand the category:Modify Styles style Text
Font Weight: Bold
Text align: Center

Add another , and set the following properties:Label Position
text: Login
grow: 0
shrink: 0
basis: 50x

Let's modify the text style for the Label component.

Click the icon next to the property and expand the category:Modify Styles style Text
Font Weight: Bold
Text align: Right

Add another component to the container on the right and set the following properties:Icon Position
iconPath: material/person
grow: 0
shrink: 0
basis: 60px

Here's what your header view should like in the Designer after adding all the components and setting each component's
property values.

 Save your project.

Now let's show the header view on top of the Label page in a Perspective Session. Click on the at the Page Configuration icon
bottom of the Designer window.
Select the /flex-view page.

13.

14.

15.

In the Layout area, click on the for the top header section. Select the view and click . This will make the Add Top Header Flex OK
Top Header Flex View be displayed at the top of the Flex View we created.

Right click on the Flex view page and select . Launch Url

With your Perspective Session open, stretch and shrink your browser window horizontally and you'll see the Header grow and shrink
with the icons locked in the corners.

15.

You can modify the different properties to change the behavior for the Label components on your browser.

Related Topics ...

Perspective - Flex Container
Pages in Perspective
Styles

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Container

Test Your Responsive Design Using Chrome's Developer
Tools

When designing for mobile-responsive applications, designs must work everywhere, on any device
from a smartphone to a desktop with full-sized monitors, in a optimized format using one design.
Websites not only have to look great on many different screen sizes, but they are also expected to
perform well. You can test your responsive designs using Chrome's Developer Tools by integrating
an emulation feature called Device Mode. Device Mode can emulate a mobile device environment
to test a website's responsiveness in different devices. It can also change the resolution of your
page to reflect the size of screens from different manufacturer's devices.

On this page

...

Developer Tools

Developer Tools
Any modern version of Chrome will work. You can access Chrome's Developer Tools from a Perspective Session by opening Chrome's

 or by clicking . A toolbar will open at the top of the Perspective Session page below the URL menu > More Tools > Developer Tools F12
you are viewing. A panel is displayed on the right side of the page showing the HTML for the current URL. From the toolbar, you can select a

specific mobile device and size as well as show the actual device frame by clicking the Device Mode icon. Chrome will emulate different
devices with viewport sizes, and other features.

To activate Device Mode, simply click the Device Mode icon at the top of the Developer Tools window. You can use the Device Mode

 icon to toggle between devices. You can hover lines of code and Chrome will highlight the specific element on the screen.

In the Perspective Session, you can also use the handles in the Chrome browser to grow and shrink the screen size. There are a host of
developer's tools, so it's a good idea to take time to familiarize yourself with Chrome's Developer Tools It has potential to save you hours of .
work and help you to make your application site friendly to the increasing variety of devices people will use to access your application.

Related Topics ...

Pages in Perspective
Perspective Tab Container

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Tab+Container

Perspective Designer Interface

The Perspective Designer Interface includes a number of panels and menus containing
functionality that allow you to design and build your project. The Perspective Designer Interface
has several basic panels that are used for specific objects such as the Project Browser and Tag
Browser. The Project Browser panel allows you to view the different Spaces and their Designer
component hierarchies at a glance as you design and build your project, while the Tag Browser
panel allows you to browse Tags in the Designer and OPC server as well as create new
Tags. Some of the menus, like the File Menu and Help Menu, are shared throughout the Designer,
and some are specific to certain objects that will only be displayed when an object of that type is
selected.

There are many dockable and draggable panels that surround the workspace, as well as the
familiar menu bars and toolbars. The default panels include: Component Palette, , PProperty Editor
roject Browser, and . The dockable panels can be rearranged as you wish and will BrowserTag
snap into place as you move them around the screen. Each workspace remembers its layout,
which is the docking arrangement of the panels around it.

If you closed a panel and want to get it back, re-enable it from the submenu. To View > Panels
reset the user interface back to its default arrangement, go to or click the View > Reset Panels Pa

 icon in the lower left corner of the window and select . nel Chooser Rest Panels

On this page

...

Perspective
Menubar

File Menu
Edit Menu
View Menu
Project Menu
Component Menu
Help Menu

Perspective Toolbar
Resource Tabs

Right-Click Menu
Project Browser

Badge Icons
Tag Browser
Perspective
Component Palette
Perspective
Property Editor
Page Configuration

Recently
Modified Views

Keyboard Shortcuts
Vertical and
Horizontal Guides

Perspective Menubar

https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Tags

There is a menubar at the top of the that provides functionality that you can interact with when working in the Perspective Designer
workspace. Each menu has a host of functions as it relates to that menu. The other menus that are shared between Vision and Perspective
are discussed in the .General InterfaceDesigner

File Menu

See . General Designer Interface

Edit Menu

The is similar to other applications edit menus in that it provides much of the basic copy/paste functionality. You can also right Edit Menu
click on an item in the browser to access this menu.

Function Description

Undo and
Redo

Can be used to revert to the previous state, essentially removing the last change, or redoing it again after having been
removed. This has a large queue that can be traversed, but does not include every change (i.e., edits cannot be Tag
undone).

Cut/Copy
/Paste
/Duplicate

These functions perform similarly to most software applications.

Cut: Removes the selected item but keeps a copy on the clipboard.
Copy: Puts a copy of the selected item on the clipboard.
Paste: Pastes the current contents of the clipboard.
Duplicate: Duplicates the selected item (essentially a fast copy and paste action).

Most things in the can be copied and pasted elsewhere, from individual to entire Views.Designer components

Find
/Replace

Brings up the Find and Replace interface to allow you to find specific objects within the project. See for Find and Replace
more information.

Delete Deletes the currently selected component. This can also be done using the delete key.

View Menu

The enables you to control the display of panels and toolbars in the Designer.View Menu

https://docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://docs.inductiveautomation.com/display/DOC80/Find+and+Replace

Function Description

Reset
Panels

Resets the Panels in the Designer so that they are in the default configuration.

Panels A list of all the available Panels for the Designer in Perspective. Select the checkbox next to the Panel name to display that
panel.

Toolbars A list of all the available Toolbars for the Designer in Perspective. Select the checkbox next to the Toolbar name to display
that toolbar.

Project Menu

See . General Designer Interface

Component Menu

The provides links to the Event Configuration and Script Configuration screens where you can add events, actions, and Component Menu
message handlers to individual components.

Function Description

Configure Events... Displays the Event Configuration screen. For more information, see Perspective Events and Actions.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface

Configure Scripts... Displays the Script Configuration screen. For more information, see Component Message Handlers.

Help Menu

See . General Designer Interface

Perspective Toolbar
The Perspective Toolbar contains shortcuts to options from the menubar as well as options to set the z-order for components.

Icon Function/Description

Save all outstanding project changes in Ignition Gateway.

Merges any new changes on the Gateway into the open project.

Undo the last action.

Redo the last undo action.

Cuts the current selection into the clipboard.

Copies the current selection into the clipboard.

Pastes the current selection into the clipboard.

Gateway communication such as queries and Tag subscriptions disabled.

Read-only communication operations such as SELECT queries and Tag values allowed.

Full read-write Gateway communication allowed

Toggle the active view between Preview mode and Design mode.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

Zoom into the currently open window.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

Zoom out of the currently open window.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

Zoom reset to 100%.

Move the selected components to the back of the z-order.

Move the selected components backward in the z-order relative to the overlapping components.

Move the selected components forward in the z-order relative to the overlapping components.

Move the selected components to the front of the z-order.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

The remainder of the icons on the Perspective toolbar new to version 8.0.8 and are for aligning components. See for more aligning
information.

Resource Tabs

The Resource Tabs allow you to change which resource is being edited in the workspace, as well as navigate to the Settings area of
the Perspective Workspace.

Right-Click Menu

The following feature is new in Ignition version 8.0.1
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-ManipulatingComponents
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.1

The right-click menu provides multiple ways to close one or more views.

Option Description

Close &
Revert

Closes the selected view, and reverts any changes that have been made, but not yet saved. This option should only be used
when you wish to lose any changes made to the view.

Close Closes the selected view, and commits changes (meaning changes will be retained in the designer session).

Close
Others

Closes all views except for the view selected. Changes made to the views are committed.

Close All Closes all views. Changes made to the views are committed.

Project Browser
The Project Browser panel allows you to view the different Spaces and their component hierarchies. You can expand folders and Designer
navigate down through each folder to see elements of a project such as , views, containers, and . The Project Browser windows components
shows the entire tree structure from the project level folder down to the component level. You can view or change many of the project

properties settings by clicking the icon. The Project Browser is also discussed on the pagProject Properties General Designer Interface
e.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Badge Icons

Perspective has host of useful icons in the Project Browser that can show extra configurations on a component, such as scripting, security,
deep selection, message handler, etc. These icons, as shown in the image below, are extremely useful when trying to navigate through a
view to find components with extra configurations. Here is a list of the Perspective Badge icons.

Badge
Icon

Name Description

Binding Indicates the component has a . Appears next to the name of the component.binding script

Custom
Method

Indicates the component has a . Appears next to the name of the component.custom method

Deep
Select

Shows a selected component within a selected container. Lets you know that you have deeply selected into the
 and not just selected the component itself. Appears next to the name of the selected component.component

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection

Event
Action

Indicates that the component has its own which are related directly to the functionality of the event actions
component. Appears next to the name of the component.

Messag
e
Handler

Shows that the component contains a user-created script that listens for a particular message. Appears next to the
name of the component.

Script Identifies that the component has a . Appears next to the name of the component.property change script

Security Indicates that the component has . Appears next to the name of the security permissions applied to the view
component.

Tag Browser
The Tag Browser allows you browse Tags in the Designer and OPC servers. In addition, Tags can be created, edited, exported and imported
directly from the Tag Browser. For more information on Tags, the different Tag types, and how they work, see .Understanding Tags

Perspective Component Palette
The Perspective module contains numerous components, such as buttons, labels, and charts. Perspective utilizes modern web technologies
so many of the built-in components may look reminiscent of components you may have seen on your favorite websites. Components are
created by dragging the component from the Component Palette and dropping it onto a view. A complete list of components is found on the P
erspective Components page.

The Component Palette is located in the upper right side of the Perspective Designer Interface. If the component palette is not visible, click
Perspective Components to open. This panel defaults to auto-hide itself. Components are grouped into different categories based on

https://legacy-docs.inductiveautomation.com/display/DOC80/Security+in+Perspective#SecurityinPerspective-PerspectiveViewsSecurity
https://legacy-docs.inductiveautomation.com/display/DOC80/Understanding+Tags
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components

functionality. Each category can be individually expanded to show all components in that category, or collapsed to hide the components in
that category.

In the Component Palette search bar, you can search for components. Start typing in the search bar and the component list will update

based on the text you entered. You can also set filter options by clicking on the icon to expose the filter selection to make the Search
search case sensitive, or use wildcards, regular expressions, match from start, match exactly, and match anywhere.

Perspective Property Editor
As with other areas of Ignition, the Perspective module has a dedicated panel that allows for fine-tuning of individual objects. Property Editor
The Property Editor is contextual, meaning that the properties available are dependent on which object or component is selected.

The Property Editor contains a search field, allowing you to filter properties based on the text typed into the field. The image below shows the
properties that are set on a Cylindrical Tank component. There are icons to the left of each of the properties that appear when Binding
you mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the Value property, it will open the Binding

window and you can set what the Cylindrical Tank component is bound to. In following example, the Value property of the Tank is bound to a
Sine2 OPC Tag.

In the Property Editor you can also set Position properties and add Custom properties to components, as well as create Params for passing
values from one view to another. To learn more about each of the categories in the Property Editor, refer to the Perspective Component

 page. Properties

Page Configuration
Pages are how you navigate within a Perspective project. Each page represents a collection of views that are displayed in a single space. Jus

Before you begin to configure a page, it's important to t like a single tab of a web browser, this represents a single page (at a time).
understand the . It has several specific regions and each behave differently: Top Dock, Bottom Dock, Left Dock, Right Dock, and page layout
a Primary View. The type of content you create and the design strategy you use for your views will determine where you place them on the
page layout. For example, you may want a staff schedule to be available on every page, but not displayed all the time on the page. What you
could do is configure the view on a docked window, thus making it available on demand when someone wants to see it by clicking on a tab in
a sesson to view it, and clicking the tab again to hide it. describes in detail about page layout, page configuration, Pages in Perspective
configuring docked views, and more.

Open the Page Configuration window by clicking on the in the lower left corner. This is where you'll configure your pages Settings icon
in Perspective.

Initially, allow you to apply configuration changes to all pages (such as adding an omnipresent docked view), as well as Shared Settings
specify the .Corner Priority

To the right of the Page Configuration column, the following buttons are present:

Add - Creates a new Page Configuration.
Trash - Removes the selected Page Configuration.

Recently Modified Views

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyCategories
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyCategories
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-PageLayout

You'll also notice in the Page Configuration image below, there is a Recent Modified Views list. These are your most recent modified views
along with a timestamp denoting when the last edit to the view was made and who made the modifications. If the project does not contain
any views, the listing will be empty.

Keyboard Shortcuts
There are a lot of ways to speed up development once you are familiar with how works. There are many keyboard shortcuts in Ignition
Perspective that are listed throughout the interface alongside menu options. To learn about keyboard shortcuts, go to the Designer Designer

 page.Keyboard Shortcuts

Vertical and Horizontal Guides
In the Designer workspace, you can set vertical and horizontal guides to help you align components. To set a vertical guide, slide your cursor
along the top horizonal ruler and click it where you want it. The number of pixels will be displayed in the top ruler and a red vertical line will
appear the length of your workspace. To remove the guide, click on the guide and drag it to the left into the vertical ruler and it will disappear.

To set a horizontal guide, slide your cursor in the vertical ruler and click it where you want it. The number of pixels will be displayed in the left
ruler and a red horizontal line will appear on the width of your workspace. To remove the guide, click on the guide and drag it to the top into
the horizontal ruler and it will dsappear.

You can add multiple vertical and horizontal guides.

https://legacy-docs.inductiveautomation.com/display/DOC80/Keyboard+Shortcuts

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

As of release 8.0.8, the Perspective Designer toolbar also has options for aligning components. For more information, see Manipulating
. Components

Related Topics ...

Perspective Components
Perspective Component Properties
Views and Containers in Perspective
General Designer Interface
Pages in Perspective

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-ManipulatingComponents
https://legacy-docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-ManipulatingComponents
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface

Working with Perspective Components

Components are what give you flexibility in designing HMI and SCADA that reflect your company's
design and your site's layout. Components are the widgets you deal with every day: buttons, text
areas, dropdowns, charts, gauges, linear displays, and so on. The Perspective Module comes with
a host of built-in components that you can select from for use in your project. There are many
ways to manipulate and arrange components when working in the Designer.

This section introduces you to how to work with so you can learn how to quickly components
select, move, resize, duplicate, and customize during the design process. Properties components
and specifics for individual components are covered in the . Appendix

Component Categories
The Perspective Module comes with a host of built-in that you can select from for use components
in your project. There are many ways to manipulate and arrange when working in the components

. This section introduces you to how to work with so you can learn how to Designer components
quickly select, move, resize, duplicate, and customize during the design process. components
Properties and specifics for individual components are covered in the . Components are Appendix
separated into the following categories in Perspective:

Chart - Charts allow you to display and show off your data in a graphical way.
Container - Containers provide a way of laying out and organizing within a components
View.
Display - Display components display static and dynamic information.
Embedding - Embedding components can be embedded in multiple views of a project.
Input - Input enable users to enter data, or select data, and even control a components
device.
Navigation - Navigation components provide you with design strategy options to navigate
within a .Perspective Session

Component Properties

Properties on Perspective components are separated into categories.

Props - Properties that control the configuration and provide the runtime data for the
component. See individual for a list of the properties and their Perspective Components
descriptions.
Position - Properties defined by the component’s parent container which control the
location of the component. The available properties listed under this category depend
entirely the container type that the component is placed in.
Custom - defined by the designer for each component instance.Custom Properties
Meta - Properties defined by the Perspective Module itself for common things like the
component’s name. See .Meta Properties on Perspective Components

On this page

...

Component
Categories

Component
Properties

Adding Components
Selecting
Components

Mouse Selection
Tree Selection
Deep Selection

Right-Click Menu
Z-order

Manipulating
Components

Moving
Resizing
Aligning
Alignment Guides
Alignment
Guides Example
Rotating
Rotation
Examples

Image Source
Web Address
Image
Management

Component
Overview

Watch the Video

Adding Components
To add a component, open the Perspective Components palette. Click on the component you want and drag it onto your View. In this
example, we put a Label component under the Gauge component.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Chart+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Display+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedding+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Input+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Navigation+Palette
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-MetaProperties
https://www.inductiveuniversity.com/videos/perspective-component-overview/8.0/8.0

Selecting Components

Mouse Selection

Using the mouse is the most common way to select . Click on a component to select it, double-click on it to it (more components Deep Select
on that later).

You can also select clicking and dragging the mouse to draw a selection rectangle. If you drag the window , it will components by left-to-right
select all that are . If you drag the window , it will select all components completely contained within the rectangle right-to-left components
that . Lastly, you can start dragging a window selection and then hold-down the key to use touch selection. This the rectangle touches Alt
will draw a line as you drag, and any that will become selected. As you're using these techniques, components the line touches components
that are about to become selected will be given a yellow highlight border.

Tree Selection

By selecting nodes in the Project Browser tree you can manipulate the current selection. This is a handy way to select the current

view, the root for the container, and any components on the view. This is also the only way to select components that are invisible.

Deep Selection

Perspective makes great use of its many containers to help create a layout and design to fit any scenario on any device. To accommodate
this, components sometimes need to be nested within a series of containers, which are themselves nested in other types of containers. With

this comes a true tree of components, and selecting components nested inside containers works differently than components on the root.
Deep Selection allows you to select into a container and select a component within.

To deep select a component, double click on it. Three things happen to indicate that the component is deep selected:

The border of the component changes to a thick solid line that can't be manipulated.
The surrounding area darkens.

In the Project Browser, a icon appears next to the component. Deep Selection

This lets you know that you have deeply selected into the component and not just selected the component itself. Once inside this new deep
selection space, you can then select a component much like before, either by clicking or dragging to select components, or by deep selecting
into another container inside the original container.

To cancel the deep selection, click anywhere outside of the component. In the following example, the Temperature component is deep
selected.

Right-Click Menu
When working with components in the Designer, you can right click to get quick access to options.

The top portion of the menu is similar to an edit menu in that it provides much of the basic copy/paste functionality

Function Icon Description

Cut Removes the selected component but keeps a copy on the clipboard. You can also use the shortcut to quickly Ctrl-X
cut a component.

Copy Copies the selected component to the clipboard. You can also use the shortcut to quickly copy a component.Ctrl-C

Paste Pastes the current contents of the clipboard. You can also use the shortcut to paste.Ctrl-V

Duplicate Duplicates the selected item (essentially a fast copy and paste action). Components can also be duplicated by dragging
them and holding down the key. You can also use the shortcut to quickly duplicate a component in place.Ctrl Ctrl-D

Delete Deletes the currently selected component. This can also be done using the delete key.

Z-order

The z-order is the order in which two-dimensional objects are stacked, for example shapes in a graphic that overlap each other.
In Perspective, z-order defines relative order of components when they overlap. There are four z-order icons and actions that will reorder any
selected components.

Icon Action

Move the selected components to the back of the z-order.

Move the selected components backward in the z-order relative to any overlapping components.

Move the selected components forward in the z-order relative to any overlapping components.

Move the selected components to the front of the z-order.

In the following example, we have an image component with a photo of a warehouse, an icon, and a label. We placed an icon (the truck) and
a label "Local Delivery" on the view as well, and then set the z-order so the label is on top, the truck icon is in the middle, and the image in
the background.

Manipulating Components
Manipulating can be done with both the mouse and the keyboard. You can move around, resize them, and rotate components components
them.

Moving

To move the component, click on it once then drag it anywhere within the container's bounds.

Resizing

When you click on the component you want to resize, you'll see eight handles displayed around the edge of the selection. When you click on
a handle, the mouse cursor will change to a two-way arrow. Use the mouse to drag the handle and change the size of the . You component
can also select multiple components and resize them together. To resize around the center of the current selection, hold down . Shift

You can also resize the current selection using the keyboard. To nudge the right or bottom edge of the selection in or out, use combinedShift
with the arrow keys, which resizes by the nudge distance, which defaults to one pixel at a time. To nudge the top or left edge of the selection,
use combined with arrow keys. Ctrl-Shift

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

Aligning

New alignment tools are available in the Perspective Designer Toolbar. These tools allow easy alignment of selected components within a
Coordinate Container including align top, bottom, left, right, as a row, and as a stack. Align as row, and align as stack include a normalize
version, that adjusts the size of the selected components to match the component that was selected first. Rotated components being aligned
will correctly align along the top-most, bottom-most, left-most, right-most point of the rotated component. If a rotated component is being
normalized is within the group that is being aligned, normalizing the component will adjust the pre-rotated dimensions.

Icon Function Description

Align Left Align the left edges of a group of components.

Align Right Align the right edges of a group of components.

Align Top Align the top edges of a group of components.

Align
Bottom

Align the bottom edges of a group of components.

Align
Centers

Aligns all of the selected components horizontally on their centers.

These tools can only be used with components in a .Coordinate container

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Coordinate+Container

1.

2.

Horizontal

Align
Centers
Vertical

Aligns all of the selected components vertically on their centers.

Align as
Row

Aligns all of the components on their centers as a row, and will add padding between them that you can select.

Align as
Row and
Normalize

Aligns all of the components on their centers as a row, and changes the size of all of the components to the first
selected component. If a rotated component is within the group that is being aligned, normalizing the component
will adjust the pre-rotated dimensions.

Align
as Stack

Aligns all of the components on their centers as a stack, and will add padding between them that you can select.

Align as
Stack and
Normalize

Aligns all of the components on their centers as a stack, and changes the size of all of the components to the first
selected component. If a rotated component is within the group that is being aligned, normalizing the component
will adjust the pre-rotated dimensions.

Center Hor
izontally

Centers the currently selected components horizontally.

Center Ver
tically

Centers the currently selected components vertically.

Align and Normalize Example
In the following example, we have a stack of buttons that are various sizes. We want to align them, stack them with equal space in between
them, and make them all the same size.

Select the buttons, then choose Align as Stack and Normalize.

Enter a padding distance in pixels. We use 8 px for this example.

2.

3. Click . The buttons will be stacked and normalized. OK

Alignment Guides

When you drag a component near another component in a Container, Alignment Guidelines appear to help you better align your elements.

A dashed red line will appear to guide alignment to the center of the components or to the right or left edge, depending on where you
drag.
A solid red line indicates distance, in pixels, between components.

The Designer also has Vertical and Horizontal guide that can be set up to help you align . For more information, see components Vertical and
.Horizontal Guides

Alignment Guides Example

https://docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides
https://docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides

1.

2.
3.
4.

Alignment Guides Example

In the following example we've added a Label component beneath a Cylindrical Tank component. I want to align the label so that it is
centered with the center line of the tank.

Drag the Label component underneath the Cylindrical Tank component. As the Label component approaches another component,
you'll see Alignment Guides appear.

Now the starting edge of the Label is aligned with the center of the Cylindrical Tank. But we want the text to be centered under the
tank.

Select the Label component and click the Modify Style icon next to the style property.
Expand the Text settings. Set the color to blue, the font weight to bold, and the text align to center.
Click to save the style settings. OK

4.

5.

6.

Now the text is centered in the Label component. Drag the Label component underneath the Cylindrical Tank component
again. You'll see Alignment Guides appear.
Stop dragging when the Label is centered under the Cylindrical Tank.

Rotating

Components place on coordinate containers can be rotated. As of 8.0.6 the Rotate has been moved to the Position property
Properties section of the Perspective Property Editor. For a definition of all the position properties, see Views and Containers in Perspective
and the individual container pages. Rotated components being aligned to other components will correctly align along the top-most, bottom-

 most, left-most, right-most point of the rotated component.

There are two ways to rotate a component:

Enter a rotation angle in the props.rotate.angle property.
Grab the rotation handle on the component and drag it with your mouse until the component is rotates as you'd like.

The rotation anchor sets the point of rotation around which the component will be rotated.

Rotation Examples

Example 1

The following example shows icon component at default (no rotation), at 18 degrees rotation, and then at 39deg rotation with the rotation
anchor (point of rotation) placed over the earth image. In the latter, the icon has a better angle in relation to the earth graphic.

If a component is smaller than 28px by 28px, the rotation handle and anchor + symbol are not displayed. Use the property editor to
set rotation and anchor properties in this case.

https://docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

Example 2

If a rotated component is within the group that is being aligned, normalizing the component will adjust the pre-rotated dimensions. The
component on the left of the following image are not aligned but were resized at some point. The components on the right show what they
look like after align stack and normalize.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

Image Source
Many components in Perspective contain a property, that allows you to show an image on the component. The property image.source
expects a URL to the image, which can either be on the internet or something that is stored on the Gateway. For example, here is a Button
component with an image:

Web Address

Simply enter the wed-address for the image you wish to display. Both raster images and SVGs can be displayed via this method.

Image Management

Images stored in are available at http://{your gateway's IP address}:{your gateway's port}Image Management /system/images/{path
}.to your image

http://gatewayIpAddress:8088/system/images/Builtin/icons/24/lightbulb_on.png

For additional information on using images in Perspective, see . Images, SVGs, and Icons in Perspective

Related Topics ...

Perspective Component Properties
Tag Data Types

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Data+Types

Perspective Component Properties

Each Perspective component has a unique set of properties that can be set and modified within
the Perspective Property Editor. A component is simply a named variable with a distinct property
type that affects something about the component's behavior or appearance, such as size, color,
name, visibility. You can also create your own custom properties on a component which act like
variables that can store any information that you want on the component.

The available properties for each Perspective component are described individually in the Perspecti
 section. In the default panel settings, the Property Editor appears on the right side ve Components

of the Designer screen and contains all the properties that can be configured on a component,
including . custom properties

The image below shows the properties that are set on the selected Button component.

On this page

...

User Created
Properties
Property Data Types
Property Categories
Restricting Property
Access

Restricting
Access to
Component
Properties
Writing to Private
or Protected
Session Prop

Persistent Properties
Persistence and
User-Created
Properties
Bindings and
Persistence

Custom Properties
Creating Custom
Properties

Meta Properties
Params

Docked View
Embedded View
Page

Search Filter
Bindings
Styles
Action Menu

Actions
Structure
Options

Component
Properties

Watch the Video

User Created Properties
Perspective has two distinct types of user-created properties:

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://www.inductiveuniversity.com/videos/component-properties/8.0/8.0

Pre-defined properties in a component that has its own schema. We don't recommend creating additional properties to components
with their own schema, although it is possible. In the event something should go wrong or inconsistencies occur, it's difficult to figure
out if the problem is with a user-created property that's part of the component's schema or with a custom property in the Custom
Category.
Custom Properties fall under the Custom Category in the Property Editor. This type of user created property is unique, and is used
to enhance functionality to a component through the use of data bindings and scripts. Custom properties created in the Custom
Category will not result in any collisions with any pre-defined properties that are part of the schema of the component. Creating a
custom property in the Custom Category is considered best practice.

Property Data Types
Before you create a property, you must first understand the different property data types. There are three property data types available in
Perspective's : value, object, and array. When you create a new custom property, you must first select the appropriate property components
data type based on how you want the component to behave or appear. The table below describes each property data type.

Property Types

V
al
ue

A value is an single variable for the property. It has a 'key" and a "value".

"Key" is the given to the property, and "value" is the actual value of the property. Value types are as follows:name

Boolean - A true/false value.
Numeric - An integer up to the maximum value for a long integer.
String - A string of characters can be numeric, alpha, or a combination

O
bj
e
ct

An object is a one or more values stored under one variable name. Objects are indicated by curly braces { }. In this example, the
Object has three sub- properties.

A
rr
ay

An array can hold many values under a single name, and you can access the values by referring to an index number. Array is
indicated by square brackets [].

A good example of an array is the Thermometer component's default setup as shown in the example below. There is an array called
"intervals" with three values, 0 through 2. Each of the array items is an object type that has three values: color (string), high (numeric),
and low (numeric).

D
at
a
s
et

The Dataset property type is not an option when changing a properties data type, it can only be used when a binding returns data in a
dataset format.

A Dataset lists the number of rows and columns [rowsxcolumns] and has an Edit Dataset icon that appears after a binding has been
created. This icon brings up the Dataset Viewer panel and allows you to make changes to the raw data. Note that any changes will be
overwritten the next time your binding polls.

Datasets are generally only returned by SQL queries and Tag History bindings, though both have the ability to select from several
different return formats. A good example is a table bound to a Historical Tag query like the image below.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

Dataset properties now have an dataset viewer and editor in Perspective's Property Editor. Once a property is bound to a dataset, you

can access the viewer by clicking on the icon.Dataset Browser

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

With the Dataset Editor you can add and delete columns and rows, delete all rows, and copy information to or from the clipboard.

The Dataset Editor icons and their corresponding actions are shown below.

Icon Action

Add row

Delete selected rows

Add a column

Delete selected column

Delete all rows

Add to clipboard

 Paste from clipboard

Property Categories
Each Perspective component has a list of available properties. Each property is placed into one of several categories, and each property
category groups the properties by some commonality. The property categories are described below.

Props - Properties that control the component's configuration and provides the runtime data for how the property appears and
behaves in a session. See individual for a list of the properties and their descriptions. Perspective Components
Position - Properties defined by the component’s parent container control where the component is located inside the container. The
available properties listed under this category depend entirely on the container type that the component is placed in. For more
information, see the pages for each type of .container
Custom - The Custom category was designed as an ideal location to add . To create a new custom property, all Custom Properties
you need to do is select a property type such as Value, Object or Array. For example, if you want to add a single property, select "Val

" and you'll see it has " " and " " objects. Rename " ", to give the property a unique name, and change the " " by ue key value key value
entering number or string
Meta - Properties defined by the Perspective Module itself for common things like the component’s name, and if the component is
visible.
Params - Only available on Views. This category of properties is used when passing parameters from one view to another view via
navigation, or the componentPerspective - Embedded View

The following image shows an example of the Property Editor for a Button component. Note that each property is listed under a category:
Props, Position, Custom, and Meta.

A Note about Numbers in Perspective

JavaScript uses double-precision floating-point format numbers as specified in IEEE 754 and can only safely represent numbers
between -(2^53 - 1) and 2^53 - 1. This means any value greater than 9,007,199,254,740,991 (or ~9 quadrillion) or less than
-9,007,199,254,740,992 will be changed to a value calculated using floating point math up to a max value of 2^63.

This could potentially cause issues with very large numbers, especially when in a dataset property:

Modifying a value in the Perspective Dataset Double or Long column could lead to an unexpected value.
If bound to a Dataset tag, the value of the tag could be changed to an unexpected value.
A Perspective Component rendering a dataset Double or Long could render an unexpected value.

https://docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedded+View

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Add additional properties by hovering over an existing property and clicking the icon, then select Value, Object or Array, or by Add

clicking the icon at the bottom of the category.Add Property

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

1.
2.

Restricting Property Access
Perspective components have the ability to restrict access to properties from the app/browser. Property access settings do not restrict or
inhibit built-in component interactions with bindings and python scripts. Instead they protect against malicious code execution in the
browser. Normally a user can potentially execute arbitrary JavaScript code via developer tools (which generally are included with all web
browsers) to interact with components and properties in the session. However setting property access level to or will Private Protected
prevent such approaches, as browser-side script execution will be unable to access property values on the server side.

To understand what property access in Perspective is, you'll need to understand how the Document Object Model () works. In short, DOM
each active session is represented in a browser (which is the user interface side of the DOM) and on the Gateway (the back-end of the
DOM). Interacting with components on the browser-side, such as writing to the text property on the text field, impacts the back-end and
allows the gateway to react appropriately (i.e., trigger a property change script).

When a property is set to , then arbitrary JavaScript execution can freely write to the back-end, which is likely undesirable in most Public
cases. However, a property set to will disregard any such write requests from the browser, meaning only the back-end is allow to Protected
write to the property (i.e, Bindings, component Script Actions, etc). However the browser-side of the DOM is still interactable, but the back-
end will ignore such value changes.

In this same example, setting a property set to will also disregard write attempts, in addition to remaining hidden from any read Private
attempts made by the arbitrary JavaScript.

One caveat property access is that the names of style classes are always visible and interactable from the browser, so style class names
should not included sensitive information.

Property Description

Public Unrestricted Access. This is the default setting for all non-system properties.

Private Hidden. The property is not readable from JavaScript, and write requests will be ignored (assuming the script correctly guesses
the property path)

Protected Read only. The browser's DOM may be interacted with via JavaScript, but the back-end will ignore any write requests.

System This property's value is updated automatically. Not user-writable, read-only, and cannot be removed. System properties will not
accept writes from the browser, and bindings will not be allowed to write to these properties either.

Restricting Access to Component Properties

In the example below, we used an LED Display component to restrict access on the components 'value' property.
Restricting Access to Component Properties

In the , select the property you want to restrict access on.Property Editor
Right click on the property, select and choose the restriction level: Public, Private or Protected. Access

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

2.

3. Once the restriction access is configured, the will place a badge on any non-public property: Private , Protected Property Editor

, and System .

Writing to Private or Protected Session Prop

To write to a Private or Protected session prop,you can write to it through a scripting action, as shown below.

You can also use a property binding to write to a Private or Protected session prop. Remember to enable the option.bidirectional

Persistent Properties
By default, component properties and their values are saved with the project. Meaning that a property in a Perspective Session will initialize
with a value matching the last saved value. This is why you can create a label with a static text value, save, and then see the same text value
in the session. These properties are considered . Persistent

Conversely, properties can be configured to not retain their value in the session, meaning they'll initialize without a value. These properties

are . These properties are denoted by the icon to the right of the property's value in the Property Editor. not Persistent Transient

Changing the Persistent state of a property can easily be accomplished by right-clicking on a property in the Property Editor, and toggling the
option. Persistent

Persistence and User-Created Properties

1.

User created properties missing the Persistent flag will not be saved in your project. Meaning, properties that are both user-created and not
flagged as Persistent will be lost once the view containing the property is closed in the Designer (not just the value, but the property itself),
regardless of whether or not the project was saved. This is also true for launching a session, as the user created property that is not
Persistent will not be present in the session.

The one exception to this rule is if a binding was configured on the property. Binding configurations are always saved along with the
component, and will execute in the session. When the binding executes and returns a valid value, the property will be re-created in the
session.

Bindings and Persistence

When configuring a binding on a property, the property will automatically be configured to not persist. The idea being that properties with
bindings generally don't need to save their value along with the view: when a view is opened, all bindings will need to evaluate on startup,
which means the last saved value on the property is likely to differ from the result of the binding.

Imagine a table component, with a binding on the table's data property. In most cases, you'll likely want the data in the table to be generated
in the session from the binding, retrieving the most update-to-date results. In this case, it doesn't make sense to persist the dataset in the
table along with the table, as it's just extra data that will quickly be replaced by the binding at runtime.

Bound properties default to a non-persistent configuration, but sometimes this isn't desirable. For example, components Embedded View
have an empty state when their "path" property is blank. When a binding is placed on the path property, opening the parent view will result in
the Embedded View quickly transitioning between the empty state and the loaded view, which can cause an undesirable "flash" as the
binding evaluates. This can be prevented by configuring the property as Persistent, and configuring an initial path for the Embedded View
(which can lead to an empty placeholder view), allowing for a controlled transition.

Custom Properties
User-created properties may be added to any property category such as the Props, Position, Custom and Meta Property Categories to
enhance functionality. The Custom Category was designed as an ideal location in the for users to create their own custom Propety Editor
properties. These Custom properties allow to store additional values which can be accessed by bindings and scripts. They are components
also important for passing parameters from one view to another.

Creating Custom Properties

In the following example, we used the Thermometer component to add some custom properties in the Custom category.

Custom Properties are created by clicking on the " " link, or by right clicking on a property in the Property Add Custom Property...
Editor to bring up the . There are three property types to choose from: Value, Object, and Array.Action Menu

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Designer+Interface#PerspectiveDesignerInterface-PerspectivePropertyEditor

1.

2.

3.

Several custom properties were created under in the Property Editor showing each of the different property data types (i.e., Custom
value, object, and array).

In the image below, next to the Thermometer, three Text Fields were added to a view to write to each of the different custom
properties in the Thermometer. Each of their binding paths are listed next to the fields which are bound to the same custom property
so you can see the difference when the values changes on the labels.

 This feature was removed from Ignition in version

8.0.6

Meta Properties
Meta properties are defined by the Perspective Module itself for common things like the component’s name, and if the component is visible.
Every Perspective component features Meta Properties. Each property under this category is listed below.

Description Description Data
Type

Name Name of the component used when navigating tree paths by name. value:
string

Visible Whether or not the component should be visible. value:
boole
an

Rotate

As of 8.0.6 the Rotate property has been moved to the Position Properties section of the Perspective Property
Editor.

domID Hidden by default. When added to the Meta category on a component, allows you to set the DOM "id" of the output
element. This property is intended for testing purposes only, such as using a framework like Selenium to test a
page.

value:
string

Params
Params are a category of properties that are used when passing parameters from one view to another view. The properties inside of the
params category define parameters that can be passed in and out of a view. It's through the use of parameters that views interchange
information with other entities such as a docked view, embedded view, or a page. To learn more about using parameters to pass properties
across views, refer to . Property Bindings in Perspective

Docked View

When configuring a page, it's possible to pass a value to a docked view. When you click on a docked view, you can specifiy one or more
param properties in the View Parameters field of the view that is docked. If you have any param category properties defined on that view, this
interface allows you to pass a value when you navigate to the configured page. To learn more, go to .Configure Docked View Parameters

https://legacy-docs.inductiveautomation.com/pages/createpage.action?spaceKey=DOC80&title=Position+Properties+on+Perspective+Components&linkCreation=true&fromPageId=34473600
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedviewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-ConfigureDockedViewParameters

Embedded View

The embedded view component allows you to embed one view inside of another. The only way to pass a property across views is by passing
a view parameter into an embedded view. Parameters can be defined as . Once you have param properties input, output, or both input/ouput
configured on your views, the embedded view component provides you with access to these parameters. You have options on how to pass a

 into an embedded view. How to set up passing a depends on how you design your project. You can set up passing a property parameter prop
 to an embedded view using a with , , or even scripts. For more information on embedded erty parameter property bindings Tag bindings

views, refer to and .Pass a Property into an Embedded View Using a View Parameter View Properties

Page

Passing parameters to a Page essentially means passing a URL parameter to a page. Parameters are used to allow a page to be mounted
 A primary view can see at a dynamic , allowing information in the to be interpreted as URL URL input parameters to the page’s primary view.

whatever parameters are passed in, and components inside the view can bind or use the values in some useful way.

The way you add parameters to the Page URL is by mounting the page at a special using a replacement syntax like URL parameter
 so: <page> /:towerNumber. The dynamic mounting uses a colon to signify that a portion of the is meant to by dynamic and map URL URL

to an input on the page’s primary view. To learn more, go to .parameter Passing parameters (URL Parameters)

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-Input/OutputParameters
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaPropertyBinding
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaTagBinding
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedViewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ViewProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLParameters)

Search Filter
In the Property Editor search bar, you can search for component properties. Start typing in the search bar and the property list updates
based on the text you enter. You can also set filter options to make the search case sensitive, or use wildcards, regular expressions, match
from start, match exactly, and match anywhere.

Bindings
Most properties have binding options. For more information on bindings, see The image below shows the Types of Bindings in Perspective.

properties in the Property Editor that are set on a Cylindrical Tank component. There are icons to the left of each of the Binding
properties that appear when you mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the " " value
property, it will open the Binding window and you can set what the Cylindrical Tank component is bound to. In this example, the " " value
property of the Tank is bound to the un10013 OPC Tag.

https://docs.inductiveautomation.com/display/DOC80/Bindings+in+Perspective

Styles
A full menu of style options is also available for text, background, margin and padding, border, shape and other miscellaneous settings to
adjust the appearance of your components. Style classes enable you to set up a particular look and feel (fonts, colors, borders, etc.) once
and then apply it to multiple components.

Action Menu

Actions

Additionally, you can right-click on a property in the Perspective Property Editor to access an Actio
. This menu provides a means to modify properties on a component such as deleting a ns Menu

property, or inserting a new property. Common utilities (i.e., copy, paste, duplicate) are available,
as well as some more unique items.

Persistent
Properties

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://www.inductiveuniversity.com/videos/persistent-properties/8.0/8.0

Structure

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Insert: Allows you to insert a new property into the hierarchy. The "Add Before" and "Add After" Str
ucture options in the Perspective Property Editor context menu are two unique items that are only
visible when right-clicking on an element in either an Array or Object.

Value: Allows you to change the type of the selected property to a Value, Array, or Object

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-ActionMenu
https://docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-ActionMenu

Options

Persistent: Determines if the property is . Persistent or Transient

Add Change Script: Enables you to add a script that will be called whenever the value of the
property changes. For more information, see .Property Change Scripts

Related Topics ...

Property Bindings in Perspective
Views and Containers in Perspective
Pages in Perspective

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Pages+in+Perspective#PagesinPerspective-ConfigureDockedViewParameters

Ignition Server Migration Best Practices
It is common for Ignition users to find themselves needing to migrate their Ignition Gateway to a new server or virtual machine. A few reasons for
server migration include new hardware requirements or old hardware simply failing.

1.

Images, SVGs, and Icons in Perspective

Images such as PNGs, JPGs, GIFs, or SVGs can be uploaded to the Image Management tool and
used inside of containers in Perspective. The Image Management tool, available from the Tools

 menu, provides an interface to upload, download, or select images. > Image Management

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

The Designer gives you the option to either save the image and link to its location or embed the
image directly in the view. However, images larger than 100KB may degrade performance. Save
and link is recommended for larger images.

On this page

...

Using the Image
Component
Drag and Drop an
Image onto a View
Manage Images in
the Image
Management Tool

Upload an Image
to the Image
Management
Tool
Download
Images from the
Image
Management
Tool

Import SVGs
Embed an Image in
a View
Using Icons

Use a Custom
Icon Repository
Example with
Custom Icon
Repository

Images in
Perspective

Watch the Video

Using the Image Component
The following example walks through bringing an image from the Image Management tool using an image component. For more information
on the Image component and all of its properties, see .Perspective - Image

Drag an component from the component palette onto the container.Image

The Image Management tool does not support bitmap files.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://www.inductiveuniversity.com/videos/images/8.0 inductiveuniversity.com/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Image

1.

2.
3.
4.

5.

At the top of the in the Menu Bar, select Designer Tools > Image Management.
In the , look through the different folders for an image file you want.Image Management tool
Right click on the image to copy the path for the image.

In the Property Editor, paste the image path into the source property for the Image component. You need to add "/system/images" to
the beginning of the path.

5.

1.
2.

3.

The image now appears inside the Image component on the container.

For more information on the Image component and all of its properties, see .Perspective - Image

Drag and Drop an Image onto a View
In Perspective, you can drag and drop images from your computer onto a view. In this example, we'll pull in a .jpg photo of a sunset to use as
a background on a home page for our application.

In the Designer, open the view in which you want to put the image.
Locate the image on your computer and drag it onto the view. Note that we already resized this image in a graphics editing program
so that it is the size we want.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Starting in version 8.0.3, you have the option of saving the image as a link or embedding the image in the view. The Link Image
screen is displayed. Choose the radio button and then click . Note that this will save the image in the Image Save and Link Upload
Management Tool and it can be used repeatedly.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Image
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

3.

4.

The image now appears in the view. Drag one of the corner nodes to make the image component border the same size of the image.

5.

1.
2.

Now your image is on the view. Save your project. We added a company logo SVG file as well as some navigation buttons to this
home page.

Manage Images in the Image Management Tool
There are additional ways to manage images into the Image Management tool.

Upload an Image to the Image Management Tool

At the top of the Designer in the Menu Bar, select Tools > Image Managem .ent
Next, drag and drop the image from the local file system directly onto the Image Management window.

1.
2.
3.

1.

2.
3.

Alternatively, the Image Management window has an Upload button to pass images in. Locate the directory you wish to upload the image.
You may use the root folder, or create a new folder to keep your images organized.

In the Image Management tool, click on the icon. An dialog window appears. Upload New Image Open
Navigate to your image on the local system.
Select the image, then click to upload it.Open

You can also use a file path to a local image. Enter the file path in the source property for the Image component . This is done by prefixing
 the file path with file:/// . An example Image Path would look like this:

file : / / / C: / Users / Public /Public Pictures / chrysanthemum.jpg

It is important to understand that this will only work if the image is accessible from where the client is running. So if you access an image
from the designer on the local machine, clients that launch elsewhere may not have the image stored in the same location.

Download Images from the Image Management Tool
Single images, as well as entire directories, may be downloaded from the Image Management tool. This is useful when migrating a project to
another Gateway. Image downloads can be taken from either the Image Management or Image Browser windows.

At the top of the in the Menu Bar, select .Designer Tools > Image Managem ent

Select the image, images, or folder you want and click the icon.Save As
Choose a destination folder for the downloaded files.

3.

4.

1.

2.

Click . All images and subfolders in the selected folder will be copied to the selected directory.Save

Import SVGs
Ignition can import SVGs (Scalable Vector Graphic) into Perspective containers. Once imported,
SVGs can be resized and style elements can be applied to them.

To use an in your project, find the file on your local system.SVG

Drag the file directly onto the View or Container you want the to appear on. SVG SVG

SVGs

Watch the Video

When working with images found online, make sure to follow all applicable
copyright laws.

https://www.inductiveuniversity.com/videos/svgs/8.0/8.0

2.

3.

4.

5.

1.
2.

3.

Starting in version 8.0.3, you have the option of saving the image as a link or embedding
the image in the view. The Link Image screen is displayed. Choose the Save and Link
radio button and then click . Note that this will save the image in the Image Upload
Management Tool and it can be used repeatedly.
Sometimes the way the imports may result in the appearing very small. You SVG SVG
can resize the SVG by dragging one of the handles or entering width and height
properties in the Property Editor.

You can also apply Style properties such as a border and background color to the image.
For more information, see .Styles and Style Classes

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Embed an Image in a View
If you don't want the image to be brought into the Image Management tool you can embed the
image instead.

Locate the image on your computer and drag it onto the view.
After dragging the image onto the view, click the radio button. Note that if Embed image
the image is larger than 100KB, you see a warning message in the confirmation popup.

Click to embed the image.Embed

Using Icons

https://docs.inductiveautomation.com/display/DOC81/Styles
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

1.

Icons can also be placed into Perspective containers using the Icon component. Several
components, such as the , have icon properties that enable you to embed icons Horizontal Menu
into the component. The materials icon library is a great source for icons, see https://fonts.google.

 For additional information, see ..com/icons?selected=Material+Icons Perspective - Icon

Use a Custom Icon Repository

While materials icon library is a great source for icons, if you have a custom library of icons you
can also set it up to be accessible by Ignition. When using a custom icon repository, the format for
the file should use the following pattern. Note that each icon is place in an outer enclosing SVG
tag that defines values for the viewbox attribute, which is mandatory for icons:

<?xml version="1.0" encoding="utf-8"?>

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org
/1999/xlink">
 <!--Red Circle-->
 <svg viewBox="0 0 24 24" id="red-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-
width="1" fill="red" />
 </svg>

 <!--Blue Circle-->
 <svg viewBox="0 0 24 24" id="blue-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-
width="1" fill="blue" />
 </svg>

Once you have the file built, you need to place it in the icons directory within your Ignition
Installation Directory, for example

Ignition Installation Directory\data\modules\com.inductiveautomation.
perspective\icons

Icons

Watch the Video

Example with Custom Icon Repository

In this example we'll make a custom repository file with icons. The name of the file is . We'll then use the icons in this file and example.svg
other repositories to create a Horizontal Menu component as follows;

First we created the repository file in xml.

<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

 <!--a red circle-->
 <svg viewBox="0 0 24 24" id="red-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="red" />
 </svg>

 <!--a blue circle-->
 <svg viewBox="0 0 24 24" id="blue-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="blue" />
 </svg>

 <!--a triangle-->
 <svg viewBox="0 0 24 24" id="triangle">
 <path d="M12 0 L3 22 L21 22 Z" />
 </svg>

 <!--roman numeral one icon-->
 <svg viewBox="0 0 24 24">
 <g id="one">

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Horizontal+Menu
https://fonts.google.com/icons?selected=Material+Icons
https://fonts.google.com/icons?selected=Material+Icons
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Icon
https://www.inductiveuniversity.com/videos/icons/8.0/8.0

1.

2.

3.

4.

 <rect
 id="rect3723" width="15.09025" height="3.0526078" x="4.4548745" y="
2.4385488" />
 <rect
 id="rect3723-3" width="15.09025" height="3.0526078" x="4.4548745" y="
19.510113"/>
 <rect
 id="rect3755" width="3.4557824" height="16.990929" x="10.272108" y="
3.5045362" />
 </g>
 </svg>
 <!--roman numeral two icon-->
 <svg viewBox="0 0 24 24">
 <g id="two">
 <rect
 id="rect3723" width="15.09025" height="3.0526078" x="4.4548745" y="
2.4385488" />
 <rect
 id="rect3723-3" width="15.09025" height="3.0526078" x="4.4548745" y="
19.510113" />
 <rect
 id="rect3755" width="3.4557824" height="16.990929" x="6.8435426" y="
3.5045362" />
 <rect
 id="rect3755-9" width="3.4557824" height="16.990929" x="13.700686" y="
3.5045002"/>
 </g>
 </svg>
</svg>

Once created, we saved the file in the following directory:

 C:Program Files\Inductive Automation\Ignition\data\modules\com.inductiveautomation.
perspective\icons

Now we can use the icons in this icon repository in our components. For this example, we put a Horizontal Menu component in a
Coordinate view.
We use two icons from the new example repository and one from the materials repository. We set the properties as follows for the
Horizontal Menu component:

Top Level Properties

Property Value

props.items.0.enabled true

props.items.0.icon.path example/one

props.items.0.icon.color #4747FF

props.items.0.label Proposal

props.items.0.style.color #4747FF

props.items.0.style.fontFamily Verdana

4.

5.

props.items.1.enabled true

props.items.1.icon example/two

props.items.1.color #008000

props.items.1.label Project Documents

props.items.1.style.color #008000

props.items.1.style.fontFamily Verdana

props.items.2.enabled true

props.items.2.icon.path material/folder_special

props.items.2.icon.color #AC00AC

props.items.2.label Appendix

props.items.2.style.color #AC00AC

props.items.2.style.fontFamily Verdana

props.style.borderBottomStyle double

props.style.borderLeftStyle none

props.style.borderRightStyle none

props.style.borderTopStyle double

props.style.borderTopWidth 4

props.style.borderBottomWidth 4

When we put the Designer into Preview mode. The component appears as follows:

Related Topics ...

Image Management Tool
Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC80/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC80/Symbol+Factory

1.
2.

3.

Localization in Perspective
Localization in the Perspective module utilizes terms Ignition's Translation system.
Once terms have been defined, translations can be enabled by the use of the
"locale" session property. This page covers using localization in Perspective. For
the Vision module, see .Localization in Vision

On this page

...

Selecting a
Language
Switching
Languages within a
Session
Related Topics ...

Selecting a Language
Selecting a language for your Perspective session is done through , spec lt, this session properties ifically the locale session property. By defau
property is set to the language tag "en-US" for English USA. Once you set up a additional languages in the Translation system, you can set
your locale session property to different values depending on what language you want to see on your screen.

Switching Languages within a Session
In this example, we'll set up a dropdown list from which the user can choose a language. For this example, we've already set up a Spanish Tr

. We've added a key . anslation List "Hot" and its Spanish translation, "Caliente"

Now we'll setup a view where the user can choose between English and Spanish.

Create a new view and put a Label component and a Dropdown component on the view.
Set the text property of the label to "Hot."

In the Project Browser, click on Perspective. The Session properties are displayed. Update the locale session property to "es-US"
(the language tag for Spanish USA).

See this link for a full list of valid language tags: https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.
html#util-text

https://legacy-docs.inductiveautomation.com/display/DOC80/Translation
https://legacy-docs.inductiveautomation.com/display/DOC80/Localization+in+Vision
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text

3.

4.

This results in anything in your session that contains the word "Hot" to be translated to its Spanish translation.

Similarly, if you set the locale session property back to "en-US", Ignition will translate your session text back to English.

Next we'll set up the Dropdown component with two options configured as shown below where the Spanish option is tied to the "es-
US" language tag and the English option is tied to the "en-US" language tag.
options.0.value: es-US
options.0.label: Espanol
options.1.value: en-US
options.1.label: English

4.

5.

6.
7.
8.

9.

Next we'll bi-directionally bind the Dropdown's Value property to the Locale session property. In the Property editor, click the Binding
icon for the value property.

On the Edit Binding screen, select the Property Binding type.
Next click the icon. Scroll to the session.props.locale and click . Property Details OK
Select the Bidirectional option. Click to save the binding.OK

Put the Designer into mode and test the Dropdown component. Since Preview your Dropdown component now drives your
Locale session property, you will be able to see your Label value go from its Spanish to English translation as you change the
language selection.

Related Topics ...
Localization and Languages

https://docs.inductiveautomation.com/display/DOC80/Localization+and+Languages

1.
2.

3.

Component Events and Actions

In Perspective, events and actions are some of the fundamental building blocks of project
functionality. Actions give you the ability to respond to specific user inputs (such as mouse,
keyboard, and touch inputs), as well as broad session events (like the beginning and end of the
session) in many different ways. Thus, are a response to .actions events

Example uses for events and actions include:

Navigating to a new page when the user presses a button.
Opening a popup containing details on a specific PLC when a user double-clicks on it in a
diagram.
Logging the user out of the session when they press Ctrl + L on the keyboard.
Scanning a barcode from a mobile device, and sending it to the Gateway.

In this section, we'll cover the basics on how to configure actions and events to suit your project's
needs.

Configure Events and Actions
To configure an event and action on a component:

Select the component.
Right click on the component, and select . Configure Events

Choose an event from the left hand side. Note that you can configure actions for as many
events as you'd like, but you'll need to configure the actions separately for each one.

On this page

...

Configure Events
and Actions
Perspective Events
Action Types

Shared Action
Options
Accelerometer
Action
Alter Logging
Action
Dock Action
Fullscreen Action
Login and Logout
Actions
Navigation Action
Popup Action
Refresh Action
Scan Barcode
Action
Scan Ndef NFC
Action
Script Action
Theme Action

Events and Actions

Watch the Video

https://www.inductiveuniversity.com/videos/events-and-actions/8.0/8.0

3.

4.

5.

Next choose one or more actions to associate with the event, by clicking the Add ico
n. Descriptions of the options for each component action are described in the sections on
this page.
Configure the actions as you want then click .OK

Perspective Events
Perspective offers a wide range of possible events, but in this section we'll highlight a few common ones. You can find details on all
configurable events at .Perspective Event Types Reference

Event
Type

Example Event

Compone
nt Event

Many components have their own events that are related directly to the functionality of the component. For a full list of
components with configurable component events, see .Perspective Event Types Reference

System
Event onStartup events occur when the View or component is loaded into the session. For example, if you configure an

onStartup event on a component, the event will occur when the view it is on is opened.
onShutdown events occur when the View or component is removed from the session. Typically this will occur when you
navigate away from the View containing the component, or if the session times out.

Mouse
Event onClick events occur when the user clicks on any of their mouse's buttons, while the cursor is hovered over the

component.
onContextMenu events occur when the user clicks the mouse button associated with a context menu (typically the right
mouse button, on a two-button mouse).
onMouseOver events occur when the mouse pointer enters the component's borders.

Keyboard
Event onKeyUp events occur when a key on the keyboard is released, while the component is focused.

onKeyPress events will be run repeatedly, while a key is held down and the component is focused.

Touch
Event Fired when the user has touched the surface of a touch capable device. onTouchStart

Wheel
Event onWheel events occur when a user moves the scroll wheel while hovered over the component.

https://docs.inductiveautomation.com/display/DOC80/Perspective+Event+Types+Reference
https://docs.inductiveautomation.com/display/DOC80/Perspective+Event+Types+Reference

Action Types
Each can have actions assigned to them, and each Action has some specific purpose. Each event can have any number of actions, Event
and different types of actions can do different things.

If you want to delete an action, use the Delete icon.

Each Action is called in order from top to bottom. To control this execution order, you can reorder the list of Actions using the aUp Arrow

nd icons next to the list. However, Actions are not executed synchronously: sequential actions do not wait for any prior Down Arrow
Actions to finish executing before running. Thus, if Action 1 is a long-running script, while Action 2 is quick to finish, it is possible that Action 2
will finish before Action 1.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Event+Types+Reference

1.
2.

Shared Action Options

The bottom of each action lists a set of options. The options listed in the table below are shared across all action types.

Enabled Specifies whether the action should be used or ignored.

Prevent
Default The following feature is new in Ignition version 8.0.15

 to check out the other new featuresClick here

Prevents the browser's default behavior from occurring. Useful when you want to prevent the browser's built-in right-click
menu from showing.

Stop
Propagation The following feature is new in Ignition version 8.0.15

 to check out the other new featuresClick here

Prevents events from higher up in the component hierarchy from triggering when the selected event triggers.

Accelerometer Action

Retrieves accelerometer data from the device's accelerometer (a common feature on smartphones). This is a Native App Action, designed to
help in gathering data from a mobile device. Each action needs to be configured in two parts:

The action is run on a mobile device, indicating that a type of data should to be gathered.begin
As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding Session

.Event

This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it Ignition Perspective App
will be ignored.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.15
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.15

Action
Setting

Description

Continuo
us

Begins recording accelerometer data, which repeatedly updates the object in the current session's accelerometer Session
.Properties

Sample Rate indicates how often the accelerometer object should be updated.
Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event.
Note that a object is already provided to that event script.session

Batch Records accelerometer data at a specified interval for a specified rate, then sends the accumulated data to the Gateway, to be
handled by the .Accelerometer Data Received Session Event

Sample Rate indicates how often a reading should be made.
Duration specifies for how long data should be logged.
Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event.
Note that a object is already provided to that event script.session

Off Turns off accelerometer data recording.

Alter Logging Action

Perspective sessions log their session activity and errors to the . Alter Logging allows us to change how logs of the browser they run in
verbose this logging is. This is useful for session debugging.

Action
Setting

Description

Remote
Logging
Enabled

Indicates whether the browser logs should also be sent to the Gateway to log in the Gateway logs. Note that for all
messages to be visible, the logger must be set to the same logging level as the level indicated in this Perpective.Client
action.

Set
Logging
Level

Dictates how verbose the session's logging should be. A logging level of (or) shows all possible records, while a all trace
level of shows none. Options are:off

all
trace
debug
info
warn
error
fatal
off

Dock Action

Allows you to open or close a docked view. The view must be configured as docked in the Page Configuration section of the designer, and
must be configured with a dock ID. The dock ID can be whatever you'd like. We'll need it here in order to run the action.

Action Setting Description

Dock Action There are three types of dock actions:

Open: Opens the docked view.
Close: Closes the docked view.
Toggle: Toggles the state of the docked view, so opens the view if it currently closed, or closes it when it is currently
open.

Identifier The ID of the docked view. Dock ID values can be set when you configure a view as docked.

Parameters Parameters that can be passed into the docked view. The name of the parameters must match the name of the view
parameters that are already set up.

Fullscreen Action

https://legacy-docs.inductiveautomation.com/display/DOC80/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC80/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AccelerometerDataReceived

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

Enters full screen mode. Requesting to enter full screen mode only works with events that originate from user interactions. Some browsers
may not support full screen requests.

Action Setting Description

Enter Enters full screen mode.

Exit Exits full screen mode.

Toggle Changes the Session's browser to whichever mode it is not currently in.

View Enters full screen mode on a targeted view.

Page Enters full screen mode on a targeted page.

Login and Logout Actions

Logs the current user in or out of the session. The only action property is the Enabled option which specifies whether the action should be
used or ignored.

Action Setting Description

Ask the IdP to re-
authenticate
users

Determines how re-authentication requests sent to the Identity Provider will be handled. Note that Identity Providers
can choose to ignore re-authentication requests, defaulting to their own behavior. Options are as follows:

Project - Use the re-authentication setting located in the General category of .Project Properties
Enable - Prompt the user to provide their credentials, even if they're already logged into the session.
Disable - When selected, the user will not have to provide their credentials if they're already logged in.

Navigation Action

The Navigation action allows you to navigate to different views, pages, or URLs from an event. The Navigation action has several modes.
Each mode allows for a different type of navigation and different options. The following table lists the types of navigation:

Type Description

Page Navigates to a separate page.

Type Description

Set Page A string denoting the page URL of the target page.

Open in new tab Specifies whether the newly opened page should replace the current page, or open in a new browser tab.

View Replaces the current main View with a new main View.

Type Description

Sele
ct
View

The path to the view that should be used.

Para
mete
rs

A set of parameters to pass to the view. Add or remove parameters with the Add icon and Delete icon. In the Va

 lue field for a given parameter, you can pass in a path to a property value using the Parameter icon

Url Navigates to an external web address.

Type Description

Enter Url The URL that the action should navigate to. Example: https://inductiveautomation.com/

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties

Open in new tab: Specifies whether the newly opened page should replace the current page, or open in a new browser tab.

Popup Action

Opens a view as a popup, or closes an existing popup.

Action Setting Description

Popup Action
Open: Opens a view as a popup.
Close: Closes an existing popup.
Toggle: Opens a popup if it isn't open, and closes the popup if it is open.

Select View The path to the view that should appear as a popup.

Parameters
A set of parameters to pass to the view. Add or remove parameters with the Add icon and icon. In the Delete Val

 field for a given parameter, you can pass in a path to a property value using the icon.ue Parameter

Identifier A string that specifies a unique popup identity. If you want to close an open popup from a popup action, you'll need to
supply the identifier that was used to open it.

Title A string of text to display in the titlebar. If omitted, no titlebar is used.

Show close
button

A boolean indicating if a Close Icon should be displayed on the popup.

Draggable A boolean indicating if the popup should be able to be dragged to new positions.

Resizable A boolean indicating if the popup is allowed to be resized.

Modal A boolean indicating if the popup should be modal, meaning it is the only view the user can interact with while open.

Background
dismissible

A boolean indicating if the popup can be dismissed by clicking outside of it. This setting is only applied if the modal
option is enabled. If omitted, defaults to false.

Position Exact
The following feature is new in Ignition version 8.0.6

 to check out the other new featuresClick here

Exact Positioning controls where in the session the popup should appear, and how large it should be. If no specifications
are given, the popup will open centered at its default size.

Top, , , and control how far the popup should be offset from each margin of the session.Left Bottom Right
Width and specify how large the popup should appear.Height

Position
Relative The following feature is new in Ignition version 8.0.6

 to check out the other new featuresClick here

Relative Positioning enables the popup to be positioned based off of the mouse cursor position when used with a Mouse
Event. The Circle icon in the center represents the mouse location. The arrows icons represent the location the popup
will appear in relation to the user's mouse cursor. Click on an arrow to position the popup window.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6

1.
2.

Refresh Action

Reloads the current browser tab.

Scan Barcode Action

Allows the user to scan a single barcode on their mobile device, which is then sent to the Gateway and handled by the Barcode
. Scanned Session Event

This is a Native App Action, designed to help in gathering data from a mobile device. Each action needs to be configured in two parts:

The action is run on a mobile device, indicating that a type of data should to be gathered.begin
As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding Session

.Event

Action Setting Description

Barcode Type Indicates the format of the barcode to be scanned. can be used to catch all barcodes.Any

Context Provides the opportunity to pass a custom object through to the Barcode Scanned Session Event. Note that a session
object is already provided to that event script.

Scan Ndef NFC Action

This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it Ignition Perspective App
will be ignored.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned

Allows the Perspective app to catch any scans by the phone using the NFC data exchange format (Ndef), which is then sent to the Gateway
and handled by the . This suppresses any default behavior of the phone in catching the scan. NFC Ndef Scanned Session Event

Action Property Description

Single Mode Listens for a single NDEF scan to send.

Continuous Mode Listens indefinitely for NDEF scans, which are sent to the gateway as they are received.

Off Mode Turns off listening for NDEF scans.

Script Action

Write a script that happens on the event specified. See and for more details Perspective Component Methods system.perspective Functions
on how to configure script actions.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

Script actions contain a built-in "event" object, that further contains values pertaining to the underlying event. As of 8.0.5 these values and
descriptions are displayed in the docstring.

Theme Action

Changes the theme for the session.

Action Setting Description

Select Theme Theme that will be used, for example dark, light, light-cool etc. Dropdown list of all available themes.

This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it Ignition Perspective App
will be ignored.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-NFCNdefScanned
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

Perspective Project Properties

There are a number of properties you can set for your Perspective projects within the Designer.
For example, there are properties for setting security levels and configuring how the sessions
receive updates.

To access the Project Properties, in the , click on tab on the menu bar. Then Designer Project
select . Project Properties

On this page

...

Perspective General
Properties
Perspective
Permissions
Properties
Perspective Tag
Drop Properties
Perspective
Inactivity Properties

 Project properties span several functional areas each containing settings applicable to that area. Scroll down to the Perspective section.

When properties in a section have been updated but not saved yet, the section heading will change to italicized text. In the following
example, changes have been made in the the Perspective General and Permissions properties but they have not been saved or applied yet.

Perspective General Properties
These general properties apply to the Perspective Sessions.

General

Property Description

Enable Update
Notification

Enables notifications for sessions when the project is changed. When notification is enabled, this is the message that
will be displayed. The token {timeLeft} will be replaced with the seconds remaining until update. If false, update will be
immediate.

Project Locale Select a project locale.

Include regional
variations

Enables regional variations for the locale.

Hide from
Launch Page
and Native Apps

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

When selected, the project to be hidden from the Session Launcher and mobile app project listing.

Launch Icon The image specified here is used to represent the project on the launch page and desktop shortcut. This needs to be a
path to an image that has been . Use the browse button to choose or upload a new image.uploaded to the Gateway

Project
Timezone

Timezone for this project. Dropdown list includes the Gateway timezone, Session timezone, or specific timezones
around the globe.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://docs.inductiveautomation.com/display/DOC80/SVGs+and+Images+in+Vision#SVGsandImagesinVision-UsingImages

Identity
Provider

Identity Provider (IdP) for this project. Dropdown list of available IdPs.

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Session
Timeout
Desktop

The time, in seconds, for that the Gateway will wait for desktop devices to respond.

Session
Timeout Mobile

The time, in seconds, for that the Gateway will wait for mobile devices to respond.

Session Closed
Message The following feature is new in Ignition version 8.0.3

 to check out the other new featuresClick here

Message to be displayed if is invoked.system.perspective.closeSession

Page Closed
Message

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

Message to be displayed if system.perspective.closePage is invoked.

Perspective Permissions Properties
The Perspective Permissions properties restrict project access to specific security levels and security zones.

Permissions

Property Description

(Security Levels Tree) Interactive tree that shows the current authenticated and .roles security zones

(First radio button) If selected, then the security levels of the user must match the required security levelsall of

(Second radio button) If selected, then at least one of the security levels of the user must match the required security levels.any of

In the following example, a user must have the Administrator security level and Ridgefield East security zone to be able to access this project.

After release 8.0.6, the Identity Provider setting will only remain in this location if your Perspective Project
already has an IdP set for it. If you change this property to none, it will no longer remain in this location. It
moves to the Project Properties > Project General.

For new installations, the Identity Provider property is now located in Project Properties > Project General.
For more information, see .Project Properties

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.closeSession
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.closePage
https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Zones
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties#ProjectProperties-GeneralProperties

Perspective Tag Drop Properties
Tag Drop properties provide a way to link certain data types of Tags to commonly used
components when dragging-and-dropping a Tag onto a view. This is done in Project Properties
under in three steps: select the data type, select the component to create, and select Tag Drop
the bindings that are created on that component.

 This setting determines which components show up in the Data Type Configuration:
popup list when dragging a Tag into a view.
You can switch between the different Tag data types to see what sorts of components are
allowed to be dropped for each of those types. Add or remove new entries in the list using

the icon and icon. You can then double-click on the new blank cell Add Delete
and select a component from a dropdown.

Component Bindings Configuration: This setting determines which bindings are
created when a component is dropped into a view.
Select a component, then set up or modify the bindings for the selected component (which
is typically just the Tag value bound to the value/text prop on a component). Add or

remove new binding entries using the icon and icon. Double-click the Add Delete
Tag Property and Prop Path cells to fill in properties.

Tag Drop

Watch the Video

The Component Binding Configuration table values are tied to the component currently
selected in the Component Type dropdown, they are not related to what is selected in
the Data Type Configuration table above.

https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.0

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Dropping tags onto existing components can now create bindings on those components if the data type of the tag matches a Tag Drop
configuration in the project. Tag Drop configuration is what determines if a binding is configured or not.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

The Tag Drop interface enables the Bidirectional setting by default when adding Input Components.

Tag Drop

Property Description

DataType Configuration This section is to set up a list of components to show for each data type that can be dragged onto the
view.

Data Types Dropdown list of the available datatypes in Ignition. Choose a datatype to see a list of components
associated with it.

Components List of components associated with selected data type.

Component Bindings
Configuration

This section is to set up bindings when a dropped.Tag is

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

Component Type Dropdown list of the available components in Perspective.

Tag Property The name of a Tag's property to be used in a binding. " " is most commonly used.value

Prop Path The property path on the component where the binding will be created. props.value or props.text are most
commonly used.

Bidirectional Check box to indicate if the binding should be bidirectional.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

The Bidirectional property is set by default when adding Input Components.

The following feature is new in Ignition version 8.0.16
 to check out the other new featuresClick here

Perspective Inactivity Properties
As of 8.0.16, Perspective has Inactivity Timeout settings in Project Properties. You can set an Inactivity timer that either closes the
Perspective session or logs the user out if no activity is detected after a specified number of minutes. Activity is considered opening a new
tab, clicking, typing. If Perspective is running on a mobile device, activity is considered a swipe or tap. The Gateway is the "time keeper" for
inactivity timer.

The following are the properties for the Inactivity Timeout:

Inactivity

Property Description

Enabled Whether the automatic inactivity detection option is enabled.

Inactivity Timer Time (in minutes) in which a session can be inactive before the user is logged out or the session is closed.

Grace Period Grace period (in seconds) after the Inactivity Timer time has passed but before the user will be logged out or the
session closed.

Grace Period
Message

Message to be displayed before a session becomes inactive. Use the placeholder {seconds} to indicate remaining
time. (Optional.)

Inactive Session
Action

Action that occurs when the session becomes inactive. Options are:

Logout - Log the user out of the session. Note that the user will still be logged in with the
Close Session - Close the session.

This inactivity feature pertains to perspective sessions only. When the Inactive Session Action occurs (regardless of whether
"Logout" or "Close Session" is selected), the user will still be logged into the Identity Provider.

When enabling this inactivity feature, it is highly recommended that you also enable the "Always ask the IdP to re-authenticate
 setting under , as this will require that any user attempting to log into a perspective session will users by default" Project Properties

have to provide their credentials first.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.16
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Properties#ProjectProperties-GeneralProperties

Styles

Perspective components have Style properties that enable you to customize the look and feel of
components on the screen through various properties. These styles are based on Cascading Style
Sheets (CSS), a style sheet language used for describing the presentation of a document or
webpage. CSS is designed to enable the separation of presentation and content, including layout,
colors, and fonts. The Perspective module uses the popular standard HTML5/CSS3 technology for
its user interface (UI) layer.

Using CSS, the Perspective Style options for components are both detailed and flexible. Styles are
used in multiple places, and components can accept style information from multiple sources. There
are many CSS settings available; they are all described in the .Style Reference

A group of Style settings can be saved together and given a name as a .Style Class

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

As of version 8.0.8, the Style Editor has a more robust user interface. This includes a new Applied
Styles panel that displays the style names and settings as you add them to a component.

On this page

...

Style Editor
Style Example

Styles

Watch the Video

Style Editor

Wherever the style property and the icon appear in the Property Editor, you can click on the icon to display the style editor.Styles

The following menus are available in the style editor:

Text
Background
Margin and Padding
Border
Shape
Misc

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://www.inductiveuniversity.com/videos/styles/8.0/8.0
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10

In release 8.0.10, the Padding menu was updated to include Margin and Padding settings. For complete information, see .Style Reference

You can quickly make adjustments to the styles by clicking on them in the Applied Styles panel.

When you hover over a style listed in the panel, a icon is displayed. Click on it to delete the style. Delete

If you made new edits to an existing style attribute, you can hover over the style and an icon is displayed. Click on it to revert to Undo
the previously saved setting.

https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Reference

You can minimize the Applied Styles panel by clicking on the icon to the left of the name. Click the arrow again to reopen the Arrow
panel.

Expanding a category enables you to set the properties associated with it. Here is an example of the Style Editor with the Text menu
expanded and a few options selected:

Applying individual style elements to a component will overwrite the settings for the same style elements being applied from a Style
.Class

1.

2.

3.

4.

5.
6.

Style Example
In a coordinate view, drag a Gauge component and a Label component.

Select the Gauge component and click the icon in the properties for the component. Styles

The style editor is displayed. Each of the pull down menus has options. These options are described in the Style Reference.
Click on the Text menu then set the following style options:
Font Family: Verdana
Size: 16
Weight:bold

As you select Style elements, they appear in Applied Styles column on the left.

Click OK.

Next select the Label component and click the Styles icon.
Expand the menu and set the following style options:Text
Font family: Verdana
Size: 18px
Weight: bold
Color: #8034CC

Some components can have multiple individual Style elements, with each one focusing on a different part of the component. When
these styles have a conflict, the more specific style wins out, and sets the style for that particular property.

https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Reference

6.

7.

8.
9.

Expand the menu and set the following style option:Background
Background Color: #FFFFCC
Expand the menu and set the padding to 8 for all four sidesPadding .
Click OK to save the changes. You will notice those properties now appear in the components Style, letting you know that those
particular elements have a style applied to them.

9.

Our finished example looks like this:

 Refer to Style Reference for a complete reference of all the available settings for Styles.

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Reference

Copy of Perspective Themes

Themes
Perspective comes with several themes, providing initial styling to all components. A theme
effectively provides the default style to a component, allowing to override and modify any styles
styling rules that are defined in the theme.

The active theme in a session is determined by a session property. Specifically, session.props.
theme found on the home screen of the Perspective workspace. Changing the value of this
property in a Perspective Session will change the active theme for the session.

On this page

...

Themes
Initial Theme
Theme Examples

Setting a Theme
Setting a Theme
Using a
Component
Theme
Component
Action

Modifying a Theme
- Using a Different
Font
Theme Colors

Creating a Color
Variable.
Creating a
Custom Theme
Using Custom
Variables. (This
really should just
say, creating
your own custom
theme, should be
broken up ideally
- YN)
Using Theme
Colors
Built-in Theme
Colors

Initial Theme

Ignition installations come with the following themes:

light - white background
dark - dark background

The following feature is new in Ignition version 8.0.13
 to check out the other new featuresClick here

Ignition version 8.0.13 introduced the following new themes:

light-warm
light-cool
dark-warm
dark-cool

Theme Examples

Light:

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.13

Light-Cool:

Light-Warm:

Dark:

Dark-Cool:

Dark-Warm:

Setting a Theme
A theme can be set a number of ways. This section demonstrates a couple of approaches.

Setting a Theme Using a Component

Simply writing to the "theme" session property will change the theme used in the session. In this example, we used a Dropdown component
to change the theme in a Perspective Session.

1.

2.

3.

4.

Open a view in the Designer that contains a few components and drag in a Dropdown component.

With the Dropdown component selected, click on the icon to create a property binding on the property Binding value

The Edit Binding window will open. The theme property is a session property. Click on the icon and expand Property session >
, and select . Click .props theme OK

Check and click to save your property binding. Bidirectional OK

4.

5.

6.
7.

In the Property Editor, enter the theme values under options.

Paste the following onto the "options" property of a dropdown component.

[
 {
 "value": "light",
 "label": "light"
 },
 {
 "value": "dark",
 "label": "dark"
 }
]

Save your project and open your view in a Session or in Preview Mode.
From the Dropdown component, select a desired theme (i.e., light).

7.

1.

2.

3.

The selected theme will now be applied for the entire Perspective Session.

Theme Component Action

You can also set a theme by configuring a . Component Action

Open a view in the Designer with a couple of components, including a button component. The goal here is to change the active
theme to "dark" when a user presses the button.
Select the Button component, and click on the at the top of the Designer menubar.Components > Configure Events

The Event Configuration window will appear. Select the event you want to put the Theme on. In this example, we used CliconClick.

k the icon and choose Add Theme.

3.

4.

5.
6.

Select the desired Theme name (i.e., dark) and click .OK

Click and open either a Perspective Session, or click Preview Mode if you are in the Designer.Save
Click the and the theme will change to Dark Mode. Button

6.

1.

2.

3.

Modifying a Theme - Using a Different Font

Need to elaborate on "using a different font." At least, mention somewhere that this walk through is all about modifying the
themes global font. Also, there should be a discussion about when it makes sense to create your own theme versus when it makes
sense to just override. I believe we discussed this last week, but let me know if you want it in writing. - YN

For this example, modify the existing Light theme in "%ignitionInstallationDirectory%\data\modules\com.inductiveautomation.
 to have it use the Ubuntu font. perspective\themes\"

Download the Ubuntu family font files here: . Put all of the font files from your download in https://fonts.google.com/specimen/Ubuntu
a folder named "Ubuntu" and place this folder in \data\modules\com.%ignitionInstallationDirectory%
inductiveautomation.perspective\fonts\.
Go to and %ignitionInstallationDirectory%\data\modules\com.inductiveautomation.perspective\themes\
create a folder named . overrides
Inside your folder, create two CSS files, one called and the other called overrides fonts globals. You planning on
mocking out a folder structure, here? This is how it should look kind of thing. -YN

Your file should look like this: fonts.css Provide a link to what font-face actually does https://developer.mozilla.org/en-US
 -YN/docs/Web/CSS/@font-face

fonts file example

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 400;
 src: local('Ubuntu'), local('Ubuntu'),
 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Regular.ttf') format('ttf');

Creating a custom Perspective theme is considered an advanced feature. As such, we operate under the assumption that anyone
altering these files has some knowledge of CSS. By making use of CSS variables, imports, and descriptive class selectors, you will
find that we provided features and structure to help alleviate some of the frustrations inherent to managing large amounts of CSS.

So, before we even get to this next section about using a different font, I think it would be very useful to discuss the
general structure of theming, and how it makes use of a series of import statements, etc. A general idea of how it
works. Pulling a quick overview from that readme. It just feels like we are missing some sort of intro. It makes it hard to

. - YNfollow, just like the color of this font

More information on modifying a theme, or making a new theme, can be found at "%ignitionInstallationDirectory%
 file (added in 8.0.13).\data\modules\com.inductiveautomation.perspective\ "themes.README.md

Note that modifying or creating new themes is unsupported, so our support department will not be able to assist with any questions
you may have. However, feel free to ask any questions on the . forums

https://fonts.google.com/specimen/Ubuntu
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
http://themes.README.md
https://forum.inductiveautomation.com/

3.

}

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 500;
 src: local('Ubuntu-Medium'), local('Ubuntu-Medium'),
 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Medium.ttf') format('ttf');
}

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 700;
 src: local('Ubuntu-Bold'), local('Ubuntu-Bold'),
 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Bold.ttf') format('ttf');
}

Your file should look like this: globals.css Let them know that this is setting the font on the body, input, textarea, etc... to
Ubuntu. Also, you haven't declared your variable yet. Might want to stick to `Ubuntu` and not `--font-Ubuntu`. Also,
rename global.css to my_globals_overrides.css or something. -YN

body, input, textarea, keygen, select, button {
 font-family: var(--font-Ubuntu);
}

Modify your file in " as light.css %ignitionInstallationDirectory%\data\modules\com.inductiveautomation.perspective\themes\"
follows:

light.css file example

@import "./light/variables.css";
@import "./light/fonts.css";
@import "./overrides/fonts.css";
@import "./light/globals.css";
@import "./overrides/globals.css";
@import "./light/app/index.css";
@import "./light/common/index.css";
@import "./light/designer/index.css";
@import "./light/palette/index.css";

Order of the import statements matter. Variables, fonts, and globals, should always be at the top so that when the CSS is
parsed, these rules are already available to be used since they were parsed first. Also, it would help if my override import
statements were more easily distinguishable in the example. - YN

Note how you're basically overriding the file with your own file. The same thing is /light/fonts.css /overrides/fonts.css
happening with the file. The order of these imports is important, as an import at the bottom of the list could /light/globals.css
override imports at the top of the list. Not basically, definitely overriding. Would help to elaborate on this. What actually
happened here. - YN

By following these steps, your Light theme is ready to use in your Designer using the Ubuntu font. Right, not only have you
declared a new font-face and imported the font-face files onto the page in the browser so that they can be used by other
components, but more importantly you have overridden the globally used font. Side note: fonts and font colors
cascade, the C in CSS. Meaning, if the html body is using the Ubuntu font, unless anything below it declares it's own font
family, this font will be inherited automatically as a result of the cascade. -YN

Theme Colors

Creating a Color Variable.

The built-in themes make heavy use of CSS variables for colors. For any of the default themes, colors are defined in the filvariables.css
e. Defining your own color variable can be done by following these steps: CSS variables are limited to only colors by the way. Read up
on the docs here - YNhttps://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

1.

2.

3.

1.

2.

Create a folder named "variables" in %installDirectory%\data\modules\com.inductiveautomation.
The purpose of this folder is to contain any and all variable definitions. Since this folder is not part of any perspective\themes.

of the built-in theme files, it will not get touched on system start up or system restore.
Inside this newly created variables folder, place a .css file named "variables" with the following variable definition:

:root {
 /* Variables: */
 --myvariable: #000080; /*This is the variable I created*/
}

Now that the variable has been created in this variables.css file, we must import it in the specific .css file corresponding to the theme
where you wish for this variable to be used. For this example, the variable will be imported into the light theme so the light.css file in
/themes/ will be modified as below:

@import "./light/index.css";
@import "./variables/variables.css"; /* This is where the variable is imported */

After following these steps, the variable will be ready to be used. You don't actually need to create your own folder if you don't
want to. You can declare the variables directly in the light.css. Assuming you're not concerned with having it override
anything. - YN

Creating a Custom Theme Using Custom Variables. (This really should just
say, creating your own custom theme, should be broken up ideally - YN)

To create a custom theme, it is important to take advantage of the default themes. (it is highly advised and recommend that you extend
one of the default themes, light.css in particular. Many if not all of the components rely on styles provided by the themes. If those

 The 'light-cool', 'dark', and 'dark-warm' themes are all derived from styles don not exist on the page, your project will reflect that. - YN)
the 'light' theme. We can similarly take advantage of the 'light' theme to create a new, custom theme. The new theme will override an IA
owned css file with a custom css file which sets container background color to blue using the color variable created in the example above.
Follow these steps to create a new, custom theme:

Create a css file named 'navy' in %installDirectory%\data\modules\com.inductiveautomation.
 with the following:perspective\themes\

@import "./light/index.css";
@import "./variables/variables.css"; /* Import custom variables. */

Since our new theme is derived from the 'light' theme, this css file is a direct copy of the light.css file. We want to use custom
variables in this new theme so we import the custom variables created in the example above. Once this navy.css file is created, a
theme named 'navy' will become available for use in the Designer.
To make the theme's background blue, the container.css file in %installDirectory%\data\modules\com.

must be modified. Since we cannot modify any of the built-in inductiveautomation.perspective\themes\light\common\
theme files, we will create a new folder named "overrides" in %installDirectory%\data\modules\com.
inductiveautomation.perspective\themes. This folder will contain any and all css overrides. In this folder, place a copy of
the container.css and modify it as below: I'm confused, are we creating a custom or overriding the existing themes? -YN

.ia_container--root {
 background-color: var(--myvariable); /* We will override the container background-color to be
--myvariable*/
}
.ia_container--secondary {
 background-color: var(--container);
}

This is a pretty heavy example, since that css selector (ia_container-–root) is used on a bunch of fundamental container
types. You could really mess things up. Unless this is something highly requested, I'd avoid doing it this way, or better

Be aware that changes made to the built-in theme files will be replaced on Gateway start up (including restarts caused by a Gatewa
y Restoration) and moved to a backup folder on upgrade. As a result, users who want to modify a theme must have their own
custom css files in a directory separate from the built-in theme files. Custom css files can then be imported into the entry point css
files in \themes\ which do not get overwritten or modified on Gateway start up.

For more information, see the markdown README file located in the Gateway's installation directory: %installDirectory%
\data\modules\com.inductiveautomation.perspective\themes\README.md

This should be described earlier on. Seem out of place, doesn't it? - YN

https://legacy-docs.inductiveautomation.com/display/DOC79/Gateway+Restore
https://legacy-docs.inductiveautomation.com/display/DOC79/Gateway+Restore
http://README.md

2.

3.

4.

yet, this example entirely. A simpler example would be better. In general, I'd really prefer that they override the value of an
existing css variable, and not modify a css ruleset or declaration block to use their own. This is pretty advanced and you
can really mess things up unless you really know what you're doing. -YN
Now that overrides for our custom theme were created, we can import them into our 'navy' theme by modifying the navy.css file as
below:

@import "./light/index.css";
@import "./variables/variables.css"; /* Import custom variables. */
@import "./overrides/container.css"; /* Import overrides. */

Our 'navy' theme is now configured to include all the attributes from the IA owned 'light' theme with the exception of an overwritten
container background color. To verify this is working, we create two buttons with . One button will set the Theme Component Actions
Theme to 'light' while the other will set the Theme to 'navy'.

Light theme:

Navy theme:

Using Theme Colors

Theme colors can be used on components by simply providing the variable name. For example, we can change the and backgroundColor c
 of a button component by just stating the variable name for the appropriate styling properties on the component's object. olor style

https://docs.inductiveautomation.com/display/DOC80/Perspective+Themes#PerspectiveThemes-ThemeComponentAction

If a component has a property outside of a style object, such as the Icon component, the same rules apply; simply set the value of the color
color property to the name of the variable.

Style Classes

When using a Theme Color in a Style Class, the variable must be wrapped in the method, as shown below. var()

Built-in Theme Colors

The following color swatch represents the built-in color variables for each IA provided theme.

light light-cool light-warm dark dark-cool dark-warm

--neutral-10

--neutral-20

--neutral-30

--neutral-40

--neutral-50

--neutral-60

--neutral-70

--neutral-80

--neutral-90

--neutral-100

--seq-1

--seq-2

--seq-3

--seq-4

--seq-5

--seq-6

--div-1

--div-2

--div-3

--div-4

--div-5

--div-6

--div-7

--div-8

--div-9

--div-10

--div-11

--div-12

--div-13

--div-14

--div-15

--div-16

--qual-1

--qual-2

--qual-3

--qual-4

--qual-5

--qual-6

--qual-7

--qual-8

--qual-9

--qual-10

--callToAction

--callToActionHighlight

--callToAction--hover

--callToAction--active

--callToAction--disabled

--error

--info

--infoSecondary

--warning

--warningSecondary

--success

--indicator

--indicatorOff

Perspective Themes

Themes
Perspective comes with several themes, providing initial styling to all components. A theme
effectively provides the default style to a component, allowing to override and modify any styles
styling rules that are defined in the theme.

The active theme in a session is determined by a session property. Specifically, session.props.
theme found on the home screen of the Perspective workspace. Changing the value of this
property in a Perspective Session will change the active theme for the session.

On this page

...

Themes
Initial Theme
Theme Examples

Setting a Theme
Setting a Theme
Using a
Component
Theme
Component
Action

Modifying a Theme
- Using a Different
Font
Theme Colors

Using Theme
Colors
Built-in Theme
Colors

Initial Theme

Ignition installations come with the following themes:

light - white background
dark - dark background

The following feature is new in Ignition version 8.0.13
 to check out the other new featuresClick here

Ignition version 8.0.13 introduced the following new themes:

light-warm
light-cool
dark-warm
dark-cool

Theme Examples

Light:

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.13

Light-Cool:

Light-Warm:

Dark:

Dark-Cool:

Dark-Warm:

Setting a Theme
A theme can be set a number of ways. This section demonstrates a couple of approaches.

Setting a Theme Using a Component

Simply writing to the "theme" session property will change the theme used in the session. In this example, we used a Dropdown component
to change the theme in a Perspective Session.

1.

2.

3.

4.

Open a view in the Designer that contains a few components and drag in a Dropdown component.

With the Dropdown component selected, click on the icon to create a property binding on the property Binding value

The Edit Binding window will open. The theme property is a session property. Click on the icon and expand Property session >
, and select . Click .props theme OK

Check and click to save your property binding. Bidirectional OK

4.

5.

6.
7.

In the Property Editor, enter the theme values under options.

Paste the following onto the "options" property of a dropdown component.

[
 {
 "value": "light",
 "label": "light"
 },
 {
 "value": "dark",
 "label": "dark"
 }
]

Save your project and open your view in a Session or in Preview Mode.
From the Dropdown component, select a desired theme (i.e., light).

7.

1.

2.

3.

The selected theme will now be applied for the entire Perspective Session.

Theme Component Action

You can also set a theme by configuring a . Component Action

Open a view in the Designer with a couple of components, including a button component. The goal here is to change the active
theme to "dark" when a user presses the button.
Select the Button component, and click on the at the top of the Designer menubar.Components > Configure Events

The Event Configuration window will appear. Select the event you want to put the Theme on. In this example, we used CliconClick.

k the icon and choose Add Theme.

3.

4.

5.
6.

Select the desired Theme name (i.e., dark) and click .OK

Click and open either a Perspective Session, or click Preview Mode if you are in the Designer.Save
Click the and the theme will change to Dark Mode. Button

6.

1.

2.

3.

Editor notes are only visible to logged in users

Modifying a Theme - Using a Different Font

For this example, modify the existing Light theme in "%ignitionInstallationDirectory%\data\modules\com.inductiveautomation.
 to have it use the Ubuntu font. perspective\themes\"

Download the Ubuntu family font files here: . Put all of the font files from your https://fonts.google.com/specimen/Ubuntu
download in a folder named "Ubuntu" and place this folder in \data\modules\%ignitionInstallationDirectory%
com.inductiveautomation.perspective\fonts\.
Go to %ignitionInstallationDirectory%\data\modules\com.inductiveautomation.

 and create a folder named . perspective\themes\ overrides
Inside your folder, create two CSS files, one called and the other called overrides fonts globals.

Your file should look like this:fonts.css

fonts file example

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 400;
 src: local('Ubuntu'), local('Ubuntu'),
 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Regular.ttf') format('ttf');
}

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 500;
 src: local('Ubuntu-Medium'), local('Ubuntu-Medium'),
 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Medium.ttf') format('ttf');
}

@font-face {
 font-family: var(--font-Ubuntu);
 font-style: normal;
 font-weight: 700;
 src: local('Ubuntu-Bold'), local('Ubuntu-Bold'),

Creating a custom Perspective theme is considered an advanced feature. As such, we operate under the assumption that

anyone altering these files has some knowledge of CSS. By making use of CSS variables, imports, and descriptive class

selectors, you will find that we provided features and structure to help alleviate some of the frustrations inherent to managing

large amounts of CSS.

More information on modifying a theme, or making a new theme, can be found at "%ignitionInstallationDirectory%

 file (added in 8.0.13).\data\modules\com.inductiveautomation.perspective\ "themes.README.md

Note that modifying or creating new themes is unsupported, so our support department will not be able to assist with any

questions you may have. However, feel free to ask any questions on the . forums

https://fonts.google.com/specimen/Ubuntu
http://themes.README.md
https://forum.inductiveautomation.com/

3.

 url('/data/modules/perspective/fonts/Ubuntu/Ubuntu-Bold.ttf') format('ttf');
}

Your file should look like this: globals.css

body, input, textarea, keygen, select, button {
 font-family: var(--font-Ubuntu);
}

Modify your file in "light.css %ignitionInstallationDirectory%\data\modules\com.inductiveautomation.
 as follows: perspective\themes\"

light.css file example

@import "./light/variables.css";
@import "./light/fonts.css";
@import "./overrides/fonts.css";
@import "./light/globals.css";
@import "./overrides/globals.css";
@import "./light/app/index.css";
@import "./light/common/index.css";
@import "./light/designer/index.css";
@import "./light/palette/index.css";

Note how you're basically overriding the file with your own file. The /light/fonts.css /overrides/fonts.css
same thing is happening with the file. The order of these imports is important, as an import at the /light/globals.css
bottom of the list could override imports at the top of the list.

By following these steps, your Light theme is ready to use in your Designer using the Ubuntu font.

Theme Colors
The built-in themes make heavy use of CSS variables for colors. For any of the default themes, colors are defined in the filvariables.css
e. Defining your own variable is simple. Add a line with the following to the variables file:

--variable-name: #FF0000;

Using Theme Colors

Theme colors can be used on components by simply providing the variable name. For example, we can change the and backgroundColor c
 of a button component by just stating the variable name for the appropriate styling properties on the component's object. olor style

Be aware that changes made to the built-in theme files will be replaced on Gateway start up (including restarts caused by a Gatewa
) and moved to a backup folder on upgrade. y Restoration As a result, it is highly recommended that you create a custom CSS file

that can then be imported into the entry point CSS files.

For more information, see the markdown README file located in the Gateway's installation directory: %installDirectory%
\data\modules\com.inductiveautomation.perspective\themes\README.md

https://legacy-docs.inductiveautomation.com/display/DOC79/Gateway+Restore
https://legacy-docs.inductiveautomation.com/display/DOC79/Gateway+Restore

If a component has a property outside of a style object, such as the Icon component, the same rules apply; simply set the value of the color
color property to the name of the variable.

Style Classes

When using a Theme Color in a Style Class, the variable must be wrapped in the method, as shown below. var()

Built-in Theme Colors

The following color swatch represents the built-in color variables for each IA provided theme.

light light-cool light-warm dark dark-cool dark-warm

--neutral-10

--neutral-20

--neutral-30

--neutral-40

--neutral-50

--neutral-60

--neutral-70

--neutral-80

--neutral-90

--neutral-100

--seq-1

--seq-2

--seq-3

--seq-4

--seq-5

--seq-6

--div-1

--div-2

--div-3

--div-4

--div-5

--div-6

--div-7

--div-8

--div-9

--div-10

--div-11

--div-12

--div-13

--div-14

--div-15

--div-16

--qual-1

--qual-2

--qual-3

--qual-4

--qual-5

--qual-6

--qual-7

--qual-8

--qual-9

--qual-10

--callToAction

--callToActionHighlight

--callToAction--hover

--callToAction--active

--callToAction--disabled

--error

--info

--infoSecondary

--warning

--warningSecondary

--success

--indicator

--indicatorOff

1.

2.

Style Classes

Style Class Basics
A Style Class is a group of style settings that are saved together. Style Classes can be applied to
multiple components to provide consistency in design. A Style Class allows you to define style
elements in one place, and then quickly apply that style to different components. Style Classes are
stored in the Styles folder in the Project Browser.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Within the Styles folder, Style Classes can be placed into folders in order to keep them organized.
In the following example, we created separate folders for banner styles and logo styles in the
Designer. As projects grow and increase in complexity, use folders to more easily manage your
style classes.

Creating a Style Class

To create a Style Class, right-click on the Styles folder and select . New Style

On this page

...

Style Class Basics
Creating a Style
Class
Delete a Style
Class
Rename a Style
Class
Protect a Style
Class

Multiple Style
Classes
Animated Style
Classes

Animated
Settings
Animated Style
Class Example

Bindings on Style
Classes

Dynamic Style
Class Example

Element States on
Style Classes

Element States
Example

Media Query on
Style Classes

Media Query
Settings
Media Query
Example

Style Classes

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://www.inductiveuniversity.com/videos/style-classes/8.0/8.0

1.

2.

3.
4.

5.
6.

Enter a name for the new Style Class. Style Class names must be unique to the project.
You will see a green check icon if the name you enter is acceptable.

Click .Create Style Class
On the Edit Style screen, use the to set the text, background, border, and so style editor
forth, for that style.

Click to save the Style Class.OK
Once a Style Class has been created, it can then be applied to a component. In the
component's Style property, there will be a classes property with a dropdown list of all
available Style Classes that can be applied to the component.

The following is an example screen where the label components were created then all given the same Style Class, which has settings for text
weight, font family, background color, and border.

https://legacy-docs.inductiveautomation.com/display/DOC80/Styles#Styles-StyleEditor

Delete a Style Class

To delete a Style Class, right-click on the style class name in the Project Browser, then select . When a Style Class is deleted, it is no Delete
longer applied to any components it was previously applied to. The component returns to the default style settings with the exception of any
inline styles. Inline styles will remain applied to the component.

Rename a Style Class

To rename a Style Class, right-click on the Style Class name in the Project Browser, then select . Once a Style Class is renamed, it Rename
will no longer be applied to any components it was previously applied to.

Protect a Style Class

You can lock a Style Class from inside by opening the Project Browser, right-clicking on the Style Class, and selecting the oDesigner Protect
ption to protect it. Once it's protected, it cannot be changed except by someone that has the permission to unprotect it and modify it. For
more information on protecting project resources see .Project Security in Designer

https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Security+in+Designer

Multiple Style Classes
Perspective allows you to select more than one Style Class for a component. Multiple Style Classes are applied in alphabetical order. Style
classes further along in the alphabet will override earlier style classes. The overrides occur only for properties that are set in multiple
classes.

In the example below, Bravo style class is blue, bold, italic, and 13px text with some borders. Charlie style class is red, bold, and 16px text.

When both styles are applied together, the color and text size in Charlie style class override Bravo. However, the italics and borders from
Bravo remain because Charlie does not have those properties set.

You can also apply inline styles to components that have a style class. The inline style properties override any properties in the style class.
For example, if the style class has a properties of 22pt bold text with a color of blue, but there is an inline style property of 18 pt bold text with
a color of orange, the component will receive the inline style properties. In this example, we applied the Alpha style to a label and the applied
inline styles of a bottom and right border.

Animated Style Classes
An animated Style Class transitions through two or more style configurations over some period of
time. For example, using an animated Style Class can be powerful way to visually show data

1.

changes (such as an alarm state) on a component over time. When the Animated option is set to
true on the Edit Style screen, several settings appear for customizing the animation.

Animated Style
Classes

Watch the Video

Animated Settings

The following properties appear when the Animated checkbox is set to True.

Name Description

Duration Number of seconds for each animation stop.

Direction Options are normal, reverse, alternate, and alternate reverse.

Iterations Number of times you want the animation to run. Enter an integer, or check the infinite box to have the animation run
continually.

Timing Options are linear, ease, easeIn, easeOut, stepStart, stepEnd, and exaggerate.

Delay Delay, in number of seconds.

FillMode Options are none, forwards, backwards, or both.

0% to
100%

Animation stops. All of the animation and style settings can be set for each stop. Additional stops can be added by right-
clicking on the bar in between 0% and 100%.

Style
Settings

Sets the styles for an animation stop. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous.

Applied
Styles The following feature is new in Ignition version 8.0.8

 to check out the other new featuresClick here

Displays the style names and settings as you add them to a component.

Animated Style Class Example

In the Project Browser, right-click Styles and select .New Style

https://www.inductiveuniversity.com/videos/animated-style-classes/8.0/8.0
https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

1.

2.
3.

4.

5.
6.

7.

8.
9.

Enter a Style Class name, for this example we used "InAlarm", and click .Create Style Class
On the Edit Style screen, check the option in the upper right corner. For this example, we'll leave the default settings in Animated
the fields.
Next click on to set the style for the beginning of the animation. 0%

Click on the icon next to Background to see the Background settings.Expand
In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop.
We chose #FF8A8A, a light red.

Next click on to set the style for the end of the animation.100%

Click on the icon next to Background to see the Background settings.Expand
In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop.
We chose , a bright yellow.#FFFF47

9.

10.
11.

12.

13.

Click to save the Style Class.OK
Next drag a Label component onto a view. Select the component.

In the Perspective Property Editor, click the Expand icon under style classes. Select the InAlarm class.

The Label component will immediately display the animated style class, transitioning between the light red and yellow colors we
selected.

Bindings on Style Classes
In Perspective, you can dynamically change the style class on a component. Styles and Style
Classes can have binding options. For example, a component could use a style class when a Tag
has one value, and not use the class when the Tag has a different value.

1.

2.
3.

4.

5.
6.

7.

Dynamic Style
Classes

Watch the Video

Dynamic Style Class Example

In this example, we use the InAlarm style class and Label component we set up in the previous example.

Click on the New Tag icon and select and .New Standard Tag Memory Tag

Give the Tag a name.
Set the data type to , and click to save the Tag.boolean OK

On the view, select the Label component.

In the Property Editor, click on the icon next to classes.Binding

Select the Tag Binding type.

On the Edit Binding screen, click the icon and select the AlarmBit tag. Browse Tags

https://www.inductiveuniversity.com/videos/dynamic-style-classes/8.0/8.0

8.

9.

10.
11.

Next, click on .Add Transform

On the Select Transform screen, choose Map and click .Add Transform

Click the icon twice to add two mappings.Add
Click on the dropdown and choose Style Class.Output Type

11.

12.

13.

14.

15.
16.

For the first mapping enter false as the input type and leave the output type blank. This will cause the Label component to have no
style class when the value on the Tag is false.
For the second mapping enter true as the input type and use the dropdown to select "InAlarm" as the output type. This will cause the
Label component to the InAlarm style class when the value on the Tag is true.
For the Fallback, leave the output type blank.

Click to save the binding. OK
To test the binding, write to the Tag. The component will change depending the Tag's value.

Element States on Style Classes

Element States are used on Style Classes to change the style configuration on a component
based on the state of the component. It is an additional styling configuration you can make on a
style class. For example, you could have the border on a component change when it is disabled.
Or you could have the background change when the user hovers the mouse over the
component. See the table below for element states that are available. These states are based in
CSS pseudo classes.

Element States

Watch the Video

Name Description

Element
State

State of the component. Options are as follows:

State Description

active The component is being activated by the user. For example, clicking on it with a mouse.

checked The component is checked or toggled to an "on" state. Applies to checkboxes, radio buttons, etc.

disabled Component is disabled that is it cannot be selected, clicked on, typed into, or accept focus.

empty Represents any element that has no children. Children can be either element nodes or text (including whitespace).

enabled Component is enabled and can be selected, clicked on, typed into, or accept focus.

first-
child

Changes the style for the first element among a group of sibling elements.

fullscre
en

Automatically adjust the size, style, or layout of content when elements switch back and forth between full-screen
and traditional presentations.

focus The component receives focus. It is generally triggered when the user clicks or taps on an element or selects it
with the keyboard's "tab" key.

hover User hovers mouse over the component.

in-
range

Element whose current value is within the range limits specified by the and min max tes.attribu

read-
only

Component is read-only.

read-
write

Component is available for read and write.

visited links that the user has already visited.Component

Editor notes are only visible to logged in users
Per dev, some of these element states will not work yet in Perspective. There's a ticket. Some may end up being dropped
/deleted and some may be implemented in the future.

default-choice, invalid, last child, link, only-child, out-of-range, required, valid

Animated If checked, the Element State can be animated. The animate options are as follows:

Name Description

Duration Number of seconds for each animation stop.

Direction Options are normal, reverse, alternate, and alternate reverse.

Iterations Number of times you want the animation to run. Enter an integer, or check the infinite box to have the
animation run continually.

Timing Options are linear, ease, easeIn, easeOut, stepStart, stepEnd, and exaggerate,

https://www.inductiveuniversity.com/videos/element-states/8.0/8.0
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-min
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-max

1.

2.

3.

4.
5.

Delay Delay, in number of seconds.

FillMode Options are none, forwards, backwards, or both.

Style
Settings

Sets a style animation stop. Full menu of is available for text, background, margin and padding, style options
border, shape and miscellaneous.

Element States Example

In this example, we have a Style Class called . The base style for this class has some text settings and border settings. We HoverLabel applie
d the class to two Label components on view. Let's set up an element state that will change the background color of the component if a user
hovers over the component with a mouse.

To modify the Style Class, double click on it in the Project Browser.

Under Style Rules, click on the icon and select .Add Element State

On the Element State dropdown, scroll down and select . hover

Click on the icon next to Background to see the Background settings.Expand
In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop.
We chose , a light blue.#8AFFFF

https://docs.inductiveautomation.com/display/DOC80/Style+Reference

5.

6. Click . Now the background color will change on the Label component that the user hovers over.OK

Media Query on Style Classes
A Media Query can be applied to a Style Class in order to change the style of your Perspective
components based on the device your session is running on. That is, you can change the style of
your Perspective components based on the device your session is running on.

Media queries don't change anything about your layout, rather they react to those changes in the
device and then choose from the various style rules you defined.

For example, you could make changes to your styles based on the width of the session. Media
queries in style classes are a direct import of CSS rules. Depending on the particular media query,
the selector will apply at less than or equal to, or vice versa. Media Query

Watch the Video

https://www.inductiveuniversity.com/videos/media-query/8.0/8.0

1.

Media Query Settings

Name Description

min-
width

Sets the minimum width in pixels. If the viewport is larger than the specified width (in pixels), this rule will be applied. If the
viewport is smaller than the minimum width, this rule has no effect. For example, a setting of min-width 361 means this rule is
active if the screen is at least 361 pixels wide.

max-
width

Sets the maximum width If the is smaller than the maximum width, it will automatically change the height of the in pixels. viewport
element. If the than the maximum width, rule has no effect. viewport is larger For example, a setting of 360 max-width means this

 most 360 pixels wide or smaller.rule is active if the screen is at

orient
ation

This rule will apply based on whether the browser window is in landscape mode (that is, its width is greater than its height) or
portrait mode (its height is greater than its width). Options are portrait or landscape.

min-
aspe
ct-
ratio

Sets a minimum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5.

max-
aspe
ct-
ratio

Sets a maximum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5..

hover Applies the style settings when the device supports hovering. Options are hover or none.

Style
Settin
gs

The style settings to apply during the media query. Full menu of is available for text, background, margin and style options
padding, border, shape and miscellaneous.

Media Query Example

For the following example, we placed a Label component with no style class on a view.

To create a Style Class, right-click on the folder and select . Styles New Style

https://docs.inductiveautomation.com/display/DOC80/Style+Reference

1.

2.
3.

4.

5.

6.

Give the new Style Class a name. We chose MediaQuery.
Click .Create Style Class

Under Style Rules, click on the icon and select Media Query. Add

Next we updated a few of the settings. Change Media Query to max-width and the pixel value to 500px. We also set the Text Font
size to 24px.
Click to save the Style Class.OK

6.

7.

8.
9.

10.
11.

Back in the Designer, select the Label component.

In the Property Editor, click on the icon next to classes.Expand
Select the MediaQuery Style Class.

Save the project.
Launch a Perspective Session. Now you should be able to see the font size on the label change as you adjust the size of your
session window.

Bindings in Perspective

Perspective allows for numerous types of bindings to allow for the dynamic
updating of properties associated with Views or their child components. For
Vision users you will find bindings in Perspective operate very similar to
the way they work in Vision.

When configuring a binding, it is initially unidirectional: the value on the property that contains the
binding configuration will synchronize with whatever it is bound to. For example, if the text property
on a Label component is bound to a Tag (via a Tag Binding), then the text on the Label will update
to match the value of the Tag.

However, if the value of the Text property on the Label changed (say by a script, or someone
opening the view in the Designer and manually changing its value), the binding would not cause
the value on the Tag to change. However, it's possible to make a binding bidirectional.

Bidirectional Bindings
Tag and property bindings can be made simply by checking the checkbbidirectional Bidirectional
ox in the section of the window. Typically this would be done on one of Options Property Binding
the PROPS properties of an Input component like a multi-state button or a numeric input.

Binding Interface
A can have many different types of bindings, for example it can have a or an property Tag
Expression binding. Instead of setting a label statically, the text might change based on a PLC
value or on-screen selection. There many ways to your to show values from bind components
PLCs, databases, other , or user input. You can even some or all of the components bind
properties on each component. You can component values using:bind

 Tag - Binds a directly to a which sets up a subscription for that , property Tag Tag Tag
and every time the chosen changes, the binding is evaluated, and pushes the property
new value into the inbound .property

 Property - Simply binds one to another. When that changes, the new property property
value is pushed into the that the binding is setup on.property

 Expression - The most powerful type of binding. It uses simple expression property
language to calculate a value which can involve lots of dynamic data.

 Expression Structure - A powerful type of binding. It uses the property structure property
to pass data.

 Query - A binding type that runs a structured Query against any of the polling database
connections configured in the your .Gateway

 HistoryTag - Used for dataset type properties. It runs a query against the . HistorianTag
 HTTP - Used for passing data directly to and from a URL link.

On this page

...

Bidirectional
Bindings
Binding Interface
Property Paths
Tag Binding

Direct Example
Indirect Example
Expression
Example

Property Binding
Expression Binding

Expression
Binding Examples

Expression Structure
Query Binding
Tag History

Direct Tag
Example
Expression Tag
Example 1
Expression Tag
Example 2

HTTP Binding
Weather Data
Example

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Historian

Property Paths
Many of the bindings can utilize a string property path, such as a , or . Because of this, it can be helpful Property Binding Indirect Tag Binding
to understand how the paths work. This section details the various keywords and operators associated with these paths. Only properties on
components in the same view are eligible to be used in this way. You may not have a binding refer to a property in another view instance,
even view instances that may be embedded in your view. (Views may expose property values to their parent via output parameters.)

The format of the property path is like a file system path to get to the component combined with a dot-referenced object path to get to the
property. The section referencing the property must begin with the property scope (e.g., "props" or "position" or "meta"). For the following
examples, suppose we are designing a View with the following component hierarchy, and that each of these components has an "x", "y"
property in "position", as well as a property called "complex" in "props" which is a map containing "foo", which is a number, and "bar" which

 is an array of numbers.

View

LabelA
LabelB
Sub_Container1

ButtonA
ButtonB

Sub_Container2
ButtonA
ButtonB

root

Operator
/Keyword

Description Example

/ Slash Operator - When a path starts with this operator, then it defines an absolute
path. That is, a path that starts at the top of the view hierarchy and is not relative to
where the binding is being configured.

When not at the start of a path, the / operator moves further into a container, drilling
further down into the hierarchy.

// Absolute path.
Sequential slashes
allow for movement
into a container
/root/LabelA.
position.x
/root/Sub_Container1
/ButtonA.position.y

. Dot Operator - You may access properties deep within a component's property
document structure using the Dot Operator.

Assuming the component LabelA had a META property named "foo", then we could
use the example on the right to retrieve the value of foo.

The Dot Operator can also be used to move further into a complex component.
Assuming LabelA has object under META named "rotate", we can move into rotate
with further use of the Dot Operator.

/root/LabelA.meta.
foo
/root/LabelA.meta.
rotate.angle

[] Brackets - When referencing an array property, brackets allow you to specify an
individual index within the array.

/root/LabelA.props.
complex.bar[5]

../ Parent Container Operator - This operator acts as a shorthand reference to the
parent container. Because the operator always returns the immediate parent
container, the operator is relative to the component trying to utilize the operator.

When moving up in the hierarchy, multiple uses of this operator may be used in
sequence to climb up multiple containers.

Alternatively, you may simply add additional dots to move up levels. Each additional
dot moves up another level.

// From ButtonA, we
can use this
operator quickly
move to a sibling
component
../ButtonB.position.
x

Move Up Multiple

Parent Containers

// Moving up
multiple parent
containers
../../LabelA.
position.x

// Also moves up:
each additional dot
is another parent
container
.../LabelA.position.
x

./ Container Self Operator - When configuring a binding from a container, this operator
acts as a shorthand reference to the container. This is similar in concept to the this
keyword, but still allows for the user of the other operators.

Note that this operator only works when the path is on a binding configured on a
container.

./LabelA.position.x

this The this keyword allows you to easily reference the same component the binding has
been placed on.

This works on any object, including containers, views, and even the session.

this.meta.name

parent Parent shortcut - References your immediate parent. This keyword is only valid when
being evaluated from the scope of a component. For example, LabelA could
reference the root container variables.

Note that all of these shortcuts cannot be used with any other path separators, so a
path like this/MyChild.position.x is invalid, for that, you'd use ./

parent.props.
complex.foo or
parent.position.x

view View keyword - Refers to the view that a component is contained in. This is only valid
when being evaluated from the scope of a component.

Lastly, the view shortcut references the view itself. Views may have input and output
parameters, and to reference these parameters simply specify the category and
name of the parameter, as shown in the example.

view.params.
paramName

page Page keyword - refers to the page that the object is contained in. This is only valid
when being evaluated from the scope of a view.

session Session keyword - Refers to the session object. This keyword is valid from any object
type.

Tag Binding
A allows a tag value (or property) to be bound to a property of a component. A typical Tag Binding
example would be a temperature Tag linked to the text property of a Label component.

The following modes are available:

: Bind the property to a Tag path.Direct
: Allows properties to be placed in the Tag path, providing a way to make the Indirect

binding dynamic.
: Utilizes the Expression language to build a Tag path. The Tag path in the Expression

Expression is expected to be a string. Unlike the Expression binding, this mode allows the
bound property (Tag) to be bidirectional.

These options are available:

Enabled: Allows the component to be active/in use /interactive on the screen.
 nore the quality of the Overlay Opt-Out: Choosing the Overlay Opt-out option will ig

chosen , making it have no effect on the component's quality overlay.Tag (or expression)
 Allows user input or parameter changes on the component to be passed Bidirectional:

back to the Tag or property that the binding refers to.

Transforms can be added:

Transforms offer a chance to alter the value returned from a binding. For example, you can a bind p
 to an integer value and use a transform to map the numerical value to a particular color, all roperty

from the same interface. For more information, see .Transforms in Perspective

Tag Binding

Watch the Video

https://www.inductiveuniversity.com/videos/tag-binding/8.0/8.0

Direct Example

Indirect Example

Expression Example

Property Binding
A binds the value of one property, to another. This binding is initially Property Binding
unidirectional.

These options are available:

Enabled: Allows the component to be active/in use /interactive on the screen.

 nore the quality of the Overlay Opt-Out: Choosing the Overlay Opt-out option will ig
chosen , making it have no effect on the component's quality overlay.Tag (or expression)

 Allows user input or parameter changes on the component to be passed Bidirectional:
back to the Tag or property that the binding is reading.

Transforms can be added:

Transforms offer a chance to alter the value returned from a binding. For example, you can a bind p
 to an integer value and use a transform to map the numerical value to a particular color, all roperty

from the same interface. For more information, see .Transforms in Perspective

Property Binding

Watch the Video

Expression Binding
An uses the expression language to generate a value. This value is passed Expression binding
onto the Property that is linked to the binding. The Expression Binding is unidirectional only.

These options are available:

Enabled: Allows the component to be active/in use /interactive on the screen.
 nore the quality of the OverLay Opt-Out: Choosing the Overlay Opt-out option will ig

chosen , making it have no effect on the component's quality overlay.Tag (or expression)

Transforms can be added:

Transforms offer a chance to alter the value returned from a binding. For example, you can a bind p
 to an integer value and use a transform to map the numerical value to a particular color, all roperty

from the same interface. For more information, see .Transforms in Perspective

Expression Binding Examples

Expression on a button that references its custom property

if({this.custom.sourceString}!="abc","Return String 1","Return String
2")

Expression Binding

Watch the Video

https://www.inductiveuniversity.com/videos/property-binding/8.0/8.0
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.0

Expression on a label that references a button's custom property

if({../Button.custom.selected},"Return String 1","Return String 2")

Expression on a container that references a button inside it.

if({./Button.custom.intValue}>15,1,0)

Expression Structure
An allows you to build a json document and bind it to a Expression Structure binding
property. Each value within the Expression Structure can be bound to an Expression builder. This
allows for a dynamically changing values based on bindings.

These options are available:

Enabled: Allows the component to be active on the screen.
Overlay Opt-Out: nore the quality of the Choosing the Overlay Opt-out option will ig
chosen , making it have no effect on the component's quality overlay.Tag (or expression)
Wait On All: Waits to evaluate the Expression Structure binding until all Bindings within
the Expression Structure have been evaluated.

For this example we also linked a Tag History Expression binding to this expression structure. By
 using Binding Expressions to modify the "path" field This method can be used to create indirect Tag

history bindings. (See Tag History (Expressions) for the other part of this example).

Transforms can be added:

Transforms offer a chance to alter the value returned from a binding. For example, you can a bind p
 to an integer value and use a transform to map the numerical value to a particular color, all roperty

from the same interface. For more information, see .Transforms in Perspective

Expression
Structure Binding

Watch the Video

Query Binding
A is a binding type that runs a structured Query against any of the Query Binding polling database
connections configured in the . Gateway

Return Format: the Return format specifies how the query results are returned.

auto: Query results are returned in the format native to the database (typically dataset).
json: Query results are returned in json format. This format is recommended for XY
Charts.
dataset: Query results are returned in dataset format. This format is recommended for
tables.
scalar: Returns the first element from the query result. This format is best when a single
value is expected.

Parameters: If the structured query you select requires parameters you can add them here. The
value you enter for the parameters can be modified using an expression builder ().fx

Options:

Query Binding

Watch the Video

https://www.inductiveuniversity.com/videos/expression-structure-binding/8.0/8.0
https://www.inductiveuniversity.com/videos/query-binding/8.0/8.0

Enabled: Allows the component to be active/in use /interactive on the screen.
Overlay Opt-Out: Choosing the Overlay Opt-out option will ignore the quality of the
chosen , making it have no effect on the component's quality overlay.Tag (or expression)
Bypass Cache: This will cause the query to bypass/Ignore any cached values from the
Named Query and run every time it is called.
Designer Limit: This setting will force the results of the query to be limited to a few rows
when run in the Designer.
Polling: This setting will cause the query to run/poll the database using based on a poll
time (set) in the Designer.

Tag History
A binding runs a query against the Historian. There are several ways data can be Tag History Tag
polled and returned.

Return Format:

Wide: Returns data value and time stamp value from the Tag Historian.
Tall: Returns additional data such as quality code of data from the Tag Historian.
Calculations: Performs calculations on the data (average, sum, count, etc).

Query Mode:

PointCount: Data returned will be the amount of datapoints specified and spread evenly
across the date range specified.
Periodic: Data returned will be sampled from the Tag Historian at regular intervals. The
regular interval adjustable in the Period filed of the binding configuration.
AsStored: Data returned is exactly as is from the Tag Historian. No data interpolation of
the time or points are done.

Time Range:

Realtime: The data is sampled from the most recent time and back from a specified time
range. The time range can be adjusted using an Expression builder ().fx
Historical: The Start date and End Date can be defined using an expression builder (). fx

Select Tags:

Direct: Tags are referenced using a builder that looks directly at the Tag Browser. You
can rename the display name of the tag by entering a name in the Alias column.

Alias: A different name to display for the tag being shown.
Aggregate: Determines how the tag value will be interpreted. Several functions
are available: (Average, MinMax, LastValue, SimpleAverage, Sum, Minimum,
Maximum, DurationOn, DurationOff, CountOn, CountOff, Count, Range,
Varience, StdDev, PctGood, PctBad).

 Expression : The Tag History binding expects a JSON document of objects to read in the
desired Tag paths. The best way to do this is to create a custom property and make an
array of objects. Each object should contain a value called "path". Optional values to
include are "alias" and "aggregate". You can create a custom property structured as
mentioned or you can create an "Expression Structure" (refer to Expression Structure

 for further details). This is the preferred way to make a dynamic Bindings in Perspective
Tag path for fetching Tag History values.

Tag History Binding

Watch the Video

https://www.inductiveuniversity.com/videos/tag-history-binding/8.0/8.0

Default Aggregation Mode: Any tags left with the Aggregation Mode set to "(default)" will use
this setting.

Options:

Enabled: Allows the component to be active/in use /interactive on the screen.
Overlay Opt-Out: Choosing the Overlay Opt-out option will ignore the quality of the
chosen , making it have no effect on the component's quality overlay.Tag (or expression)
Ignore Bad Quality: This will force the system to ignore any data results that have a bad
quality associated with it.
Prevent Interpolation: This forces the data displayed to not use any interpolation. The
data will not be truncated or averaged to to fit the display in a nice manor.

Value Format:

Dataset: Returns the data in a dataset. This format is best suited for use in a table
component.
Document: Returns the data in a JSON document. This format is best suited for use in
an XY Chart.

Direct Tag Example

Expression Tag Example 1

For this example, we created a static custom property. The comments in the example show the structure used.

Expression Tag Example 2

For this example we created an Expression Tag structure.

HTTP Binding
The allows you to use HTTP get/post protocols to interface with API's. HTTP Binding

URL: The web address you are communicating with.

Method: The method to communicate with the URL. Available methods are listed here [GET,
HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH].

Headers: If any headers are needed they are filled in here:

Key
Column

Body: The body of the HTTP message. This is most commonly used in POST method where it
represents the information that is being posted.

Authentication : Authentication methods required by the URL. Options are: Type

None
Basic
Bearer
Digest

Authentication Value: Authentication credentials can be edited via an Expression binding.

Connect : Amount of time to wait before failing a connection attempt.Timeout

HTTP Binding

Watch the Video

The URL should be inside quotations as it needs to be a string for this binding to work.

https://www.inductiveuniversity.com/videos/http-binding/8.0/8.0

Socket : Amount of time to wait before failing a connection attempt.Timeout

Options:

Enabled: Allows the component to be active/in use /interactive on the screen.
Overlay Opt-Out: Choosing the Overlay Opt-out option will ignore the quality of the
chosen , making it have no effect on the component's quality overlay.Tag (or expression)
Allow Cookies: Allow cookies from the URL.
Polling: How often to poll the URL (an Expression binding is available to define the poll
time (in seconds)).

The following feature is new in Ignition version 8.0.15
 to check out the other new featuresClick here

: The Binding Preview checkbox can cancels/stops the binding preview display. Binding Preview
Uncheck the Binding Preview option to disable the binding preview. Disabling the binding preview
is ideal in cases where you don't want the binding to trigger frequently while configuring it, such as
when using a HTTP binding.

Weather Data Example

The following is an example showing weather data for Inductive Automation headquarters. The API contains detailed forecast information. In
this example we use an Expression transform to capture just the current temperature.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.15

The value is bound to a Label component on a view with some other information about Inductive Automation.

In This Section ...

Tag Bindings in Perspective

A Tag binding is a straight-forward binding type. It simply binds a property directly to a Tag
Property (typically the value). This sets up a subscription for that Tag. Every time the
chosen Tag changes, the binding is evaluated and pushes the new value into the
bound property. If you choose a Tag in the tree, and not a specific property of that Tag, the
Value property is assumed.

Drag and Drop
Ignition automatically creates the bindings to several of the Tag component properties when you
choose to a to a component by dragging and dropping. This is true for both creating a bind Tag

ing and dropping a onto empty space on a window at the same time component by dragg Tag Igniti
 prompts you for what type of component you want to create, and by dragging and dropping a on dr

 on a window. In both cases, autopping a Tag directly onto a component that already exists Ignition
omatically creates the bindings on the component. Tag

You can drag a Tag onto a container or view. Perspective will give you an option for the kind of
component you'd like to use to represent the Tag. Configuration options for Tag drop are set in the
Project properties. For more information, see . Tag dropConfig In this example we drag the Tag for
a tank onto a view and choose the Cylindrical Tank option.

On this page

...

Drag and Drop
Direct Tag Binding
Indirect Tag Binding

Indirect Tag
Binding -
Bidirectional
Indirect Tag
Binding Example

Tag Expression
Binding

Tag Expression
Binding -
Example

Tag Drop

Watch the Video

A Cylindrical Tank component is placed on the view. Notice that the value for the component and the value for the Tag match. The
component's displayed value will update as the Tag updates.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-TagdropConfig
https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.0

Direct Tag Binding
A direct binding binds a component to a path. property Tag Every time the Tag's value changes,

In the example below, the binding is evaluated and the new value is sent to the bound property.
the value of the Active_Tank Tag is displayed as a percentage of the capacity of the Cylindrical
Tank component.

Tag Binding

Watch the Video

https://www.inductiveuniversity.com/videos/tag-binding/8.0/8.0

Indirect Tag Binding
An Indirect Tag binding is very much like a standard Tag binding, except that you may introduce
any number of indirection parameters to build a Tag path dynamically in the session. These
parameters are numbered starting at one, and denoted by braces, for example, {1}. The binding
will be linked to the represented by the path after the indirection parameters have been Tag Tag
replaced by the literal values they are bound to.

For example, instead of binding directly to the FlowRate tag inside the Valve4 folder, as show in
the following example:

You can build an indirect tagpath that will point to the FlowRate tag for all valves between Valve0
to ValveN where N is any valve number. Below, the valve number is replaced by {1} where {1} is a
placeholder for a dynamic reference that will be used to create a single tag path capable of
referencing every FlowRate tag inside every existing Valve:

The {1} dynamic must be pointed to a . Your property can pointed to any Reference Property
component property value or tag value to build an Indirect Tag Binding. In the capture above,

Indirect Tag Binding

Watch the Video

https://www.inductiveuniversity.com/video/indirect-tag-binding/7.9/8.0

1.
2.

3.

the {1} dynamic reference is pointing to a view custom property named valveNumber which is used
to help users control which Valve the binding is reading a FlowRate from.

Indirect Binding - BidirectionalTag

Indirect Bindings can also be made Bidirectional by clicking the checkbox on Tag Bidirectional
the Edit Binding screen. This will allow any input from a user on that to be written back to property
the . To work properly, the needs to have the proper to accept writes.Tag Tag security

Indirect Binding ExampleTag
In this example, we have some different motors, where each motor is a folder of Tags. Each motor has an amps that is within the folder, Tag
so that our paths look like the following:Tag

Motors/Motor 1/amps
Motors/Motor 2/amps
Motors/Motor 3/amps
Motors/Motor 4/amps

Instead of creating four different displays for these four different Tags, we can create a single display and make it indirect. We need two
things for this example: A component to display the value in, and a component which allows the user to select which motor they are looking
at.

Drag an LED Display component onto the view. This will be the display component.
Drag a Dropdown component onto the view. This will be used to allow the user to choose what motor the LED Display is showing
amps for.
Select the Dropdown component. In the Property editor, under the options property, click .Add Array Element..

3.

4.
5.

6.
7.

Set the value to 1 and the label to Motor 1.
Repeat steps 3 and 4 to add array elements for Motors 2, 3, and 4.

Click on the LED Display component. Select the icon in the value property. Binding
Click on the Tag binding type then click the button.Indirect

8.

9.

10.
11.

Click the icon and scroll down to the Motors/Motor 1/Amps Tag. Click .Tag OK

In the Tag Path field, replace the 1 with {1}. We are replacing "[default]Motors/Motor 1/Amps" with "[default]Motors/Motor {1}/Amps"
maintaining the space found between "Motor" and "1" in "Motor" and "{1}".

In the References list, select the row. Click the icon. Properties
Scroll to the Dropdown component and select the of the Dropdown. Click .value property OK

11.

12.

13.
14.

What we have done is configured the Dropdown component's property to be inserted into our indirect tag path in place of "{1}". value
If we select "Motor 1" from the Dropdown component, its property then becomes 1. The number 1 then takes the place of "{1}" value
in the indirect tag path making it "[default]Motors/Motor 1/Amps". Similarly, selecting "Motor 2" from the Dropdown component
makes its property be 2. The number 2 then takes the place of "{1}" in the indirect tag path making it "[default]Motors/Motor 2value
/Amps".

Click to save the binding.OK

Put the Designer into to see the components and the indirect in action. Preview mode
Select a motor in the Dropdown component. The value in the LED Display component will change depending on the Motor that is
selected in the Dropdown list.

Tag Expression Binding
The Tag Expression binding uses the Expression language to specify an entire Tag path. This
mode allows the bound () to be bidirectional. The path in the Expression is property Tag Tag
expected to be a string. Note that is different and not to be confused with an . Expression Binding

1.
2.

3.

4.
5.

Tag Binding -
Expression

Watch the Video

Tag Expression Binding - Example
For this example, we start with two Tags: Tag A and Tag B and two buttons on a view.

Right click on the first button and select .Configure Events
Select . onClick

Under Organize Actions, click the Add icon and select . Popup

Under Parameters, click the icon to add a new . Add parameter
Enter "tagToShow" in the Name field and " A" in the Value field. Click . Tag OK

https://www.inductiveuniversity.com/videos/tag-binding---expression/8.0/8.0

5.

6.

7.

Repeat steps 1 through 4 for the second button, but in the Value field, enter Tag B.

Create a new view named .Popup

7.

8.
9.

10.

11.
12.
13.

14.

Drag a Label component and a Text Field component onto the Popup view.
In the Popup view, click on .Add View ParameterA
Add a new parameter, .tagToShow

Select the Label component. Click on the icon next to the text property.Binding
On the Edit Binding screen, select the Property binding type. Enter in the Configure Property Binding field.view.params.tagToShow
Click .OK

14.
15.
16.

17.

18.

Next set a binding on the Text Field component. Select the component then click on the icon next to the text property.Binding
On the Edit Binding screen, select the Tag binding type and select the button.Expression
Enter the following expression. This expression in the example tells the Text Field to display the value of Tag A if the view parameter
is equal to Tag A. Otherwise display the value of Tag B.

if(
 {view.params.tagToShow} = "Tag A",
 "Z_Other_Tags/Tag A",
 "Z_Other_Tags/Tag B")

Click to save. OK

Put the Designer into . When you click on the Open with Tag B button, the popup appears as shown below.Preview mode

1.
2.

3.

Property Bindings in Perspective

Property bindings are important when designing projects in Perspective. Each Perspective
component has a number of properties that change the way a component looks and behaves, but
it's through property bindings that bring your Perspective sessions to life to accomplish useful
things.

A property binding is the simplest type of binding. It's a way of linking one component property in a
view to another component's property in the same view. Not only can you link one property in a
view to another property in the same view, but you can also link a component to a property within
a UDT, and pass a property into an embedded view through a view parameter.

This page describes how to set up property bindings for properties in the same view, bind to a
property within a UDT, and how to use a view parameter to pass a property into an embedded
view.

On this page

...

Property to Property
Binding
Pass a Property into
an Embedded View
Using a View
Parameter

Use a Property
Binding
Using a Tag
Binding

Tag dropConfig

Property Binding

Watch the Video

Property to Property Binding
A property binding simply binds one component's property to another. When that property changes, the new value is pushed into the property
that the binding is setup on. In this example, we'll use a Tank, LED Display, and Slider components. We'll bind the 'value' properties of the
Tank and LED Display to the 'value' property of the Slider in the same view so whenever the value of the Slider changes, the Tank and LED
Display will reflect the same value.

In the Designer, .create a view
From the Component Palette, drag , , and components into your Designer workspace. Cylindrical Tank LED Display Slider
Select the . In the , click on the icon for the property.Tank Property Editor Binding 'value'

Using Property Bindings Across Views

You cannot have a binding refer to a property in another view instance even view
instances that may be embedded in a view. You can pass a property into an embedded
view through a view parameter.

https://www.inductiveuniversity.com/videos/property-binding/8.0/8.0

3.

4.
a.

b.

c.

5.
6.

7.

This opens the window. Configure the following settings:Edit Binding
Select the binding type.Property

Under , click the icon to open the popup box. Expand the Configure Property Binding Insert Property Property
folders and select the Slider property. Click .'value' OK
Click to save the binding settings.OK

Select the . In the , click on the icon for the property and repeat Step 4.LED Display Property Editor Binding 'value'
To see the labels on the Slider, select the Slider and set the property to ' .show true'

Save your project. Put the Designer in .Preview Mode

8.

1.
2.

3.
4.

a.
b.

Move the slider and you'll see both the tank level and LED display change to the value of the Slider.

Pass a Property into an Embedded View Using a View Parameter
The only way to a pass a property across views is by passing a view parameter into an embedded view. You have options on how to pass a
property into an embedded view, how you decide to set up passing a parameter depends on how you design your project. You can set up
passing a property to a embedded view using a parameter with strictly property bindings, or with a Tag binding. Tag bindings allow you to
store values in a database in the event you want to collect history but will force all sessions to see the same value.

Use a Property Binding

In this example, we'll use a Tank view containing the Tank, LED Display, and Slider that shows passing the 'value' properties from the Tank
and the LED Display to the 'value' property of the Slider. Now we will set the Slider to pass its value to a parameter on the embedded view.
To demonstrate this, you can use the same Tank view from the section above, or you can create another view Property to Property Binding
using the same components as in the example above, and assign the view a new name.

Using your original view from above, select the view in the Project Browser.
Create a view parameter under called sliderValue and make it bidirectional by toggling the icon until the Params ' ' Arrow
arrowhead is at both ends.

In the Project Browser, create a new view (i.e., Tank3Page) that will contain the embedded view.
Drag a from the Component Palette to the Designer workspace.Embedded View

With the Embedded View selected, set the 'path' property to your original view (i.e., Tank3) from the dropdown list.
In the , create a parameter called 'sliderValue'. (Hover under the property and you'll see a + Property Editor params plus
icon to add a new param).

4.

b.

5.

6.

7.

1.

2.

Save your project.

From this new view, put the Designer in . Drag the slider to a value to change the value on the Tank and LED Preview Mode
Display.
You can see from the Embedded View (i.e., Tank3Page), that your sliderValue reflects the same values as your slider.

Using a Tag Binding

Now, let's pass a property using a Tag binding. Using a Tag binding will allow you to maintain the value of the Slider when you relaunch a
client session and store values in a database in the event you want to collect history. Let's continue with the example above.

In the , create a Memory Tag with a data type of Integer, and assign a name (i.e.,Test Tank Tag).Tag Browser

Select the Click on the icon next to the and bind it to the memory Tag (i.e., Test Tank Embedded View. Binding 'sliderValue'
Tag).

2.

3.
a.

b.

c.
d.

4.

This opens the window. Configure the following settings:Edit Binding
Select the binding type.Tag

Under , click the icon to open the Property popup box. Expand the folders and select the Configure Tag Binding Tag 'T
. Click .est Tank Tag' OK

Click the checkbox. allowing the Tag to be updated by the embedded view.Bidirectional
Click to save the binding settings.OK

Now that all your bindings and Tag are configured, let's test out passing a parameter using a Tag. From the original view (Tanks),

put the Designer in and move the Slider to different values. Then, go to the embedded view and see if the value Preview Mode
was passed. Your embedded view should reflect the same values as in your original view.

Tag dropConfig
In the previous example, we set up a Tag binding to pass a property into an embedded view. Now
let's use a Tag to create an embedded view with all the property bindings configured by simply
dropping the Tag in a view. Ignition will prompt you for the type of component or view you want to
create.

1.

2.

a.
b.
c.

3.

4.

5.

6.

7.

In the , select your original view that contains the Tank, LED Display, Project Browser
Slider, and Labels (i.e., Tanks3).
In the , expand the property, and then expand the Property Editor dropConfig dataTypes
property. Configure the following properties:

Select the data type - Int4
Set the param - sliderValue
Identify the action - bind

Let's create a couple of Tags so we can use the feature to create multiple 'dropConfig'
embedded views. Copy the Tag you created in the last example (i.e., Test Tank Tag) to
make two more Tags, and change their values.

Create a new large view so we have plenty of room to drop multiple of these tank views
on the screen.
Drag and drop each of your three Tags into your new large view. You will be prompted for
what type of component or view you want to create. Choose your original view (i.e., Plant
C / Tank3).

Once you've dragged all three of your Tags into the large view, change the Tag values, it
should look something like the following:

If you check the individual tank views, you will see a binding on the param. If 'sliderValue'
you open the binding, you will see that each embedded view is pointing to one of the

Tag Drop

Watch the Video

https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.0

7.

Tags.

1.

2.
3.

4.

Expression Bindings in Perspective

Binding Properties to the Outcome of an
Expression
An expression binding is one of the most powerful kinds of property bindings. It uses a simple expr

 to calculate a value. This expression can involve lots of dynamic data, such ession language
as other properties, Tag values, results of Python scripts, queries, and so on. Any time
information needs to be massaged, manipulated, extracted, combined, split, and so on - think
expressions!

Event Based and Polling

How an expression updates depends on what is being done in the expression. Expression
bindings will always update immediately when the window they are in is opened. When they
update again depends on if they are driven by events or polling. Typically, expressions are driven
by events. If the expression was adding multiple values together, then when one of those values
changed the expression would update, regardless of whether those values came from other
properties or Tags. However, the expression function has some unique functions that can update
at a set rate such as the function. When these functions are used within the expression, the now()
expression binding will update based on the specified polling rate.

On this page

...

Binding Properties
to the Outcome of
an Expression

Event Based and
Polling

Using Expression
Bindings

Example 1
Example 2

Expression Binding

Watch the Video

Using Expression Bindings
The expression language has lots of tools available that help calculate a specific value such as , built in expression functions multiple

, and the ability to reference Tags. While all of these can be manually typed into the expression, the expression binding window operators
makes it easy to reference these options.

To the right of the Expression Binding window, there are four buttons which can be used to reference specific objects or functions easily.

Icon Function Description

Operators Places the operator into the expression at the cursor. Mostly used as a reference to what operators are available for
use.

Function
s

Places the function into the expression at the cursor. Can be used as a reference for what functions are available, as
well as the parameters the function is expecting.

Tags Places a Tag reference into the expression at the cursor, pulling in that Tag's value into the expression at the time of
evaluation.

Propertie
s

Places a property reference into the expression at the cursor, pulling in that property's value into the expression at the
time of evaluation.

Example 1

In this first example we'll use an Expression binding to combine and display the value of two Tags.

Create a new view and place two LED components on it.

Select the first LED component and click on the icon for the value property.Binding
Select Expression the binding type.

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/now
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

4.
5.

6.

7.

In the Configure Expression Binding section, click on the icon.Tag
Scroll down to the Tag you want to use (Ramp0 in the example) and click .OK

Next click the icon. Select , and then choose the option.Operators Mathematical Addition

Click the icon again and select the second Tag. Click . Tag OK

Now when this Expression is run, the value of this Tag will be added to the first Tag. Note that a preview of the Expression binding
value is shown on the lower left.

7.

1.
2.

3.

4.

Example 2

Let's continue with the same view we set up in Example 1.

Select the second LED component and click on the icon for the value property.Binding
Select Expression the binding type.

In the Configure Expression Binding section, click on the icon. Scroll down to the functions and then select the Functions Math a
 (number) function.bs

Next click the icon and select the Memory Tag. Click .Tag OK

4.

5.

6.

Next close the function with a closed parenthesis). Note that a preview of the Expression binding value is shown on the lower
left. Click .OK

The value is now displayed in the LED component.

6.

1.

2.
3.

a.
b.

4.
5.
6.

Expression Structure Bindings in Perspective

What Is an Expression Structure?
An Expression structure is an type of property where several of the sub-items get their object
values from expression bindings.

An Expression Structure bindings allow us to create a custom Expression binding where several
expressions give you several values. That is, the output is an rather than a . This object value
binding type is useful in configuring parameters for a script transform, or in cleanly creating a
complex object from a single binding. It enables you to create a data structure using a separate
expression to populate each entry in the structure.

Binding Interface
The Expression Structure binding is configured similarly to any object in Perspective, except that
every property in the object is evaluated via an individual expression.value

Binding Properties

Property
Name

Description

Enabled Indicates whether the binding should fire.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a tag
overlay.

Wait On
All

Indicates whether the binding should wait for every expression binding in the
structure to finish before completing. If false, each expression in the structure will
resolve individually and update their properties at that time. If true, all component
properties will receive their new values at the same time.

On this page

...

What Is an
Expression
Structure?
Binding Interface

Binding
Properties

Example

Expression
Structure Binding

Watch the Video

 Example
Create a new memory Tag called NewTag1. Set the following:
Data Type: String
Value: It Works!
Click to save the Tag.OK
Create View called MyParentView.

Place a Carousel component and a Label component on the view.
Set the label text as "Parent View."

Create another view called .MyChildView
Place a Label component and an Icon component on the view.
Now we need to add two view parameters . MyChildView

https://www.inductiveuniversity.com/videos/expression-structure-binding/8.0/8.0

6.

a.

b.
c.
d.

7.

a.
b.

c.
d.

e.

f.

In the Property Editor under PARAMS, click Add View Parameter and select the Value option.

Change the word "key" to the parameter name we want, which is "iconPath."
Click Add View Parameter again.
Name the second view parameter "labelText."

Next we'll bind the components to the view parameters. On MyChildView, select the Label component.

Click the icon next to the text property.Binding

Select the Property binding type.

Click the icon.Property Editor
Scroll down to the labelText view parameter. Click . Click again to save the binding.OK OK

Select the Icon component.

7.

f.
g.

h.
i.

8.

9.

10.

11.

12.

Click the icon next to the path property.Binding

Select the Property binding type.

Click the icon.Property Editor
Scroll down to the iconPath view parameter. Click . Click again to save the binding.OK OK

Back on MyParentView, select the Carousel component and set the viewPath property to .MyChildView

Next we need to add two view parameters. Still on the MyParentView, click the icon next to the . The Edit Binding viewParams
Binding screen is displayed.
Choose Expression Structure as the binding type. Click and select .Add Object Member... Value

Name this parameter .iconPath

Click the icon, then enter "material/insert_emoticon" as the expression. Click .Expression OK

12.

13.

14.

15.

16.
17.

Click the icon and select Value to add another parameter.Expand

Name this next parameter labelText then click the Expression icon.

For the value, click on the icon then choose the tag. Click . Tag OK

Select the option. This will ensure that all expressions provide a value before this binding will publish its initial value. Wait On All
Click to save the binding. Now the label text we're using in MyChildView will be populated by this tag (NewTag1).OK

17.

Query Bindings in Perspective

The Query Binding allows you to pull data from the database using a named query. In Perspective,
the Query Binding requires the use of . Named Queries You can't type a query here from this
interface, a Named Query must already exist. You can also add transforms. For more information,

. see Transforms

Binding Properties

Property
Name

Description

Path
Here you can enter in the path to the Named Query. Click on the icon toSearch
get a list of all available Named Queries.

Return
Format

The Return format specifies how the query results are returned. Options are auto,
json, dataset, or scalar.

auto: Query results are returned in the format native to the (typically database
).dataset

jSon: Query results are returned in jSon format. This format is recommended
for XY Charts.
dataset: Query results are returned in format. This format is dataset
recommended for tables.
scalar: Returns the first element from the query result. This format is best
when a single value is expected.

Paramet
ers

Here you can see a table of all defined . You can pass in Named Query parameters
property or Tag values to the parameters by first highlighting the parameter and
then selecting either the Property icon or the Tag icon.

Note: The fields under the Value column are evaluated as expressions, so strings
will require quotations marks.

Query In the query section, there is nothing to configure, but you can see what the Named
Query you have selected looks like.

Options

Enabled Allows the component to be active/in use /interactive on the screen.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a Tag
overlay.

Bypass
cache

This will cause the query to bypass/Ignore any cached values from the Named
Query and run every time it is called.

On this page

...

Binding Properties

Query Binding

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Query+Parameters
https://www.inductiveuniversity.com/videos/query-binding/8.0/8.0

Designer
Limit

This setting will force the results of the query to be limited to a few rows when run in
the Designer.

Polling Here you can set the Polling Mode of the Named Query binding based on
the Polling rate.

Related Topics ...

Named Queries
Transforms

https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries

Tag History Bindings in Perspective

Tag History Binding
Tag History Bindings allow you to pull Tag History data that is stored in the database into a
component through a binding. The binding type, which is only available for Dataset type
properties, runs a query against the Historian. Tag

On this page

...

Tag History Binding
Tag History Binding
Example
Using Dynamic Tag
Paths

Tag History Binding

Watch the Video

Tag History
Binding -
Expression

Watch the Video

Configuration
Property

Description

Return Format Allows you to select the return format of the data. Possible options are:

Property Description

Wide Every column is a different tag, and each row is their values at different times.

Tall There are columns for Value, Quality, Timestamp, and Path, and each row is a new tag value at a specific
time.

Calculati
ons

Will perform a calculation on the returned data, and return the calculated values instead. For example,
using the Average calculation will generate an average of each tags value over the time range selected.

Query Mode How you want to query out the data. Possible options are:

Property Description

https://www.inductiveuniversity.com/videos/tag-history-binding/8.0/8.0
https://www.inductiveuniversity.com/videos/tag-history-binding---expression/8.0/8.0

PointCo
unt

Will return the number of records defined in the Point Count property.

Periodic Will return records separated by an amount of time specified in the Period property.

AsStored Will return the records as stored in the database. While querying data with this mode, multiple value
changes at the same timestamp will result in multiple rows, one row for each unique value.

Time Range The time range to pull data values from. Possible options are:

Property Description

Realtime The start date will go back as far from the current time as the Most Recent property specified and the end
date will be the current time when the binding evaluates. Options are MS, SEC, MIN, HOUR, DAY, WEEK,
MONTH, or YEAR.

Polling: You can specify a Polling rate to determine how often to update the times. Click the Functions
icon to use operators, expressions, Tags, or properties.

Historical You can specify the Start and End Date in an expression. Click the Functions icon to use operators,
No polling; times only changed if bound to something that changes.expressions, Tags, or properties.

Select Tags An area to select the Tags to trend. Tag Paths can be defined directly or using an expression. See Using Dynamic Tag
 below about Expression mode.Paths

Aggregation
Mode

The aggregation mode that will be used, unless a more specific aggregation mode is defined on a Tag Path.

Aggregation
Mode

Description

(default) Use the mode set in the Default Aggregation Mode field.

Average The values are averaged together, weighted for the amount of time they cover in the interval.

MinMax The minimum and maximum values will be returned for the window. In other words, two rows will be
returned. If only one value is seen in the interval, only one row will be returned.

LastValue The value closest to the ending time of the interval will be returned.

SimpleAvera
ge

The values are summed together and divided by the number of values.

Sum The values in the interval are summed together.

Minimum The minimum value in the interval.

Maximum The maximum value in the interval.

DurationOn Returns the number of seconds that the value was recorded as non-zero.

DurationOff Returns the number of seconds that the value recorded as zero.

CountOn Returns the number of times the tag's value went from a zero value to non-zero.

CountOff Returns the number of times the tag's value changed from a non-zero value to zero.

1.

2.

Count Returns the number of times a value was recorded

Range Returns the range between the highest and lowest value for the period.

Variance Returns the variance of values. Similar in concept to standard deviation. Only good quality values are
used when calculating.

StdDev Returns the standard deviation of values, or how much spread is present in the data; low standard
deviation shows the values are close to the mean, and high standard deviation shows that the data
points are spread out over a large range of values. Only good quality values are used when calculating

PctGood Time-weighted percentage of good values over the date range.

PctBad Time-weighted percentage of bad values over the date range.

Default
Aggregation
Mode

Aggregation mode to use as a default if the Select Tags are set to Default Aggregation mode.

Options Allows you to specify various options that will apply to the binding.

Option Description

Enabled Enable these options.

Overla
y Opt-
Out

Opt out of displaying the .Tag quality overlay

Ignore
Bad
Quality

Only data with "good" quality will be loaded from the data source.

Preve
nt
Interpo
lation

Requests that values not be interpolated, if the row would normally require it. Also instructs the system to not
write result rows that would only contain interpolated values. In other words, if the raw data does not provide
any new values for a certain window, that window will not be included in the result .dataset

Value
Format

Can be Dataset or Document.

Tag History Binding Example
In this example, we'll use a Table component to show the records from some Tags that have Tag History enabled.

Drag a Table component onto a view. Select the Table component.

In the Property Editor, click on the icon next to the property. The Edit Binding screen is displayed.Binding data

https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Quality+and+Overlays

2.

3.
4.

5.

6.
7.

Select as the binding type.Tag History
In the section, select and the last 1 minute of data. Time Range

Under the Select Tags section, click on the Tag icon. Navigate to the first Tag and click OK. Repeat for additional Tags. In our
example, we chose the Sine0 and Sine2 Tags.

Notice the Binding Preview at the bottom of the screen. Click OK to save the Tag History binding.
Back in the view, the Table component now contains a column for the timestamp and one for each Tag. Notice how the timestamp
does not have a date format.

7.

8.

9.

a.
b.
c.

10.

In order to change the t-stamp values into a date format, in the Property Editor under columns, click Add Array Element...

You'll notice that once the Array Element is added, the other two columns (Sine0 and Sine2) disappeared. We'll add them back in
Step 10.

In the property, enter (which is the column name).field t_stamp
For the property, select from the dropdown.render date
Select a from the dropdown. In this example, we used the date time format.dateFormat

Now, let's add the Sine0 and Sine2 columns back into our table by clicking on 2 times (refer to the yellow Add Array Elements...
highlights in the image above). There is no need to change any of the Sine0 or Sine2 column properties unless you want to change

10.

1.
2.

the default settings or rearrange columns.

Notice that columns 1 and 2 (Sine0 and Sine2, respectively) are collapsed in this image. To see all the columns properties, expand
the columns.

Editor notes are only visible to logged in users
Tag History Binding - Expression

This is supplemental video. Not sure if we need to put a full example in here (complicated). It can possibly be lower priority for now.

Using Dynamic Tag Paths
Tag History bindings have the option to list out Tag paths, or to use an expression to build a Tag path. It is common to create a dynamic path
or set of paths as a component property, that you then reference in other places. You can use as many Tag paths as you want, but they must
all follow this format:

key [array]
[0] {object}

aggregate value
alias value
path value

[1]{object}
aggregate value
alias value
path value

...

 For an example, you can create a custom property on a chart and use it to fuel the historical data.

Create a custom property named on a chart component that is an type.Key Array
Copy and paste the JSON below into this Key property.

JSON for Key Array

[
 {
 "aggregate": "Average",
 "alias": "tank_temp",
 "path": "[default]Tank/03/Temperature"
 },
 {
 "aggregate": "Average",
 "alias": "setpoint",
 "path": "[default]Tank/03/Setpoint"
 }
]

3.
4.
5.
6.

Open the property binding on your chart and select the binding type. Tag History
Select the radio button to create your own tag structure.Expression
Click on the property selector button on the right and find your new custom property.
Click in the lower right. OK

HTTP Bindings in Perspective

Perspective enables you to integrate network and internet driven resources seamlessly into a

project. An HTTP binding is used to pass data directly to and from a URL.

JSON Support
One perk of the HTTP binding is the ability to fetch JSON documents from a website or an API.
Since the Perspective property tree is also JSON-formatted, this allows you to dynamically create
a property structure from a JSON document directly.

On this page

...

JSON Support
HTTP Binding
Configuration

HTTP Binding

Watch the Video

HTTP Binding Configuration

Binding
Property

Description

URL An expression indicating what web address to reference on the binding. If entering a static URL, quotation marks must be
used.

Method Any HTTP method. Used to send HTTP requests to the specified URL. Options as follows:

Method Definition

GET The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-URI.

HEAD The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response.

POST The POST method is used to request that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI in the Request-Line.

PUT The PUT method requests that the enclosed entity be stored under the supplied Request-URI.

DELETE The DELETE method requests that the origin server delete the resource identified by the Request-URI.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of the request message.

CONN
ECT

The CONNECT method starts two-way communications with the requested resource. It can be used to open a
tunnel.

The HTTP binding is an advanced binding type, and requires a basic understanding of
web development and the HTTP protocol.

https://www.inductiveuniversity.com/videos/http-binding/8.0/8.0

Headers Used to pass key/value pairs in the header of our HTTP requests.

Field Definition

Key Allows dropdown selection from common header keys, or the ability to specify a custom one.

Value The Value field is an expression.

Body An expression indicating what to send in the body of our HTTP requests.

Authentic
ation
Type

Indicates what HTTP authentication type to use. Equivalent to specifying the key in the header. Options are Authorization
None, Basic, Bearer, or Digest.

Authentic
ation
Value

The field takes an expression that should indicate what authorization string or token should be used in Authentication Value
combination with the associated authentication type. For example, if the header should contain the string:

Authorization: Basic aWduaXRpb246cGFzc3dvcmQ=

Then the Authentication Type should be and the Authentication Value should be .Basic aWduaXRpb246cGFzc3dvcmQ=

Connect
Timeout

Indicates how long the Ignition Gateway should wait for a response to our connect request.

Socket
Timeout

Indicates how long the Ignition Gateway should wait for a response to a given HTTP request.

Enabled Indicates whether the binding should be active.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a Tag overlay.

Allow
Cookies

Indicates whether to allow the remote web server to store cookies.

Polling Controls how frequently HTTP requests should be issued, and therefore how often the binding should be updated.

Transforms

Overview
Transforms offer a chance to alter the value returned from a binding. For example, you can bind a
property to an integer value and use a transform to map the numerical value to a particular color,
all from the same interface.

Transforms can be used as a way of splitting up complex expressions. You can make several
simple expressions and chain them together as several transforms to manipulate your original
value.

When multiple transforms are applied to a single binding, they are executed in order from top to
bottom.

On this page

...

Overview
Map
Format
Script
Expression

Map
The allows you to setup a map of input values to output values. Inputs can be anything from specific values or strings, to Map Transform
numeric ranges of values. Each input value can then be mapped to an output value, such as a string, integer, color, style, etc. A great
example of this is mapping values to colors, so that you can easily show state changes.

Format
The applies a format string to the value returned from the binding, allowing you to format the output in any way. The Format Transform
format can be something like a date format or a number format.

Script
The will run a script that allows you to manipulate the value returned from the binding using any Python script you want. Script Transform

Expression
The runs an expression on the original value so you can manipulate it without creating more complex logic. This is Expression Transform
most useful when you are indirectly binding to a Tag but still want to apply an expression to it, it can now be done in two distinct steps.

In This Section ...

Map Transform

The Map Transform allows you to setup a map of input values to output
values. Inputs can be anything from specific values or strings, to numeric
ranges of values. Each input value can then be mapped to an output
value, which can be a string, integer, color, style, etc. A great example of
this is mapping specific values to specific colors, so that you can easily
bind visual properties to tag values.

The mapping table defaults to a value for both the input and output, but they can both be changed
to one of several types. Select the and for the mapping using the pull Input Type Output type
down arrows next to the Input/Output Type headers to make your selections.

Input Type: The value coming into the transform (from the binding or previous transform)

Value: Individual numeric values designed to exactly match the input value.
Numeric Range: A range of values that the incoming value will fall between. Use
brackets [x,y] to indicate values that are to be inclusive, or parenthesis for values that are
exclusive (x,y), and you can mix them as needed. You can also omit start or end values to
indicate no end to the range. See the examples below for clarification.
Expression: Used in a similar manner to a Value Input Type. Use the Expression
language to create a Value.

Output Type: The outgoing value from the transform.

Value: An alphanumeric value.
Color: A color.
Expression: A value result calculated by an expression.
Document: A manually created JSON document (You can also copy an existing or
custom made property and paste it in).
Style: A formatting style (best for simple edits of formatting style). To map to a named
Style, use the "Value" output type to call the name.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Style Class: A to use. Once selected, a dropdown list shows the available style class
style classes.

Use the icon to add rows to the Map table. The icon will delete the selected Add Delete
row. The up/down arrows will sort the order execution for the mapping. The first mapping (from top
to bottom) that matches will be the mapping that is assigned.

You can then double-click to set values for each cell except the Fallback cell. The Fallback allows
you to create a value to use in case non of your values, expressions, or ranges match to the input.

On this page

...

Examples
Numeric Range
to Integer Value
Integer to String
Expression to
Color
Numeric Range
to Expression

Map Transform

Watch the Video

Examples

Numeric Range to Integer Value

Input Type: Numeric Range

Output Type: Value

You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value
is 0, we get an output value of 99, the Fallback value. This is because the first mapping uses an exclusive 0 (with a parenthesis) so it is
testing for strictly greater than 0, not "greater than or equal to."

Numeric Range to Number Mapping

(0,25] 0
(25,40] 1
[40,50] 2
Fallback 99

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://www.inductiveuniversity.com/videos/map-transform/8.0/8.0

Numeric Range to String Mapping - Range Values Omitted

(,25] "Below 25"
(25,) "Above 25"
Fallback "Invalid Value"

Integer to String

This is linked to a status text display.

Input Type: Value

Output Type: Value

You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value
is 0, we get an output value of "OFF".

Expression to Color

This is linked to the background color property of a text field.

Input Type: Expression

Output Type: Color

This input is passed through several expressions before selecting the Fallback value of black (#000000). You can see in the Binding Preview
at the bottom that the original value of the property binding is 15. For each expression past the first, a single bit of that integer is being tested.
Since none of bits 0, 1, or 2 are true, we get the fallback. For more information on the function, see the appendix.getBit()

https://legacy-docs.inductiveautomation.com/display/DOC80/getBit

Numeric Range to Expression

Input Type: Range

Output Type: Expression

This mapping maps different ranges of values to different parts of the current time. You can see in the Binding Preview at the bottom that the
original value of the property binding is 11 so we get an output value that pulls the minute out of the current time. That was 51 at the time this
screenshot was taken.

Format Transform

The Format Transform applies a format string to the value returned from
the binding, allowing you to format the way the output is
displayed. Typically this applies to a date or number format.

Select Format Type:

Datetime: A date will be formatted to appear a certain way.
Numeric: A number will be formatted to appear a certain way.

Format (Numeric only)

Pattern: Applies a number pattern (using 0 and #) and converts the results to string (good
for putting in leading 0's on a display).
Integer: Rounds input (float) to integer.
Number: Formats number based on Language setting (puts in comma or other number
separator).
Percent: Converts the input number into percent (0.123 would format to 12.3%).
Currency: Uses the currency specified by the Language setting.

Format (Datetime only)

Pattern: Custom date format string (for example - M/D/YYYY h:m:s a).
Date: Date only will be shown.
Time: Time only will be shown.
Datetime: Date and Time will be shown.

Date (Datetime only)

Full: Example format - Monday, March 18, 2019.
Long: Example format - March 18, 2019.
Medium: Example format - Mar 18, 2019.
Short: Example format - 3/18/19.

Time (Datetime only)

Full: Example Format - 2:02:46 PM Pacific Standard Time.
Long: Example format - 2:02:46 PM PST.
Medium: Example format - 2:02:46 PM.
Short: Example format - 2:02 PM.

Locale

auto: Default time zone of Client.
...(Language Selection):

Time Zone (Datetime only)

auto: Default time zone of Client.
...(Language Selection):

On this page

...

Examples
Numeric Pattern
Datetime Short,
Short, Time Zone
Adjusted

Format Transform

Watch the Video

Examples

Numeric Pattern

In the image below, an expression on a Tag binding is retrieving the value from a Tag. As shown in the preview, the value on the Tag shows
45.970097.

The Format transform is taking that Tag value, then applying a numeric pattern of , which denotes that two digits must always be shown #.00
after the decimal point. As a result, the preview shows a Format value of 45.97, since any digits beyond the first two decimal places are
ignored by the transform.

https://www.inductiveuniversity.com/videos/format-transform/8.0/8.0

Datetime Short, Short, Time Zone Adjusted

The image below is taking a Unix timestamp value (including milliseconds), and turning it into a human readable date, set to Japan's
timezone.

Script Transform

Script Transforms are special functions that are applied only on an existing
binding. They take the result of a binding (or transform) as an input and produce a
single output. This will allow you to manipulate a binding result using whatever
python code you want.

When a script transform is first created it generates a template script with a few assumed input
Arguments (see below). From this template you can write your own script and reference an
incoming value as well as a few other parameters. It is assumed the custom script will end with a
Return comment that is a single output value, dataset, document, or other type of data.

Arguments:

self: A reference to the component this binding is configured on.
value: The incoming value from the binding or the previous transform.
quality: The quality code of the incoming value.
timestamp: The timestamp of the incoming value as a java.util.Date

Return:

Any single value of any data type. As with all other transforms, the type of data that is
returned will overwrite the data type of the property that is being bound.

Using Complex Properties in your Transform
Any time you reference a complex component property (like an array or object), it will contain a
Qualified Value(s). This means they have a quality code and timestamp attached to each piece of
data. Using your script to access it will result in a Qualified Value but you can access the actual
value manually using the function. This means that fetching a complex property like an .value()
array must be looped through and converted manually if you want a basic array. For ease, the
output of any binding or transform will automatically be stripped of quality and timestamp so you
can use the value argument directly.

Example 1) Using the results of an array Property Binding in your script transform: You can
reference the property value directly by calling the value parameter that is passed in.

Example 2) Fetching an additional array Property inside your Script Transform: You must manually
convert the array property to a simple array.

On this page

...

Using Complex
Properties in your
Transform
Example Scripts

Dataset to Array
of Objects
Dataset to Array
with Renamed
Columns
Sparkline Chart

Script Transform

Watch the Video

Example Scripts
A lot of the components in Perspective expect arrays or JSON structured data in order to display data, but several binding types return single
values or datasets. In order to transform one into the other, you can add a Transform to the binding and fill in a script to change the data
format. Here are a few examples of code that can be added to a . Script Transform

https://www.inductiveuniversity.com/videos/script-transform/8.0/8.0

These examples are not necessary with Tag History or Query binding types. For both of these, there is a dropdown setting at the bottom of
the binding page that allows you to select the return type of DOCUMENT.

Dataset to Array of Objects

This is a script to take a dataset and transform it into a json array. All header names will be included in the resulting structure. This type of
array is expected on many Perspective components like the Table component.

Dataset to Array of Objects

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
get the header names
header = pyData.getColumnNames()
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # create a new blank dictionary for each row of the data
 newDict = {}
 # use an index to step through each column of the data
 for i in range(len(row)):
 # set name/value pairs
 newDict[header[i]] = row[i]

 # append the dictionary to list
 newList.append(newDict)

return the results
return newList

Dataset to Array with Renamed Columns

This is another script to take a dataset and transform it into a json array. In this example, you create the header names to be included in the
resulting structure. This type of array is expected on many perspective components like the XY chart, Dropdown, etc.

Dataset to Array of Named Objects

set the header names. For the XY chart, these must match the values in the series property.
header = ["Column 1", "Column 2"]

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # create a new blank dictionary for each row of the data
 newDict = {}
 # use an index to step through each column of the data
 for i in range(len(row)):
 # set name/value pairs
 newDict[header[i]] = row[i]

 # append the dictionary to list
 newList.append(newDict)

return the results
return newList

Sparkline Chart

Don't forget to tab in correctly if you are copying scripts from this page. The Script Transform is a function (starts with "def") and
every line of the code below should be tabbed in one from the edge.

The data expected in a Sparkline chart is a bit different than other charts. Instead of having values paired with a timestamp, it just takes an
array of values to draw in order. This is a script to take a Tag History binding, apply the Script Transform, and output only the values in an
array. Make sure the Value Format dropdown is set to Dataset.

Tag History to list of Data Points

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # append the dictionary to list
 if row[1] is not None:
 newList.append(row[1])

return the results
return newList

Expression Transform

The Expression Transform runs an expression that allows you to manipulate the value of the
binding using an expression. An Expression transform uses the Ignition binding Expression
language and has built in links to several toolsets.

Those expression tools are as follows:

Operators: Mathematical, Logical, Bitwise operators to adjust the incoming value.
Functions: A library of expression functions to adjust the incoming value
Browse Tags: A link to the Tag browser
Browse Properties: A link to Session Properties or other properties in the same View.

Example - Function

Convert Into Hex

//Convert an integer to a Hexadecimal and put in leading 0's
switch(
 len(toHex({value})), // determine
length of string
 0,1,2,3, //
possible lengths
 'n/a',
// 0 - results to display
 concat('000', toHex({value})), // 1 - results to
display
 concat('00', toHex({value})), // 2 - results to display
 concat('0', toHex({value})) , // 3 - results to
display
 toHex({value}) //
Failover
)

On this page

...

Example - Function

Expression
Transform

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax
https://www.inductiveuniversity.com/videos/expression-transform/8.0/8.0

Scripting in Perspective

This section is designed to familiarize you with some of the basics of Python scripting in
Perspective. Perspective scripting is particularly powerful, and can be used to control and fine-tune
many aspects of project design.

For a more general view of scripting in Ignition, and an introduction to Python, see in our Scripting
Ignition Platform section.

Perspective Scripting Fundamentals
Though Perspective uses the same basic platform (Jython) as other scripting environments in
Ignition, interfacing with some unique features in Perspective might make it feel like a new
scripting experience. Here are some key details that might be important to Perspective script
writers.

Scopes

Perspective does not have a "client" scope, because unlike Vision, Perspective does not have
clients. All Perspective scripting is run on the Gateway, although session-specific functions (like
navigation) will only affect a single session. Critically, this means that:

Client-scoped scripting functions (like system.file, system.gui, and system.nav functions)
will work in Perspective.not
Other scripting functions, like system.util.getLogger(), will run in a Gateway context.

On this page

...

Perspective
Scripting
Fundamentals

Scopes
Perspective Data
Types

Object Traversal
Scripting Transforms

Perspective Data Types

Component properties in Perspective are structured as JSON. However, interacting with them does not require any kind of specialized
knowledge. Critically, every property in Perspective is one of three types:

Type Description Example

Value A value is a simple piece of data, usually a number or string. Assigning a value to
a value property is just like assigning a value to an ordinary Python variable.

self.props.text = "My
Text"
self.props.startAngle = 5

Obje
ct

An object is structured like a Python , holding any number of key:value Dictionary
pairs. If you want to pass an object to an object property, you'll need to use the
Python Dictionary type.

Note that a Perspective Object could contain different kinds of sub datatypes.
One of its keys could map to another object, or to an array.

motorObject = {"motorNum":
1,"motorState":"Running"}
self.custom.myObject =
{"operationNum":15,"
motorObject":motorObject}

Array An array is structured like a Python . Unlike an object, where each element in List
the data type has an associated key, in an array, each element only has a
position.

Note that a Perspective Array could contain different kinds of sub datatypes.
Arrays can contain objects and other arrays.

rowObject1 = {"city":"
Folsom","country":"United
States","population":
77271}
rowObject2 = {"city":"
Helsinki","country":"
Finland","population":
625591}
self.props.data =
[rowObject1,rowObject2]

Object Traversal

https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC80/Dictionaries
https://legacy-docs.inductiveautomation.com/display/DOC80/Lists+and+Tuples

In scripting, we can use component properties and methods to access related components, and view and session info. See Perspective
 for details.Component Methods

Scripting Transforms
Any property binding can make use of a Script Transform to apply any python script to the output value of the binding. For more information,
see and .Transforms Script Transforms

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal

Perspective Component Methods

A component method is a function that is defined on a component object. For example, this is how
we would call a component method defined on the component object :self

output = self.myMethod(param1,param2)

Perspective has a variety of component methods that are defined on components, and it also all
offers you the ability to configure your own using custom methods.

On this page

...

Object Traversal
Object Traversal
Examples

Built-In Methods
Refreshing
Bindings
Requesting
Focus

Custom Methods

Object Traversal
In most Perspective scripts, you are given a reference to a component object (often in the form of a parameter). The object is given in self
component scripts, but has several methods and properties associated with it to help traverse to the other objects in a Perspective View or
get values from the Session.

Object Traversal is limited to a single view. If a script needs to reference a component in a different view, or there is a possibility that the
hierarchy of the view will change, then should be utilized instead.Message Handling

Component/Container

Method
/Property

Description Example

.children
The following feature is new in Ignition version 8.0.3

 to check out the other new featuresClick here

Returns all of the component's children.

s
e
l
f
.
c
h
i
ld

.
getChildr
en()

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Functionally similar to ".children" above.

s
e
l
f
.
g
e
t
C
h
i
l
d
r
e
n
()

.parent Calling this property will move up the component hierarchy, accessing the parent container of the

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

preceding object. Root containers will return the view, and views/sessions will return None. s
e
l
f
.
p
a
r
e
nt

.
getParen
t()

This is the same as ".parent" above. s
e
l
f
.
g
e
t
P
a
r
e
n
t
()

.getChild
(string)

Method that looks for a child component of a given name. Returns None if not found.

String can either be the name of a child object, or a path to an object delimited by a forward slash,
allowing you to move through multiple items in the hierarchy in a single call.

s
e
l
f
.
g
e
t
C
h
i
l
d
(
'
L
a
b
e
l
_
0
'
)
s
e
l
f
.
g
e
t
C
h
i
l
d
(
'
C
o
n
t

a
i
n
e
r
/
L
a
b
e
l
_
0
')

.
getSiblin
g(string)

Returns a reference to an object in the same container that the source component is located in. Similar
to calling self.parent.getChild('component').

s
e
l
f
.
g
e
t
S
i
b
l
i
n
g
(
'
L
a
b
e
l
')

.view Calling this from anywhere within a view will return the parent view of the object. s
e
l
f
.
v
i
ew

.page Returns a page object associated with the page the current component is on.

The following feature is new in Ignition version 8.0.4
 to check out the other new featuresClick here

.close() can be called on the page object, and can accept a message string as a parameter.

p
a
g
e
=
s
e
l
f
.
p
a
g
e
p
a
g
e
I
D
=

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.4

p
a
g
e
.
p
r
o
p
s
.
p
a
g
e
I
d
p
a
g
e
P
a
t
h
=
p
a
g
e
.
p
r
o
p
s
.
p
a
th

.session Returns the current perspective session you are in. From this session you can get any of the existing
attributes of the Session.

Similar to the view.session object.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

.close() can be called on the session object, and can accept a message string as a parameter.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

.getPages() returns a list of page objects.

.getPage(string ID) returns the page associated with the given page ID if it exists.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

.getInfo() returns a list of session objects.

s
e
s
s
i
o
n
=
s
e
l
f
.
s
e
s
s
i
o
n
s
e
s
N
a
m
e
=
s
e
s
s

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

i
o
n
.
p
r
o
p
s
.
g
a
t
e
w
a
y
.
a
d
d
r
e
s
s
s
e
s
P
r
o
p
=
s
e
s
s
i
o
n
.
c
u
s
t
o
m
.
p
r
o
p
e
r
t
y
N
a
me

View Objects

.
rootCont
ainer

Returns the root container of the View. v
i
e
w
.
r
o
o
t
C
o

n
t
a
i
n
er

.id Returns the id of the View. This is a string that is similar to the path of the View. All instances of a View
will have the same ID, for example:

Perspective/Views/path/to/view yields path/to/view@C

v
i
e
w
.
id

.session Returns the current Perspective Session you are in. From this Session you can get any of the existing
attributes of the Session.

This is similar to the self.session object.

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

.close() can be called on the session object, and can accept a message string as a parameter.

.getPages() returns a list of page objects.

.getPage(string ID) returns the page associated with the given page ID if it exists.

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

.getInfo() returns a list of session objects.

s
e
s
s
i
o
n
=
v
i
e
w
.
s
e
s
s
i
o
n
s
e
s
N
a
m
e
=
s
e
s
s
i
o
n
.
g
a
t
e
w
a
y
.
a
d
d
r
e
s
s
s
e
s
P
r
o

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8

p
=
s
e
s
s
i
o
n
.
c
u
s
t
o
m
.
p
r
o
p
e
r
t
y
N
a
me

Object Traversal Examples

If you want to get other component properties in a view while scripting, you can use the above methods and properties to move around the
View.

These examples assume you have the following structure/components in a View:

View
Button 1
Text Field 1
Container 2

Text Field 2
Container 3

Text Field 3
Container 4

Button 4
Text Field 4

Scripting Example: Get component properties from a Button script

this example code exists on the 'Button 1' in the above hierarchy.

get to the view that the button is in
view = self.view

get the text from 'Text Field 1'
text1 = self.getSibling('Text Field 1').props.text

get the text from 'Text Field 2'
text2 = self.getSibling('Container 2').getChild('Text Field 2').props.text

get the text from 'Text Field 3'
text3 = self.getSibling('Container 3').getChild('Text Field 3').props.text

get the text from 'Text Field 4'. Either of these will work the same.
text4 = self.getSibling('Container 3').getChild('Container 4/Text Field 4').props.text
text4 = self.getSibling('Container 3').getChild('Container 4').getChild('Text Field 4').props.text

Scripting Example: Get component properties from a Button script

this example code exists on the 'Button 4' in the above hierarchy.

get to the view that the button is in
view = self.view

get the text from 'Text Field 1'
text1 = self.parent.parent.getSibling('Text Field 1').props.text

get the text from 'Text Field 2'
text2 = self.parent.parent.getSibling('Container 2').getChild('Text Field 2').props.text

get the text from 'Text Field 3'
text3 = self.parent.getSibling('Text Field 3').props.text

get the text from 'Text Field 4'
text4 = self.getSibling('Text Field 4').props.text

Built-In Methods
Perspective components contain several shared methods. This section details such methods. Note that some methods are only available to
certain types of components. In these cases, the description for the method will state any limitations.

Refreshing Bindings

The function can be used to manually fire a binding, and is designed to be used on bindings that can poll (like query and refreshBinding
Tag history bindings). In these instances, using refreshBinding in lieu of polling can save Gateway resources. The refreshBinding() function
takes a string as a parameter, corresponding to the property that should be refreshed:

self.refreshBinding("props.data")

It is often useful to use refreshBinding() from a , since we can then refresh several applicable bindings via a component message handler
single call.system.perspective.sendMessage

Requesting Focus

The method can be called by a component to request focus in a view. This is useful if you wish to control where keyboard input is focus
directed after a particular action.

Due to the nature of focus, calling the method is only effective on components that can have focus. Input components such as the focus
Text Field and Numeric Entry Field components can gain focus, but Display components like Labels and Images can not gain focus.

self.focus()

Custom Methods
Perspective offers the option of configuring your own methods for a component. To configure a custom method:

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage

1.

2.
3.
4.
5.

6.
7.

Right-click on the desired component in the Designer, and select Configure Scripts...

Under , double click on Custom Methods Add method...
Enter a for your method, which will be used to call the method.Name
Enter any number of your method will need, separated by commas.Parameters
Add code to implement your method.

Click to commit your method.OK
To call this method, use:

self.myMethod(param1,param2)

For example:

A object is provided in every custom method, but should be provided as a parameter when calling the function.self not

7.

self.myMethod("Hi!","This is a test")

Related Topics ...

Component Message Handlers

1.
2.

Component Message Handlers

In Perspective, Component Message Handlers are the preferred way to pass
parameters between components or Views. Doing this involves the system.

perspective.sendMessage function. There are typically two steps involved:

Creating a message handler on the component that will listen for a particular call.
Create a script that will call the message handler.

This page will demonstrate how to prepare both steps. The goal of this example is to create a
script that will cause a button to change the text property of a Label.

Object Traversal

When writing a component based script, should be avoided where possible. Object Traversal
Object Traversal is the process of declaring hard-coded component paths in a script similar to how
the Vision module . While component paths exists in uses component paths in scripting
Perspective, they are brittle: changes to the hierarchy in the view (such as placing a component
into a new container), or changing a component name will invalidate any paths defined before the
change, since the component's relative location has changed.

Consider the following:

Pseudocode - Example Path

self.getSibling('Text Field').props.text

The path described above only works if there is component named "Text Field" in the same
container as the component that is running this script. If the Text Field component is renamed at
any point, this reference to the component will fail. Additionally, if the Text Field is placed in a
different container, then the getSibling() call will no longer work. Components in other containers
(in the same view) are available, but are not siblings.

Additionally, Object Traversal can't be used to reference a property in a separate view: i.e., a script
in View A cannot reference something in View B.

We suggest you utilize message handlers when a script is trying to interact with a strongly
component in another View.

Message Types

When sending a message, the Message Type field represents which Message Handler should
respond. If a script sends a message with a type of "foo", then any handler listening for a Type of
"foo" will execute. This means multiple components in the same window can all have Message
Handlers with the same Type: e.g., if a view has a "reset" button to clear out multiple input
components, then each input component can simply have a "reset" message type that clears the
field, allowing a single message to trigger multiple handlers. Alternatively, if only a single handler
should execute when sending the message, simply give that one handler a unique Type.

Message Handler Scope

Message Handlers can be limited in scope, meaning the range of the sent message (or range of
the listener) can be confined to a particular scope. The available scopes are:

session
page
view

For example, you can send a message that is scoped to just the View where the message
originated, meaning only listeners in the same View will be able to respond. This is useful if you
sent a message from a popup view, and didn't want any other views to respond.

There are two ways to limit the scope of a message:

On this page

...

Object Traversal
Message Types
Message Handler
Scope

Message Handler
Example

Step 1 - Prepare
Perspective
Workspace
Step 3 - Send A
Message

Passing Parameters
Example

Step 1 - Update the
Button Script Action
Step 2 - Update the
Message Handler

Message Handlers

Watch the Video

Component Paths

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+in+Perspective#ScriptinginPerspective-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting+in+Vision#ScriptinginVision-AccessingaComponent
https://www.inductiveuniversity.com/videos/message-handlers/8.0/8.0
https://www.inductiveuniversity.com/videos/component-paths/8.0/8.0

1.

2.

1.
2.
3.
4.
5.

1.
2.

The function contains a scope parameter that will system.perspective.sendMessage
restrict the range on the message being sent.
The Message Handlers have a setting that can filter out messages from Listen Scopes
certain scopes.

Message Handler Example

Step 1 - Prepare Perspective Workspace

Open the Designer.
Switch over to the Perspective Workspace by clicking on in the Project Browser.Perspective
Right-click on the Views folder and select New View.
Give the new a name and click the Create View button. The name of the view will not matter for this example.View
Place a and a component on the View. Button Label

Step 2 - Create A Message Handler

Message Handlers are effectively user-created scripting events. A user can define a Message Handler that listens for a particular message.
The idea being that some other component will broadcast a message, and if the type of the message matches what the Message Handler is
listening for, the Message Handler will execute a script.

Message Handlers are useful because they don't care about which component broadcast the message: if something sends a message with
the correct type, then the Message Handler will execute. Additionally, message can be sent across separate views, pages, or throughout the
entire session.

In our example, we want the Label's text property to change when something else in the view happens (in our case, our button is pressed),
so it would make sense to configure a Message Handler (listener) on the Label. This way, if we relocate the Label component in the view, the
script will still work.

Right-click on the Label, and select . Configure Scripts
The Script Configuration window appears. Make sure the title bar on the window states that it's the component. Label

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage

2.

3.
4.

5.

6.

7.

8.

1.
2.

3.
4.
5.

On the left side of the window, you will see a tree. Double-click on the item.Script Configuration Add handler...
A new handler named "type-name-here" will appear. Under type . Note that we're using all lowercase Message Type my-handler
characters: . The Message Type is effectively the name of the message handler. When message handlers are case-sensitive
sending a message, we will specify this message handler's type, which will cause it to respond by executing the script.
In our example, let's change the text on the Label to "Hello!". Under the script area, type the following script:

Python - Set the Text

self.props.text = 'Hello!'

This example is fairly limited to this one view. Thus, let's limit the scope so that it will only respond to messages from the same view
the Label is on. Under the , uncheck , and check .Listen Scopes Page View
The window should look like the following:

Click the button. We just created a Message Handler. In the next step, we'll create a script that will call the Message Handler. OK

Step 3 - Send A Message

In this step, we place a script on the Button that will call our Message Handler.

Right-click on the Button, and select The Configure Events... Event Configuration window appears.
We want our script to trigger when the button is pressed. On the left side of the window, in the Mouse Events folder, select .onClick

The list will appear. Press the icon. A popup list will appear. Organize Actions Add
Select the action. Script
Add the following code:

Python - Sending a Message

5.

6.

1.
2.

messageType = 'my-handler'
system.perspective.sendMessage(messageType, scope='view')

The window should look like the following. Note the tab indentation on lines 4 and 5:

Click to apply the script. OK

The example is now running. From the Designer, enable , and then click on the Button component. The text on the label Preview mode
should update.

Passing Parameters Example
Let's make the previous example more complicated and pass some values with the message. The example above can be modified to
determine the timestamp. When passing parameters in a script, the most direct approach is to include any parameters along with the
message. Message Handlers have a built-in argument called a , which is used to transfer values to the handler. The payload is payload
simply a Python Dictionary, so please see the page for more information. Dictionaries

Alternatively, we could create a session property to hold the value, and have the label reference the session property. However this would
require that we either create a new property to hold the value or overwrite the value of another property. Thus, our next example will
demonstrate how to utilize the payload.

Step 1 - Update the Button Script Action

Right-click on the Button component and select Configure events...
Replace the code with the following:

Python - Check the Time, Send a Message

messageType = 'my-handler'

Look up the current time.
currentTime = system.date.format(system.date.now(), 'HH:mm:ss')

Create a payload to be passed with the message
payload = {'time':currentTime}

Common Issue

In this simple example, the major issue you may run into is the Message Type. Recall from #4 in Step 1 of the example, that
Message Type is case-sensitive, so make sure the script on the Button is correctly referencing the message type, and try again.

Avoid Storing Values in Tags

Since Tag values are shared by all Perspective sessions, you may not want to write the parameters in Tags. Doing so would result
in each session instance potentially trying to overwrite the same value.

https://legacy-docs.inductiveautomation.com/display/DOC80/Dictionaries

2.

3.

4.

1.
2.

3.
4.

Send the message, pass the payload, limit the scope to the view
system.perspective.sendMessage(messageType, payload, scope = 'view')

Make sure the code is properly indented. It should look like the following:

Once finished, click the button. OK

Step 2 - Update the Message Handler

Now that we're including a payload with the message, we need to modify our handler so that it will extract the time from the payload.

Right-click on the Label component, and select Configure scripts...
Replace the original code with the following:

Access the time by referencing the 'time' key
self.props.text = payload['time']

Click .OK
To test it, enable , and click the Button component. You will see the current time populate in the Label. Preview mode

Related Topics ...

Scripting
Dictionaries

On line 8, we're creating a dictionary, creating a key called "time", and storing the current time with the "time" key. When
our handler receives the payload, it can retrieve the value we passed by referencing the "time" key.

https://legacy-docs.inductiveautomation.com/display/DOC80/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC80/Dictionaries

1.

Perspective Property Change Scripts

With Perspective, individual component properties can have a property change script. When a
change script is set up on a property, it will run when the property changes its value. Multiple
different properties on the same component can each have different scripts configured. In
Perspective, you can put a property change script on any component property.

A very common example of a property change script would be to take the dataset from a binding
and modify it into a new dataset using other information on screen. This can be accomplished with
a Script Transform instead.

On this page

...

Add a Property
Change Script
Property Change
Arguments
Change Script
Example

Property Change
Scripts

Watch the Video

Add a Property Change Script
To add a property change script to a property, right click on the property Property Editor and select Add Change Script...

https://www.inductiveuniversity.com/videos/property-change-scripts/8.0/8.0

1.

2.

3.

The Edit Property Change Script screen is displayed.

Type in the script that you want to run and click . OK

Property Change Arguments

Argument Description

self A reference to the component that has the property in question. If the property change script is on a , the session property

1.
2.

3.

session object will be passed.

previousv
alue

The previous value, as a qualified value object. Qualified value objects have a value, quality, and timestamp.

currentVal
ue

The new value, as a qualified value object. Qualified value objects have a value, quality, and timestamp.

origin The origin of the property value, as a unicode string. The origin parameter will take on one of six types depending on how the
property value is being updated:

Name Description Example

Brow
ser

Used when the change comes
from the Browser interface.

The user changes the property on a text field by typing a word into the text
field.

Bindi
ng

Used when the change comes
from a binding (or transform)
generating a new value.

A Tag changes value, and a property with a binding to that tag is updated.

Bindi
ngWri
teback

Used when the change comes
from a bidirectional binding
writing back to its source.

ComponentB's property has a bidirectional binding to the property value value
on ComponentA. If ComponentB's changes, then a property change value
script on ComponentA will have an origin of .BindingWriteback

Script Used when the change comes
from a script.

A user presses a button, and a script on the button assigns a new value to a
custom property.

Deleg
ate

Used when a change to a
property comes from something
intrinsic to the component's
design.

A complex component that automatically fills itself with data, like the alarm
status table component.

Sessi
on

Used when the session itself
causes the property change.

A change in user privileges causes access to be revoked, resulting in a
change in the session property.auth

Proje
ct

Used when the default property
value is changed in the designer
and saved.

A session property was set to a value of "A." The default value of that property
was then changed in the designer to "B" and saved. The value for that
property changes from "A" to "B" in the running sessions.

Change Script Example
Place a component and component on a Perspective View. Text Field Label
Select the Text Field component then right click on the property. Click on .text Add Change Script

The Edit Property Change Script screen is displayed. Enter the following script, which will write the current value of the Text Field
component to the Label component.

self.getSibling("Label").props.text = currentValue.value

3.

4.

5.
6.

Click to commit the script. You'll see that the Property Editor now shows a Change Script icon next to the property.OK text

Save your project.
In a Perspective Session, enter some text into the Text Field component and hit Return. You'll see that the contents are repeated to
the Label component.

1.

2.

3.

Perspective Session Event Scripts

Perspective offers a collection of designed to allow the Gateway to track and Session Events
interact with the session at critical moments. Specifically, they are scripts that run in the Gateway
when a session starts up, shuts down, or runs a .Native App Action

There are five configurable session events in Perspective:

Startup
Shutdown
Barcode Scanned
Bluetooth Device Data Received (new in 8.0.5)
NFC NDEF Scanned
Accelerometer Data Received
Message (new in 8.0.7)

Configuring Session Events
To start working on a session event script:

In the Project Browser, double-click on the section:Session Events

The dialog will appear:Session Events

Configure a script by selecting one of the events on the left-hand side.

On this page

...

Configuring Session
Events
Startup and
Shutdown Event
Scripts

Startup and
Shutdown
Example

Native App Event
Scripts
Barcode Scanned

Barcode
Scanned
Example

Bluetooth Data
Received
Accelerometer Data
Received

Accelerometer
Data Received
Example

NFC Ndef Scanned
NFC Ndef
Scanned
Example

Message

Startup and Shutdown Event Scripts
Startup and events run, naturally, whenever a session starts or ends. In each case, the gateway will have access to the Shutdown session
object associated with the section, complete with all session properties.

Although they are designed to handle , the scripts that you write will be Session Events
run in a scope, not a Session scope.Gateway

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions

1.
2.

a.
b.
c.

3.
a.
b.
c.

4.
5.

6.
7.

When designing a startup or shutdown event script:

Custom session properties can be used to pass any additional information to the gateway, or, in the case of a startup script, to pass
information to the newly opening session. You can configure custom session properties from the Page Configuration dialog, by

clicking on the icon in the Designer.Settings
A shutdown event script will run when a session is ending. This happens specifically when any of the following events specifically
occur:

The session closes due to a timeout. Session timeout is configurable in the section of Perspective > General Project
 in the DesignerProperties

The user is no longer authorized to run the session.
The redundancy system determines that the Gateway is inactive.
The licensing system no longer permits the user to run the session.
The project is no longer runnable.
The project is deleted.

Startup and Shutdown Example

This example will record the session start and end time to the database.

For this example, we need to set up a few queries that we can use to write our data to the database.
Make a new named query called .Startup Query

Set the Query Type to .Update Query
Set up a single Value type parameter with a name of and a datatype of string.SessionID
Add the query:

INSERT INTO sessions (session_id, start_time)
VALUES (:SessionID, CURRENT_TIMESTAMP)

Make a second new named query called .Shutdown Query
Set the Query Type to .Update Query
Set up a single Value type parameter with a name of and a datatype of string.SessionID
Add the query:

UPDATE sessions
SET end_time = CURRENT_TIMESTAMP
WHERE session_id = :SessionID

Next, we need to add Session Events so that Perspective knows to run those queries on startup and shutdown.
Under the tab, select .Project Session Events

On the screen, click the icon. Session Events Startup
Add the following script to the page:

This script will record the time when the session is opened.

 # Create the parameters

Closing the browser tab with the session will immediately close the session; the session must first time out.not

7.

8.

9.

10.
11.

 queryParams = {'sessionID':session.props.id}

 # Run the query
 system.db.runNamedQuery('My Project', 'Startup Query', queryParams)

Click and then click the icon.Apply Shutdown

Add the following script to the page:

This script will record the time when the session times out. Note that after the session is
closed,
the session won't time out until the time out period is reached..

 # Create the parameters
 queryParams = {'sessionID':session.props.id}

 # Run the query
 system.db.runNamedQuery('My Project', 'Shutdown Query', queryParams)

Click .OK
Save your project.

Test the Example

1.
2.

1.
2.

3.

To test the example, open the Perspective App on your mobile device and load the project.

You should see a new entry in the database table with the time the time the session was started as well as the session id.
After the session times out (such as after it is closed) you should see the original entry get updated to include the new shutdown
time.

Native App Event Scripts
When the Perspective App is running on a mobile device, it enables users to use tools available on the device, such as GPS location data,
the camera, or the accelerometer. The remaining session events are designed specifically to handle the three .Native App Actions

Barcode Scanned
The scanned barcode action can make use of a mobile device's built in camera.

Arguments Description

session An object that references the project session that called the Barcode Scanned
event. Use this to identify the specific session that scanned the barcode.

data The data returned from the barcode scan. Access the underlying barcode data
using:

data.text

context The user defined context object that can be defined on the action.

Barcode Scanned Example

This example will scan a barcode, and write its value to a tag.

For this example, drag a Button component and a Label component onto a view.
Create a new memory Tag with a data type of String. Set the value to "Please scan a
barcode."

Bind the text of the label to the new tag.

Barcode Scanned

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/barcode-scanned/8.0/8.0

3.

4.
5.

6.

7.

8.

9.
10.

Next right-click on the Button component and choose . Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Scan Barcode

Click . Next we need to set up a Session Event so that Perspective knows how to OK
interpret the scanned barcode data.
Under the tab, select .Project Session Events

On the screen, select the icon. Session Events Barcode Scanned
Add the following script to the page:

system.tag.writeAsync(['[default]New Tag 5'], [data.text])

We used the tag created for this example, New Tag 5. You can enter your own
Tag name if different.

10.

11.

1.

2.

Click and save your project.OK

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

Click the Scan Barcode button.

If this is the first time scanning a barcode, you'll get a message requesting permission for
Perspective to take pictures and record.

2.

3.

4.

Click Allow.

You can now use the camera on the mobile device to scan the barcode.

4.

5. Ignition scans the barcode. Once it recognizes the bar code, the script will run and the text
is written to the Tag. The label then shows the new Tag value.

The following feature is new in Ignition version 8.0.5
 to check out the other new featuresClick here

Bluetooth Data Received
The Bluetooth Data Received event is only used when a session is running in a native application and it has received bluetooth advertising
data. This session event script sends Bluetooth advertising data to Perspective. It supports iBeacon and Eddystone formats.

Eddystone will work on iOS and Android
iBeacon on iOS requires user to specify the specific region (iBeacon UUID) located on session props bluetooth.config.
iBeaconRegion.

Bluetooth "Advertising Data" is the name of the communication data according to the Bluetooth spec. There is no connection to
advertising as an industry.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.5

Arguments Description

session An object that references the Project Session

data List of buffered advertising data. The data comes in as a data object, which has various parts. The following is example
output.

{
 "values":
 [
 {
 "rssi":-48,
 "timestamp":1570147485167,
 "manufacturerData":{
 "companyId":6,
 "dataBase64Encoded":"AQkgAl_edccdnHClMvecMCiM--
aAkLHAPibd"
 }
 },
 {
 "rssi":-48,
 "timestamp":1570147486012,
 "serviceUUIDs":[
 "FEAA"
],
 "serviceData":{
 "uuid":"FEAA",
 "dataBase64Encoded":"AOyqqqqqqqqqqqqqAAAAAAAA"
 },
 "eddystoneUID":{
 "txPower":-20,
 "namespaceID":"AAAAAAAAAAAAAAAAAAAA",
 "instanceID":"000000000000"
 }
 },
 {
 "rssi":-54,
 "timestamp":1570147485919,
 "manufacturerData":{
 "companyId":76,
 "dataBase64Encoded":"
AhV88isfQjVLY4VnXXfYqpTyAAAAAL8="
 },
 "iBeacon":{
 "uuid":"7CF22B1F-4235-4B63-8567-5D77D8AA94F2",
 "major":0,
 "minor":0,
 "txPower":-65
 }

1.
2.
3.

4.
a.
b.
c.

 },
 {
 "rssi":-54,
 "timestamp":1570147485987,
 "manufacturerData":{
 "companyId":65535,
 "dataBase64Encoded":"
vqwSNFZ4EjQSNBI0EjRWeJASAAAAAOwA"
 },
 "AltBeacon":{
 "manufacturerId":65535,
 "uuid":"12345678-1234-1234-1234-123456789012",
 "instance":"00000000",
 "txPower":-20,
 "manufacturerReserved":"00"
 }
 }
]
}

Accelerometer Data Received
The Accelerometer Data Received event is only used when data is coming in from a batched Accel

.erometer Action

Arguments Description

session An object that references the Project Session that called the Accelerometer Data
Received event. Use this to identify the specific session that triggered the
batching of accelerometer data.

data The data returned from the batched accelerometer. The data comes in as a data
object, which has various parts. Access the various parts like:

logger = system.util.logger('accelerometer')
for row in data.values.data:
 logger.info('X:' + str(row['x']))
 logger.info('Y:' + str(row['y']))
 logger.info('Z:' + str(row['z']))

context The user defined context object that can be defined on the action.

Accelerometer Data Received Example

This example will write accelerometer data to the Gateway logs.

For this example, put a Button component onto a view.
Next right-click on the Button component and choose .Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Accelerometer
Select mode.Batch
Set a of 400.Sample Rate
Set a of 2000.Duration

Accelerometer Data
Received

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://legacy-docs.inductiveautomation.com/display/DOC80/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/accelerometer-data-received/8.0/8.0

4.

c.

5.

6.

7.

8.

9.
10.

1.

2.

Click . Next we need to set up a Session Event so that Perspective knows how to OK
interpret the accelerometer data.
Under the tab, select .Project Session Events

On the screen, click the icon.Session Events Accelerometer Data Received

Add the following script to the page:

This script will take the accelerometer data and print it to
the Gateway logs.

Create the logger.
logger = system.util.logger('accelerometer')

Loop through the list of batched events and pull out the x,
y, and z values to print to the Gateway logs.
for row in data.values.data:
 logger.info('X:' + str(row['x']) + ', Y:' + str(row
['y']) + ', Z:' + str(row['z']))

Click .OK
Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

Click the Accelerometer button.

2.

3.

1.
2.
3.

4.
5.

6.

After clicking the button, the script will record accelerometer data for the next two
seconds, so try moving the phone around.
After the two seconds, you should see the logged information appear in the Gateway logs.

NFC Ndef Scanned
The NFC Ndef Scanned event is used when the NFC Action is used and the mobile device scans
an NFC Tag.

Arguments Description

session An object that references the Project Session that called the NFC Ndef Scanned
event. Use this to identify the specific session that scanned the NFC Tag.

data The data returned from the NFC Tag scan. The data object is a list which can
contain multiple records from a single NFC tag. Access the underlying NFC data
using:

logger = system.util.logger('NFC')
for row in data:
 logger.info('Type:' + str(row['type']))
 logger.info('Type Name Format:' + str(row
['typeNameFormat']))
 logger.info('Payload:' + str(row['payload']))
 logger.info('String:' + str(row['string']))
 logger.info('Bytes:' + str(row['bytes']))

context The user defined context object associated with the scan event.NFC

NFC Ndef Scanned Example

This example will write the NFC Tag data to the Gateway logs.

For this example, put a Button component onto a view.
Next right-click on the Button component and choose .Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Scan Ndef NFC
Select mode, then click . Single OK

Next we need to set up a Session Event so that Perspective knows how to interpret the
NFC data. Under the tab, select .Project Session Events

NFC Ndef Scanned

Watch the Video

https://www.inductiveuniversity.com/videos/nfc-ndef-scanned/8.0/8.0

6.

7.

8.

9.
10.

1.
2.

3.

On the screen, click the icon. Session Events NFC Ndef Scanned

Add the following script to the page:

This script will take the NFC data and print it to the
Gateway logs.

Create the logger.
logger = system.util.logger('NFC')

Loop through the list of records stored in the NFC tag and
pull out the type, type name format, payload, string data, and
raw byte data from each record and print it to the Gateway
logs.
for row in data:
 logger.info('Type:' + str(row['type']) + ', Type Name
Format:' + str(row['typeNameFormat']) + ', Payload:' + str(row
['payload']) + ', String:' + str(row['string']) + ', Bytes:' +
str(row['bytes']))

Click .OK
Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

Click the NFC button.
After clicking the button, the script will pass the next NFC tag scanned to the script to be
handled.
After scanning an NFC tag, you should see the logged information appear in the Gateway
logs.

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

Message

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.7

The Message Handler scripts will run whenever the session receives a message from or . system.util.sendMessage system.util.sendRequest
Note that these types of message handlers are different than component-based message handlers, which are accessed with system.

. Session Message Handlers can not be called by system.perspective.sendMessage.perspective.sendMessage

Arguments Description

session The Perspective Session that is handling this message.

payload A dictionary that holds the objects passed to this message handler.
Retrieve them with a subscript, e.g., myObject = payload['argumentName']

Editor notes are only visible to logged in users
Need tech person to help with an example

Message Example

https://legacy-docs.inductiveautomation.com/display/DOC80/system.util.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC80/system.util.sendRequest
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.sendMessage

1.

2.

3.
4.

5.

Security in Perspective

Security in Perspective is managed through Identity Providers (). IdPs offers a way for users to IdP
log in to using stored outside of . This level of security is set up through Ignition credentials Ignition
the Gateway. Setting up Security is covered in the of the User Manual. Security section

Permissions can also be set at the in the Designer. This restricts actions such as Project level
publishing, viewing, saving, deleting, and editing of project resources to users who have sufficient s

to do so.ecurity levels

Once you have an IdP setup as well as Security Levels, Security Level Rules, and User Grants ther
e are additional ways to control security for the following:

Perspective Sessions
ViewsPerspective

Event actions on Perspective components

On this page

...

Perspective
Sessions Security
Perspective Views
Security
Event Actions on
Perspective
Components

Perspective Sessions Security
For each Project, you can set the security for an associated Perspective Session. When you
select the , you are granting any user with that access to the security levels security level
Perspective Session for that Project.

In the Designer, select the on the Project menu. Select Project > Project Properties
General.
In the Identity Provider field, use the dropdown to select the IdP you want to use or to
select the default . user source

The following feature is new in Ignition version 8.0.6
 to check out the other new featuresClick here

Scroll down to select > . Perspective Permissions
Expand the tree to view the security levels you want to be able to access this project in a
Perspective Session.
Click the check box next to each of the security level you want to grant access.

Requiring
Authentication

Watch the Video

As of release 8.0.6, the setting was moved to this location Identity Provider
instead of the Project Properties > Perspective General.

https://legacy-docs.inductiveautomation.com/display/DOC80/Identity+Providers
https://legacy-docs.inductiveautomation.com/display/DOC80/Security
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Security+in+Designer
https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Levels
https://legacy-docs.inductiveautomation.com/display/DOC80/Security+Level+Rules
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Grants
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Sources
https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.6
https://www.inductiveuniversity.com/videos/requiring-authentication/8.0/8.0

5.

6.

1.

2.

3.
4.

Click OK to save all of the Project Properties changes.

Perspective Views Security
You can set the security for an individual View in Perspective. When you select the security levels,
you are granting any user with that access to the Perspective Session for that Project.

In the Project Browser, right click on the view and select Configure View Permissions...

On the Edit Permissions screen, click the check box next to the security levels that will be
able to access this View.
Next, click the check box next to the Security Zones that will be able to access this View.
Finally, choose one of the radio buttons at the bottom of the screen to indicate whether
the user much match of the required security levels you've checked or of them.all any

In the example below, a user must have either the Administrator or Plant1 security level se
, or be in Ridgefield East to access this View.curity level

View Security

Watch the Video

Note that you must have the IdP selected in Project Properties > Project General.

https://www.inductiveuniversity.com/videos/view-security/8.0/8.0

4.

5.

1.

2.

3.

Click to save the permissions for this View.OK

Event Actions on Perspective Components
All Perspective components can have event scripts. These are scripts that run on an action, such
as when the user clicks with the mouse on a component. For more information about event scripts
see, . Security can be configured on events. In the following example, set Perspective scripting
security for the action of clicking on a Button component in the Perspective View.

Script Action
Security

Watch the Video

To add security to an event on a component, right click on the component then choose Configure Events...

The Events Configuration screen is displayed. Many different types of events can be set for a component. For this example, choose
 > .Mouse Events onClick

Note that you must have the IdP selected in Project Properties > Project General.

https://www.inductiveuniversity.com/videos/script-action-security/8.0/8.0

3.

4.
5.

Under , click the Add icon, then select from the list.Organize Actions Script

Click the icon near the bottom of the screen. Security Settings
Click the check box next to the you want to grant access. In the example, anyone with Administrator or Line1Oper security levels sec

will have permission to run the script associated with the event on this button.urity levels onClick

5.

6. Click the icon to close the window, then click .Security Settings OK

Alarming in Perspective

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Alarming in Perspective is made simple with all the features and functions built right into both the Al
 and . If you used the Alarm Status or the Alarm Journal arm Status Table Alarm Journal Table

tables in a Vision Client, you'll be pleased to find that most of the functionality on both tables is
built-in to the Perspective Alarm Status and Alarm Journal tables and ready to use in a Perspective

.Session

Users can filter on a variety of filter options, display alarm event data on the table by selecting
different configuration settings, view Realtime and Historical data within a specified time period,
view an alarm's details, sort alarm data to meet their individual needs, and use the search function
to refine search results. There are a number of properties enabled by default and some other
properties have some default options already selected for you. This allows users to hit the ground
running right from the start! In addition, the properties in both tables can be configured in the
Designer specifically for your project by your designer or Ignition administrator.

You can interface with Alarm Status and Alarm Journal tables in the Designer, Preview Mode and
in a Perspective Session.

On this page

...

Alarm Status Table
Alarm Journal Table

Alarm Status Table
The Alarm Status Table allows you to view currently active events in the system, providing an easy way to inspect the alarm alarm details,
shelve alarms, and acknowledge them. At a glance, you will be able to see the current number of active and shelved alarms. The
configuration settings, filtering, and search buttons are right on the table for easy access to modifying the alarm data. In a Perspective
Session, the table is easily customizable and operators can make on demand changes to configuration settings, filter settings, searching,
and sorting of alarm events.

When you drag an Alarm Status Table component into the Designer workspace for the first time, the table will automatically populate if you
have alarms created and a created. Your Alarm Status Table will look something like the one below. Alarm Journal Profile By default, the
Alarm Status Table is configured to show , , and ' alarm events with priority levels of , 'Active,Unacked' 'Active,Acked' 'Cleared,Unack Low M

, and . edium High Critical

For more detailed information using the Alarm Status Table, refer to the section.Common Tasks

Alarm Journal Table

Configure Alarms

You must have alarms configured in your project first, before any alarms will appear in the Alarm Status Table.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

The stores historical information about alarms in a database. It stores basic data about alarms that have occurred such as Alarm Journal
timestamp and values of the alarm's properties at the time the alarm event occurred. The Alarm Journal is used by the Alarm Status Table.
You can create a single Alarm Journal Profile to store all of your alarms, or create multiple journals to store alarms across multiple
databases. To learn more about alarm journals, refer to the page.Alarm Journal

The Alarm Journal Table looks and behaves very much like the Alarm Status Table. When you drag an Alarm Journal Table component into
the Designer workspace for the first time, the table will automatically populate if you have alarms created, an , Alarm Journal Profile and a
valid database connection. By default, the Alarm Journal Table is configured to show , , and alarm events with 'Active' 'Acked' 'Cleared'
priority levels , , and . Your Alarm Journal Table will look something like the one below.Low Medium High Critical

The Perspective Table has a number of configuration options that can be used to do things like filter on realtime and historical Alarm Journal
 data within a specified time period, filter on alarm event states and priorities, and the search feature will let you refine your alarm event alarm

search results. An operator can filter on demand based on their individual needs. You can also change how the component displays those
alarm events by simply changing the configuration settings.

For more detailed information using the Alarm Journal Table, refer to the Common Tasks section.

Related Topics ...

Perspective - Alarm Journal Table
Perspective Alarm Journal Table - Common Tasks

In This Section ...

Alarm Journal Profile

You must have an ProfileAlarm Journal created and have a valid connectiondatabase to use the Alarm Journal Table.

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Connections

Perspective Alarm Status Table - Common Tasks

The has a ton of configuration options that can be used to do Perspective Alarm Status Table
things like filter the list of alarms being displayed, acknowledge and shelve alarms, and configure
how the Alarm Status Table component displays the alarm events. Each of the pages in this
section goes over setting up various aspects of the Alarm Status Table.

Perspective Alarm Status - User Interaction
The page introduces you to the Alarm Status Table, its interface and how to User Interaction
navigate around the table. It also briefly describes the Alarm Status Table's features and functions
including how to configure the table to get realtime and historical alarm event data.

Perspective Alarm Status - Configuring
Properties
The project designer and Ignition administrator have the option to enable or disable properties and
setup filtering options in the Property Editor of the Designer based on the project requirements and
needs of the client users. This page describes which properties are enabled and which properties
have some default filtering options preset. Learn how to configure your own Alarm Status
properties in the Designer on the page.Configuring Properties in the Designer

On this page

...

Perspective Alarm
Status - User
Interaction
Perspective Alarm
Status - Configuring
Properties
Perspective Alarm
Status - General
Filtering
Perspective Alarm
Status -
Acknowledgment
Perspective Alarm
Status - Shelving
Perspective Alarm
Status - Row Styles

Perspective Alarm Status - General Filtering
The Alarm Status Table has a number of built-in functions right on the table so with a simple click of a button you can filter on alarm states
and see alarm details. The Alarm Status Table component has a lot of properties that allow you to filter on various parts of alarms. Learn
about all of the different built-in ways that the .Alarm Status Table can filter alarms

Perspective Alarm Status - Acknowledgment
The first step in fixing an alarm is acknowledging that the alarm is happening. plays a very important part in any alarm Acknowledgement
system which is why the ability to acknowledge alarms is built right in to the Alarm Status Table component. Learn how to acknowledge
alarms and configure acknowledgement options.

Perspective Alarm Status - Shelving
Shelving alarms allows you to temporarily silence an alarm for a fixed period of time while you are working on the issue. This can be useful
when doing maintenance if Tags are constantly going in and out of alarm.

Perspective Alarm Status - Row Styles
The Alarm Status Table uses different styled rows to differentiate between alarms in different states. These can be completely Row Styles
customized using whatever colors and fonts you want. You can even add an animated style drawing an operator's attention to critical alarms!

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

Perspective Alarm Status - User Interaction

Getting Started with the Alarm Status Table
If you're setting up the Alarm Status Table for the first time, you probably will want to take a look at
the status table's properties in the Property Editor. There a number of properties that are enabled
by default such as the shelve, unshelve, acknowledge, filter, and configuration buttons, as well as
the alarm details popup to name a few. You should become familiar with them in the event you
would like to change them. Other properties have default options already selected for you, like
alarm states, alarm priorities, and row styles.

When you drag your first Alarm Status Table component into the Designer, the Alarm Status Table
will automatically populate if you have any alarms configured and an created. Alarm Journal Profile
It will look something like the image below.

You can interact with the table in the , in Preview Mode of the , and in a Designer Designer Perspect
. The Table properties are configured in the Property Editor of the ive Session Alarm Status Design

. er

When setting up your Table, you will have to toggle between both the and Alarm Status Designer
Preview Modes to configure properties and organize the display of your event data and size alarm
the data columns in the table.

This page will introduce you to the Alarm Status Table and its features and functions. Other pages
in the section address the details of how to Perspective Alarm Status Table - Common Tasks ackn

, , and alarms. owledge shelve filter

On this page

...

Getting Started with
the Alarm Status
Table

Anatomy of an
Alarm Status
Table
Alarm Details
Acknowledging
and Shelving
Alarms

Anatomy of an Alarm Status Table

The following image shows the basic anatomy of an able with alarm event data populated in the rows. At the top of the table, Alarm Status T y
ou can immediately see two tabs, one for Active alarms and the other for Shelved alarms. The tab headers provide a count of the number of
Active alarms and Shelved alarms. Click on each of the tabs to view all the currently Active alarms and Shelved alarms.

There are a host of Configuration Settings and Filtering options that you can set to provide relevant information about your
alarms events. The contain the available header columns that can be set to display data about the alarm event such Configuration Settings
as Ack Notes, Ack Pipeline, Ack Time, Ack User, Active Time, Display Path, and Source Path. Filtering options are actually the alarm states
and priorities that can be selected to get the most current alarm status in your system. Alarm states are , ActiveUnacknowledged ActiveAck

, and . Alarm Priorities are , , , and .nowledged ClearUnacknowledged ClearAcknowledged Diagnostic Low Medium High Critical

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

The shows you exactly what state and priority filter properties are set. Filter Bar The Filtering tab allows you select the alarm state and filter
 can remove individual filter properties by clicking the next to each property or remove all the filter properties on specific alarm criteria. You 'X'

using the button. To add filter properties, click on the icon Remove All Filter and select the properties you want to use.

You can also optimize your search results by using the featureSearch and entering keywords or a string to help further refine your

results. When you mouse over an alarm row, a popup modal will appear on the right side of the table. By clicking the Popup Modal icon,
 you can see the alarm's details. You can also set the number of alarm rows to display and scroll through the list of pages at the bottom of
the status table. Lastly, the Alarm Status Table comes with a default set of customizable row colors based on the alarm state and priority.

To learn more about using the functions and features such as alarm and , Alarm Status , , acknowledgement shelving filtering row styles refer
 the section. The component page describes all the alarm status to Perspective Alarm Status Table - Common Tasks TableAlarm Status

properties and how to use them.

Alarm Details

When you click on the Popup Modal icon , this brings up the Alarms Detail window. Here you can scroll through a list of configuration
properties and see the details about the alarm event.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

Acknowledging and Shelving Alarms

When an alarm is selected, a footer will slide into view below the table containing two buttons, one to alarms and the other to Shelve Acknow
 alarms. Check the box next to the alarm event to either shelve or acknowledge the alarm. With the shelved alarms visible, you’ll have ledge

the ability to selected alarms. This footer will also display messages as feedback when performing an action on the selected Unshelve
alarms (i.e., success, failure, etc.). To learn more, refer to the and pages in this section. Shelving Acknowlegement

Related Topics ...

Perspective Alarm Status Table - Common Tasks
Perspective - Alarm Status Table

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

Perspective Alarm Status - Configuring Properties in
Designer

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Getting Started
Filtering can be done in both the Designer and in a Perspective Session, but enabling and
disabling Alarm Status Table functions and setting up specified filtering options for client users is
configured in the Designer. The project designer or Ignition administrator have the permission to
enable or disable properties and setup filtering options in the Property Editor of the Designer
based on the project requirements and needs of the client users. If you are the project designer or
Ignition administrator, you probably want to check out all the Alarm Status Table properties in the
Perspective Property Editor. It's a good idea to scroll through all the alarm properties and expand
them to see additional properties and see the default property settings and preselected filtering
options.

The Alarm Status Table has some properties enabled by default, and some filter options already
preset in the Designer to give client users a head start using the table. It's in the Property Editor of
the Designer where table properties are enabled and disabled, and filtering options are configured
such as the alarm states and priorities to display, setting the shelving times, defining row styles,
choosing column headers and column sort options, or setting up a specific display path and source
path for operators to view.

The first time an Alarm Status Table component is dragged on to a window in the Designer, by
default, the table displays all the alarms that are currently 'Active and Unacknowledged,' 'Active
and Acknowledged,' and 'Cleared and Unacknowledged,' with a sort priority ranging from Low to
Critical.

On this page

...

Getting Started
Configuring
Properties in the
Designer

Shelving Times
Filtering on
Alarm States and
Alarm Priorities
Filtering on
Source Path and
Display Path

The Alarm Status Table below is similar to what you'll see when you first drag in an Table to a window. Alarm Status Designer

Configuring Properties in the Designer

Configure Alarms

Alarms must be set up on Tags for them to show up in the Alarm Status Table.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

When you drag a component into the Designer for the first time, it displays the alarm results withAlarm Status Table default properties
already configured and some filtering options already preselected for you. Some of the default settings may work for your client users, but
others may need to be modified in the Property Editor.

The first thing you might want to look at is the functionality that is enabled on the table component.

While in the Property Editor, expand the table's filters properties to see what filter properties are configured.

Here are a couple of examples of Alarm Status Table properties that you may want to modify.

Shelving Times

In this example, let's add a new shelve time.

The default shelvng times are as follows:

5 minutes
15 minutes
30 minutes
1 hour
2 hours
4 hours

Let's say you wanted to add another shelving time for 90 minutes. The project designer will need to update the property to 'shelvingTimes'
make 90 minutes available to operators. In the Property Editor, shelving times are entered as seconds, not minutes.

Preview Mode

When configuring the Alarm Status Table in the Designer, you have to go to to see your updates, filter, sort and Preview Mode
organize the alarm data in the table. When making modfications to the properties in the Property Editor, you will find yourself
toggling between the and Preview Modes multiple times to make sure your modifications are displayed the way you want Designer
them. Each time you reset your filtering options and column headers in the Designer, the table will refresh with new datalarm alarm
a based on your configuration and filter settings.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-PreviewingtheProject

1.

2.

To add a shelving time for 90 minutes, mouse over the value 3,600 (1 hour) and right click, select and click 'Add after' 'Value.'

Enter 5400 (seconds).

3.

1.

2.

Now, open your window in Preview Mode, and you'll see your updated shelving times.

Filtering on Alarm States and Alarm Priorities

By default, the alarm state and the priority are not enabled properties, but say for example the 'diagnostic' property 'clearAcked' 'diagnostic'
is required by operators. To make this property available, the project designer or Ignition administrator can go to the Property Editor to
enable 'diagnostic' for the operators to use in a Perspective Session.

Expand the properties. Here you see the default states and priorities. filters > active > states > priorities

Click the checkbox for the priority property to enable it making it available to the operators in a Perspective Session.'diagnostic'

2.

3. Go to to verify the 'diagnostic' property was added. You will see it displayed in the Filter Bar. Preview Mode

Filtering on Source Path and Display Path

You can filter the alarm list in the table to be a shorter list using the Filter properties instead of scrolling through every single alarm in your
system. In the Property Editor of the Designer, there is a group called that you can configure to focus on only those alarms you want Filters
to see. You can filter on , and . The most helpful properties to an operator are Source Path State, Source Path, Display Path Tag Provider
and Display Path.

Source Path

The is the actual which means you can also use Tag folders in Ignition to filter for specific alarms. For example, you may Source Tag path
want to filter for all Turbine alarms in the Turbines folder. You can enter (using as a wildcard) to look for all alarms with the *Turbine* *
Turbine Tag Path. The and properties allow you to restrict the results of the query to one or more paths. Multiple paths may Source Display
be specified with a comma. Additionally, these properties all use the asterisk (*) as wildcard character to denote any number of leading or
trailing characters, depending on placement as shown in the image below.

You can see in this example, all the active alarms have in the . 'Turbine' Source Path

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Tag+Providers

Source Path Examples

Example Filter Result

prov:tagProvider:/tag:Inputs
/PS_1:/alm:MyAlarm

Retrieve alarm information from the alarm at precisely the specified path:
prov:tagProvider:/tag:Inputs/PS_1:/alm:MyAlarm

*PS_1:/alm:MyAlarm Retrieves alarm information from any path that ends with . Thus the PS_1:/alm:MyAlarm
following paths would be returned:

prov:tagProvider:/tag:Inputs/PS_1:/alm:MyAlarm

prov:tagProvider:/tag:anotherFolder/different_Path/PS_1:/alm:
MyAlarm

prov:tagProvider:/tag:PS_* Retrieves alarm information from any source path starting with prov:tagProvider:
/tag:PS_

prov:tagProvider:/tag: :/alm:MyAlarmPS_1/MyAlarm

prov:tagProvider:/tag:PS_2/MyAlarm:/alm:MyAlarm

MyAlarm Retrieves any alarm information that has somewhere in the path.MyAlarm

Display Path

The is the Tag path that leads to the of the alarm which can be customized when you configure your alarm. In this Display Path Name
example, and were the names that were setup in the , and the Display Path is set to the Name ‘Low Level’ 'High Level' Alarm Configuration
you want the operator to see. The Alarm Status Table below is filtered by with a value of and So in Display Path 'Low Level' 'High Level.'
this example, you see results for both and alarms in the state.Low Level High Level Active, Unacknowledged

To learn more about alarm table properties, refer to the page.Perspective - Alarm Status Table

http://ps_1/alm:MyAlarm
http://tagprovider/tag:PS_
http://tagprovider/tag:PS_
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

Related Topics ...

Perspective - Alarm Status Table
Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Perspective Alarm Status - Filtering

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

The Alarm Status Table has many built-in properties that allow you to filter on various parts of an
alarm. What's super nice about the Perspective Alarm Status Table is everything is right at your
fingertips for filtering on alarm events. The table provides a host of built-in filtering options that are
immediately available in a and easy to modify to help you get started. Perspective Session

You can choose to filter on alarm states and priorites by clicking on the Filter button. In

addition, there is a search bar that The lets you further optimized your search results.

Configuration Settings allow operators to view alarm data that is most important to them, as
well as organize the alarm data any way they choose.

On this page

...

Filtering in a
Perspective Session

Using the Search
Bar

Viewing and Sorting
on Alarm Data

Sorting Alarm
Data

Filtering in a Perspective Session
In a Perspective Session, all the filtering tools the operators will need are built in to the Perspective Alarm Status Table. When first using the
table in a session, an operator could be using the default alarm status properties, or your project designer or system administrator may have
preconfigured some alarm status properties specific to your project. Either way, an operator can easily choose and filter on specific alarm dat
a and how they want it displayed.

In a session, you can easily change the filtering options on the table by clicking on the Filter icon and adding or removing a filter option
from the dropdown by checking or unchecking a filter option. Notice that there is a filter bar at the top of the table that also displays all the
filter options that are currently set. You can remove any of these filter options by clicking the 'X' on the right side of the option, but to add a

filter, use the dropdown . Notice how the Filter Bar displays the row color on the tab for Filter ActiveUnacknowledged

, ActiveAcknowledged , and ClearUnacknowledged

 states.

Configure Alarms

Alarms must be set up on Tags for them to show up in the Alarm Status Table.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

Using the Search Bar

Some operators may want to do some more targeted filtering like only seeing the 'Active, Unacknowledged' alarms for a specific type of
alarm. This is easily accomplished by deleting all the alarm state properties except for and entering a specific 'Active, Unacknowledged'
keyword or string in the seach bar to find specific alarms, events, and conditions. In the image below, the search criteria was for 'High

 It was found under three column headers: Display Path, Source Path, and Name. Speed.'

Viewing and Sorting on Alarm Data
In a Perspective Session, operators can choose to display or hide alarm data in the table by checking or unchecking any of the Configuratio

 , or right clicking in the header row of the table. You'll find that it's super easy to filter and display alarm event data using the n Settings
configuration options provided in the column header of the Alarm Status Table. You can do a multi-column sort by holding down aCtrl + Shift
nd clicking on the column headers you want to sort by.

If you need to align the columns, simply put your cursor to the left of the column header and drag left or right. There is a 'strictWidth'
property for each header column that can be configured in the Designer to strictly enforce the column width.

Sorting Alarm Data

Once your alarm is filtered, operators can also sort table columns in ascending or descending order by simply clicking the up or down arrows
next to each column header.

Sorting on alarm State and Priority in the Alarm Status Table, by default, sorts in descending order. All the other columns the sort order is
alphanumerical. Sort order for and are as follows:State Priority

Alarm State - ActiveUnacknowledged, ActiveAcknowledged, ClearUnacknowledged, and Clear Acknowledged.

Alarm Priority - Critical, High, Medium, Low, and Diagnostic.

The image below was filtered by ActiveUnacknowledged state, with a priority Critical and High. Once your alarm data is filtered, you can also
sort on the data in multiple columns by holding down the and clicking on the column headers you want to multisort by.Ctrl + Shift

The following feature is new in Ignition version 8.0.11
 to check out the other new featuresClick here

Perspective's Alarm Status Table now supports multiple sort orders. The order is first determined by the sort order properties on the Alarm
Status Table. There are two new sort order properties: ' and ' Each column that you add to the activeSortOrder' shelvedSortOrder.'
sort order property will also need to have a sort defined under the columns property as either ascending or descending.

You also need to make sure the configuration columns you choose for your sort are displayed on your table. One of the most useful sort
orders is by , as shown in the following image. Notice how each column is numbered according to your State - Priority - Active Time active

 property. SortOrder

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.11

Columns will first sort by anything defined in sortOrder and then fallback to the other sorts defined in the column configuration.

Related Topics ...

Perspective - Alarm Status Table
Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Perspective Alarm Status - Acknowledgement

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Acknowledging Alarms
The Alarm Status Table gives operators a ton of information at a glance about alarms that need
attention. One of the most important things an operator is going to do in a is Perspective Session
acknowledge alarms. Alarm acknowledgement is built in to the Alarm Status Table component. As
soon as the operator selects and presses the Acknowledge button, the current state of the alarm
will change, and the operator's credentials and the time the alarm was acknowledged will be
recorded in the Alarm Status Table.

The Alarm Status Table component allows you to select an individual alarm, multiple alarms or use
the checkbox in the header bar. To Acknowledge alarms, check all the alarms you 'Select All'
want to acknowledge, and a footer will open at the bottom of the table to show the Acknowledge
button. Press the button and the Alarm Status Table will record the time the alarm Acknowledge
was acknowledged and the user that acknowledged the alarm in the database. (Note, to see this
alarm information displayed in the table, the column headers may need to be configured as
described later on this page).

In the following example, one alarm was checked and Acknowledged.

On this page

...

Acknowledging
Alarms

Configuring
Table Headers
Acknowledgemen
t Notes

Security for Alarm
Acknowledgement

When you mouse-over an row, you'll notice a popup modal () on the far right of the table that allows you to view the alarm alarm
details by simply clicking it. This brings up the window to view the configuration properties. Alarms Details alarm

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3

Configuring Table Headers

If you don't already have the and displayed in your table header, select them from the dr'Ack Time' 'Ack User' Configuration Settings
opdown. You can also add any other alarm data you want to display, or remove any alarm data that you don't need to display from the Alarm
Status Table.

Notice that the time the alarm was acknowledged and who acknowledged the alarm is now shown in the table.

Acknowledgement Notes

If any of the selected alarms require , a small window will appear when the Acknowledgement button is pressed. Acknowledgement Notes
The operator will be required to add notes, otherwise the alarm cannot be acknowledged. Enter your notes and press . If the Ack Alarm(s)
operator wants to cancel the Acknowledgement Notes and close the window, click on the button to close the Acknowledgement Cancel
notes window.

Configuring Acknowledgement Notes

Acknowledgement Notes are set up in the alarm's configuration settings. To set up Acknowledgement Notes, go to your alarm
configuration settings and set 'Ack Notes Required' to 'true.' For more information, refer to Configuring Alarms.

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

1.

2.

3.
4.
5.

Security for Alarm Acknowledgement
You can restrict specific users or roles from Acknowledging alarms by setting the property in the Property Editor toenableAcknowledge 'fals

 This hides the Acknowledge button on the Alarm Status Table for those users who do not have permission. You can setup permissions e.'
for any , user and in your system.role user source

For example, if you only want those users with the Operator role to acknowledge alarms, the correct permission must be assigned.

Select the Alarm Status Table component, and click the icon to open the Property Binding enableAcknowledge binding
window.
Under , select .Property Binding Type Expression

Click the icon and scroll down to and select ' This enters the function name.Function Users, isAuthorized.'
Edit the expression to read: isAuthorized(true, "Authenticated/Roles/Operator")
Click . OK

If you currently have the 'Operator' role, you'll notice in the Property Editor of the Designer that the property is enableAcknowledge
set to and for other roles, it will be set to 'true,' 'false.'

https://legacy-docs.inductiveautomation.com/display/DOC80/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC80/User+Sources

Related Topics ...

Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Perspective Alarm Status - Shelving

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

The capability to shelve alarms is another important feature of the . Perspective Alarm Status Table
Shelving alarms allows you to temporarily silence an alarm for a fixed period of time. This feature
is extremely handy when an alarm is already active and you want to temporarily surpress the
alarm while you're working on the issue. The component will not Perspective Alarm Status Table
send any notifications while the alarm is shelved, and will be temporarily dropped from the Alarm
Status list so operators don't get confused and think it's active. When the shelved time period is up
and if the alarm is still active, it will return into the Alarm Status list.

The top of the Alarm Status Table displays the number of shelved alarms. To view all the shelved
alarms, click on this button.Shelve

On this page

...

How to Shelve an
Alarm

Viewing Shelved
Alarms
Unshelve Alarms

Configuring Custom
Shelving Duration

How to Shelve an Alarm
To shelve an alarm, select one alarm or multiple alarms, and a footer will open at the bottom of the table to show the button. Click the Shelve

 button and a dropdown will automatically open so you can set a duration to silence the selected alarms. You can set a duration from Shelve
5 minutes to 4 hours to shelve selected alarms. Choose the duration and your alarm will immediately be shelved for your selected alarms.

The example below shows two alarms were shelved for one hour.

Viewing Shelved Alarms

To see details for the shelved alarms click at the top of the Alarm Status Table. The Shelved tab will display the date/time for when Shelved
the alarm expires. and are also displayed for each alarm event. To return to active alarm, click on .Shelved By Source Path Active

Active Alarms

Active alarms must be present in the Alarm Status Table before you can shelve an
alarm.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

Unshelve Alarms

To unshelve alarms, click at the top of the Alarm Status Table. Select one or multiple alarms, and the footer at the bottom of the Shelved
table will open with the Unshelved Selected Alarms button. Press the and the alarm will return back to the Unshelved Selected Alarms
Alarm Status list.

Mouse over an alarm event and you'll notice a unshelve icon () on the right side of the alarm. You can delete a single alarm event by

clicking the (). Unshelve icon

After the amount of time expires on a shelved alarm it will be evaluated, and if it is still active, it will automatically return to the Alarm Status
list. If the alarm transitions to a cleared state during the time shelved period, the alarm will show up as in the 'Cleared,Unacknowledged'
Alarm Status list instead of as shown in the blue rows in the example below. 'Active, Unacknowledged'

1.

Configuring Custom Shelving Duration
The shelving duration values on the Table component can be customized in the Designer. By default, the Alarm Status Table Alarm Status
has several preset shelving duration times, but you can add or remove times based on your requirements. One thing to note when modifying
the shelving times is that there is no option to set a shelving time indefinitely. Shelving times are meant to temporarily suppress the alarm
while you're working on the issue. They are not meant to be long term.

In the Property Editor, there is a called This is where you can add, remove, or change the shelving times for property shelvingTimes.
alarms. Shelving time is calculated in seconds.

In the following example, let's add to the list of shelving times. 3 hours

1.

2.

3.

Select the Table component. Under the property, insert a of seconds (3 hours).Alarm Status shelvingTimes Value 10,800

To verify your new time was entered correctly, go to , select the s you want to shelve, and press the Preview Mode alarm Shelve
button. A footer will open at the bottom of the table and you should see your new shelve time in the dropdown list (i.e., 3 hours).

Click the shelving time to temporarily silence your s. alarm

Related Topics ...

Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Perspective Alarm Status - Row Styles

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

The Perspective Alarm Status Table comes with a default set of row colors associated with each of
the alarm states. Each alarm state has a preset row color, and each of its priorities has a variation
of that same color. By default, when you drag a Alarm Status Table into the Designer for the first
time, rows are red for Active Unacknowledged alarms events and blue for Cleared
Unacknowledged alarm events, as shown in the image below.

On this page

...

Customizing Alarm
Row Styles

Example 1 -
Modifying the
rowStyle
backgroundColor
Property for an
Alarm State
Example 2 -
Adding a Style
Class to a
rowStyle to Make
a Critical Priority
Alarm Blink

Customizing Alarm Row Styles
In the Property Editor of the Designer you can modify an existing row style, add more styles, or delete a style. You can customize the row
styles for any of the alarm states and their priorities. You can even create a to set a custom appearance to make a row for a style class
particular state and priority blink.

In the Designer, right click on the component, then go to the Property Editor. Expand the property and also Alarm Status Table rowStyles
expand each of the priorities for the state. You'll notice how each priority has a different shade of red for the activeUnacked backgroundCol

 property, except for diagnostic which is set to white with black text.or

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table

1.
2.
3.

Each alarm state has the same default rowStyle properties, but their values are different. Here is a list of default backgroundColor
properties for each rowStyle alarm state:

base - Opens a menu to configure for Text, Background, Margin and Padding, Border, Shape and Style Options style elements
Misc.
classes - Allows to you set a pre-defined .style class
backgroundColor - Background color for each of the priorites (i.e., diagnostic, low, medium, high, critical) for an alarm state.
color - Color of the Text.
fontWeight - Font weight of the text.

You can modify rowStyles properties in multiple places: using the base (i.e., menu) or in the Property Style Options property data types
Editor. When you modify, add, or remove a style property from either Style Options menu or the Property Editor, the change will immediately
be visible in both locations, as well as in the table.

Example 1 - Modifying the rowStyle backgroundColor Property for an Alarm
State

Let's change the backgroundColor property for the priority in the state. There are two different ways of changing style Low activeUnacked
properties. Both are documented here.

In the Designer, select the Alarm Status Table component.
Go to the Property Editor, expand property and the state. Also, expand and property.rowStyles activeUnacked priorities low
The easiest way to change the property is to click on the icon. This brings up the window. Select backgroundColor Color Selector
one of the four tabs (Wheel, Palette, RGV and HSL) and choose a color.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyDataTypes
https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference

3.

4.

a.

b.
c.

Another way to change the backgroundColor in rowStyles is from the menu. Style Options

Simply click on the Modify Style icon next to . This opens the menu. low Style Options

Click the tab to open a list of background elements.Background
Click on the dropdown color palette or color wheel. Choose a color.

4.

c.

5.

6.

The for the 'Low' priority is now changed, but it's hard to read. Let's change to the color of the font to black.backgroundColor

Expand . Mouse over the priority, and click the 'priorities' 'low' plus icon.

6.

7.
8.

For the , enter property.'key' 'color'
Enter a value by clicking the gray square to open the popup color wheel or color palette, then chose the color . 'black'

8.

9. The text is now black and readable with the turquoise row style color.

1.

2.
3.
4.
5.
6.

7.

8.

9.
10.

11.
a.
b.

Example 2 - Adding a Style Class to a rowStyle to Make a Critical Priority
Alarm Blink

In this example, let's make the activeUnacknowledged Critical property blink between two colors, red and yellow, so it captures the attention
of the operator. To do this, we need to create a .Style Class

In the , right click on the Styles folder, select and enter a name (i.e, Blinking). Click . Project Browser New Style, OK

Set to in the upper right corner.Animated 'true'
Click on to set the style for the beginning of the animation.0%
Click on to see Background settings for Critical priority for the activeUnacked state and choose a color.Background
Next, click on to set the style for the end of the animation.100%
Click on to expand the Background settings, and choose a color from the either the color palette or color wheel (i.e., Background
yellow). When choosing a second color, make sure it will be readable when it is blinking.
Lastly, let's add a stop so that the red rowStyle stays on for a longer period of time than yellow. Right click to add a stop somewhere
along the linear line. Drag the stop to about because red is easier to read than the yellow. 80%
Notice the other Animation properties on the Edit Style window. You can set Duration, Direction, number of Iterations, and more. For
a detailed description of the Animated properties, refer to . Animated Style Classes

Click to save your new style class.OK
Next, apply the style class to the property. In the Property Editor, expand and the state. Then expand rowStyles activeUnacked pri

 and .orities critical
Add a under the Critical property:'value' property data type

Mouse of the property then click the gray plus sign to add a property. 'critical'
Choose from the property type popup menu. value

https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Classes#StyleClasses-AnimatedStyleClasses
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyDataTypes

11.

b.

c.
d.

12.

Click on and change it to (case sensitive).key classes
Click on . Select the from the dropdown (i.e., Blinking). value name of your new style class

12.

13.

Now, all your alarms for will blink red and yellow. critical Active Unacknowledged

When you're finished creating your Style Class and have your rowStyles configured, don't forget to your project. Save

Related Topics ...

Color Selector Reference
Style Classes
Style Reference
Alarm Event Properties Reference

https://legacy-docs.inductiveautomation.com/display/DOC80/Color+Selector+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Style+Reference
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Event+Properties+Reference

Perspective Alarm Journal Table - Common Tasks

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

The Perspective Table has a number of configuration options that can be used to do Alarm Journal
things like filter on realtime and historical alarm data, and change how the component displays
those alarms. This section describes some of the common tasks for the Alarm Journal Table.

On this page

...

Alarm Journal Table
- User Interaction
Perspective Alarm
Journal Table -
Configuring
Properties in the
Designer
Perspective Alarm
Journal - Filtering
Perspective Alarm
Journal - Row Styles

Alarm Journal Table - User Interaction
Before you get into the nuts and bolts of how to perform specific tasks outlined on this page, there are a couple things you should know
about working with the . The page introduces you to the look and feel of the Alarm Journal Table and Alarm Journal Table User Interaction
how to use the basic functionality built in to the table.

Perspective Alarm Journal Table - Configuring Properties in the
Designer
The project designer and Ignition administrator have the option to enable or disable properties and setup filtering options in the Property
Editor of the Designer based on the project requirements and needs of the client users. This page describes which properties are enabled
and which properties have some default filtering options preset. Learn how to configure your own properties in the on Alarm Journal Designer
the page.Configuring Properties in the Designer

Perspective Alarm Journal - Filtering
The Perspective Table component has many built in properties that allow you to filter on various parts of an . Refer to the Alarm Journal alarm

 page to learn how to use the different built-in filtering options, the search bar to optimized your search Perspective Alarm Journal - Filtering
results, and the date range feature to view alarm history in the journal table.

Perspective Alarm Journal - Row Styles
The Perspective Table colors each row a specific color depending on what type of alarm event it is. It uses different styled Alarm Journal
rows to differentiate between alarms in different state and priorities. These can be completely customized using whatever colors Row Styles
and fonts you want for different events. You can also setup new row styles based on other properties and even add a blinking style drawing
an operator's attention to critical alarms!

In This Section ...

Alarm Journal requires connecting to a database

The must first be set up with a valid connection for the Alarm Journal database Alarm
 Table to see history from the .Journal alarm database

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal

Perspective Alarm Journal - User Interaction

Getting Started with the Alarm Journal Table
If you're setting up the Alarm Journal Table for the first time, you probably will want to take a look
at the table's properties in the Property Editor. There a number of properties that are enabled by
default such as the search toolbar, alarm details popup, and date range to name a few. You
should become familiar with them in the event you would like to change them. Other properties
have default options already selected for you, like alarm status, alarm priorities and row styles.

When you drag your first Alarm Journal Table component into the Designer workspace, the Alarm
Journal Table will automatically populate if you have any alarms configured and an Alarm Journal

 created. It will look something like the image below. You'll notice it resembles the same Profile
layout as the Alarm Status Table and shares the same Configuration settings and filter options. By
default, the journal table will show you the last 8 hours of alarm journal data.

You can interface with the journal table in the , in Preview Mode of the , and in a Designer Designer
. The Table properties are configured in the Property Editor of Perspective Session Alarm Journal

the . Designer

When setting up your Table for the first time, you will have to toggle between both Alarm Journal
the and Preview Modes to configure properties and organize how to display your joDesigner alarm
urnal data, and how to size the data columns in the table. There is a column property you can set
to strictly enforce the column width if you prefer.

On this page

...

Getting Started with
the Alarm Journal
Table

Anatomy of an
Alarm Journal
Table

Anatomy of an Alarm Journal Table

The Table may look overwhelming at first, but you will quickly get familiar with it. The following example shows the basic Alarm Journal

anatomy of an table with event data populated in the rows. There are a host of Configuration Settings and Alarm Journal Filter Settings

 that you can set to provide relevant information about your alarms events. Use can filter on Realtime or Historical alarms by clicking on

the Data Range icon . You can also optimize your search results by using the search feature and entering keywords to help

further refine your results. When you hover over a row, a popup modal will appear. By clicking the Popup Modal icon you can see the ala
's details. You can also set the number of rows to display and scroll through the list of pages at the bottom of the journal table. rm alarm

Lastly, the Table comes with a default set of row colors based on the state and priority which are totally customizable. Alarm Journal alarm

https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal#AlarmJournal-CreatinganAlarmJournalProfile

To learn more about using the functions and features, refer to the filtering and row styles pages in this section. The Alarm Journal Alarm
 component page describes all the journal properties and how to use them. TableJournal

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table

Perspective Alarm Journal - Configuring Properties in
Designer

The following feature is new in Ignition version 8.0.3
 to check out the other new featuresClick here

Getting Started
Filtering can be done in both the Designer and in a Perspective Session, but enabling and
disabling Alarm Journal Table functions and setting up specified filtering options for client users is
configured in the Designer. The project designer and Ignition administrator has the option to
enable or disable properties and setup filtering options in the Property Editor of the Designer
based on the project requirements and needs of the client users. If you are the project designer or
Ignition administrator, it's a good idea to check out all the Alarm JournalTable properties in the
Perspective Property Editor. Scroll through all the alarm properties and expand them to see
additional properties and see the default property settings and filtering options.

The Alarm Journal Table has some properties enabled by default, and some filter options have
already been selected in the Designer to give client users a head start using the table. It's in the
Property Editor of the Designer where table properties are enabled and disabled, and filtering
options are configured such as the alarm states and priorities to display, setting the shelving times,
defining row styles, choosing column headers and column sort options, or setting up a specific
display path and source path for the operators to view.

The first time an Alarm Journal Table component is dragged on to a window in the Designer, by
default, the table displays all alarm events for the last 8 hours that are in an , Active Acknowledged
and state with a priority of , , and .Cleared Low Medium High Critical

On this page

...

Getting Started
Configuring
Properties in the
Designer

Filter Properties
Condition
Properties
Row Styles
Properties
Column
Properties

The Alarm Journal Table below is similar to what you'll see when you first drag it into a window. Designer

Configuring Properties in the Designer
When you drag a Alarm Journal Table component into the Designer for the first time, it displays the alarm history with default properties
already configured and some filtering options already preselected for you. Some of the default settings may work for your client users, but
others may need to be modified in the Property Editor.

Alarm Journal Profile

To view alarm history, an Alarm Journal Profile and a valid connection to a database
must be created first before logging alarms.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.3
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Connections

As the project designer, the first thing you might want to look at is the functionality that is enabled on the journal table component.

Filter Properties

While in the Property Editor, expand all the table's properties to see what properties are configured. The first thing you might want to filter
look at is what settings are set. , , and are set by default, but you'll need to decide if these settings work for events Active Acked Cleared
your operators. Next, look at the alarm priorities and verify if , , , and priorities are the alarm events you want your Low Medium High Critical
operators to monitor.

Preview Mode

When configuring the Alarm Journal Table in the Designer, you have to go to to see your updates, filter, sort and Preview Mode
organize the alarm data in the table. When making modfications to the properties in the Property Editor, you will find yourself
toggling between the and Preview Modes multiple times to make sure your modifications are displayed the way you want Designer
them. Each time you reset your filter options and column headers in the Designer, the journal table will refresh with new data alarm
based on your configuration and filter settings.

https://legacy-docs.inductiveautomation.com/display/DOC80/General+Designer+Interface#GeneralDesignerInterface-PreviewingtheProject

Condition Properties

As the project designer, you might want to control what , , and/or you want your operators monitoring. source path display path tag provider
Under the property, you can set these values so operators are not navigating to other source paths, display paths or tag conditions
providers other than what you configure. In the following example, wildcards were used to search on 'High Speed' in the Display Path
property.

Row Styles Properties

There are some preset row styles background color configured for each alarm state. Open each alarm state property to see its default color.
These properties are easy to modify using the color palette. You also have the option to create your own row style for each priority for each
alarm state. It's best not too have too many colors and to have a standard set of colors so operators can quickly identify alarms they need to
respond to quickly.

Column Properties

The column properties are the Configuration Settings or column headings on the journal table. By default, all the column headings are
enabled so client users can pick and choose which headings or type of alarm data they want to display. Each column heading property has
four subproperties: enabled, column width, strict width, and sort order. The designer can configure the column settings for client users, but it's
recommended to give client users flexibility to display alarm data in the manner that helps them perform their jobs.

To learn more about alarm journal properties, refer to the page.Perspective - Alarm Journal Table

Related Topics ...

Perspective - Alarm Status Table
Configuring Alarms

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms

Perspective Alarm Journal - Filtering

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

Overview
The Alarm Journal Table has many built-in properties that allow you to filter on various parts of an
alarm in a Perspective Session. It provides a host of built-in filter options that are immediately
available and easy to modify to help you get started. You can filter on Realtime and Historical

alarm events using the Data Range selector . The Search Bar lets you further
optimized your search results. You can even organize the alarm data to show or hide columns,
reorganize and resize columns, and change the sort order to ascending or descending.

General Filtering
When you use the Alarm Journal Table for the first time in a Perspective Session, you could be
using the default journal properties, or your project designer or system administrator may have
preconfigured some journal properties specific to your project. Either way, an operator can easily
choose and filter the alarm data and how they want it displayed.

By default, the Alarm Journal Table displays all alarm events for the last 8 hour and displays event
alarms that are in an , and state with a priority of , , Active Acknowledged Cleared Low Medium Hi

and . You can easily change these filter options by clicking on the and gh Critical Filter icon
adding or removing a filter option from the dropdown by checking or unchecking a filter option. Noti
ce that there is a filter bar at the top of the table that also displays all the filter options that are
currently set. You can remove any of these filter options by clicking the 'X' on the right side of the

option, but to add a filter, use the Select Filter dropdown . Notice how the 'state' filter options

show the row color on the tab for Active , Acknowledged an

d Cleared .

On this page

...

Overview
General Filtering

Using the Search
Bar
Filtering on Date
Range

Viewing and Sorting
on Alarm Data
Sorting Alarm
Journal Data
Viewing Alarm
Details

Viewing All
Instances of an
Alarm
Viewing the
Source Path of
an Alarm

Alarm Journal -
General Filtering

Watch the Video

Alarm Journal Profile

To view alarm history, an Alarm Journal Profile and a valid connection to a database
must be created first before logging alarms.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://www.inductiveuniversity.com/videos/alarm-journal-general-filtering/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Alarm+Journal
https://legacy-docs.inductiveautomation.com/display/DOC80/Database+Connections

Using the Search Bar

You can optimize your filtered results using the Search Bar. Click on the and create your own search string to find specific Search icon
alarms, events, and conditions.

Filtering on Date Range

The Alarm Journal Table can filter for alarm events in either Realtime or Historical. To filter on Realtime or Historical alarm events, select the

 . Date Range icon

Realtime

You can filter on Realtime alarm events using the feature. Simply enter select Realtime, and enter the amount of time in hours, Data Range
days, weeks, months, or years of the alarm events to display. Then click .Apply

Historical

The Table displays the complete history of all alarms within a specific time period that you set. Typically, operators want to filter Alarm Journal
events within a specific time period so they can narrow down the number of alarm events that need to be viewed. Select , alarm Historical

enter the date range by clicking on the and , then select the and , and click . Start Date End Date Start Time End Time Apply

Viewing and Sorting on Alarm Data
There are a host of configuration settings to choose from in which to display alarm event data. In a Perspective Session, operators can

choose to display or hide alarm data in the table by checking or unchecking any of the Configuration Settings or by right clicking in the
header row of the table. It's super easy to filter and display alarm event data using the configuration options provided in the column header of
the Alarm Status Table. You can do a multi-column sort by holding down Ctrl + Shift and clicking on the column headers you want to sort by.

If you need to align the columns, simply put your cursor to the left of the column header and drag left or right. There is a 'strictWidth'
property for each header column that can be configured in the Designer to strictly enforce the column width.

The following feature is new in Ignition version 8.0.11
 to check out the other new featuresClick here

Sorting Alarm Journal Data
Perspective's Alarm Journal Table now supports multiple sort orders. The order is first determined by the sort order properties on the Alarm
Journal Table. The new sort order property is ' activeSortOrder.' Each column that you add to the sort order property will also need to
have a sort defined under the columns property as either ascending or descending.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.11

You also need to make sure the configuration columns you choose for your sort are displayed on your table. In the following image, you can
see that the sort order is - - . Notice how each column is numbered according to the order you defined in Event State Priority Event Time
your activeSortOrder property.

Columns will first sort by anything defined in property and then fallback to the other sorts defined in the columns activeSortOrder
configuration.

Viewing Alarm Details
If you want to find out more details about an alarm event, simply mouse over an alarm event and click on the popup modal that will appear on
the right side of table. This opens an Alarm Detail window that displays the alarm properties and any notes that were entered by an operator.

Viewing All Instances of an Alarm

If you select an alarm, a window will appear at the bottom of the journal table where you can choose to view instances of that specific alarm
or its source path. When you click on the button, the journal table will refresh with instances of the selected alarm. Alarm

In this example, High Speed alarm was selected to view all instances of the alarm.

Click the link to return to all alarm events on the journal table.View all events

Viewing the Source Path of an Alarm

You can also click the button to display the source path of the selected alarm. Source Path

Click the link to return to the alarm events on the journal table. View all events

Related Topics ...

Configuring Alarms
Perspective - Alarm Journal Table

https://legacy-docs.inductiveautomation.com/display/DOC80/Configuring+Alarms
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Alarm+Journal+Table

Perspective Alarm Journal - Row Styles

The following feature is new in Ignition version 8.0.8
 to check out the other new featuresClick here

The Perspective Alarm Journal Table allows you to customize row styles for different states and
priorities of alarm history. Just like the Alarm Status Table, the Alarm Journal Table is
preconfigured with a default set of colors under the property for each of the alarm event rowStyles
states, and immediately ready for you to use. The default row colors are pink for Active, yellow for
Acknowledged, blue for Clear, and white for System alarms events.

On this page

...

Customizing Row
Styles for the
Different Alarm
States

Example 1 -
Modifying the
rowStyle
backgroundColor
Property for an
Alarm State
Example 2 - Add
a Style Class to
a rowStyle

Alarm Journal -
Row Styles

Watch the Video

Customizing Row Styles for the Different Alarm States
The Alarm Journal Table comes with a default set of row colors associated with each of the different alarm states. You can modify an existing
row style in the Designer by modifying the properties for each of the alarm states. Each state has the same default rowStyle 'rowStyle' alarm
properties, but their values are different. backgroundColor

Here is a list of default properties for each row:

base - Opens a menu to configure for Text, Background, Margin and Padding, Border, Shape and Style Options style elements
Misc.
classes - Allows to you set a pre-defined . style class
backgroundColor - Background color for each of the priorites (i.e., diagnostic, low, medium, high, critical) for an state. alarm
color - Color of the Text.

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.8
https://legacy-docs.inductiveautomation.com/display/DOC80/Vision+-+Alarm+Journal+Table
https://www.inductiveuniversity.com/videos/alarm-journal-row-styles/8.0/8.0
https://docs.inductiveautomation.com/display/DOC80/Styles
https://docs.inductiveautomation.com/display/DOC80/Styles
https://docs.inductiveautomation.com/display/DOC80/Style+Classes

1.
2.

3.

fontWeight - Font weight of the text.

You can modify rowStyles properties in multiple places: using the (i.e., 'base' Style Options menu) or data typesproperty in the Property
Editor. When you modify, add, or remove a style property from either Style Options menu or the Property Editor, the change will immediately
be visible in both locations, as well as in the table. Here are two examples of how to modify rowStyles in an Alarm Journal.

Example 1 - Modifying the rowStyle backgroundColor Property for an Alarm
State

Let's change the background row color for the state with a priority from pink to red. 'active' 'critical'

In the Designer, select the Alarm Journal Table component.
In the Property Editor, expand the property and the state and properties.rowStyles 'active' 'priorities'

Expand the property. Mouse over the priority property and click on the icon.'critical' 'critical' plus

https://docs.inductiveautomation.com/display/DOC80/Styles
https://docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyDataTypes

3.

4.
5.
6.

A dropdown will appear and select 'value.'
The word will be highlighted, enter the property.'key' 'backgroundColor'
Enter a value by clicking the gray square to open a popup color wheel or color palette, then choose a color (i.e., red).

6.

7. This will change the property for the state and priority from pink to red. backgroundColor 'Active' 'Critical'

1.
2.
3.
4.
5.

6.
7.

8.

9.
10.
11.

Example 2 - Add a Style Class to a rowStyle

You can create a new style class to make a row style stand out and draw attention to that alarm state. In this example, let's create the 'active'
state with the priority blink between two colors, red and green. 'critical'

To create a new Style Class, go to the right click on and click on Project Browser, Styles Folder, New Style.
Enter a name (i.e. Blinking) for your new style, and click . The window will open. Create Style Class Edit Style
Set to in the upper right corner.Animated 'true'
Click on 0% to set the style for the beginning of the animation.
Click on to see Background settings for this style and choose a color. This example uses red. Background
Notice the other Animation properties on the Edit Style window. You can set Duration, Direction, and number of Iterations. For a
detailed description of the Animated properties, refer to Animated Style Classes.

Next, click on to set the style for the end of the animation. 100%
Click on to expand the Background settings, and choose a color from the either the color palette or color wheel (i.e., Background
green). When choosing a second color, make sure the foreground color will be readable when it's blinking.
To make one of the colors stay for a longer part of the duration, we can add another stop to the animation timeline. Right click on the
horizontal line between the 0% and 100% boxes. Drag the stop to about to show the red (0% color) for longer than the green 80%
(100% color).
Set the Background color on this new 80% stop to match the red background color of the 0% stop.
Click to save your new style class.OK
Lastly, set the style class on the priority property to the name of the class (i.e.,). 'cirtical' Blinking

https://docs.inductiveautomation.com/display/DOC80/Style+Classes#StyleClasses-AnimatedStyleClasses

11.

12. Now your 'active' alarm state with a 'critical' priority will blink red and green.

1.

2.

Reporting in Perspective

The following feature is new in Ignition version 8.0.10
 to check out the other new featuresClick here

The Report Viewer component allows you to embed reports from the Reporting Module in a
Perspective view, as well as view and print reports in PDF format. The Report Viewer located at
the bottom of the Perspective Component palette in the .Designer To configure the Report Viewer,
you must first create a report.

To learn more about creating reports, refer to the section.Reporting

On this page

...

Configuring the
Report Viewer

Report Viewer
Properties
Using the Report
Viewer

Configuring the Report Viewer
The Report Viewer component provides an easy way to view and print reports in a Perspective View. Let's configure the Report Viewer for a
report.

Drag a component into a view.Report Viewer

Report Module

The Report Module must be installed to use the Report Viewer component.

This example requires that you already have a report created in your Gateway. You can learn more about creating reports .here

https://docs.inductiveautomation.com/display/DOC80/New+in+this+Version#NewinthisVersion-Newin8.0.10
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting

1.

2.

3.

Enter the Path of the report you want to view in the property of the Property Editor. The data from your report will 'source'
immediately load into the Report Viewer.
Tip: You can right-click on any report in the designer Project Browser to Copy the full Path of the report.

Parameters added during report creation are provided as properties in the Report Viewer. Add them under the object. (The 'params'
example below uses the EndDate and StartDate parameters). The parameter names must match exactly to the parameters in your
Report Resource, and will override any default values set in the Report Resource. The Report Viewer also allows you to bind your
report parameters in your view.

3.

Report Viewer Properties

Once you are ready to view your report in the Report Viewer, set the property to your report. If you have parameters defined in the 'source'
Report Source, you can configure them under the object, but the parameter names must match. The parameter values configured 'params'
in the Report Viewer will override the values in the Report Source.

You can pick a starting page using the 'page' property. Each time another page is viewed, the property value will be updated.'page'

You can specify a desired and every time the zoomLevel changes, the property value will also be updated.'zoomLevel'

You can customize the visual style of your report by creating a new style for your report such as changing the background colors of the
viewer (not the report page), changing to a style class that was already defined in your project, or creating a new style.

The 'allowDownload' and 'allowOpenInTab' properties allow you to view and print your report.

To see the property descriptions, refer to the Perspective - Report Viewer page.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Report+Viewer

Using the Report Viewer

Once you have your report designed, it can be viewed one page at a time using the navigational controls across the bottom of the
component. You have the option to download a report to your local device or print a report to your local printer using these built-in controls.

Related Topics ...

Reporting
Perspective - Report Viewer

https://legacy-docs.inductiveautomation.com/display/DOC80/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Report+Viewer

Common Tasks in Perspective

This section contains examples for items we identified as "common" tasks: methods that many
users are looking to utilize when first starting out with the Perspective Module or feature in . Ignition
Additionally, this section aims to clarify some of the more complex or abstract tasks that our users
may encounter.

The examples in this section are self-contained explanations that may touch upon many other
areas of Ignition. While these examples are typically focused on a single goal or end result, they
can easily be expanded or modified after the fact. In essence, they serve as a great starting point
for users new to , as well as experienced users that need to get acquainted with a new or Ignition
unfamiliar feature.

Below is a list of common tasks related to this section of the manual.

On this page

...

Popup Views
Navigating with the
Horizontal Menu
Self-Hiding
Navigation Drawer
Configuring a
Dashboard
Displaying a
Subview in a Table
Download and
Upload Files
Table Column
Configurations

Popup Views
Popup Views are a great way to enable users to view more detailed information in your HMI. They are also relatively simple to create.

Navigating with the Horizontal Menu
The component is a great option for easy, quick navigation between pages. For an example, see Horizontal Menu Navigating with the

.Horizontal Menu Component

Self-Hiding Navigation Drawer
A is a special type of docked menu, usually appearing on the left side of a session. What makes a navigation drawer navigation drawer
special is its responsive design. This example walks you through creating a self-hiding navigation drawer that is only displayed when the user
needs it.

Configuring a Dashboard
The Dashboard exposes widgets to end users in a so they can customize their layout for their individual Perspective Session dashboard
needs. Widgets are that are pre-configured in the and made available to Perspective Session users. For an example, see views Designer Con

.figuring a Dashboard

Displaying a Subview in a Table
In a Perspective Table component, you have the option to enable subviews. When a subview is set up, you can click on the Expand icon in
the table and have another view be displayed without closing the first view. For an example, see .Displaying a View in a Table

Download and Upload Files

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Horizontal+Menu
https://docs.inductiveautomation.com/display/DOC80/Perspective+Sessions
https://docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Displaying+a+View+in+a+Table

Downloading and uploading files from a Perspective session typically involves storing and retrieving files from a database. A table will store
all of the available files, and each row of the table represents a new file. This allows for long term storage that is accessible from any project.
For examples, see Download and Upload Files.

Table Column Configurations
In a Perspective Table component, you have the ability to replace a cell with something other than just text or a number. Instead, you can

Table Column Configurationshave the column render other objects altogether such as progress bars or a view. For an example, see .

In This Section ...

1.

2.

Popup Views

A Popup View typically floats on top of the primary view in a Perspective
Session, and it can be resized and moved around at the user's discretion.
Popup Views are great for displaying additional information about an item
on the primary view. Popup Views are often opened by components such
as a Button on another view. When a user doesn't need to have the
additional information displayed on the screen, it can be closed by clicking
the Button again or simply closing the view.

Title Bars on Popups
When called as a popup, a built-in title bar will be applied to the view if any of the following
conditions have been met via the Popup Action configuration, or the corresponding parameters
have been set on the appropriate system function, such as :system.perspective.togglePopup

A non-empty string title is provided (the parameter on scripting functions)title
The popup is marked as with a "close" icon, meaning the "show close Icon" setting is
enabled (the scripting parameter)showCloseIcon
The popup is marked as "Draggable", (the scripting draggable parameter).

On this page

...

Title Bars on Popups
Configuring a
Popup View

Popup Views

Watch the Video

Configuring a Popup View
Let's assume you already have a primary view that contains some Tanks. At a glance, an operator can view some basic information on all
the Tanks at a particular site, but they cannot see the additional information that is being collected that is unique to each Tank. The perfect
way to display that unique information is to use a Popup View for each Tank.

Here is an example of how to use a Button component to setup a popup view for displaying the current tank temperature and history for the
last 24 hours of the selected tank.

First , and give it a name. You many want to assign a name that you can easily recognize as a Popup View and create a new view
the Tank ID number (i.e., Popup100).

Next add some components to the Popup View. In this example, a Thermometer, Sparkline, and Label components were added.

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.togglePopup
https://www.inductiveuniversity.com/videos/popup-views/8.0/8.0
https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews

2.

3.

4.

Now, let's go back to the primary view and add a Button component for each of the Tanks and label them .'Temp'

Right click on the Temp button for Tank 100, and select . Configure Events

Multiple Popup Views

To display the additional data for all Tanks, you will need to create a Popup View for each Tank. You can use the Flex
 component toRepeater easily create multiple instances of components for display in another view each having the same

look, feel, and functionality of the original components.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Repeater
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Flex+Repeater

4.

5.

6.

7.

8.

9.

10.

The Event Configuration window opens. Under Events, select .onClick

Under Organize Actions, click the icon to choose the appropriate action for the Temp button. Since we are opening a Add
Popup View, select from the dropdown list. Popup

You have several Popup Actions to choose from.
Open - Opens the Popup View.
Close - Closes the Popup View.
Toggle - Opens and closes the Popup View. Select so you can use the Temp button to both open and close the Toggle
Popup View for the specified tank.

In the Configure Popup Action area under Select View, select your Popup View that you created in Step 1. This example uses Tank
100 and the Popup View is .'Popup100'
You also have some additional settings for customizing the behavior and appearance of your popup. Some of these options are set
by default, and others you can customize. When you're finished, click . OK
Repeat Steps 4 through 9 for Tank 101 and Tank 102.

10.

11.
12.

Save your project.
Now let's see how your Popup View works in a Perspective Session. While in the Designer, go to the top menubar and click Tools >
Launch Perspective > Launch Session.

12.

13.

14.

Click on the button for You'll notice Tank 100's Popup View will open displaying its Temp Data. You can drag the Temp Tank 100.
Popup View around the screen or even change its size.

To close the Popup View, click either the Temp button, or click the icon in the upper right corner of the Popup view. Close

14.

Related Topics ...

Views and Containers in Perspective
Pages in Perspective

Navigating with the Horizontal Menu Component

The Horizontal Menu component enables you to build a menu structure by setting up multiple links
to different page URLs from the component. Our example has a menu with links to three internal
pages and one external page on the Internet.

This example shows a Horizontal Menu with four items. Three items are linked to views within the
Perspective project and the fourth is linked to a website.

The third item in the list, Field Offices, has four subitems. Each item links to a view for a different
field office. Icons are taken from the Material Design icons that can be found here: https://material.

.io/tools/icons/

On this page

...

Initial Project Setup
Set Up a Header
View
Configure the Tabs
in the Horizontal
Menu

Configure the
Field Offices Tab
in the Horizontal
Menu

Initial Project Setup

To begin with we have created three : views WestView, EastView, and Welcome. They are each coordinate type views. As we
create each new view, we checked the Page URL property and added a page name.

View Name Page URL

WestView /west_page

EastView /east_page

Welcome /

https://material.io/tools/icons/?style=baseline
https://material.io/tools/icons/?style=baseline

1.

2.

On Page Configuration, you'll note that each page is already set up with a Primary view.

Now we're ready to start building the navigation.

Set Up a Header View
The first thing we'll set up is a view that will hold the Horizontal Menu component. We'll use this view as a header for our pages within this
project.

In the Project Browser, right click on Views and select the NewFolder option. Name the folder "Header".

Right click on the Header folder and select the option. NewView

Name: Horizontal-Menu-Nav
Layout: Coordinate
Page URL: unchecked

2.

3.
4.

5.
6.

7.

a.

b.

Click . Create View
In the Property Editor for the view, set the property as follows:defaultSize

width: 800
height: 50

Drag a Horizontal Menu component onto the view.
In the Property Editor, set the Position Properties as follows:

Property Value

position.x 15

position.y 10

position.width 550

position.height 30

In the Property Editor, scroll down to style and click the icon.ModifyStyle

Expand the Text section and set the style options as follows:

Property Value

props.style.fontWeight bolder

props.style.fontFamily Verdana

props.style.fontSize 14px

Expand the Border section and set the style options as follows:

Property Value

props.style.borderStyle solid

props.style.borderColor #555555

props.style.borderRadius 16px

All Corners (selected)

 Your Designer will look like this at this point:

7.

b.

8.
9.

10.
11.

12.

1.

Open Page Configuration by clicking on the Settings icon at the bottom left of the Designer window.
Under Page Configuration, click on .Shared Settings

In the header part of the page mockup, click on the icon. Add
Select the Horizontal-Menu-Nav view from the dropdown.

The Horizontal-Menu-Nav view will now appear at the top of all pages in the project. Click OK.

Configure the Tabs in the Horizontal Menu
Now let's set the properties for each of the four tabs in the Horizontal Menu. Each tab will have a display a name and an icon and will have a
target page or website to open when clicked.

In the Property Editor, expand the items property and set the following for item 0:

Property Value

props.items.0.enabled true

props.items.0.target /west_page

props.items.0.icon.path material/explore

props.items.0.icon.color #D97700

props.items.0.label West Site

The Property Editor will look like this:

1.

2.

3.

4.

In the Property Editor, set the following for item 1:

Property Value

props.items.1.enabled true

props.items.1.target /east_page

props.items.1.icon material/store

props.items.1.color #D97700

props.items.1.label East Site

In the Property Editor, set the following for item 2:

Property Value

props.items.2.enabled true

props.items.2.icon.path material/landscape

props.items.2.icon.color #D97700

props.items.2.label Field Offices

In the Property Editor, set the following for item 3:

Property Value

props.items.3.enabled true

props.items.3.target http://inductiveautomation.com/about/

props.items.3.icon.path material/people

Do not set a props.items.2.target property value for this tab because we will set up dropdown tabs in the next section..

This tab uses a website as its target, therefore it does not need to target a page within Perspective.

http://inductiveautomation.com/about/

4.

1.

2.

3.
4.

props.items.3.icon.color #D97700

props.items.3.label About

Configure the Field Offices Tab in the Horizontal Menu

The third tab in the Horizontal Menu is titled "Field Offices." Instead of navigating to one page, this tab has a dropdown menu with four
options on it: Reservoir, Dock, Warehouse, and Surveillance.

To start, we created a new folder in Views called . Field

Within the Field folder, we create four views: , , , and Make them Coordinate types and Reservoir Dock Warehouse Surveillance.
set up a page URL for each.

View Name Page URL

Reservoir /reservoir_page

Dock /dock_page

Warehouse /warehouse_page

Surveillance /surveillance_page

Open the Horizontal-Menu-Nav view and select the Horizontal Menu component.
In the Property Editor, expand the properties for Item 2.

4.

5.

6.
7.

Select the props.items.2.items property.

Click the Add icon to add four items.
Set the properties for Item 0 as follows:

Property Value

props.items.2.items.0.enabled true

props.items.2.items.0.target /reservoir_page

props.items.2.items.0.icon.path material/rowing

props.items.2.items.0.icon.color #00ACAC

props.items.2.items.0.label Reservoir

The Property Editor will look like this:

7.

8.

9.

Now we'll do the same for the other three items. Set the properties for Item 1 as follows:

Property Value

props.items.2.items.1.enabled true

props.items.2.items.1.target /dock_page

props.items.2.items.1.icon.path material/directions_boat

props.items.2.items.1.icon.color #9E6635

props.items.2.items.1.label Dock

Set the properties for Item 2 as follows:

Property Value

props.items.2.items.2.enabled true

props.items.2.items.2.target /warehouse_page

props.items.2.items.2.icon.path material/local_shipping

9.

10.

11.
12.
13.

props.items.2.items.2.icon.color #0000AC

props.items.2.items.2.label Warehouse

Set the properties for item 3 as follows:

Property Value

props.items.2.items.3.enabled true

props.items.2.items.3.target /surveillance_page

props.items.2.items.3.icon.path material/videocam

props.items.2.items.3.icon.color #AAAAAA

props.items.2.items.3.label Surveillance

Save your project.
Click . Tools > Launch Perspective > Launch Session
Click on the tabs in the header to view different pages. For our example, we have put a few components on each view. Here is an
example of what the Field Offices > Reservoir page might look like:

1.

Displaying a SubView in a Table

In a Perspective Table component, you have the option to enable subviews. When a subview is
set up, you can click on the Expand icon in the table and have another view be displayed without
closing the first view. This example sets up a table with several cities and statistics. When the
Expand icon is selected for a city, a Map component will be displayed showing the location of the
city on the map.

This example focuses on using a map component in a subview on the table, but the larger
implication here is that subviews in table rows can receive values from each row in the table, and
utlizie them with property bindings, allowing each subview to contain data unique to from the
row. The image below shows what our finished view will look like.

On this page

...

Create a View for
the Table Data
Create a View for
Displaying the Map
Use the Maps View
as a Subview for
the Table

Create a View for the Table Data
We'll start by creating a view that will contain the table.

1.

2.
3.

Right click on Views to . In the example, we named ours . Set it as a Coordinate layout and check the Page create a view CityStats
URL option if you want to create a page for this view (you can always add a page later if you want to).

Drag a Table component onto the view.
The table needs to have Latitude and Longitude data for the map to show that location. Highlight and copy the following data:

[
 {
 "city": "Folsom",
 "country": "United States",
 "population": 77271,
 "lat": 38.678287,
 "lng": -121.177318
 },
 {
 "city": "Jakarta",
 "country": "Indonesia",
 "population": 10187595,
 "lat": -6.208404,
 "lng": 106.849087
 },
 {
 "city": "Madrid",
 "country": "Spain",
 "population": 3233527,
 "lat": 40.41498,
 "lng": -3.702002
 },
 {
 "city": "Prague",
 "country": "Czech Republic",
 "population": 1241664,
 "lat": 50.073453,
 "lng": 14.450091
 },
 {
 "city": "San Diego",
 "country": "United States",
 "population": 1406630,
 "lat": 32.713832,
 "lng": -117.158616
 },
 {
 "city": "San Francisco",
 "country": "United States",
 "population": 884363,
 "lat": 37.776379,
 "lng": -122.423501
 },
 {
 "city": "Shanghai",
 "country": "China",
 "population": 24153000,

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews

3.

4.

5.

 "lat": 31.227167,
 "lng": 121.498839
 },
 {
 "city": "Tokyo",
 "country": "Japan",
 "population": 13617000,
 "lat": 35.69042,
 "lng": 139.746457
 },
 {
 "city": "Washington, DC",
 "country": "United States",
 "population": 658893,
 "lat": 38.90598,
 "lng": -77.04882
 },
 {
 "city": "Wellington",
 "country": "New Zealand",
 "population": 405000,
 "lat": -41.284336,
 "lng": 174.770488
 }
]

Right click on the data property of the Table component and select .Paste

Your table will now display the data for 10 rows and 5 columns.

5.

6. Next, enable the property under props.rows. subview

7.

1.

2.
3.
4.

5.
6.

a.

The table now has icons for each row.Expand

Create a View for Displaying the Map
Next we'll make the view that will be display a map of the cities in our table.

In the Project Browser, right click on Views to . Name the new view . Set it as a layout, so the map create a view CityMaps Flex
easily takes up all available space. Lastly, do not check the Page URL option, as we don't need a corresponding page.

Drag a Map component onto the View.CityMaps
Set the Map's property to so it resizes to take up the entire view.Grow "1"
Click on the view in the Project Browser. In the Property Editor, click the link under and CityMaps Add View Parameter Params
choose .Object
Double click on key, and enter as the object name.value
Next, we'll add two parameters to that value object.

Click link under Params and choose Add Object Member Value.

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews

6.
a.

b.

c.
d.

Double click on key, and enter . This matches the lat (latitude) column from the Table on the CityStats view. This name "lat"
must match the column name in the table.exactly
Click the icon next to value and choose .Add Object Member Value
Double click on key, and enter " . This matches the lng (longitude) column from the Table on the CityStats view. This lng"
name must match the column name in the table.exactly

6.

d.

7.

a.
b.

c.
d.

e.
f.

g.
h.

Next select the Map component. We need to set the map's initial geographic center to the view parameters. In the Property Editor,
expand the property. init.center

Click on the icon next to the property. Binding lat
On the Edit Binding screen, select as the binding type.Property

Click the icon. Navigate to view, the params, the value, and then the property. Browse Properties lat
Click , then click again to save the binding.OK OK

Click on the icon next to the l property. Binding ng
On the Edit Binding screen, select as the binding type.Property

Click the icon. Navigate to view, the params, the value, and then the property. Browse Properties lng
Click , then click again to save the binding. OK OK

At this point, the property is bound to where 's value init.center.lat view.params.value.lat view.params.value.lat
is "value" instead of a valid latitude number. This will cause a Component Error which is expected.

At this point, the property is bound to where 's init.center.lng view.params.value.lng view.params.value.lng
value is "value" instead of a valid longitude number. This will cause a Component Error which is expected.

7.

h.

1.
2.
3.

Use the Maps View as a Subview for the Table
Lastly, we need to tell the CityStats View to use CityMaps as its subview.

On the CityStats View, select the component.Table
In the Property Editor, scroll down to the property. rows.subview.enabled
Next, enable the property."enabled"

3.

4.

5.

6.

As a result, you'll notice the table now has Expand icons for each row.

Next, find , and click the dropdown to see the a list of possible views. Choose from the list and rows.subview.viewPath CityMaps
click . OK

Save your project.

Put the Designer into mode. Click on the icon next to one of the cities. You'll see a map of the city appear Preview Expand
underneath the table row for that city. To close the map, click the icon.Collapse

6.

Self-Hiding Navigation Drawer

Navigation Drawer
A navigation drawer is a special type of docked menu, usually appearing on the left side of a
session. What makes a navigation drawer special is its . On smaller devices, this responsive design
docked menu can hide itself and pop out when the user needs it. These drawers have become
ubiquitous in User Interface (UI) design, particularly in apps.

Here's what one might look like on a computer monitor:

Here's what one might look like on a mobile device:

As the screen becomes smaller, the menu is hidden and an icon appears in the top left to allow us
to toggle its visibility. This particular navigation drawer will probably need about 200 pixels
horizontally, which on a desktop is fine, but on a mobile device takes up too much of the screen.

On this page

...

Navigation Drawer
Configuring a
Navigation Drawer

Navigation View
Header Views
Page Setup
Configure Menu
Icon

This guide assumes a bit of knowledge about how and work. Please views components
see those sections of this manual for more information as needed.

https://legacy-docs.inductiveautomation.com/pages/createpage.action?spaceKey=DOC80&title=Responsive+Design&linkCreation=true&fromPageId=34473355

1.
2.
3.
4.

1.
a.

b.

Configuring a Navigation Drawer
The following example walks through how to configure this self-hiding navigation drawer. There is no mention of setting up the Menu Tree or
any content pages, it is strictly a guide to show you the layout type.

Navigation View

In the Project Browser, right click on and click . Views New View
Name the view and set the layout to . This is where you'll put the navigation menu. Click ViewMenu View Coordinate Create .
Set the width of the view to 200 pixels.
Drag a component onto the Menu View. Configure the component as you would if you were using a standard docked MenuTree
view.

Tip: You can set the root of the Menu View to use the Percent Mode. This way it is easy to make the Menu Tree fill all the space.

Header Views

Next, we will create our header views. The two views will be setup in a container, which will swap between a small header with breakpoint
an icon, and a big header without one.

Create a small header view for our mobile UI.
In the Project Browser, right click on and click . Views New View

1.

b.

c.
d.
e.

f.

2.
a.
b.
c.

3.
a.
b.
c.
d.
e.

Name the new view , with a layout of CoordinateHeaderSmall . Click Create View.

Set the height of the view to 75 pixels.
Drag an Icon component onto the upper left side of the view, then click on the component to select it.
In the Property Editor, its property to . You can of course use whatever icon you'd like; a list of all the path material/menu
icons in the material folder can be found . here
Add a title for the header. We used a Label component with the text "All About Navigation!"

Create a large header view for our desktop UI
Create another view called , again with a layout of . HeaderLarge Coordinate
Set the height to 75 pixels.
Don't add the icon to this one, but add the same Label as above.

Finally, create a breakpoint view to toggle between them.
Create a view called with a layout of . HeaderMain Breakpoint
Set the height to 75 pixels.
In the Property Editor, click on (under Children).Large
Drag an Embedded View component on the HeaderMaster view.
Under PROPS, click on the Expand icon next to the property then select .path HeaderLarge

https://material.io/tools/icons/?style=baseline

3.

e.

f.

g.
h.

1.

Now we'll do the same for the small child of this Breakpoint container. In the Property Editor, click on (under Small
Children).
Drag an Embedded View component on the HeaderMain view.
In the Property Editor, click on the Expand icon next to the property then select . path HeaderSmall

Page Setup

Now that we have our header and menu views, we need to set up our pages to display the views properly.

Click on the Settings icon in the bottom left of the designer to access the Page Configuration menu. Select . Shared settings
We're going to add our two docked views here, so they show up on every page.

1.

2.

3.
4.

On the top dock, click the Add icon. Select the view and click . HeaderMain OK

Click the Edit icon next to the HeaderMain docked view.
In the Configure Docked View menu, set the to 75.size

4.

5. On the left dock, click the Add icon. Add the and set the following:Menu View
Size: 200
Display: (This enables us to configure a breakpoint below)Auto
Autobreakpoint: (This is the same width that the breakpoint container on the HeaderMaster view is using)640
Dock Id: (This will be used in our dock action on the menu icon to toggle the menu.)menu

5.

6. In the center of the Page Configuration menu, set the to . The other option won't look quite right. Corner Priority top-bottom

Configure Menu Icon

1.
2.

3.

4.

Now we need to configure the menu icon we created on HeaderSmall to pull up Menu View.

Open the HeaderSmall View.
Right-click on the Icon component, and select Configure Events...

Under Mouse Events, select onClick.

Next click the Add icon to add an action. Choose a action. Dock

4.

5. This action needs the identifier we created in step 9. Set the Dock Action to , and the Identifier to . Click .Toggle menu OK

Now go test it out! It's easiest to open a browser on your desktop and change the size to toggle between the different views.

Using this strategy, you can configure a navigation drawer in combination with any basic navigation component or method.

Configuring a Dashboard

The Dashboard exposes widgets to end users in a so they can customize Perspective Session
their dashboard layout for their individual needs. Widgets are that are pre-configured in the views
Designer and made available to Perspective Session users. End users have the flexibility to add,
remove, resize, move around, and even configure widgets in the dashboard of their Perspective
Session without having access to the Designer. Users can interact with widgets in a session on
both desktop and mobile devices. There may be some minor variances in how a user can interact
with their dashboard between desktop and mobile devices, but the principle is still the same.

Configuring a Dashboard Component
Configuring a Dashboard starts with designing widgets and having a selection of pre-configured
widgets for users to choose from to configure their individual dashboards. Designers create the
widgets and make them available for end users to use in their individual dashboards. By making
the widgets available using the 'availableWidgets' property, the widget overlay modal is populated
with a searchable list of all the available widgets a user can add to their dashboard. The
dashboard component contains a host of addtional properties that can be configured based on the
end-user requirements.

The uses a grid system based off of CSS grid specifications to position and Dashboard component
place your widgets. The Property Editor settings of the Dashboard component control the general
layout of the grid. They specify the responsive mode: fixed or stretch, if the dashboard is editable,
and if each widget is configurable and available in a Perspective session. The image below shows
one widget on a dashboard in the Designer along with some of its properties.

To learn more about Dashboard properties, refer to the page. Dashboard component

On this page

...

Configuring a
Dashboard
Component
Setting Up a User
Dashboard

Adding a Widget
Removing a
Widget
Moving a Widget
Resizing a
Widget

Configuring a Widget
Setting a Widget
as Configurable
in the Designer
Creating a
Configurable
View in the
Designer

Saving Perspective
Session Edits and
Populating Widgets

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Dashboard
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Dashboard

Setting Up a User Dashboard
Setting up a dashboard starts with users choosing from a list of pre-configured widgets to configure their dashboards in a Perspective
Session based on their individual needs.

To edit the dashboard in a Perspective Session, the user can put the dashboard into Edit mode by clicking the Edit icon at the bottom of the
dashboard and deciding what widgets they want, where they want them, and how they want them configured. They can add, remove, resize
and configure widgets, including the ability to interact with widgets such entering text in a text field or displaying/hiding components in a
widget. You can also remove this control entirely and implement your own by configuring the 'editingToggle' property on the component.

 Refer to the Dashboard component properties for more details.

The following sections on this page describe how to setup your own dashboard.

Adding a Widget

There are two ways a user can add a widget in a Perspective Session: by clicking on a single grid cell, or by dragging a grid cell over multiple
grid cells that opens an add widget overlay as shown in the image below. Both ways result in displaying the add widget modal which provides
a searchable list of all of the available widgets a user may add to their dashboard.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Dashboard

Dragging a grid cell creates an add widget overlay that specifies the desired dimensions of the widget to add. If the desired widget position
overlaps other widgets, the overlapped widgets will be moved to any available space on the dashboard. Widgets do not overlap when being
added, resized, and moved unless there happens to be no space for a widget so that it is placed within the grid.

On mobile devices, activating a grid cell requires a long-press of about a second. Once a grid cell is activated, you can then drag to create
the add widget overlay. The image below shows Widget 1 dropped over the multiple selected grid cells in the dashboard. You'll notice the
active widget has a dashed blue border.

Widget's Minimum Dimensions

When adding a widget, if the desired dimensions are less than the configured minimum dimensions, the desired dimensions will
get overridden by the minimum dimensions. If a single grid cell is clicked, the configured default dimensions will be applied, if and
only if, the default meets the required minimum dimensions, otherwise the minimum dimensions are applied. By default, the
minimum and default dimensions for a widget are 1x1.

Removing a Widget

Click the icon, select the widget, and you'll notice the widget has a dashed blue border indicating the widget is active, then click the Edit Delete
' 'X icon in the top right corner to remove the widget from the dashboard. You will then be prompted with a confirmation modal to delete the
widget. Click .Remove

Moving a Widget

Put the dashboard in Edit mode, select the widget so that it becomes active (dashed blue border). Drag the widget to the desired position. As
you move the widget, any overlapped widgets will be repositioned into the first available space.

Resizing a Widget

To resize a widget, put the dashboard in Edit mode, then simply select the widget you’d like to resize and drag one of the resize handles. If,
while resizing, the widget overlaps other widgets, the overlapped widgets will be repositioned into the first available space.

1.
2.
3.

1.

2.

3.
4.

a.
b.
c.
d.
e.

5.

Configuring a Widget
The dashboard allows your users to configure a widget in a Perspective Session. To do this, you need make a few changes to your view and
Dashboard component configuration.

Setting a Widget as Configurable in the Designer

To make a view allow configuration, you need to set the property for each widget that needs to be configured. This will set a isConfigurable
param value on your view (in the runtime) that you can use to create a configuration display in your view. The purpose of this parameter is to
avoid having to make a separate widgets for each possible variation of the same view.

Select the Dashboard component.
Expand the parameter, and expand the array object for the widget that you want to make configurable. availableWidgets

 Set the property to 'true' for this widget.isConfigurable

Creating a Configurable View in the Designer

To make a view configurable, you need to do a bit of work to alter what is in the view. This is possible because the Dashboard component
was created to use a parameter named that is set to when the widget is in put into configuration mode. The idea here is configuring 'true'
to have a second 'mode' or 'display' version of the view that has controls on it to effect the primary display. The best way to do this is to
create two containers in your view; one for configuration, and one for display. You can then bind the visibility on each container so only one is
shown at a time.

To learn more about using parameters to pass properties, refer to the page. You will not need to pass Perspective Component Properties
any value into the param though, it is done automatically for you if you get the param name correct.

Create a new Coordinate view. For the example, we named our Configurable_View.

In the Property Editor, add a view param. Name the param 'configuring' and set the value to 'true'. Note the spelling and (lack
of) capitalization.

Drag a Coordinate Container component inside your view. Give the container a good name like 'Runtime.'
Add any display components you want.

Deep Select the Configure container.
Drag a component into it.Cylindrical Tank
Bind the value property to a Tag.
Drag a component into it.Temperature Gauge
Bind the value property to a Tag.

We need to create a second new container in the view for your configuration. the Runtime container. Duplicate Give the container a
good name like 'Configure.' This container will be a sibling to the Runtime container, not inside the Runtime container.

If you use a Flex container, some of the settings will be different further down in the example.

If you started from an existing view, move all existing components into the new container then make the container fill your
entire view.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-Params

5.

6.

a.
b.
c.

7.

a.
b.
c.

8.

a.

Add a Checkbox to toggle the temperature component visibility.

Deep Select the Configure container.
Drag a component into it.Checkbox
Set the Name and Text to "Show Temp".

Now we need to alter the Runtime container components to listen to our new controls.

Deep Select the Runtime Container.
Select the Temperature Gauge component.
In the Property Editor under META, bind the property to the Selected value of the Show Temp Checkbox component.Visible

Now we just need to show one container at at time.

Bind the ' property for the Runtime container using an expression. It should be true when the paravisible' configuring
m is false.

If you started with an existing view, this step is completely up to you. You will decide what should be configurable and
create controls for that in your configuration container. For example, you could create a list of Tags for the user to select
between and display only the selected Tags on a chart.

If you used a Flex container at the start of this example, then use the ' ' property instead of the ' ' display visible
property in the following steps.

8.

a.

b.

9.

Bind the ' ' property for the Configure container using an expression. It should be true when the parvisible configuring
am is true.

Save your project and then put the Designer into Preview mode. When you click on the Temp Show button, you'll see the
Temperature component appear or disappear.

9.

10.

1.
2.

3.

Now you can use this view in your dashboard.

Configuring in the Dashboard Component in the Runtime (Perspective Session)

This section is for the people using the Dashboard in a Perspective Session.

To use a configurable widget in the runtime, put the dashboard in Edit mode and select the widget you’d like to configure.
Click the edit icon (pencil) in the top right corner of the widget. The widget's border will change colors from blue to orange (shown in
the image below).
The view changes to show the ‘configuring’ mode you set up previously for the view, allowing users to configure the widget.

Saving Perspective Session Edits and Populating Widgets
Edits that an end user makes in their dashboard in a Perspective Session are not automatically saved and do not persist when the end user's
session restarts. A session can be refreshed within the same session. One possible solution for populating widgets for the next editing
session is to add a property change script on the ' prop to listen for changes and then write that value back to a database along widgets'
with any user information derived from the active session. The value of the ' prop will be an array of QualifiedValues, which you’ll widgets'

need to handle accordingly.In similar fashion, consider adding an ' event action that will query the database and then populate onStartup'
the ' prop with the users last saved configuration and optionally populate the ' prop (possibly for varying widgets' availableWidgets'
user roles).

Related Topics ...

Perspective Dashboard Component
Passing Parameters
Views and Containers

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Dashboard
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-Params

1.
2.

3.

Download and Upload Files
Downloading and uploading files from a Perspective session typically involves storing and
retrieving files from a database. A table will store all of the available files, and each row of the table
represents a new file. This allows for long term storage that is accessible from any project.

The examples on this page show suggested methods of uploading files from a session, as well as
how to download them.

Query Examples

Before following along with the examples on this page, you'll need to create a table in the
database that will hold the files. This process can vary by database, along with the column
datatypes.

For the sake of brevity, the example assumes the files will be stored and retrieved from a SQL
Server database. You may need to modify the query examples on this page if using a different
database. The "files" database table used by these examples contains the following columns:

id - integer, primary key, identity
filename - varchar (255)
filedata - varbinary (MAX)

On this page

...

Query Examples

Uploading a File
Downloading a File

Uploading a File
To upload a file in Perspective, we will want to use the . This allows us an easy way to manage the upload. File Upload component

Add the File Upload component to a view. The File Upload component has everything we need to upload a file into the database.
Right click on the File Upload component and select .Configure Events

Select the onFileReceived event and click the icon to add a script action to it.Add

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+File+Upload

3.

4.

5.

1.

2.
3.

Add the following script to the script action:

Grab the file name and data
filename = event.file.name
filedata = event.file.getBytes()

Use a query to insert the file
query = "INSERT INTO files (filename, filedata) VALUES(?, CONVERT(varbinary(MAX), ?))"
args = [filename, filedata]
system.db.runPrepUpdate(query, args)

As mentioned , the query will also vary based on the database used. above

Click . You can test out the upload functionality by dragging a file onto the File Upload component, either from a session, or the OK
designer while it's in preview mode.

Downloading a File
To download a file that is stored in the database in Perspective, we will want to use the function. This will allow system.perspective.download
us to download the file data that we receive from the database.

This example will show you how to do several things:

Create a , that will return the contents of our file database tablenamed query
Create a table component, that shows a listing of potential files to download, using the named query above in conjunction with a
Named Query Binding.
Add a button component, that will allow users to download a file, assuming one of the rows in the table component are selected.

Create a Named Query that we will use to pull a list of files out of the database table. We're using a named query here since a
named query binding is the easiest way to run a query when the view loads.
The query should pull out the id of the row which we can use to later query the data, as well as the filename which the user can use
to identify the file.

SELECT id, filename FROM Files

On a view, add a Table component. This will display a list of all files we currently have in the database table.
On the Table's property, set up a binding. The binding should be a Query type, and it should use the query that we just made. data
We want to return the data in a JSON format, and you can enable polling so that it automatically updates if new files get uploaded.

https://legacy-docs.inductiveautomation.com/display/DOC80/system.perspective.download
https://legacy-docs.inductiveautomation.com/display/DOC80/Named+Queries

3.

4.

5.

6.

On the Table's columns property, add an array element. Set to the name of the column that holds the filename. columns.0.field
This will display only the filename column, as the id column does not need to be visible.

Add a Button to the view. This button will be used to download the file after the user has made a selection. However, we also want to
make sure the user can't press the button unless a row in the table is selected.

On the Button's enabled property, configure a binding. The binding type should be an expression. The expression should check to
see if the Table's selected row is null, and invert it.

!isNull({../Table.props.selection.selectedRow})

6.

7.

8.
9.

10.

This will disable the component if no row is selected, to prevent the user from trying to download without making a selection.

Right click on the Button and go to .Configure Events

Select the onActionPerformed event, click the Add icon to add a script action to it.
Add the following script to the script action:

Grab the selected row
selectedRow = self.getSibling("Table").props.selection.selectedRow

Use the selected row to grab the id of the file at that row
id = self.getSibling("Table").props.data[selectedRow].id

Use the id to grab the file data out of the database, along with its corresponding name.
query = "SELECT filename, filedata FROM Files WHERE id = ?"
args = [id]
data = system.db.runPrepQuery(query, args)

Pull out the file name and data
filename = data[0][0]
filedata = data[0][1]

Download the file
system.perspective.download(filename, filedata)

Test the script by selecting a row in the table and clicking on the button while in Preview mode.

1.

2.

3.

Table Column Configurations

In a Perspective Table component, you have the ability to replace a cell with something other than
just text or a number. Instead, you can have the column render other objects altogether such as
progress bars or a view. This page contains several examples of changing how a column renders. On this page

...

Replacing a Value
in a Cell with a
Progress Bar
Embedding a View
in a Table Cell

Replacing a Value in a Cell with a Progress Bar

In the Project Browser, right click on Views to . In this example, the view will be named . Set it to have a create a view table Coordina
Root Container Type. te

Drag a Perspective Table component onto your table view. We'll use the default population information that the component is initially
configured with.
Add three array elements to the columns property of your table as shown in the Property Editor.

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews

3.

4.

a.
b.
c.

5.

There is a field property inside each of the three columns array elements. Set the property values to match each of the "field"
column names in your table. This is how we associate a column in the table (which is really just a key in the underlying data on the
table) with one of these custom column configurations.

Enter a property value of for the column's element.field "city" "0"
Enter a property value of for the column's element.field "country" "1"
Enter a property value of for the column's element.field "population" "2"

Let's display a progress bar on the table to show the population value. To do this, go to the columns array element for "population"
and set its render property to and set its "number" number property to as shown in the image below. "progress"

5.

6.

7.

1.

Set the progressBar.max value to 30,000,000 to account for cities with a large population.

The table will look like this after the above configurations are applied.

Embedding a View in a Table Cell

In a Perspective Table, it is possible to embed a view inside a table cell. In this example, instead of using the table's built-in progress bar,
we'll embed a view that contains a custom progress bar, using the component. Progress

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Progress

1.

2.
3.

4.
5.

6.
7.

Let's create the cell view first. In the Project Browser, right click on Views to . In this example, the view will be namedcreate a view c
. Set it as a layout.ell Flex

Drag and drop a component onto the cell view.Progress Bar
Select the Progress Bar component and set the property to so that the bar takes up as much space in the position.grow "1"
container as possible.
In the Project Browser, select view, and resize the view so it is closer in size to the cell in the table on our view. "cell" "table"
Create a view parameter named by clicking on the option while your view is selected in the Project "value" "Add View Parameter"
Browser as shown below.

On the Progress Bar component, set its property value to 30,000,000 to account for large values. max
Bind the Progress Bar's property to the view parameter created in Step 3 as shown below. value

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Progress

7.

8.

9.

10.

Now let's create our table view. Right click on Views to . In this example, name the view . Set it to have a create a view table Coordin
Root Container Type.ate

Drag a onto the table view. The default population information that comes on the factory configured table Perspective Table
component will be used.
Add three array elements to the columns property of the table like as shown in Property Editor as shown in the image below.

https://legacy-docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective#ViewsandContainersinPerspective-ConfiguringViews
https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Table

10.

11.

a.
b.
c.

12.

13.

There is a property inside each of the three column array elements. Set the field values to match each of the column names in field
your table.

Enter a field property value of "city" for the "0" column's element.
Enter a field property value of "country" for the "1" column's element.
Enter a field property value of "population" for the "2" column's element.

The is going to be embedded into the values. Go to the column array element with the value of cell view Population cell "field" "po
 and set its value to and its to as shown below.pulation" "render" "view" "viewPath" "cell"

After the population column is pointed to the cell view, the population number from the table cell will be passed to the cell view.
Since the cell view's Progress Bar has its value property bound to the cell view's input parameter, the population value will then be
displayed on the table by the Progress Bar in the cell view. If you wanted to resize the progress bar, simply change the and "height"

13.

 properties under the property on the view. "width" defaultSize "cell"

1.

2.

3.
4.

a.
b.
c.
d.

Carousel Component Example

Perspective offers strategies for dragging (or swiping) left and right as a way of navigating
between views. The Carousel component is specifically for this strategy, which is perfect when
working with several instances of the same view (including a dynamic number of them). Maybe
you're looking for a way of collapsing a lot of content onto a small screen, and need a way of
scrolling through it.

On this page

...

Initial Project Setup
Set Up the Carousel
View

Initial Project Setup
Configuring side scrolling through a carousel is pretty straightforward. First we'll create three views for the carousel to scroll through.

In the Project Browser, right click on Views and select the NewFolder option. We named our folder "Carousel Example".

Right click on the folder and select the Carousel Example NewView option.
Name: Motor
Layout: Coordinate
Page URL: unchecked

Click . Create View
Next we'll create a view parameter that we can use for the motor number. In the Property Editor under PARAMS, click on the Add Vi

 icon.ew Parameter
Select . value
Change "key" to "Motor_Num".
Change "value" to "1".
Make sure the arrow icon is facing to the left, as an input parameter.

4.

d.

5.
6.

a.
b.
c.
d.

Next we'll make a title that will change depending on the Motor that's being displayed. Drag a Label component onto the view.
Bind the text property to the view parameter as follows:

Click the icon next to the text property.binding
Select as the binding type.Expression
Enter the following: "Motor " +
Click the icon then scroll down and select the Motor_Num view parameter.Property

6.

d.

e.

f.

7.
8.
9.

Click . You'll now see the binding preview shows "Motor 1."OK

Click to save the binding.OK

Next we'll setup a Gauge component to display motor Amps. Drag a Gauge component onto the view.
Align the Motor label so that it is approximately centered abouve the Gauge component.
In the Property Editor, expand the outerAxis properties. Change the properties as follows:
minValue: -50
maxValue: 100

9.

10.

a.

b.
c.

d.

e.

f.

g.

h.
i.
j.

Now we'll set up an indirect Tag binding using one of the motor Tags in the Dairy simulator. (For more information, see Programmabl
.) Select the Gauge component.e Device Simulator

In the Property Editor, click the icon next to the value property. On the Configure Tag Binding page set the binding
following:
Choose Tag as the binding type.
Select the Indirect option.

Next to the Tag Path field, click on the Tag icon and navigate to the the Motor 1/Amps Tag in the Dairy simulator
.program

Click OK.

In the Tag Path field, replace the 1 with {1}.

In the References list, under Property, click on the Functions icon.

Click the Properties icon.
Scroll to the view parameters and select Motor_Num. Click OK.
Click OK again. You'll see the binding in the preview area.

https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator#ProgrammableDeviceSimulator-ConnectingtoaProgrammableDeviceSimulator
https://legacy-docs.inductiveautomation.com/display/DOC80/Programmable+Device+Simulator#ProgrammableDeviceSimulator-ConnectingtoaProgrammableDeviceSimulator

10.

k.

11.

12.
13.

a.
b.

c.

d.
e.

f.

g.
h.
i.
j.

k.

Click to save the binding.OK

The Gauge now displays the value of the AMPS Tag.

Drag a Label component onto your view. Place it under the Gauge component and change the text property to " ".AMPS
Drag another Label component onto your view and place it next to the AMPS label. We'll set up a similar indirect Tag binding on this
label.

Select this Label and click the icon next to the value property.binding
Select as the binding type and click the radio button. Tag Indirect

Next to the Tag Path field, click on the Tag icon and navigate to the the Motor 1/Amps Tag in the Dairy simulator
program.
Click OK.
In the Tag Path field, replace the 1 with {1}.

In the References list, under Property, click on the Functions icon.

Click the Properties icon.
Scroll to the view parameters and select Motor_Num. Click OK.
Click . You'll see the binding in the preview area. Apply
For this Label component we don't want the full Tag value displayed. So we'll add a Transform to limit it to two decimal
points. Click on Add Transform.
Select , then click .Format Add Transform

13.

k.

l.

m.

Select as the Format type. The displayed value will now be shortened to just two decimal points. You can see the Numeric
format in the Binding Preview.
Click to save the binding.OK

13.

m.

14. Your view should look something like this now:

Set Up the Carousel View

1.
2.
3.

4.
5.
6.

Now we'll set up a view that holds the Carousel component.

Right click on the Carousel Example folder and select the optionNewView
Name the View Carousel Overview. Check the Page URL option.
Click .Create View

Drag a Carousel component onto the view.
In the Property Editor, expand the props.views.0.viewPath property.
Click the Expand icon in the viewPath property and select the view.Motor

6.

7.
8.
9.

Under viewParams, click the icon then choose value. Add
Replace "key" with "Motor_Num" and replace "value" with "1".
 Click . The Motor view now appears in the Carousel component. You may need to expand your Carousel component slightly to OK
fit the Motor view in without scrollbars.

9.

10. Next we'll add two more views. Click on the icon two times. Add

10.

11.

a.
b.
c.

12.

a.
b.
c.

13.
14.

Under the props.views.1.viewPath property, choose the view.Motor
Under viewParams, click the icon then choose value. Add
Replace "key" with "Motor_Num" and replace "value" with "2". This will point this instance to the Motor 2/AMPS Tag.
Click .OK

Under the props.views.2.viewPath property, choose the view.Motor
Under viewParams, click the icon then choose value. Add
Replace "key" with "Motor_Num" and replace "value" with "3". This will point this instance to the Motor 3/AMPS Tag.
Click .OK

Save your project.
Put the Designer into Preview mode. Click the left right arrows or the dots to scroll between the three Motor views.

14.

15.

16.

We decided to change a few properties on the Carousel to update the appearance. Here are the settings we used:

Property Value

props.appearance.dots.enabled false

props.appearance.arrows.next.iconPath material/navigate_next

props.appearance.arrows.next.fillColor #AC00AC

props.appearance.arrows.previous.iconPath material/navigate_before

props.appearance.arrows.previous.fillColor #AC00AC

props.style.borderStyle outset

props.style.borderColor #AC00AC

props.style.borderWidth 7

props.style.borderTopLeftRadius 15

props.style.borderTopRightRadius 15

props.style.borderBottomLeftRadius 15

props.style.borderBottomRightRadius 15

Put the Designer into Preview mode. Click the next or previous arrow to scroll between the three Motor views.

	Perspective
	Perspective Sessions
	Ignition Perspective App
	Session Properties

	Perspective Design Principles
	Navigation Strategies in Perspective

	Pages in Perspective
	Views and Containers in Perspective
	Coordinate Containers
	Column Containers
	Tab Containers
	Breakpoint Containers
	Flex Containers
	Test Your Responsive Design Using Chrome's Developer Tools

	Perspective Designer Interface
	Working with Perspective Components
	Perspective Component Properties
	Ignition Server Migration Best Practices

	Images, SVGs, and Icons in Perspective
	Localization in Perspective
	Component Events and Actions

	Perspective Project Properties
	Styles
	Copy of Perspective Themes
	Perspective Themes
	Style Classes

	Bindings in Perspective
	Tag Bindings in Perspective
	Property Bindings in Perspective
	Expression Bindings in Perspective
	Expression Structure Bindings in Perspective
	Query Bindings in Perspective
	Tag History Bindings in Perspective
	HTTP Bindings in Perspective
	Transforms
	Map Transform
	Format Transform
	Script Transform
	Expression Transform

	Scripting in Perspective
	Perspective Component Methods
	Component Message Handlers
	Perspective Property Change Scripts
	Perspective Session Event Scripts

	Security in Perspective
	Alarming in Perspective
	Perspective Alarm Status Table - Common Tasks
	Perspective Alarm Status - User Interaction
	Perspective Alarm Status - Configuring Properties in Designer
	Perspective Alarm Status - Filtering
	Perspective Alarm Status - Acknowledgement
	Perspective Alarm Status - Shelving
	Perspective Alarm Status - Row Styles

	Perspective Alarm Journal Table - Common Tasks
	Perspective Alarm Journal - User Interaction
	Perspective Alarm Journal - Configuring Properties in Designer
	Perspective Alarm Journal - Filtering
	Perspective Alarm Journal - Row Styles

	Reporting in Perspective
	Common Tasks in Perspective
	Popup Views
	Navigating with the Horizontal Menu Component
	Displaying a SubView in a Table
	Self-Hiding Navigation Drawer
	Configuring a Dashboard
	Download and Upload Files
	Table Column Configurations
	Carousel Component Example

