
1. Perspective . 2
1.1 Perspective Designer Interface . 7
1.2 Perspective Sessions . 22

1.2.1 Ignition Perspective App . 31
1.2.2 Session Properties . 48
1.2.3 Perspective Session Proxy Considerations . 55

1.3 Perspective Design Tips . 56
1.4 Pages in Perspective . 59
1.5 Views in Perspective . 69

1.5.1 Docked Views . 73
1.5.2 Embedded Views . 76
1.5.3 Popup Views . 79
1.5.4 Self-Hiding Navigation Drawer . 86

1.6 Working with Perspective Components . 95
1.6.1 Perspective Component Properties . 112
1.6.2 Images and Icons in Perspective . 131
1.6.3 Localization in Perspective . 140
1.6.4 Bindings in Perspective . 144

1.6.4.1 Tag Bindings in Perspective . 145
1.6.4.1.1 Drop Configuration . 158

1.6.4.2 Property Bindings in Perspective . 169
1.6.4.3 Expression Bindings in Perspective . 174
1.6.4.4 Expression Structure Bindings in Perspective . 178
1.6.4.5 Query Bindings in Perspective . 183
1.6.4.6 Tag History Bindings in Perspective . 185
1.6.4.7 HTTP Bindings in Perspective . 192
1.6.4.8 MongoDB Bindings in Perspective . 194
1.6.4.9 Transforms . 201

1.6.4.9.1 Map Transform . 202
1.6.4.9.2 Format Transform . 207
1.6.4.9.3 Script Transform . 210
1.6.4.9.4 Expression Transform . 213

1.6.4.10 Binding Property Path Reference . 214
1.6.5 Component Events and Actions . 216
1.6.6 Perspective Pipes . 229

1.7 Perspective Project Properties . 239
1.8 Styles . 248

1.8.1 Perspective Built-In Themes . 256
1.8.1.1 Changing the Theme From a Session . 260

1.8.2 Style Classes . 263
1.8.2.1 How to Change Style on Hover . 271
1.8.2.2 How to Change Text Size Based on Width . 273
1.8.2.3 How to Create a Flashing Component . 276

1.8.3 Creating and Using Custom Perspective Themes . 282
1.9 Scripting in Perspective . 285

1.9.1 Perspective Component Methods . 287
1.9.2 Component Message Handlers . 294
1.9.3 Perspective Property Change Scripts . 299
1.9.4 Perspective Session Event Scripts . 303

1.10 Security in Perspective . 328
1.11 A Vision-Oriented Guide to Perspective . 336
1.12 Perspective Co-Branding . 339

Perspective

Perspective is the next generation system for industrial applications, optimized visualization
specifically for mobile devices. Perspective puts the power of your plant floor in the palm of your hand by
empowering you to create beautiful, mobile-responsive industrial applications that run natively on any

The Perspective module has full and capabilities and mobile device and web browser. HMI SCADA
marks the beginning of truly mobile-optimized, touch-responsive, easily accessible applications for
monitoring, control, analysis and data gathering in industrial systems.

Perspective sits within the existing architecture so it can take advantage of our years of Ignition
development and work flawlessly with external databases, PLCs, reports, and so forth. It was designed
from the ground up as a means to deliver first-class mobile responsive applications and offer a browser-
based design environment.

The following are some key features of the Perspective module:

Responsive Design - Perspective is mobile responsive so it responds to changes in screen
size and orientation, giving users a personalized view into their processes that are automatically
optimized for whatever device they are on.
Browser-based - Perspective lives in a browser instead of a client. No module is Java mobile
required.
Device Compatibility - Designers can create applications that run on any device that can
support a modern web browser using any major operating system: Windows, macOS, and
Linux. The native App runs on both iOS and Android devices.
Designed for Touch - Perspective employs multi-touch technology to work with touchpad and
touch-screen interfaces allowing users to utilize commonly used gestures such as pinching,
panning, zooming, and scrolling.
Sensor Information - Perspective is able to take advantage of cameras and GPS information
that are natively provided by mobile devices.
Cascading Style Sheets HTML5/CSS3 technology - Enables users to control their application
on any device type such as smartphones, tablets, touchscreens, laptops, and desktop
computers.
Transforms - Let you easily take the value coming into a binding, manipulate it even further,
and then it to the output of your choice.transform

On this page ...

Views and Containers
Components

Perspective Symbols
Bindings
Styles and Style Classes
Security in Perspective
Perspective Co-Branding

Perspective Project
Elements

Watch the Video

Views and Containers

Views and Containers are an integral part of the Perspective design experience because they work
together to create your screens, which are the into your application. The View is the HMI windows
primary unit of design and the Container provides a way of laying out and organizing child witcomponents
hin a View.

Anatomy of a View

Watch the Video

Components

Components are what give you flexibility in designing and that reflect your company's design and your site's layout. Components are the HMI SCADA
widgets you deal with every day: buttons, text areas, dropdowns, charts, gauges, linear displays, and so on. The Perspective module comes with a
host of built-in that you can select from for use in your project. There are many ways to manipulate and arrange when components components
working in the .Designer

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.1
https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

Perspective Symbols

There is a category of components called found in the Component Palette. These HMI components are easy to configure using Perspective Symbols
the built-in properties. You have the option of choosing any one of three appearances for the component. Each symbol has a number of states that
apply different visual effects. There are properties that allow you to change the size, orientation, appearance, and even select an Auto setting which
takes its value from the Session props.

Bindings

A is a mechanism that allows a on a component to change based on a change to a value elsewhere in . For example, with binding property Ignition
binding, the liquid level displayed in a tank graphic can be bound to the realtime liquid level in a tank. The value of a could be bound to a linear Tag
scale, a meter, or a label on your window. The power of bindings comes from the variety of binding types.

Click on the following links for complete information about binding types:

Tag - Binds a directly to a which sets up a subscription for that property Tag, Tag Tag.
Property - Binds one to another. property
Expression - A powerful type of binding that uses simple expression language to calculate a value.property
Expression Structure - A binding that uses the structure to pass data.property property
Query - A binding type that runs a structured Query against connections.polling database

 HistoryTag - Used for type properties. It runs a query against the .dataset HistorianTag
HTTP - Used for passing data directly to and from a link.URL

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette
https://docs.inductiveautomation.com/display/DOC80/Tag+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Structure+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Query+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://docs.inductiveautomation.com/display/DOC80/HTTP+Bindings+in+Perspective

Styles and Style Classes

ou can use Perspective gives you the power to style your project in just about any way and easily edit styles across your entire project instantly. Y
powerful and flexible CSS3 to change the appearance and position of anything in your application. By combining styles into themes, you'll be styles
able to apply and edit styles across multiple applications in an instant.

Security in Perspective

Perspective’s approach to security covers a wide array of topics, including authentication, authorization and permission modeling, and transport layer s
ecurity (TLS).

Uses single sign-on () with existing corporate to get access to all of your assigned accounts and applications in one place. SSO credentials
Clients launched from the Perspective module are secured using cutting-edge encrypting technologies and communication protocols to
provide the most secure web-based data transfer.
Strongly enforced “guest mode” access to prevent against unauthorized writes on the .Gateway
Integrates with existing corporate identity infrastructure that uses two-factor authentication to verify the identity of users, thus adding extra
protection against phishing and brute-force attacks.

 now has Levels (instead of/similar to Roles) that are assigned to users. This makes defining permissions simple. The Ignition security
hierarchy of levels can be used to simplify the settings, because users with more specific levels also “inherit” the security security security
more general levels (i.e., a user granted the level of “Operator / LineB” also has the level of “Operator”).security security security

 can now use popular authentication methods in addition to . It uses trusted federated identity technologies such as Ignition Active Directory SA
, OAuth, OpenID, and others.ML

For more information, see .Security in Perspective

Perspective Co-Branding

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Perspective supports customization, color, and branding options, allowing you to make your Perspective project feel personalized and unique. You
can read more about Perspective Co-Branding .here

In This Section ...

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/Perspective+Co-Branding

Perspective Designer Interface

The Perspective Designer Interface includes a number of panels and menus containing functionality that
allow you to design and build your project. The Perspective Designer Interface has several basic panels
that are used for specific objects such as the Project Browser and Tag Browser. The Project Browser
panel allows you to view the different Spaces and their component hierarchies at a glance as Designer
you design and build your project, while the Tag Browser panel allows you to browse Tags in the
Designer and OPC server as well as create new Tags. Some of the menus, like the File Menu and Help
Menu, are shared throughout the Designer, and some are specific to certain objects that will only be
displayed when an object of that type is selected.

There are many dockable and draggable panels that surround the workspace, as well as the familiar
menu bars and toolbars. The default panels include: Component Palette, , Project Property Editor
Browser, and . The dockable panels can be rearranged as you wish and will snap into place BrowserTag
as you move them around the screen. Each workspace remembers its layout, which is the docking
arrangement of the panels around it.

If you closed a panel and want to get it back, re-enable it from the submenu. To reset the View > Panels
user interface back to its default arrangement, go to or click the View > Reset Panels Panel Chooser

 icon in the lower left corner of the window and select . Reset Panels

On this page ...

Perspective Menubar
File Menu
Edit Menu
View Menu
Project Menu
Component Menu
Tools Menu
Help Menu

Perspective Toolbar
Resource Tabs

Right-Click Menu
Project Browser

Badge Icons
Configuration Explorer

Tag Browser
Perspective Component Palette
Perspective Property Editor
Page Configuration

Recently Modified Views
Keyboard Shortcuts
Vertical and Horizontal Guides

The Designer User
Interface

Watch the Video

Perspective Menubar

There is a menubar at the top of the that provides functionality that you can interact with when working in the Perspective workspace. Each Designer
menu has a host of functions as it relates to that menu. The other menus that are shared between Vision and Perspective are discussed in the General

. InterfaceDesigner

File Menu

See . General Designer Interface

Edit Menu

The is similar to other applications edit menus in that it provides much of the basic copy/paste functionality. You can also right-click on an Edit Menu
item in the browser to access this menu.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser
https://www.inductiveuniversity.com/videos/the-designer-user-interface/8.1/8.1
https://docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Function Description

Undo and
Redo

Can be used to revert to the previous state, essentially removing the last change, or redoing it again after having been removed.
This has a large queue that can be traversed, but does not include every change (i.e., edits cannot be undone).Tag

Cut/Copy
/Paste
/Duplicate

These functions perform similarly to most software applications.

Cut: Removes the selected item but keeps a copy on the clipboard.
Copy: Puts a copy of the selected item on the clipboard.
Paste: Pastes the current contents of the clipboard.
Duplicate: Duplicates the selected item (essentially a fast copy and paste action).

Most things in the can be copied and pasted elsewhere, from individual to entire Views.Designer components

Find
/Replace

Brings up the Find and Replace interface to allow you to find specific objects within the project. See for more Find and Replace
information.

Delete Deletes the currently selected component. This can also be done using the delete key.

View Menu

The enables you to control the display of panels and toolbars in the Designer.View Menu

https://docs.inductiveautomation.com/display/DOC80/Find+and+Replace

Function Description

Reset
Panels

Resets the Panels in the Designer so that they are in the default configuration.

Panels A list of all the available Panels for the Designer in Perspective. Select the checkbox next to the Panel name to display that panel.
Panel options include the Perspective Property Editor, Project Browser, Tag Browser, and Perspective Components, among others.

Toolbars A list of all the available Toolbars for the Designer in Perspective. Select the checkbox next to the Toolbar name to display that
toolbar. Toolbar options include the Perspective Designer Toolbar, Drawing Tools, Shape Editing, and Main Toolbar, among others.

Project Menu

See . General Designer Interface

Component Menu

The provides links to the Event Configuration and Script Configuration screens where you can add events, actions, and message Component Menu
handlers to individual components.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

 This feature was removed from Ignition in version

8.1.37

Function Description

Configure Events... Displays the Event Configuration screen. For more information, see Perspective Events and Actions.

Configure Scripts... Displays the Script Configuration screen. For more information, see Component Message Handlers.

Tools Menu

Perspective's workspace makes use of the . However the item holds several unique sub options. general Tools Menu options Launch Project

Function Description

Launch
Session

Launches the current project, using the system's default web browser.

External
Debugger

Opens , via the designer's JxBrowser, inspecting whichever view was currently being viewed in the designer. Dev Tools

Note:

In cases where the gateway is on the same system as the designer, the external debugger may fail to connect when selecting this
option. This issue can be avoided by using the option, and replacing instances of "localhost" with "127.0.0.1", Copy Debug URL
which would look something like the following:

http://127.0.0.1:9222/devtools/inspector.html?ws=127.0.0.1:9222/devtools/page
/####################

As of version 8.1.37, the option to copy the debug URL has been removed.

Copy
Debug URL

Copy's the URL used by the External Debugger. This can be useful in cases where Dev Tools is having trouble starting via the
External Debugger option.

Help Menu

See . General Designer Interface

Perspective Toolbar

The Perspective Toolbar contains shortcuts to options from the menubar as well as options to set the z-order for components.

Icon Function/Description

Save all outstanding project changes in Ignition Gateway.

Merges any new changes on the Gateway into the open project.

Undo the last action.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://developer.chrome.com/docs/devtools/
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Redo the last undo action.

Cuts the current selection into the clipboard.

Copies the current selection into the clipboard.

Pastes the current selection into the clipboard.

Gateway communication such as queries and Tag subscriptions disabled.

Read-only communication operations such as SELECT queries and Tag values allowed.

Full read-write Gateway communication allowed

Toggle the active view between Preview mode and Design mode.

Zoom into the currently open window.

Zoom out of the currently open window.

Zoom reset to 100%.

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Toggles the component selection tool, allowing the mouse to select and interact with components. Disabled when a container other than a
coordinate container is deeply selected.

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Toggles the Draw Tool, allowing the mouse to draw pipe connections. Pipe Disabled when a container other than a coordinate container
is deeply selected.

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Toggles the Move Tool, allowing the mouse to move existing pipes. Pipe Disabled when a container other than a coordinate container is
deeply selected.

Move the selected components to the back of the z-order.

Move the selected components backward in the z-order relative to the overlapping components.

Move the selected components forward in the z-order relative to the overlapping components.

Move the selected components to the front of the z-order.

The remainder of the icons on the Perspective toolbar are for aligning components. See aligning for more information.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-ManipulatingComponents

Resource Tabs

The Resource Tabs allow you to change which resource is being edited in the workspace, as well as navigate to the Settings area of the
Perspective Workspace.

Right-Click Menu

The right-click menu provides multiple ways to close one or more views.

Option Description

Close &
Revert

Closes the selected view, and reverts any changes that have been made, but not yet saved. This option should only be used when
you wish to lose any changes made to the view.

Close Closes the selected view, and commits changes (meaning changes will be retained in the designer session).

Close
Others

Closes all views except for the view selected. Changes made to the views are committed.

Close All Closes all views. Changes made to the views are committed.

Project Browser

The Project Browser panel allows you to view the different Spaces and their component hierarchies. You can expand folders and navigate Designer
down through each folder to see elements of a project such as , views, containers, and . The Project Browser shows the entire windows components
tree structure from the project level folder down to the component level. You can view or change many of the project properties settings by clicking the

 icon. The Project Browser is also discussed on the page. Project Properties General Designer Interface

Badge Icons

Perspective has host of useful icons in the Project Browser that can show extra configurations on a component, such as scripting, security, deep
selection, message handler, etc. These icons, as shown in the image below, are extremely useful when trying to navigate through a view to find
components with extra configurations. Here is a list of the Perspective Badge icons.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Badge
Icon

Name Description

Binding Indicates the component has a . Appears next to the name of the component.binding script

Custom
Method

Indicates the component has a . Appears next to the name of the component.custom method

Deep
Select

Shows a selected component within a selected container. Indicates you have deeply selected into the component and not
just selected the component itself. Appears next to the name of the selected component.

Event
Action

Indicates that the component has its own which are related directly to the functionality of the component. event actions
Appears next to the name of the component.

Message
Handler

Shows that the component contains a user-created script that listens for a particular message. Appears next to the name of
the component.

Script Identifies that the component has a . Appears next to the name of the component.property change script

Security Indicates that the component has . Appears next to the name of the component.security permissions applied to the view

Configuration Explorer

The following feature is new in Ignition version 8.1.22
 to check out the other new featuresClick here

The Configuration Explorer allows you to view the dynamic configuration of all of your views and components. Right-click on a view or component in
the Project Browser and select to examine the following configurations:Configuration Explorer

Bindings and Transforms
Custom Methods
Embedded Views
Events and Actions
Extension Functions
Message Handlers
Property Change Scripts

https://docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection
https://docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Perspective#SecurityinPerspective-PerspectiveViewsSecurity
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Select a configuration and click Go To Reference to highlight the relevant view or component in the Project Browser and, if applicable, open an Edit
window to view details about the selected configuration.

Tag Browser

The Tag Browser allows you browse Tags in the Designer and OPC servers. In addition, Tags can be created, edited, exported and imported directly
from the Tag Browser. For more information on Tags, the different Tag types, and how they work, see .Tag Browser

Perspective Component Palette

The Perspective module contains numerous components, such as buttons, labels, and charts. Perspective utilizes modern web technologies so many
of the built-in components may look reminiscent of components you may have seen on your favorite websites. Components are created by dragging
the component from the Component Palette and dropping it onto a view. A complete list of components is found on the Perspective Components page.

The Component Palette is located in the upper right side of the Perspective Designer Interface. If the component palette is not visible, click
Perspective Components to open. This panel defaults to auto-hide itself. Components are grouped into different categories based on functionality.
Each category can be individually expanded to show all components in that category, or collapsed to hide the components in that category.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

In the Component Palette search bar, you can search for components. Start typing in the search bar and the component list will update based on the

text you entered. You can also set filter options by clicking on the icon to expose the filter selection to make the search case sensitive, or Search
use wildcards, regular expressions, match from start, match exactly, and match anywhere.

Perspective Property Editor

As with other areas of Ignition, the Perspective module has a dedicated panel that allows for fine-tuning of individual objects. The Property Editor
Property Editor is contextual, meaning that the properties available are dependent on which object or component is selected.

The Property Editor contains a search field, allowing you to filter properties based on the text typed into the field. The image below shows the

properties that are set on a Cylindrical Tank component. There are icons to the left of each of the properties that appear when you Binding
mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the Value property, it will open the Binding window and
you can set what the Cylindrical Tank component is bound to. In following example, the Value property of the Tank is bound to a Sine2 OPC Tag.

In the Property Editor you can also set Position properties and add Custom properties to components, as well as create Params for passing values
from one view to another. To learn more about each of the categories in the Property Editor, refer to the page. Perspective Component Properties

The Property Editor will allows show warnings if there an an issue with the selected component. This is commonly used to show when the quality on a
property is non-good, or if there is some other configuration issue with a property. Clicking the red triangle in the upper right corner of the property
category will display additional information.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyCategories

Page Configuration

Pages are how you navigate within a Perspective project. Each page represents a collection of views that are displayed in a single space. Just like a
Before you begin to configure a page, it's important to understand tsingle tab of a web browser, this represents a single page (at a time). he page

. It has several specific regions and each behave differently: Top Dock, Bottom Dock, Left Dock, Right Dock, and a Primary View. layout The type of
content you create and the design strategy you use for your views will determine where you place them on the page layout. For example, you may
want a staff schedule to be available on every page, but not displayed all the time on the page. What you could do is configure the view on a docked
window, thus making it available on demand when someone wants to see it by clicking on a tab in a sesson to view it, and clicking the tab again to
hide it. describes in detail about page layout, page configuration, configuring docked views, and more. Pages in Perspective

Open the Page Configuration window by clicking on the in the lower left corner. This is where you'll configure your pages in Settings icon
Perspective.

Initially, allow you to apply configuration changes to all pages (such as adding an omnipresent docked view), as well as specify the Shared Settings C
.orner Priority

To the right of the Page Configuration column, the following buttons are present:

Add - Creates a new Page Configuration.
Trash - Removes the selected Page Configuration.

Recently Modified Views

You'll also notice in the Page Configuration image below, there is a Recent Modified Views list. These are your most recent modified views along with
a timestamp denoting when the last edit to the view was made and who made the modifications. If the project does not contain any views, the listing
will be empty.

https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageLayout
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageLayout

Keyboard Shortcuts

There are a lot of ways to speed up development once you are familiar with how works. There are many keyboard shortcuts in Perspective Ignition Des
 that are listed throughout the interface alongside menu options. To learn about keyboard shortcuts, go to the igner Designer Windows, Linux, and Mac

 page.Keyboard Shortcuts

Vertical and Horizontal Guides

In the Designer workspace, you can set vertical and horizontal guides to help you align components. To set a vertical guide, slide your cursor along
the top horizonal ruler and click it where you want it. The number of pixels will be displayed in the top ruler and a red vertical line will appear the length
of your workspace. To remove the guide, click on the guide and drag it to the left into the vertical ruler and it will disappear.

To set a horizontal guide, slide your cursor in the vertical ruler and click it where you want it. The number of pixels will be displayed in the left ruler and
a red horizontal line will appear on the width of your workspace. To remove the guide, click on the guide and drag it to the top into the horizontal ruler
and it will dsappear.

You can add multiple vertical and horizontal guides.

https://legacy-docs.inductiveautomation.com/display/DOC81/Windows%2C+Linux%2C+and+Mac+Keyboard+Shortcuts
https://legacy-docs.inductiveautomation.com/display/DOC81/Windows%2C+Linux%2C+and+Mac+Keyboard+Shortcuts

The Perspective Designer toolbar also has options for . aligning components

Related Topics ...

Perspective Components
Perspective Component Properties
General Designer Interface
Pages in Perspective

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-Aligning
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Perspective Sessions

A Perspective represents one instance of a project running on a Session
web browser or mobile app. The term "session" might be new to some
users, where "client" or " " may sound more familiar. runtime So anytime we
refer to a session, we are talking about a application in runtime
Perspective.

Now that you know that a session is effectively running an instance of the application, it can have
multiple in the same web browser. Perspective Sessions work the same way as web pages do on Pages
your favorite website on the internet. You can log into your favorite shopping website and then open
several new tabs, where each tab is aware of your user without having to retype them. credentials

A session appears fairly simplistic, but there is actually a rich hierarchy of elements to be aware of. This
page details the various moving pieces that comprise a session.

Session Anatomy

A Perspective Session contains a hierarchy of logical elements, as shown in the example below.

A session can have any number of pages at a time, pages can have any number of views, and
containers can have any number of , including other containers as children, which can also components
be nested to support multiple layout strategies. In this section, we discuss each building block of this
hierarchy, starting at the bottom and working our way up. When describing each element, it helps to
understand the smallest piece first which is a component, and then move up the hierarchy simply
because that's where the design process begins in Perspective.

On this page ...

Session Anatomy
Component
Container
View
Page
Properties
A Simple Example

Launching a Perspective Session
Launching a Session from the
Designer
Launching a Session from the
Gateway Webpage

Session App Bar
About Ignition Information
Popup
Session Status Popup

Project Updates
Page URLs
Browser Version Requirements
Session Disconnections

Perspective Project
Elements

Watch the Video

Component

Components are elements that you can select from to design your project. Perspective has a host of built-in components such as displays, buttons,
charts, and other elements that display information to the user viewing a session. There is also an Embedded View component that allows you to
include a view in the place of any component in the above structure.

Container

Containers are elements that contain . You can nest one container inside of another container. It is important to note that containers do components
more than simply contain , they also define a layout strategy of how inside a container resize and reposition. Because of this, components components

 . there are several different types of containers and each behave differently, and support different layout strategies

View

Views are the primary unit of design in Perspective. Views are unique in that they can act as both a top level screen (a whole page in your session) or
into folders in the Designer’s a component (embedded in another view). Each View is a project , which are named and organized resource Ignition

Project Browser tree. These folders/paths are important not only for organization and referencing, but also because these paths uniquely identify each
view, and are used in the session () for navigation. Each View has a container type that decides how the inside it will runtime components
behave. Multiple Views can be present within the same page, and views can also be nested. Parameters can be passed into a view from an external
source.

Page

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.1
https://docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective

A represents a collection of views that are displayed in a single space such as a browser window or tab, and is the main navigation element in a Page
session. Each page consists of a primary view, but multiple views can be defined from within a single page. Some views can be docked to specific
edges of the page, or “popups” floating on top of the other views. Multiple pages can be open as part of the same session, but can show
different information. A URL is defined for a page, which means the Forward and Back buttons in a web browser can be used to navigate to pages
that have already been visited.

Properties

A session has its own properties that can be customized. For information, see .Session Properties

A Simple Example

If you are just starting to explore Perspective, you will most likely create a single view, add a few components (no containers), and then launch a
session. In this case, our structure seems much simpler than the diagram above, but your session has one page, which is displaying one view, which
has a few components. As you add to your project, it will become more complex and start to resemble the image above.

Launching a Perspective Session

There are three ways to launch a Perspective Session:

From the Designer
From the Gateway Webpage
By entering the web address of the project in your web browser

Launching a Session from the Designer

Launching a Perspective Session from the Designer is a great method if you're testing your
changes. When you're in the Designer, simply click the Tools > Launch Perspective > Launch Session
 from the top menubar. This opens a session for the project you are working on directly from the
Designer.

Launching a Session from the Gateway Webpage

On the Gateway Webpage, you'll notice the page is the home page. Under the Perspective Get Started
logo, click . View Projects

The window will refresh with a list of Perspective projects. Find your project and click the Launch Project
button. This opens your project in a browser tab.

Launching a
Session

Watch the Video

https://www.inductiveuniversity.com/videos/launching-a-session/8.0/8.1

Session App Bar

At the bottom of every Perspective Session, there is an app bar with a few options that provide

information about Ignition and the current session. To display the app bar, click the icon in Maximize
the lower right corner of the screen.

This brings up the app bar at the bottom of the window.

You can change the location of the Maximize/Minimize icon on the app bar in the Property Editor. Scroll
down the list of properties in the Perspective Property Editor and expand the appBar property. Right-
click on the togglePosition property and select one of the three options: left, right or hidden.

Session App Bar

Watch the Video

https://www.inductiveuniversity.com/videos/session-app-bar/8.0/8.1

About Ignition Information Popup

On the lower left of the app bar, click the icon to open the information popup. This screen has a short introduction to Ignition About Ignition
Ignition and a link to the Inductive Automation website. Use the scroll bar on the right to scroll down.

Here you'll see the number of modules installed on the Gateway, along with a list of those a modules, their version numbers, and whether they are
currently running.

Session Status Popup

In the middle of the app bar at the bottom of the window, the current Gateway ID is displayed. Click on this for additional information. The pop-up
screen shows the current user and connected Gateway. If no user is signed in, a Sign In button is displayed in the upper right corner.

Click on the right arrow or anywhere on the Gateway name to open the Session Status popup.

The Session Status popup has two tabs: and . Under the tab, you can see the connection status, Gateway URL, Session Gateway Project Gateway
ID, and Page ID. The button is a shortcut to the Gateway Homepage. Visit Gateway

Under the tab, you see the name of the project, the last modified date for the project, and whether the project is up to date.Project

Project Updates

If you have a Perspective Session open and a change was made in the Designer that was saved and
published, one of two things may happen. Either the project will silently update, or an Update Notification
window will appear in your session. Your session will automatically update in 30 seconds or you can click

. Update Now

In order to receive update notifications in a Perspective Session the Update Notification option must be
enabled. To access the Project Properties, in the , click on tab on the menu bar. Then Designer Project
select . Scroll down to and then checkProject Properties Perspective > General Enable Update

.Notification

Session Update
Notifications

Watch the Video

Page URLs

Because Perspective is designed to operate in a web browser, each page must be “mounted” at a given URL. The URL setting of the page will be
reflected in the browser’s URL bar if the session is running in a consumer web browser. To learn more, refer to the section on in Pages in Page URLs
Perspective.

Pages can be mounted at URLs that also include parameters. These parameters are used to allow a page to be mounted at a dynamic URL, allowing
information in the URL to be interpreted as input parameters to the page’s primary view. Go to the section on to get more detailed Passing Parameters
information on passing URL parameters.

Browser Version Requirements

Browser version requirements are hard to define since each major or minor browser versions may introduce new CSS specifications which are
leveraged by individual features in Perspective. For example, a container component built around a relatively new and exciting CSS layout system will
likely require a more recent browser version. In general however, the supported browser listed below do a good job at staying up to date with
implementation and support of these new specifications.

Our general policy is to only use features that have been supported for some time, whenever possible. We are currently using features that have been
standardized for a few years before Perspective was even released. Overall, we will always recommend that you keep your browser up to date to take
advantage of browser features, fixes, and most importantly for security updates.

Ignition (as well as browsers) is constantly evolving and leveraging new APIs to provide you with the best experience possible, so it's difficult to pin
down minimum versions for 100% of Perspective's functionality. We do take care to ensure Perspective sessions will always work on the browsers
and versions listed below. Perspective sessions may very likely work for some browsers that are not even listed below, but we do not test against
them, and thus cannot guarantee their behavior.

Some browsers that are not listed below may also work, but we cannot guarantee them.

Basic Session Functionality Requirements for Ignition 8.1.0

Browser Minimum Version Required

https://www.inductiveuniversity.com/videos/session-update-notifications/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageURLs
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLparams)

Chrome 57

Firefox 52

Safari 11

Edge 16

Session Disconnections

If a Perspective Session loses its connection to the Ignition Gateway, a message will immediately display on the upper right-hand corner of the
Session to inform a user of the lost connection status and the time of connection loss.

The Session itself will continuously attempt to reconnect to the Gateway. When the connection between the Session and the Gateway is re-
established, your Session will resume its normal operation. If the project associated with the Session is somehow deleted, the Session will fail to
reconnect because its source project is missing. A project can be manually deleted or overwritten by a Gateway restore.

Related Topics ...

Pages in Perspective

In This Section ...

1.
2.

3.

Ignition Perspective App

The Ignition Perspective App is a native mobile application that can be
downloaded and installed on Android and iOS mobile devices. It provides
users with a single location to access all of their Perspective projects.
While a Perspective Session can be launched from a mobile device's web
browser, the Perspective App enables the use of many built in pieces of
hardware within your mobile device, such as the camera, the
accelerometer, or the NFC Scanner. Data from these tools can be pulled
into the Perspective Session and used in various ways: a barcode can be
scanned and the data inserted into a database, the accelerometer can be
used to remote control a device with motion rather than buttons, or an NFC
Tag can provide vital information about a system. For information about
setting up native app actions in Perspective, see Perspective Events and Actions .

Download the App

You can download the Ignition Perspective App from a local online app store, such as the Google Play
Store for Android or the App Store for iOS.

In your app store, search for Ignition Perspective.
Click the button.Install

Once installation is complete, click the button, or click on the icon on Open Perspective
your device's home screen.

On this page ...

Download the App
Launch a Perspective Session

Launch the Online Demo
Launch a Project
Switch to a Different
Application

Additional Options
Create Project Shortcuts
Managed Configurations

Perspective App

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/the-ignition-perspective-app/8.0/8.1

3.

3.

4. The homepage is displayed. This will show a list of your projects. Initially, just the OnlineDemo
is listed.

Launch a Perspective Session

On the home screen, you can launch the Online Demo, which is on the Ignition 8.0 Demo Server or launch a project on a different Gateway.

Launch the Online Demo

To launch the demo, just click the icon or click on the demo description.Perspective

1.
2.

3.

Launch a Project

To launch a different project, click the Plus icon in the lower right corner of your screen.
You then have two options:

Scan a QR Code
Search for an available Gateway with Perspective projects.

For this example, we'll search for available Gateways. Click on .Gateway Search

3.

4.

Select the Gateway you want to connect to.

4.

a.

b.

If the Perspective App doesn't find the Gateway automatically, you can manually input a Gateway host name and port. Click on Man
.ually Input Gateway

Type in the host name including the port, for example: (or if using SSL).http://10.10.115.3:8088 https://10.10.115.3:8043

http://10.10.115.3:8088
https://10.10.115.3:8043

4.

b.

5.

Click on the project you want to open.

5.

6.

1.

2.

If security is set up on the project, you'll be prompted to sign in with your credentials.

Switch to a Different Application

When you are running a project or the demo app, you can switch to a different application, as follows:

Click the icon in the lower right corner. App Bar

Click the icon. Exit

3. At the confirmation prompt, click . Exit

Additional Options

Click on the icon at the top of the screen to filter the project list.Search

Click on the icon at the top of the screen to view the settings for the Perspective app. Here you can organize your list of available Settings
Gateways. You can also turn the Auto-Launch option on and select a project that will be automatically launched when the Perspective App is opened
on this device.

Individual projects also have additional options that can be seen by tapping the Three Dots icon for the project on an Android device or swiping
to expand the options on an iPhone device. The additional project options include making the project a Favorite, editing the project, and removing the
project. Android devices also have the option to . Tapping or , on an Android or iPhone device Create Shortcuts Add to Favorites Favorite
respectively, means that project will appear on the tab in the app. If you have multiple projects listed on your tab, marking certain Favorites All
projects as Favorites can give you a quick and easy way to access a tailored list of projects.

https://docs.inductiveautomation.com/display/DOC81/Ignition+Perspective+App#IgnitionPerspectiveApp-CreateProjectShortcuts

Selecting will access the screen, where users can:Edit Manage Application

Add an Application Alias
Add the project to Favorites
Remove the project
Save any changes made on the Manage Application screen
Return to the previous screen by tapping the icon or , on an Android or iPhone device respectively. X Cancel

1.

2.
3.

Users can alternatively remove a project by simply tapping the or option, on an Android or iPhone device respectively, Remove Application Remove
from the homepage.

Create Project Shortcuts

If the Ignition Perspective App is downloaded on an Android mobile device, you can create a project shortcut to open a project directly from your
Home screen. Although iOS users are not able to create project shortcuts currently, the Long Press can still be used to select and open a project
without launching the Ignition Perspective App. Long Press instructions are covered below under the second method for creating project shortcuts.

To create the shortcut, open the Ignition Perspective App.

Push the icon for your project.Three Dots
Select .Create Shortcut

3.

4.

1.

Select .Add

A shortcut is now added to your Home screen and will open a project as if you were launching from within the Ignition Perspective App without
needing to use the Ignition Perspective App.

The shortcut icon and App Name will match what is displayed in the Ignition Perspective App project list.

The shortcut icon can be edited in the Designer .Project Properties > Perspective > General > Launch Icon
The App Name can be edited by selecting the and entering an Application Alias. If the Alias is Three Dots icon > Edit Application
changed after creating the shortcut, make sure to re-launch the project inside the Ignition Perspective App. This will trigger the shortcut name
to update on your Home screen.

A second method to create a Home screen shortcut is to use the Long Press (press and hold) feature.

Long Press the Ignition Perspective App on your Home screen until the Information popup appears.

1.

2.

3.

Locate the project name (or Alias) from the popup. Note that a project has to be opened at least once from inside the Ignition Perspective
App before it will appear in this popup.
Drag and drop the project to your Home screen to create a shortcut in the same manner as detailed above.

Managed Configurations

The Ignition Perspective App can be configured via iOS and Android enterprise services , allowing third-party tools to install the app with some initial
configurations. The actual configurations are pushed out by the Enterprise Mobile Management (EMM) solution, so there are no configurations to be
made on the Ignition side.

For Android devices, EMMs pull the keys from the APK and manages the configuration from a console in the EMM software.

For iOS devices, you will need to provide the EMM software with a sample PLIST. See the on our Ignition Perspective iOS App - AppConfig XML
Extra Materials page.

The following keys will be made available to the EMM solution.

Key Description

auto_launch Contains keys that control the auto-launch capability of the app, allowing you to determine if the app should immediately launch into
a project or not. Contains the following keys:

Key Description

auto_launch_lo
cked

If true, prevents user from disabling auto-launch or changing the auto-launch URL within the app.

prevent_exit If true, prevents the user from exiting the auto launched project

auto_launch_url If set with a project URL, auto launch is enabled and the project specified in the URL will automatically launch
upon startup of the app.

hide_demo If true, the built-in demo project will become hidden.

initial_applic
ations

Allows you to add projects to the main app page. Each application has the following keys:

Key Description

project_url A URL leading directly to the application, for example:

http://www.someurl.com:8088/data/perspective/client/myproj

OR

perspective://www.someurl.com:8088/myproj

alias The name for the application, as it will appear in the project list.

is_favorite Sets this project as a favorite.

https://inductiveautomation.com/downloads/extra-material

initial_gatew
ays

Allows you to add Gateways to the Recent Gateways list. Each gateway has the following key:

Key Description

gateway_url A URL to the Gateway you'd like to add to the list, for example:

http://www.someurl.com:8088

Session Properties

Session properties are available for use throughout Perspective Sessions. Sessions of a given project
will have the same list of properties, however, the actual values are unique and independent for each
running Session.

Each Session creates its own instance of these properties. This makes them very useful as in-project
variables for passing information between views or browser tabs, and between other parts of the
Session, such as scripting.

The Property Editor displays Session properties when viewed from the Perspective Start screen. Each
Session contains a series of properties with unique values. These properties provide some useful
information about where the Session is running. Additionally, custom properties may be added, providing
a way for a Session to store additional values that can be used in bindings and scripts, and are
also important for passing parameters from one view to another.

Restrictions from System Properties

Some Session props are intentionally restricted with a System property and cannot be changed or

removed. These properties have a icon displayed next to them in the Property Editor. System

On this page ...

Restrictions from System
Properties
Session Properties Table

Session Props

Watch the Video

Session Properties Table

Name Description

id Unique Session identifier.

https://www.inductiveuniversity.com/videos/session-props/8.0/8.1

host Reflects the connecting system's IP address or hostname.

This feature was changed in Ignition version :8.1.10

The value of this property is impacted by the gateway's Resolve Client Hostname setting. While Resolve Client Hostname is enabled, the gateway will
attempt a reverse DNS hostname lookup. Whatever is returned by this lookup will be set as the value for host.

theme The to use in the Session. The default theme is . Writing a theme name to this property will change the theme for the Session. theme light

locale The current locale of this Session.

timeZon
eId

Timezone identification code, for example America/Los_Angeles.

This sessionProps.timeZoneId is the root property. The other timezone.id properties you may see are gateway.timezone.id and device.timezone.id. These are
both read-only representations of what the Gateway and user agent (mobile device, browser, workstation, etc.) report back to the session. You can bind either
of these properties to override the sessionProps.timeZoneId by setting the project property Timezone Behavior for Perspective to Gateway or Client. This will
update the timeZoneId session property on session startup to the reported value.

Beyond manually updating in Session Props or binding the property, you can also update the timeZoneId session property so Perspective will react to updates
dynamically.

lastActi
vity

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

A readonly that represents the last time the session was interacted with, such as a user clicking within the session. The time reported by this property is based
off of the gateway's time.

auth Represents the user's authentication and authorization for this Session.

Name Description

authenti
cated

True if the user is authenticated. False if the user is unauthenticated. Null if the user's authentication status is unknown.

user Contains information about the user, if they are authenticated.

Name Description Property
Type

id The IdP's unique identifier for this user. Null if the user is not authenticated. value:
string

userNa
me

The user's username. Null if the user is not authenticated. value:
string

firstNa
me

The user's first name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if
no mapping was configured for this attribute.

value:
string

lastName The user's last name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if
no mapping was configured for this attribute.

value:
string

email The user's email address. Null if the user is not authenticated, if the IdP did not provide this attribute,
or if no mapping was configured for this attribute.

value:
string

roles The roles that the IdP assigned this user. Null if the user is not authenticated, if the IdP did not provide
this attribute, or if no mapping was configured for this attribute.

value:
string

timesta
mp

A timestamp representing the last time the current user authenticated against the Identity Provider. value:
timestamp

security
Levels

The deepest in the tree The Public security levels granted to the current user, starting with the children of the Public security level.
security level is never shown since all Sessions include Public.

Name Description Property Type

name The name for this security level. Must be unique among its siblings. value: string

children Security levels which descend from this security level. array

https://legacy-docs.inductiveautomation.com/display/DOC81/Web+Server+Settings#WebServerSettings-HTTPandHTTPSSettings
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Levels

idpId The identity provider's ID. Replaced by the idp property

idp The name of the Identity Provider configuration set on the project.

idpAttrib
utes

Represents the JSON object returned by the identity provider after logging in. The structure of this object will match that of the
JSON provided by the Test Login Identity Provider page.

Note: The Designer does not authenticate against identity providers in Ignition 8.0, so this object will always appear empty in the
designer. Use the Test Login page to determine the shape of this property, or use a simple binding to something visual (i.e. a
label) display and parse the results while developing your project.

Note: Ignition currently supports the Ignition and OpenID Connect (OIDC) Response Documents, but not SAML. Attempting to
use a SAML IdP will result in the idpAttributes property containing an empty string. This note will be updated once support for
SAML Response Documents has been implemented.

Editor notes are only visible to logged in users
The note directly above these Editor Notes is from in the Training channel. This should be updated once this request IG

 has been completed.N-4637

gateway The value of this property will not be saved with the view. Properties for the Gateway that this Session is running on. Does not persist by default.

Name Description

address Remote host address of the connected Gateway.

timezone Document providing time zone information.

Name Description Property Type

id Time zone identification code, for example America/Los_Angeles. value: string

name Name of the timezone. value: string

utcOffset Offset of the current timezone relative to UTC, in hours. value: numeric

connect
ed

True when connected to a websocket. All tabs in the Session must have a connected websocket to become true. If a Session
disconnects but is still open in the browser, the property will not change, as the property write from the Gateway can't write to the
disconnected Session.

device Properties for the device that is running the Session.

Name Description

type Type of device that created this Session. Read only. Options are ios, android, designer, browser, and workstation. Empty string if
device is unknown during loading.

identifier Unique ID representing this device. This is a convenience property not intended/suited for security purposes. May change via
device/application re-installs or browser cache clears.

timezone Document providing time zone information.

Name Description Property Type

id Time zone identification code, for example America/Los_Angeles. value: string

utcOffset Offset of the current timezone relative to UTC, in hours. value: numeric

userAg
ent

User agent string of the connected device.

settings Array of settings for the device.

Name Description Property

https://legacy-docs.inductiveautomation.com/display/DOC81/Test+Login+and+Logout
https://inductiveautomation.slack.com/archives/C5Q6KGVGD/p1654704846237539
https://youtrack.ia.local/issue/IGN-4637
https://youtrack.ia.local/issue/IGN-4637

Type

pullToR
efresh

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

If true, swiping down from the top of page and holding for two seconds will refresh the project in the
mobile . If false, swiping down will scroll the screen. Default is true. Perspective App

value:
boolean

prevent
Sleep

Prevents the device from sleeping while viewing project in the mobile . Default is false.Perspective App value:
boolean

acceler
ometer

When continuous read mode is active, represents values retrieved from the accelerometer.

Name Description Property Type

timestamp Timestamp represented as standard 'milliseconds since unix epoch'. value: string

x Acceleration force (in m/s) along the x axis (including gravity).2 value: numeric

y Acceleration force (in m/s) along the y axis (including gravity).2 value: numeric

z Acceleration force (in m/s) along the z axis (including gravity).2 value: numeric

bluetooth Options and data provided by device Bluetooth services.

Name Description

enabled If true, enables bluetooth capability.

options Bluetooth options.

Name Description Property
Type

updateI
nterval

How often should the Session check for new data packets. Duration in ms to buffer Bluetooth data
before sending to Perspective.

value:
numeric

limit Maximum number of packets to display. The order of packets is strongest RSSI (Received Signal
to weakest.Strength Indicator)

value:
numeric

filter Bluetooth filtering options.

Name Description Property
Type

enabled If true, will enable filtering on the packets. value:
boolean

minimu
mRSSI

Minimum strength of RSSI to return. Enter 0 to ignore. value:
numeric

altBeac
on

AltBeacon format.

Name Description Property
Type

exclusive Exclude other beacon types that are not
altBeacon.

value:
boolean

uuid The 16 byte beacon identifier. Ignores packets
that don't match the value specified.

value:
string

object

eddysto
ne

Eddystone open beacon format.

Name Description Property

object

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

Type

exclusive Exclude other beacon types that are not
eddystone.

value:
boolean

nameSp
aceID

Namespace identifier. Ignores packets that
don't match the value specified.

value:
string

iBeacon iBeacon format.

Name Description Property
Type

exclusive Exclude other beacon types. value:
boolean

uuid 16 byte proximity uuid of iBeacon. On iOS this
must be specified in order to receive iBeacon
data.

value:
string

object

data Will populate with most recent packets from any detected beacons.

geoloca
tion

Options and data provided by web or native device geolocation services.

Name Description

enabled If true, will attempt to populate location data into the 'data' property.

permiss
ionGran
ted

If geolocation is enabled and a geolocation permission prompt is requested, this field populates true if the user allowed permission.
Otherwise, it is false. Read only.

options
Name Description Property

Type

accuracy Indicates the mode of accuracy the application uses to receive results: max, balanced, and low.

Name Description Property
Type

max Maximum accuracy (and highest battery use). Accurate to the level
allowed by the environment/device.

value:
string

balanced Balanced accuracy - accuracy resolves ~100m (about a city block) using a
more efficient poll rate and supplementing with device data. Balanced is
the default value.

value:
string

low Low accuracy typically does not use a GPS sensor, but relies on
environmental meta data (such as cell tower information, Wi-Fi
connectivity, etc.). Most efficient, accurate to approximately town/3
kilometers.

value:
string

value:
boolean

maximu
mAge

A positive long value indicating the maximum age in milliseconds of a possible cached position that is
acceptable to return. If set to 0, it means that the device cannot use a cached position and must
attempt to retrieve the real current position. If set to infinity, the device must return a cached position
regardless of its age. Default is 0.

value:
numeric

data If geolocation is enabled and the device can provide geolocation data, this will hold information about location.

Name Description Property
Type

latitude A floating point value representing the position's latitude in decimal degrees. Null if location is disabled. value: float

longitude A floating point value representing the position's longitude in decimal degrees. Null if location is
disabled.

value: float

altitude A double representing the position's altitude in meters, relative to sea level. This value can be null if
the implementation cannot provide the data.

value:
double

accuracy A double representing the accuracy of the latitude and longitude properties, expressed in meters. value:

double

altitude
Accuracy

A double representing the accuracy of the altitude expressed in meters. May be null if device fails to
provide or if geolocation is disabled.

value:
double

heading Returns a double representing the direction in which the device is traveling. This value, specified in
degrees, indicates how far off the device is from heading true north. 0 degrees represents true north,
and the direction is determined clockwise (which means that east is 90 degrees and west is 270
degrees). If speed is 0, heading is NaN. If the device is unable to provide heading information, this
value is null.

value:
double

speed Returns a double representing the velocity of the device in meters per second. This value can be null. value:
double

timesta
mp

Time the last location update was received. value:
string

appBar Settings relevant to the bottom-docked App Bar, which lists Gateway information.

Name Description Property Type

togglePosition The position of the overlaid toggle button that shows the app bar: , or .right left hidden value: string

about

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Settings allowing for more customization of the bottom-docked App Bar.

Name Description Property Type

show Determine if a custom about page should be shown. value: boolean

icon The path of the about button icon. value: string

path Path of the view to display in the about modal. value: string

title The title of the about modal. value: string

object

pipes

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

An object containing properties that pertain to pipes.

Name Description

autoApp
earance

The styling to use when a set of is set to an "auto" style. pipes

overlap
Gap

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

The width of the gap to draw when P&ID pipes overlap. When this property is set to 0 or a negative number, no overlap is
rendered. This may result in a rendering performance boost when using complex P&ID pipes. Default is 4.

symbols

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

Settings relevant to the components on the .Perspective Symbols Palette

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette

Name Description

autoAnimationS
peed

Sets the animation speed for any Perspective symbol components that have their animationSpeed property set to auto.

autoAppearance Sets the appearance for any Perspective symbol components who have their appearance property set to auto. Options
are auto, p&id, mimic, and simple.

google
MapsAp
iKey The following feature is new in Ignition version 8.1.33

 to check out the other new featuresClick here

Google Maps API Key. This key is required to use a functional version of the component. Google Map

address

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Represents the IP address of the Session as the gateway sees it.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.33
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Google+Map
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

Perspective Session Proxy Considerations
In cases where a reverse proxy or other middleware is located between the Gateway and a running Perspective session, then the proxy server will need to
whitelist several custom headers. Doing so insures that the proxy allows requests from the session to pass through to the gateway.

Prior to 8.1.17

client_timezone
device_id
device_type
version_code
perspective-session-id
designer-session-id

8.1.17+

client-timezone
device-id
device-type
version-code
perspective-session-id
designer-session-id

Perspective Design Tips

There are many things to consider when designing for mobile-responsive
applications that can run in a web browser. Designs must work
everywhere, on any device from a small smartphone to an oversized
desktop, in an optimized format, using one design. Unfortunately, there is
no one design strategy that fits all projects, but you can have a single
design for a project that works well across many different screen sizes
based on content and context.

On this page ...

Designing for Mobile-Responsive
Applications
Design Principles

Touch and Ergonomics
Mobile-First Design Approach
Fluid Content
Content as UI
Declutter

Understanding Views and
Containers

With mobile devices ranging from smartphones to tablets, understanding how your website will display on the variety of formats is critical. This page
provides some design principles to consider when designing in Perspective, but it only scratches the surface. You can augment these design
principles with the design processes from your company.

Before designing your first project in Perspective, understanding terms like mobile optimized, responsive design, and user experience are sure to
come up in conversation when defining the requirements for your project.

Responsive Design - is a method of developing web pages that are completely flexible and renders on any device type. Responsive
designed websites "respond" to the screen size of the device being used from smartphones to industrial monitors.
Mobile Optimized - means the website will reformat itself for mobile devices such as smartphones and tablets.
User Experience - can separate a good a successful app from an unsuccessful one. You want users to have a quality experience using your
app such as fast loading time, easy to use, and navigation for starters.

Building a good mobile-responsive app starts with defining specific goals and objectives to clearly identify the problem you're trying to solve whether
your starting a new project or redesigning an exising one. Equally important is understanding the needs of the users and integrators. Some things to
ask your users about is, what types of devices they plan to use to access the project, what type of data they want to see, are they viewing data,
entering data, or controlling equipment. Do they need to work offline.What do they want the components on the screen to do.

It's extremely important to capture and document all the user requirements. When doing requirements gathering, it's also important to audit the
workflow process. This way you get to see firsthand what the users are doing so you can define requirements prior to entering the design phase. This
doesn't mean that you can't refine requirements as you progress through the design process. You most certainly can!

Designing for Mobile-Responsive Applications

You have choices when it comes to designing in Perspective. You can design for desktop or mobile devices, or both. Ignition Perspective allows you
to design your apps to work well across many different screen sizes, whether a user is seated in the control room, grabbing a tablet to walk into the
field, or receiving a notification to respond to a crisis after hours.

One of the first considerations when tackling a design project is to determine the types of devices your users are going to use to access the project.
This often dictates whether you design for a desktop, mobile devices, or both. Something to keep in mind, is designing for multiple screen sizes at the
start of your project will be far easier, less time consuming, and less costly than adding it on later. This way you have one design that adapts to many
screen sizes.

Think of a responsive design as a layout strategy, allowing your apps to work well across many screen sizes. It's a single design that reorganizes and
responds to the available browser space to display the same content in a more usable way whether your using a smartphone, table or desktop. You
also get a consistent UI and functionality across various screens, and it works everywhere. If you open a responsive site on the desktop and then
change the size of the browser window, the content will move dynamically and arrange itself optimally for the browser window. On mobile devices, this
process is automatic; the site checks for the available space and the reformats itself in the size matching the device while optimizing the content for an
ideal arrangement. This is responsive design!

Design Principles

We all know what good design looks like in the desktop world. Now let's expand our knowledge to mobile devices using the following design principles.

Touch and Ergonomics

Good design begins with touch and ergonomics. On mobile devices all input is touch driven and have smaller touch targets. The smaller the target,
the harder they are to use, and the more chance for errors. For example, turning on/off an industrial motor or some other critical process can lead to
serious repercussions in the event the wrong button is inadvertently pressed.

When designing for mobile devices like smartphones and tablets, it's important to make touch targets big enough so they are easy for users to tap. As
a good rule of thumb for sizing touch targets; 25 pixels is considered touchable, 40 pixels is optimal, and at a minimum, 10 pixels between elements.

Next, let's talk about the ergonomics of mobile devices. Designing for mobile devices isn't only about making targets big enough, it's also about
considering the way we hold our devices. There is a comfortable area for touch on a screen called the 'thumb zone'. A touch device like a smartphone,
the bottom of the screen is the best area for your most important actions because it's easy and most comfortable to reach with your thumb. You might
consider placing destructive actions in hard to reach areas such as the top of the screen if you don't want them pressed accidentally. Also, keep in
mind that the bigger the display area is on a smartphone, more of the screen is less easily accessible.

Be sure to test your applications on different operating systems and devices, including all sizes of smartphones and tablets. Even better, is to have
some of your users do some testing. Nothing works better than getting some real feedback from your users.

Mobile-First Design Approach

The Mobile-First design approach prioritizes the app design on smaller devices instead of designing a desktop app and then forcing it to fit into a
mobile first approach designingmobile box. A - is exactly as it sounds: for the smallest screen and working your way up. It is one of the best strategies

designto create either a responsive or adaptive . This design strategy focuses on progressive enhancement of features and content as browser size
and available space increases. Mobile-first design can lower development costs over the lifetime of your applications because single data model is
maintained instead of maintaining several specific solutions for specific devices.

Fluid Content

Fluid design offers users a consistent experience across multiple devices and screen sizes. In responsive design, you want to design your app with a
fluid layout that works good on small and large screens. You don't want them to look too busy on small screens and too empty on big ones. Think of
web content as a box. In a responsive app, these boxes are going to move and change depending on their container. Perspective containers provide a

This is really important because containers and views way of laying out and organizing components within a view. are an integral part of the
Perspective design experience and play a major role in creating fluid content. Not only does Perspective containers and views allow you to create fluid
content, but they also provide reusability throughout your existing project and other projects.

Content as UI

You can't talk about content without talking about design. Together, they both create a great user experience. By including design techniques in your
discussions about content, you truly discover what is important and how to communicate to the user. We are all familiar with how various interface
elements behave on a screen and how to directly interact with the content, but each design is different.

As a designer, the content UI focuses on what interface elements the user needs to understand to easily access content, so you want to be consistent
and predictable. There are many different types of interface elements such as input controls, navigational and informational elements to name a few.
It's important to know your users so you make the right choices so here are a few things to keep in mind:

Keep the content UI simple.
Be purposeful when designing your page layout.
Create consistency and use common UI elements.
Provide visual clues about behavior before actions are taken.

Declutter

Good UI design is about delivering relevant information and avoiding irrelevant information. By cluttering your interface with elements and content, you
overwhelm users with too much information. Every element you add makes the screen more complicated, and if looks complicated on a desktop, it's
even worse on mobile devices where there's not a lot of real estate. It's imperative to remove anything in the UI that isn't absolutely necessary.
Decluttering the screen will improve the user's comprehension. A good rule of thumb is "less is more."

With limited screen space, you have to create focused content. Here's a couple things to remember:

Keep content to a minimum and present the user with only what they need to know.
Keep interface elements to a minimum. A simple design will make your UI more intuitive and ultimately more productive.

Understanding Views and Containers

We covered some of the basic design principles for designing mobile responsive apps, but we must also stress that views and containers are an
integral part of the Perspective design experience because they work together to create your HMI screens, the windows into your application. The
View is the primary unit of design and the Container provides a way of laying out and organizing child within a Vcomponents iew. Every view and

 Perspective has an associated layout, simply put, it is a way of defining and describing the way that elements inside the container interact. container in

A container is also a component that contains other components. They also indicate what layout strategy should be used to control the size and shape
of any housed components. The layout strategy defines how the container displays each of its child components in the view. There are a variety of
container types that support different layout strategies.

It's also important to understand how each of the container types behave when they are big and small. This dictates what container types you should
use for your design. There is a bit of learning curve so you will need to experiment with each container type and physically test them out.

To learn more about each container type, refer to the section on .Containers in Perspective

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette

Pages in Perspective

Pages are the main method of navigation in Perspective. When talking about pages, there are two
distinct objects to be aware of.

- A collection of views that are displayed within a single tab of a browser during runtime. A Page
page consists of at least one view (called a "primary view"), any number of additional views that
can be docked along the edges (called "docked views"), and a partial URL associated with the
page,

 - A collection of settings that dictate how the page will behave during Page Configuration
runtime, including which views are present on a page, as well as rules for docked views in the
page.

Thus, Page Configurations are used to define pages that can be opened in the session, while Pages are
running instances that are defined by the . Page Configuration

Methods of Navigation

Users will traverse the various views in a project by navigating to different pages. There are many ways
to navigate to a page in Perspective.

The is the easiest way to switch to a different page based on Navigation Component Action
some user action.
The scripting function can be used as an alternative to the system.perspective.navigate
component action if more logic is desired.
Some components have built-in navigational functionality, such as the and Link Menu Tree
components.

Furthermore, all of the methods mentioned above can be used to navigate to arbitrary web addresses,
allowing you to add links to popular sites that might be useful to your users.

On this page ...

Methods of Navigation

Page Configuration
Creating a Page Configuration
Initial Page URL

Page Properties
Page Layout
Page URLs

Corner Priority

Passing Parameters (URL
Parameters)

URL Query Parameters

Creating Pages

Watch the Video

Page Configuration

All page configuration happens on the Perspective Page Settings tab. Any number of pages can be created for a project, each with their own Primary
View and Docked Views. When configuring a docked view in Page Configuration you can choose to dock the view on a specific Page URL with a set

 primary view, or you can choose to share the view across all pages under Shared Settings. Each project can configure a that will be Shared Settings
“inherited” by all pages in that project, allowing multiple pages to use the same docked views and corner priority settings.

You can open the Page Configuration from any view in the Perspective workspace by clicking on the icon at the bottom of the Perspective
Designer window. Here you can assign the Page URLs to your primary views and add docked views to your pages. You can even create a new view
without going to the Project Browser.

Below is an image of a Page Configuration screen. The Page Configuration column on the left side shows all the Page URLs assigned to views in
your project. You can click on the to see all docked views that are shared across all pages of your project. To see docked views that Shared Settings
are specific to a Page, navigate through each page of your project. In the following example, you'll notice that the view is a shared view TopNav
across all pages, and the Plant 1 view has one docked view called, , which is specific to this page and only visible when this page is open in RightNav
your browser.

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

As of 8.1.6 the Page Configuration page includes a new setting called Page Title, where you can set a title for the page being edited. If the field is left
empty, the browser's tab for the page will be the project name. If there is text in the field, the browser's tab for the page will be the exact content of the
field.

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418407#PagesinPerspective-PageConfiguration
https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NavigationAction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Link
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Menu+Tree
https://www.inductiveuniversity.com/videos/creating-pages/8.0/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

Creating a Page Configuration

Pages can be manually created by pressing the Add icon under the Page Configuration area of the Perspective Workspace. Pages created this
way will need to have a primary view specified.

Alternatively, whenever a new view is added to a project, a page can be created automatically by opting into the setting and typing value Page URL
for the Page URL. Note that all Page URLs should start with a forward slash character ("/"). Creating a page through this method will automatically
set the newly created view as the primary view on the new page.

Initial Page URL

Perspective assumes the initial page within a project will be located at page URL "/". When a session is launched, the session will start at the "/" page.
It's recommended that the "home" or starting view for your project uses a page URL of just "/".

Page Properties

Like most objects in Perspective, pages have their own properties. However, since pages aren't selectable in the Designer, page properties can't
appear in the Perspective Property Editor. However, pages do have properties that can be accessed via component property bindings and scripts.

Property Description Property
Type

pageId The unique identifier associated with the page. Can be used with other features to identify the page, such as the system
 function..perspective.navigate

Note, that the value of of this property in the Designer will match the name of the active view. However, during a
session the value will return a uniquely generated string, such as "2bf737f8".

value:
string

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate

path Represents a string "path" to the page. Effectively the same as the Page URL. value:
string

primaryView Represents a path leading to the page's primary view. The "path" is based off of the view's location in the Project
Browser, starting under the Views item, and including folders.

value:
string

appBarVisi
ble

A Boolean value representing whether or not the app bar is visible on the current page. Writing to this value will hide or
show the app bar.

value:
boolean

dimensions

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

Settings for the dimensions on a page.

Property Description Property
Type

enabled The page dimensions in this object will update accordingly if true. While false, the
dimension values will not update.

The remaining dimension properties in this section are read-only.

value:
boolean

viewport Current settings for the "inner" boundaries of the browser, i.e., the dimensions of the
page (read-only).

Property Description Property Type

width Width of the inner boundary. value: numeric

height Height of the inner boundary. value: numeric

object

screen Settings for the dimensions of the screen the page is on. Note that this only updates on
browser resize and page startup (read-only).

Property Description Property Type

width Width of the screen the page is on. value: numeric

height Height of the screen the page is on. value: numeric

object

primaryView Settings for the dimensions of the primary view in use for the page, and how much
scroll is currently applied to that view (read-only).

Property Description Property Type

width Width of the primary view. value: numeric

height Height of the primary view. value: numeric

scrollLeft Distance in pixels that the view scrolled to the left. value: numeric

scrollTop Distance in pixels the view is scrolled from the top. value: numeric

object

object

urlParams

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

URL query parameters. Perspective supports the use of query parameters, such as those passed by an API call. When
Perspective detects a in a URL string, any key:value pair supplied after the is mapped as a key:value pair within ? ?
this object. This property is read-only.

Note: All values passed in a URL are passed as Strings.

object

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

title The title shown in the browser's tab. The value of this property defaults to the project's title if there is one. The property
falls back to the projects name if a title isn't configured. The property is writeable, so scripts and bindings can be used
to create a unique title.

value:
string

Page Layout

 Page layout has specific UI regions where you can place instances of your views. Depending on screen size and orientation, the UI regions have
different behavior. There are six primary content regions: Center area, Top Dock, Bottom Dock, Left Dock, and Right Dock. There is also the Popup
region that floats on top of the other content regions.

The Primary View is in the center of each page taking all available space in the browser window. Each page must have a single view configured to be
its primary view.

Docked views, "docked" or positioned towards the edges of the Primary View. In a session, docked views can appear permanently along the edges or
the browser, or be opened an dismissed by the user.

Page URLs

Perspective is designed to operate in a web browsing environment. A Page is the main navigational element in a Perspective Session, so when a
Perspective Session starts, it typically begins at the page mounted to the Page URL "/". Although users can directly navigate to any page in a project if
you know the URL.

Corner Priority

The Corner Priority setting determines which docked sides push all the way to the corners when the user navigates to that page: whether the top and
 bottom docked views get the full width of the page or whether the left and right docked views get the full height of the page. Whichever sides have

priority, those docked views will extend on those sides to the edges of the page, thus shrinking the opposing sides down to fit within the page. If the
Inherited option is selected, then the page will inherit the Corner Priority setting from the Shared Settings.

Passing Parameters (URL Parameters)

Pages can be mounted at URLs that include parameters. These parameters are used to allow a page to
be mounted at a dynamic URL, allowing information in the URL to be interpreted as input parameters to

 the page’s primary view . For example, suppose we had a page that displayed information about a Tower
site and our system had many Tower sites. Each Tower has an ID number that uniquely identifies it.

Our Tower site view, called Towers, needs an input parameter called towerNumber that is used in
indirect bindings throughout the view configuration to allow this view to correctly display information
about any Tower.

Passing
Parameters to
Pages

Watch the Video
Certain characters can cause issues when passed as part of a parameter string in a URL. The
following characters are invalid and should not be used in page parameters: / ? # %

https://www.inductiveuniversity.com/videos/passing-parameters-to-pages/8.0/8.1

We configured our project to have a page, and set the page’s primary view to . Towers We now need to configure the page’s URL so that a user can
navigate to any Tower using their browser’s URL bar. To do this, we mount the page at a special URL using a parameter replacement syntax for the
Page URL: owerNumber/:t . Our dynamic URL mounting uses a colon to signify that a portion of the URL is meant to by dynamic and map to an input
parameter on the page’s primary view.

Perspective understands this URL format. Therefore if the user were to navigate to the <URL> /Tower2, Perspective would render " /" as the primary
view with an input parameter mapping of "towerNumber = Tower2", displaying the Tower2 information.

Adding parameter passing to an existing set of pages follows a strict formula. The table below assumes your project is named: MyProject.

Original Page URL
Property

Parameter Name New Page URL Sample URL in Browser

/ param /:param http://localhost:8088/data/perspective/client/MyProject/value

/new-page param /new-page/:param http://localhost:8088/data/perspective/client/MyProject/new-page
/value

/new-page areaNumber and lineNu
mber

/new-page/:areaNumber/:
lineNumber

http://localhost:8088/data/perspective/client/MyProject/new-page
/100/101

URL Query Parameters

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

Perspective supports the use of such as those passed by an API call. When Perspective detects aquery parameters, ? in a URL string, any text after
the ? is mapped to the property. This property is read-only. urlParams

You may pass query parameters to a Perspective URL by manipulating the URL in your browser, or by a URL navigation call using system.
perspective.navigate() and specifying the URL argument.

Note: Page navigation will not work for passing query parameters, since page navigation is used exclusively for navigating to pages within the
Perspective session.

URL Example

system.perspective.navigate(url= "http://localhost:8088/data/perspective/client/MyProject/view?
<key>=<value>")

Original Page URL Property Parameter Name New Page URL Sample URL in Browser

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://medium.com/@fullsour/when-should-you-use-path-variable-and-query-parameter-a346790e8a6d
https://docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate

/view key /view?key=value http://localhost:8088/data/perspective/client/MyProject/view?key=8

Views in Perspective

Perspective views are unique in that they can act as both a top level screen (taking up a whole page in
your session) or a component (embedded in another view). Each view is a project resource, which are
named and organized into folders in the Ignition Designer’s Project Browser tree. These folders/paths are
important not only for organization and referencing, but also because these paths uniquely identify each
view, and are used in the session (runtime) for navigation. Each view has a Container type that decides
how the components inside it will behave.

While views themselves are not strictly components, there are components that can display an instance
of a view, such as nesting views inside of other views. There are also repeater components that may
dynamically create view instances at runtime.

Views can be as a primary, docked, or popup views. For more information on how mounted in a Page
pages work, see .Pages in Perspective

On this page ...

View Properties
Input/Output Parameters
Configuring Views

Anatomy of a View

Watch the Video

View Properties

Views, like components, have properties. They are organized into a few types: props, params, and custom. Custom properties can be defined for
views. They act just like custom properties of a component and are internal to the view, and can be referenced by all child components and containers
in that view.

Each view contains exactly one “root” level container, which may be any of the available container types. Therefore, the design experience of a view is
simply the design of the selected container type.

The view properties have three categories:

 - Properties used to configure the component's visual appearance, behavior, and data.Props
 - Properties defined by the user. They have no direct effect on the component, but are used as variables for the application Custom

designer's convenience.
 - Properties only found on views. They define the parameters that may be passed in or out of that view. Params

For complete description of each of the view properties, see . To access the properties for a view, first select the view in the Perspective - View Object
Project Browser.

The property types will now be displayed in the Perspective Property Editor.

https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+View+Object

1.
a.
b.
c.

d.

Input/Output Parameters

The properties inside of the params collection define parameters for the view. This is how views interchange information with other entities, such as a
parent view or the page. Parameters must be defined as "input", "output" or "in/out". The default direction will be "input".

An input is not bindable from within the configuration of a view. The purpose of an input parameter is to receive information from parameter
an external entity. For example, when a view is opened, it may receive parameter values which will become the values of its input
parameters. Or, if a view is placed inside another container, that instance of the view will show the input properties, and they will be bindable.
An output is the opposite. These parameters are bindable from within the configuration of the view. If an instance of that view is parameter
then placed inside another container, the output values will appear as properties, but not be bindable; they will be read-only from the outside.
An in/out combines the features of both input and output. An in/out parameter is bindable from both inside the definition of a parameter
view, and from the outside. This can be useful when making a view that acts as a decorator around an input, for example. Suppose you had
a view that contained a Text Field component and an Image component, and the image displayed whether or not the text in the Text Field
meets some criteria. You would use an in/out parameter to mirror the text across the view boundary.

Configuring Views

Views can be configured in many different ways. They can be displayed as the entire browser window if it is configured to be the primary view of a
page. Views can also be displayed across the top, bottom, or sides of the browser window if it is configured to be a docked view. A view can also be
displayed floating on top of the page as a popup view. A view can also be embedded within another view in various ways using a variety of
components that are able to display embedded views. talks more about page layout and how views are configured on a page.Pages in Perspective

When you start designing your project in Perspective, the first thing you'll do is create a view and how you want to configure it. You can configure it as
a primary view attached to a Page URL, or as a docked view on a specific Page URL with a primary view, or you can choose your docked view to be
shared across all pages in your project. You also have the option of creating folders for your views or simply leaving all your views in the Views folder.

In the Project Browser, right click on the Views folder and click New View.
In the New View window, enter a name for your view.
Select a root container type.
Check the checkbox if you want your view attached to the Page URL. Perspective will match the Page with the Page URL URL
view's folder structure upon creation.

1.

d.

2.

Click .Create View

When creating additional views, the Page URL will automatically fill in if the Page URL option is checked. If you use a space in your
view name, the Page URL will replace the space with a hyphen. For example, a View named will have a page URL of . Line A /line-a

2.

3.

Once you create your view, the view will open in the Designer workspace, and you can begin adding and configuring components.

If you want to add additional containers, simply select another container type and drag it to your workspace. The container type added in this
example is a Flex container.

Note: To add components to this container, it and drag components into the container. Notice that the properties are now in the deep select
Flex container.

Once you create your view, the next step is to set up your navigation using .Pages

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection

1.
2.

3.

Docked Views
Views can be anchored to an edge of a session. This configuration is called a docked view, as the view is
"docked" to an edge in the session.

Docks are created in the interface. Page Configuration

Configuring a Docked View

Docked views can be added to a page configuration in the following way:

Select the configuration you wish to add the dock to
and then clicking the button on the desired edge. In this example, we'll add a north docked Add
view by clicking at button at the top of the diagram. Add

You'll see a popup tree showing all views in the project. At this point you'll select the view that
will be placed in the docked. Select the desired view and click . You'll find your new dock OK
has been added.

On this page ...

Configuring a Docked View
Editing an Existing Docked View
Docked View Properties

Docked Views in
Perspective

Watch the Video

Editing an Existing Docked View

Once a view has been docked, it can be further customized via the popup by left-clicking on the docked view's iconConfigure Docked View Edit
on the docked view configuration.

https://inductiveuniversity.com/videos/docked-view-properties//8.1

Docked View Properties

Property
Name

Description

View The currently selected view. Changing this will change which view is mounted to this position.

Display This property allows you to show or hide the docked view. Options are:

Option Description

visible The docked view is always expanded/displayed.

onDema
nd

The docked view is collapsed, but allows the user to display the view by clicking on the docked view's handle.

auto Automatically shows or hides the docked view depending on how much space is available in the session: showing the
view if the page is wider than the width specified in the auto-breakpoint setting. (Works in conjunction with the Auto
Breakpoint property).

Resizable? Determines whether the docked view may be resized or not.

Modal? Determines if the view should be modal, meaning users will not be able to directly interact with other views while the modal view is
present. This property is only enabled when the property is set to .Display onDemand

Content Determines how the docked view interacts with other views on the page.

Option Description

push Opening or closing the docked view causes the content in the center to resize: the center view will be 'pushed' out of
the way.

cover When opening the dock, it slides in front of the center view, obscuring part of the center view: the dock will 'cover' part
of the center view.

auto Acts like the cover option when the viewport is smaller than the Auto Breakpoint value. Acts like the push option when
the viewport is larger than the Auto Breakpoint value.

Anchor Allows you to make a view always visible while scrolling. Only available on North docked view configurations.

Option Description

fixed The docked view will remain in a fixed position, relative to the page. Useful when a north-docked view should stay at
the top of a page. Select this option if a docked view is acting as a header that should always be present.

scrollable The docked view will not stay in a fixed position as the user scrolls down in the page. Select this option if the north
dock should move along with the page as the user scroll down.

Size Determines the size, in pixels, of the view.

If the view is docked to the North or South edge, then size determines the height.
If the view is docked to the East or West edge, then size determines the width.

Auto
Breakpoint

Controls the minimum page width for Auto docked views to be visible. When the session is smaller than this width, these views will
be hidden and able to be displayed on demand.

This property is enabled when the property is set to .Display auto

Dock ID An optional arbitrary string that can be used to reference a docked view through other parts of Perspective such as in an action or as
a scripting call.

Handle Allows you to show or hide a handle for users to expand/collapse the view.

Option Description

Show Show handle at all times.

Hide Hide handle at all times.

AutoHide Hide handle when page is not active.

Handle Icon Path to an icon used to identify the view when the view is hidden.

View
Parameters

Allows specific parameter values to be passed to the docked view when navigating to the page.

Remove Deletes the view from the page.

Embedded Views

An embedded view is an instance of a view that is used as a component within another view. Similar to
how containers can be added inside another container. An embedded view in Perspective is actually
created using the Embedded View component, which internally opens the view. You'll notice when you
nest a view inside another that the Embedded View component has some properties that are distinct
from those of the view you're nesting:

path is the path to the view you wish to embed.
params is an object in which you'll put any parameters you wish to pass through to the
embedded view. When passing parameters into the embedded view, the names must match the
parameters on that view.
useDefaultViewWidth and are two very critical properties when useDefaultViewHeight
nesting a view. They control whether a view's default configured dimensions are carried into the
embedded view (using scrollbars if the defaults are too large for the embedded setting), or
whether the view is scaled from its defaults to its new setting. Typically if you're finding match
unwanted scrollbars, unchecking these properties often achieves the desired result.

When designing your project, views need not be specified as embedded. It is possible that a single view
may end up being instantiated as a regular view and an embedded view, even simultaneously in the
same session. For example, you may have a view that shows 10 tanks using a view repeater as well as a
popup that shows the details for just tank_1. This is common when the properties of a view are used to
pass in parameters.

Embedded View

Watch the Video

The following feature is new in Ignition version 8.1.4
 to check out the other new featuresClick here

As of release 8.1.4, the view parameters available from the embedded view, will appear on a dropdown list of parameters in the Property Editor. You
can select any or all of the parameters to add. Two additional operations are available:

 - Adds all the embedded view's parameters and removes any parameters that don't exist on the embedded view.Sync Params
 - Sync & Reset Resets the parameter values to their default.

The following is an example of passing parameters from a view called Big View into an embedded view.

https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://inductiveuniversity.com/video/embedded-view/8.1/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

1.

2.
3.

Click the icon under props.params. A dropdown list appears with all available parameters from the view that is Add Object Member
embedded.

Click the icon next to the parameter you want to add. Left Arrow
The parameter now appears in the the params list.

1.

2.

Popup Views

A Popup View typically floats on top of the primary view in a Perspective
Session, and it can be resized and moved around at the user's discretion.
Popup Views are great for displaying additional information about an item
on the primary view. Popup Views are often opened by components such
as a Button on another view. When a user doesn't need to have the
additional information displayed on the screen, it can be closed by clicking
the Button again or simply closing the view.

Title Bars on Popups

When called as a popup, a built-in title bar will be applied to the view if any of the following conditions
have been met via the Popup Action configuration, or the corresponding parameters have been set on
the appropriate system function, such as :system.perspective.togglePopup

A non-empty string title is provided (the parameter on scripting functions)title
The popup is marked as with a "close" icon, meaning the "show close Icon" setting is enabled
(the scripting parameter)showCloseIcon
The popup is marked as "Draggable", (the scripting draggable parameter).

On this page ...

Title Bars on Popups
Configuring a Popup View
Configuring a Parameterized
Popup View

Popup Views

Watch the Video

Configuring a Popup View

Let's assume you already have a primary view that contains some Tanks. At a glance, an operator can view some basic information on all the Tanks
at a particular site, but they cannot see the additional information that is being collected that is unique to each Tank. The perfect way to display that
unique information is to use a Popup View for each Tank.

Here is an example of how to use a Button component to set up a popup view for displaying the current tank temperature and history for the last 24
hours of the selected tank.

First create a new view, and give it a name. You many want to assign a name that you can easily recognize as a Popup View and the Tank
ID number. This example uses the name Popup100.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.togglePopup
https://www.inductiveuniversity.com/videos/popup-views/8.0/8.1

2.

3.

4.

Next add some components to the Popup View. In this example, a Thermometer, Sparkline, and Label components were added.

Note: To display the additional data for all Tanks, you will need to create a Popup View for each Tank. You can use the Flex Repeater
component to easily create multiple instances of components for display in another view each having the same look, feel, and functionality

 of the original components .

Now, let's go back to the primary view and add a Button component for each of the Tanks and label them .'Temp'

Righ- click on the Temp button for Tank 100, and select . Configure Events

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Repeater

4.

5.

6.

7.

8.

9.

10.

11.
12.

The Event Configuration window opens. Under Events, select .onClick

Under Organize Actions, click the icon to choose the appropriate action for the Temp button. Since we are opening a Popup View, Add
select from the dropdown list. Popup
You have several Popup Actions to choose from.

Open - Opens the Popup View.
Close - Closes the Popup View.
Toggle - Opens and closes the Popup View. Select so you can use the Temp button to both open and close the Popup Toggle
View for the specified tank.

In the Configure Popup Action area under Select View, select your Popup View that you created in Step 1. This example uses Tank 100 and
the Popup View is .'Popup100'
You also have some additional settings for customizing the behavior and appearance of your popup. Some of these options are set by
default, and others you can customize. When you're finished, click . OK
Repeat Steps 4 through 9 for Tank 101 and Tank 102.

Save your project.
Now let's see how your Popup View works in a Perspective Session. While in the Designer, go to the top menubar and click Tools > Launch
Perspective > Launch Session.

12.

13.

14.

Click on the button for You'll notice Tank 100's Popup View will open displaying its Temp Data. You can drag the Temp Tank 100.
Popup View around the screen or even change its size.

To close the Popup View, click either the Temp button, or click the icon in the upper right corner of the Popup view. Close

14.

1.

2.

3.

Configuring a Parameterized Popup View

It is often useful to pass information to a popup view as it is being opened. The popup can use this information in its design, usually to make it
dynamic in some way. For this example, we will build a dynamic message box. We will have a message box view which will accept a parameter value,
the message to display.

Create a new popup view, and name it Message Box. We can use the Coordinate root container type for this example. No page URL is
required.
Add a Label component to this View.

2.

3.

4.

Select the Message Box view from your Project Browser, and from the Property Editor, define a new parameter named "message" with value
a default value of "Sample Message."
Bind the Label component to our newly created view parameter.

Our popup is now ready to be used.

Next we have to trigger this popup to open, passing the appropriate parameter value. You can use a Popup Action from any Component Event like in
the previous example. The only difference will be that now you are passing in a value for the Message Box view's message parameter. Pressing the +

 button on the upper right-hand corner of the Parameters table will allow you to pass in a value for the Message Box's message parameter. In this
example, we are passing the popup text property value of a simple Text Field component.

Note
The "messageBox" identifier is the string that specifies a unique popup identity. If you want to close this Message Box popup from a popup action,
you'll need to supply the identifier that was used to open it.

It is also possible to trigger the opening of the popup using scripting through the use of the system.perspective.openPopup()

system.perspective.openPopup("messageBox",'Popups/MessageBox', params = {'message':self.getSibling
("TextField").props.text})

Self-Hiding Navigation Drawer

Navigation Drawer

A navigation drawer is a special type of docked menu, usually appearing on the left side of a session.
What makes a navigation drawer special is its . On smaller devices, this docked menu responsive design
can hide itself and pop out when the user needs it. These drawers have become ubiquitous in User
Interface (UI) design, particularly in apps.

Here's what one might look like on a computer monitor:

Here's what one might look like on a mobile device:

As the screen becomes smaller, the menu is hidden and an icon appears in the top left to allow us to
toggle its visibility. This particular navigation drawer will probably need about 200 pixels horizontally,
which on a desktop is fine, but on a mobile device takes up too much of the screen.

Note: This guide assumes a bit of knowledge about how views and components work. Please see
those sections of this manual for more information as needed.

On this page ...

Navigation Drawer
Configuring a Navigation Drawer

Navigation View
Header Views
Page Setup
Configure Menu Icon

1.
2.
3.
4.
5.

1.
a.
b.

c.

Configuring a Navigation Drawer

The following example walks through how to configure this self-hiding navigation drawer. There is no mention of setting up the Menu Tree or any
content pages, it is strictly a guide to show you the layout type.

Navigation View

In the Project Browser, right click on and click . Views New View
Name the view and set the Root Container Type to . Menu View Coordinate
Click ViewCreate .
Set the width of the view to .200 pixels
Drag a MenuTree component onto the Menu View. Configure the component as you would if you were using a standard docked view.

Note: You can set the root of the Menu View to use the Percent Mode. This way it is easy to make the Menu Tree fill all the space.

Header Views

Next, we will create our header views. The two views will be set up in a container, which will swap between a small header with an icon, breakpoint
and a big header without one.

Create a small header view for our mobile UI.
In the Project Browser, right click on and click . Views New View
Name the new view , and set the Root container Type to HeaderSmall Coordinate.

1.

c.

d.
e.
f.

g.

2.
a.
b.
c.

3.
a.
b.
c.
d.
e.

Click Create View.

Set the height of the view to pixels.75
Drag an Icon component onto the upper left side of the view, then click on the component to select it.
In the Property Editor, set the path property to . You can of course use whatever icon you'd like; a list of all the icons material/menu
in the material folder can be found . here
Add a title for the header. We used a Label component with the text "All About Navigation!"

Create a large header view for our desktop UI
Create another view called , again with a layout of . HeaderLarge Coordinate
Set the height to . 75 pixels
Don't add the icon to this one, but add the same Label as above.

Finally, create a Breakpoint view to toggle between them.
Create a view called with a layout of . HeaderMain Breakpoint
Set the height to .75 pixels
In the Property Editor, click on (under Children).Large
Drag an Embedded View component on the HeaderMaster view.
Under PROPS, click on the icon next to the path property then select .Expand HeaderLarge

https://material.io/tools/icons/?style=baseline

3.

e.

f.
g.
h.

1.

Now we'll do the same for the small child of this Breakpoint container. In the Property Editor, click on (under Children).Small
Drag an Embedded View component on the HeaderMain view.
In the Property Editor, click on the icon next to the property then select . Expand path HeaderSmall

Page Setup

Now that we have our header and menu views, we need to set up our pages to display the views properly.

Click on the icon in the bottom left of the Designer to access the Page Configuration menu. Select . We're Perspective Shared settings
going to add our two docked views here, so they show up on every page.

1.

2.

3.
4.

On the top dock, click the icon. Select the view and click . Add HeaderMain OK

Click the icon next to the HeaderMain docked view. Edit
In the Configure Docked View menu, set the size to .75

4.

5. On the left dock, click the icon. Add the and set the following:Add Menu View
Size: 200
Display: (This enables us to configure a breakpoint below)Auto
Autobreakpoint: (This is the same width that the breakpoint container on the HeaderMaster view is using)640
Dock Id: (This will be used in our dock action on the menu icon to toggle the menu.)menu

5.

6. In the center of the Page Configuration menu, set the Corner Priority to . The other option won't look quite right. top-bottom

Configure Menu Icon

Now we need to configure the menu icon we created on HeaderSmall to pull up Menu View.

1.
2.

3.

4.

Open the HeaderSmall View.
Right-click on the Icon component, and select Configure Events...

Under Mouse Events, select onClick.

Next click the icon to add an action. Select the action. Add Dock

4.

5. This action needs the identifier we created. Set the Dock Action to , and the Identifier to . Click .Toggle menu OK

Now go test it out! It's easiest to open a browser on your desktop and change the size to toggle between the different views.

Using this strategy, you can configure a navigation drawer in combination with any basic navigation component or method.

Working with Perspective Components

Components give you flexibility in designing HMI and SCADA that reflect your company's design and
your site's layout. Components represent widgets you deal with every day: buttons, text areas,
dropdowns, charts, gauges, linear displays, and so on. The Perspective Module comes with a host of
built-in components that you can select from for use in your project. There are many ways to manipulate
and arrange components when working in the Designer.

This section introduces you to how to work with so you can learn how to quickly select, components
move, resize, duplicate, and customize during the design process. Properties and specifics components
for individual components are covered in the . Appendix

Component Categories

Components are separated into the following categories in Perspective:

Chart - Charts allow you to display and show off your data in a graphical way.
Container - Containers provide a way of laying out and organizing within a view.components
Display - Display components display static and dynamic information.
Embedding - Embedding components can be embedded in multiple views of a project.
Input - Input enable users to enter data, or select data, and even control a device.components
Navigation - Navigation components provide you with design strategy options to navigate within
a .Perspective session

Component Properties

Properties on Perspective components are separated into categories.

Props - Properties that control the configuration and provide the runtime data for the
component. See individual for a list of the properties and their Perspective components
descriptions.
Position - Properties defined by the component’s parent container which control the location of
the component. The available properties listed under this category depend entirely the container
type that the component is placed in.
Custom - defined by the designer for each component instance.Custom properties
Meta - Properties defined by the Perspective Module itself for common things like the
component’s name. See .Meta Properties on Perspective Components

On this page ...

Component Categories
Component Properties

Variants
List View vs Tile View

Adding Components
Selecting Components

Mouse Selection
Tree Selection
Deep Selection
Select Through
Select View

Right-Click Menu
Manipulating Components

Moving
Resizing
Aligning
Alignment Guides
Rotating

Image Source
Web Address
Image Management

Component
Overview

Watch the Video

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Variants

Some Perspective components have multiple pre-configurations, called variants, based on options a user might commonly use. For example, the Time
Series Chart components has variants that set the chart up as a Line chart, Area chart, Bar chart, or Scatter chart. Using a variant can save you time.
Variants have a group of properties pre-set to affect the appearance and functionality of the component.

When a component has variants, a number appears next to its name or thumbnail image. Click the arrow to the left of the component to view a
dropdown menu of variants. Refer to for information about individual components.Perspective Components

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Chart+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Display+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedding+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Input+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Navigation+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-MetaProperties
https://www.inductiveuniversity.com/videos/perspective-component-overview/8.0/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

List View vs Tile View

As of release 8.1.2 there are two options for viewing Perspective Components in the Designer. Click on the icon to see components List View

listed just by category and name. Click on the Tile View icon to see the components listed by category and thumbnail icon. The following image
shows the Tile View of the variants for the Time Series Chart component.

Adding Components

To add a component, open the Perspective Components palette. Click on the component you want (or click on a variant of the component) and drag it
onto your view. In this example, we put a Label component under the Gauge component.

Selecting Components

Mouse Selection

Using the mouse is the most common way to select lick on a component selects it and double clicking it. components, where a single c Deep Selects

You can also select clicking and dragging the mouse to draw a selection rectangle. If you drag the window , it will select all components by left-to-right
 that are . If you drag the window , it will select all that components completely contained within the rectangle right-to-left components the

. Lastly, you can start dragging a window selection and then hold-down the key to use touch selection. This will draw a line as rectangle touches Alt
you drag, and any that will become selected. As you're using these techniques, that are about to become components the line touches components
selected will be given a yellow highlight border.

Tree Selection

By selecting nodes in the Project Browser tree you can manipulate the current selection. This is a handy way to select the current view, the

root for the container, and any components on the view. This is also the only way to select components that are invisible.

Deep Selection

Perspective makes great use of its many containers to help create a layout and design to fit any scenario on any device. To accommodate this,
components sometimes need to be nested within a series of containers, which are themselves nested in other types of containers. With this comes a

true tree of components, and selecting components nested inside containers works differently than components on the root. Deep Selection allows
you to select into a container and select a component within.

To deep select a component, on it. Three things happen to indicate double-click you have deeply selected into the component and not just selected
the component itself:

The border of the component changes to a thick solid line that can't be manipulated.
The surrounding area darkens.

In the Project Browser, a icon appears next to the component. Deep Selection

Once inside this new deep selection space, you can then select a component much like before, either by clicking or dragging to select components, or
by deep selecting into another container inside the original container.

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

In addition to double-clicking a component, you can use a single-click while holding the Alt and Shift keys to enable deep selection. For the Button, Lab
el, Checkbox, and Toggle Switch components deep selection also enables inline text editing.

To cancel the deep selection, click anywhere outside of the component.

Select Through

When working with nested containers, on a component in a container will select the clicked component, and automatically deeply Alt + left clicking
select the component's parent container. This can save time compared to first deeply selecting the container, and then selecting the component.

Select View

The following feature is new in Ignition version 8.1.37
 to check out the other new featuresClick here

Starting in Ignition version 8.1.37, you can click the grey design area in the Designer's workspace to directly select the top level view when a nested
child component is already selected.

Right-Click Menu

When working with components in the Designer, you can right-click to get quick access to options.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Button
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Label
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Label
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Checkbox
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Toggle+Switch
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37

The top portion of the menu is similar to an edit menu in that it provides much of the basic copy/paste functionality

Function Icon Description

Cut Removes the selected component but keeps a copy on the clipboard. You can also use the shortcut to quickly cut a Ctrl-X
component.

Copy Copies the selected component to the clipboard. You can also use the shortcut to quickly copy a component.Ctrl-C

Paste Pastes the current contents of the clipboard. Does not paste over and replace components. You can also use the Ctrl-V
shortcut to paste.

Duplicate Duplicates the selected item (essentially a fast copy and paste action). Components can also be duplicated by dragging
them and holding down the key. You can also use the shortcut to quickly duplicate a component in place.Ctrl Ctrl-D

Delete Deletes the currently selected component. This can also be done using the delete key.

Paste &
Replace

Pastes the current contents of the clipboard over the currently selected component and replaces it. You can also use the Ctrl
shortcut to paste over.-Shift-V

Z-order
The next section of the right-click menu contains options or setting the z-order of components. The is the order in which two-dimensional z-order
objects are stacked, for example shapes in a graphic that overlap each other. In Perspective, defines relative order of components when they z-order
overlap. There are four z-order icons and actions that will reorder any selected components.

Function Icon Action

Send to Back Move the selected components to the back of the z-order.

Move Backward Move the selected components backward in the z-order relative to any overlapping components.

Move Forward Move the selected components forward in the z-order relative to any overlapping components.

Bring to Front Move the selected components to the front of the z-order.

In the following example, we have an image component with a photo of a warehouse, an icon, and a label. We placed an icon (the truck) and a label
"Local Delivery" on the view as well, and then set the z-order so the label is on top, the truck icon is in the middle, and the image in the background.

Wrap in Container

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

Perspective features a one-step wrapping option. The Wrap In Container action, will "wrap" a component into a new container within the existing
container. This is functionally similar to creating a new container, and copy-pasting the component into the new container.

Wrap in Container is available on the right-click menu from any Perspective component.

Modify Source View

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

This option only appears in the list after right clicking on an embedded view component or flex repeater component. Selecting this option will take you
to the source view's configuration in the designer.

Configure Events

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Repeater

The option takes you to the Event Configuration page where you can set up actions for the component based on events such as a Configure Events
mouse click or key press. For complete information, see .Component Events and Actions

Configure Scripts

The last option is , which takes you to a Script Configuration page where you can set up Custom Methods and Configure Scripts Custom Methods Mess
 on the component.age Handlers

Manipulating Components

Manipulating can be done with both the mouse and the keyboard. You can move around, resize them, and rotate them.components components

Moving

To move the component, click on it once then drag it anywhere within the container's bounds.

Resizing

When you click on the component you want to resize, you'll see eight handles displayed around the edge of the selection. When you click on a handle,
the mouse cursor will change to a two-way arrow. Use the mouse to drag the handle and change the size of the . You can also select component
multiple components and resize them together. To resize around the center of the current selection, hold down . Shift

You can also resize the current selection using the keyboard. To nudge the right or bottom edge of the selection in or out, use combined with the Shift
arrow keys, which resizes by the nudge distance, which defaults to one pixel at a time. To nudge the top or left edge of the selection, use coCtrl-Shift
mbined with arrow keys.

Aligning

New alignment tools are available in the Perspective Designer Toolbar. These tools allow easy alignment of selected components within a Coordinate
container including align top, bottom, left, right, as a row, and as a stack. Align as row, and align as stack include a normalize version, that adjusts the
size of the selected components to match the component that was selected first. Rotated components being aligned will correctly align along the top-
most, bottom-most, left-most, right-most point of the rotated component. If a rotated component is being normalized is within the group that is being
aligned, normalizing the component will adjust the pre-rotated dimensions.

Note: These tools can only be used with components in a .Coordinate container

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-CustomMethods
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-CustomMethods
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Coordinate+Container

1.

Icon Function Description

Align Left Align the left edges of a group of components.

Align Right Align the right edges of a group of components.

Align Top Align the top edges of a group of components.

Align
Bottom

Align the bottom edges of a group of components.

Align
Centers
Horizontal

Aligns all of the selected components horizontally on their centers.

Align
Centers
Vertical

Aligns all of the selected components vertically on their centers.

Align as
Row

Aligns all of the components on their centers as a row, and will add padding between them that you can select.

Align as
Row and
Normalize

Aligns all of the components on their centers as a row, and changes the size of all of the components to the first selected
component. If a rotated component is within the group that is being aligned, normalizing the component will adjust the pre-
rotated dimensions.

Align
as Stack

Aligns all of the components on their centers as a stack, and will add padding between them that you can select.

Align as
Stack and
Normalize

Aligns all of the components on their centers as a stack, and changes the size of all of the components to the first
selected component. If a rotated component is within the group that is being aligned, normalizing the component will
adjust the pre-rotated dimensions.

Center Hori
zontally

Centers the currently selected components horizontally.

Center Verti
cally

Centers the currently selected components vertically.

Align and Normalize Example
In the following example, we have a stack of buttons that are various sizes. We want to align them, stack them with equal space in between them, and
make them all the same size.

Select the buttons, then choose Align as Stack and Normalize.

1.

2. Enter a padding distance in pixels. We use 8px for this example.

3. Click . The buttons will be stacked and normalized. OK

Alignment Guides

When you drag a component near another component in a container, Alignment Guidelines appear to help you better align your elements.

A dashed red line will appear to guide alignment to the center of the components or to the right or left edge, depending on where you drag.
A solid red line indicates distance, in pixels, between components.

The Designer also has Vertical and Horizontal guide that can be set up to help you align . For more information, see components Vertical and
.Horizontal Guides

Alignment Guides Example
In the following example we've added a Label component beneath a Cylindrical Tank component. I want to align the label so
that it is centered with the center line of the tank.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides

1.

2.
3.
4.

Drag the Label component underneath the Cylindrical Tank component. As the Label component approaches another component, you'll see
Alignment Guides appear.

Now the starting edge of the Label is aligned with the center of the Cylindrical Tank. But we want the text to be centered under the tank.

Select the Label component and click the Modify Style icon next to the style property.
Expand the Text settings. Set the color to blue, the font weight to bold, and the text align to center.
Click to save the style settings. OK

4.

5.

6.

Now the text is centered in the Label component. Drag the Label component underneath the Cylindrical Tank component again. You'll see
Alignment Guides appear.
Stop dragging when the Label is centered under the Cylindrical Tank.

Rotating

Components place on coordinate containers can be rotated. The Rotate is located on Position Properties section of the Perspective Property property
Editor. For a definition of all the position properties see the individual container pages. Rotated components being aligned to other components will

 correctly align along the top-most, bottom-most, left-most, right-most point of the rotated component.

There are two ways to rotate a component:

Enter a rotation angle in the props.rotate.angle property.
Grab the rotation handle on the component and drag it with your mouse until the component is rotates as you'd like.

The rotation anchor sets the point of rotation around which the component will be rotated.

Note: If a component is smaller than 28px by 28px, the rotation handle and anchor + symbol are not displayed. Use the property editor to set rotation
and anchor properties in this case.

Rotation Examples
Example 1

The following example shows icon component at default (no rotation), at 18 degrees rotation, and then at 39deg rotation with the rotation anchor (point
of rotation) placed over the earth image. In the latter, the icon has a better angle in relation to the earth graphic.

Example 2

If a rotated component is within the group that is being aligned, normalizing the component will adjust the pre-rotated dimensions. The component on
the left of the following image are not aligned but were resized at some point. The components on the right show what they look like after align stack
and normalize.

Image Source

Many components in Perspective contain a property, that allows you to show an image on the component. The property expects a image.source
URL to the image, which can either be on the internet or something that is stored on the Gateway. For example, here is a Button component with an
image:

Web Address

Simply enter the wed-address for the image you wish to display. Both raster images and SVGs can be displayed via this method.

Image Management

Images stored in are available at http://{your gateway's IP address}:{your gateway's port}Image Management /system/images/{path to your
}.image

http://gatewayIpAddress:8088/system/images/Builtin/icons/24/lightbulb_on.png

For additional information on using images in Perspective, see . Images and Icons in Perspective

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool

Perspective Component Properties

Each Perspective component has a unique set of properties that can be set and modified within
the Perspective Property Editor. A component is simply a named variable with a distinct type property
that affects something about the component's behavior or appearance, such as size, color, name,
visibility. You can also create your own custom properties on a component which act like variables that
can store any information that you want on the component.

The available properties for each Perspective component are described individually in the Perspective
 section. In the default panel settings, the Property Editor appears on the right side of the Components

Designer screen and contains all the properties that can be configured on a component, including custom
. properties

The image below shows the properties that are set on the selected Button component.

Property Categories

Each Perspective component has a list of available properties. Each property is placed into one of
several categories, and each property category groups the properties by some commonality. The
property categories are described below.

Props - Properties that control the component's configuration and provides the runtime data for
how the property appears and behaves in a session. See individual forPerspective Components
a list of the properties and their descriptions.
Position - Properties defined by the component’s parent container control where the
component is located inside the container. The available properties listed under this category
depend entirely on the container type that the component is placed in. For more information,
see the pages for each type of .container
Custom - The Custom category was designed as an ideal location to add user created
properties.
Meta - Properties defined by the Perspective Module itself for common things like the
component’s name, and if the component is visible.
Params - Only available on Views. This category of properties is used when passing
parameters from one view to another view via navigation, or the cPerspective - Embedded View
omponent

The following image shows an example of the Property Editor for a Button component. Here we see
Props is expanded, while the other categories are collapsed.

On this page ...

Property Categories
User Created Properties
Property Data Types
Restricting Property Access

Restricting Access to
Component Properties
Writing to Private or Protected
Session Property

Persistent Properties
Persistence and User-Created
Properties
Bindings and Persistence

Custom Properties
Creating Custom Properties

Meta Properties
Multi-Line Tooltips
Context Menu Item Types

Params
Docked View
Embedded View
Page

Search Filter
Bindings
Styles
Right-Click Menu

Actions
Structure
Binding
Options

Component
Properties

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedded+View
https://inductiveuniversity.com/video/perspective-component-properties/8.1/8.1

User Created Properties

User created properties can be added to any property category. New properties can be added by clicking the icon.Add Property

It is strongly advised to add new properties to either the or categories. CCustom Params omponents can contain hidden properties in either the
propertiesProps, Position, or Meta categories. These hidden are typically used on the backend to help the component function. By adding a user

unintencreate property to Props, Position, or Meta, you could unintentionally create a property that matches the name of a hidden property, resulting in
ded behavior from the component. The Custom and Params categories don't have such properties, so they're a safe location for user created
properties.

Alternatively, new elements can be added to objects and arrays by hovering over the object/array in the property editor, and clicking the icon. Add

Property Data Types

Before you create a property, you must first understand the different property data types. When you create a new custom property, you must first
select the appropriate property data type based on how you want the component to behave or appear. Technically, all values delivered to the frontend
are encoded as JSON. Meaning they are either a Value (boolean, number, string, null), an array, or an object (string-keyed map). For convenience,
Perspective offers some addition support for certain types, such as dates and datasets. The table below describes each property data type.

Property Types

Value
(primi
tive)

A value is an single variable for the property. It has a 'key" and a "value".

"Key" is the given to the property, and "value" is the actual value of the property. Value types are as follows:name

Boolean - A true/false value.
Numeric - An integer up to the maximum value for a long integer.
String - A string of characters can be numeric, alpha, or a combination

Object

An object is a one or more values stored under one variable name. Objects are indicated by curly braces { }. In this example, the Object
has three sub- properties.

Array An array can hold many values under a single name, and you can access the values by referring to an index number. Array is indicated by
square brackets [].

A good example of an array is the Thermometer component's default setup as shown in the example below. There is an array called
"intervals" with three values, 0 through 2. Each of the array items is an object type that has three values: color (string), high (numeric), and
low (numeric).

Datas
et

The Dataset property type is a special variant of a Value. It can only be used when a binding returns data in a dataset format, or if a script
writes a dataset to a property.

A Dataset lists the number of rows and columns [x] and has an Edit Dataset icon that appears after a binding has been rows columns
created. This icon brings up the Dataset Viewer panel and allows you to make changes to the raw data. Note that any changes will be
overwritten the next time your binding polls.

Datasets are generally only returned by SQL queries and Tag History bindings, though both have the ability to select from several different
return formats. A good example of this is a table bound to a Historical Tag query.

Dataset properties have an dataset viewer and editor in Perspective's Property Editor. Once a property is bound to a dataset, you can

access the viewer by clicking on the Dataset Browser icon.

With the Dataset Editor you can add and delete columns and rows, delete all rows, and copy information to or from the clipboard.

The Dataset Editor icons and their corresponding actions are shown below.

Icon Action

Add row

Delete selected rows

Add a column

Delete selected column

Delete all rows

Add to clipboard

 Paste from clipboard

Date Dates are a special variant of a Value. On the frontend they're represented in in a YYYY-MM-dd HH:mm:ss format, but on the backend
they're treated as long integers. The date variant is used when a binding returns a date object (such as an expression binding that uses the

 expression function).now

Date properties always feature a calendar icon.

Clicking the icon will cause a popup calendar to appear, making it easy to select a different date.

Color Color properties are another variant on the Value type. Many components provide color properties as a means to select the color of a
certain object. On the backend, colors are simply strings, but the designer renders them as colored blocks.

Clicking the block will cause an color selector to appear, allowing you to change the color on the property.

https://legacy-docs.inductiveautomation.com/display/DOC81/now

Note:

JavaScript uses double-precision floating-point format numbers as specified in IEEE 754 and can only safely represent numbers between -(2^53 - 1)
and 2^53 - 1. This means any value greater than 9,007,199,254,740,991 (or ~9 quadrillion) or less than -9,007,199,254,740,992 will be changed to a
value calculated using floating point math up to a max value of 2^63.

This could potentially cause issues with very large numbers, especially when in a dataset property:

Modifying a value in the Perspective Dataset Double or Long column could lead to an unexpected value.
If bound to a Dataset tag, the value of the tag could be changed to an unexpected value.
A Perspective Component rendering a dataset Double or Long could render an unexpected value.

Restricting Property Access

Perspective components have the ability to restrict access to properties from the app/browser. Property access settings do not restrict or inhibit built-in
component interactions with bindings and python scripts. Instead they protect against malicious code execution in the browser. Normally a user can
potentially execute arbitrary JavaScript code via developer tools (which generally are included with all web browsers) to interact with components and
properties in the session. However setting property access level to or will prevent such approaches, as browser-side script Private Protected
execution will be unable to access property values on the server side.

To understand what property access in Perspective is, you'll need to understand how the Document Object Model () works. In short, each active DOM
session is represented in a browser (which is the user interface side of the DOM) and on the Gateway (the back-end of the DOM). Interacting with
components on the browser-side, such as writing to the text property on the text field, impacts the back-end and allows the gateway to react
appropriately (i.e., trigger a property change script).

When a property is set to , then arbitrary JavaScript execution can freely write to the back-end, which is likely undesirable in most cases. Public
However, a property set to will disregard any such write requests from the browser, meaning only the back-end is allow to write to the Protected
property (i.e, Bindings, component Script Actions, etc). While the browser-side of the DOM is still interactable, the back-end will ignore such value
changes.

In this same example, setting a property set to will also disregard write attempts, in addition to remaining hidden from any read attempts made Private
by the arbitrary JavaScript.

One caveat to property access is that the names of style classes are always visible and interactable from the browser, so style class names should
not included sensitive information.

Property Description

Public Unrestricted Access. This is the default setting for all non-system properties.

Private Hidden. The property is not readable from JavaScript, and write requests will be ignored (assuming the script correctly guesses the
property path)

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

1.
2.

3.

Protected Read only. The browser's DOM may be interacted with via JavaScript, but the back-end will ignore any write requests.

System This property's value is updated automatically. Not user-writable, read-only, and cannot be removed. System properties will not
accept writes from the browser, and bindings will not be allowed to write to these properties either.

Restricting Access to Component Properties

In the example below, we used an LED Display component to restrict access on the components 'value' property.
Restricting Access to Component Properties

In the , select the property you want to restrict access on.Property Editor
Right-click on the property, select and choose the restriction level: Public, Private or Protected. Access

Once the restriction access is configured, the will place one of three badges on any non-public property: Private , Property Editor

Protected , and System .

Writing to Private or Protected Session Property

To write to a Private or Protected session prop, you can write to it through a scripting action.

You can also use a property binding to write to a Private or Protected session prop. Remember to enable the option.bidirectional

Persistent Properties

By default, component properties and their values are saved with the project. Meaning that a property in a Perspective Session will initialize with a
value matching the last saved value. This is why you can create a label with a static text value, save, and then see the same text value in the session.
These properties are considered . Persistent

Conversely, properties can be configured to not retain their value in the session, meaning they'll initialize without a value. These properties are not

 . These properties are denoted by the icon to the right of the property's value in the Property Editor. Persistent Transient

Changing the Persistent state of a property can easily be accomplished by right-clicking on a property in the Property Editor, and toggling the Persiste
option. nt

Persistence and User-Created Properties

User created properties missing the Persistent flag will not be saved in your project. Meaning, properties that are both user-created and not flagged as
Persistent will be lost once the view containing the property is closed in the Designer (not just the value, but the property itself), regardless of whether

1.

2.

or not the project was saved. This is also true for launching a session, as the user created property that is not Persistent will not be present in the
session.

The one exception to this rule is if a binding was configured on the property. Binding configurations are always saved along with the component, and
will execute in the session. When the binding executes and returns a valid value, the property will be re-created in the session.

Bindings and Persistence

When configuring a binding on a property, the property will automatically be configured to not persist. The idea being that properties with bindings
generally don't need to save their value along with the view: when a view is opened, all bindings will need to evaluate on startup, which means the last
saved value on the property is likely to differ from the result of the binding.

Imagine a table component, with a binding on the table's data property. In most cases, you'll likely want the data in the table to be generated in the
session from the binding, retrieving the most update-to-date results. In this case, it doesn't make sense to persist the dataset in the table along with
the table, as it's just extra data that will quickly be replaced by the binding at runtime.

Bound properties default to a non-persistent configuration, but sometimes this isn't desirable. For example, components have an Embedded View
empty state when their "path" property is blank. When a binding is placed on the path property, opening the parent view will result in the Embedded
View quickly transitioning between the empty state and the loaded view, which can cause an undesirable "flash" as the binding evaluates. This can be
prevented by configuring the property as Persistent, and configuring an initial path for the Embedded View (which can lead to an empty placeholder
view), allowing for a controlled transition.

Custom Properties

User-created properties may be added to any property category such as the Props, Position, Custom and Meta Property Categories to enhance
functionality. The Custom Category was designed as an ideal location in the for users to create their own custom properties. These Property Editor
Custom properties allow to store additional values which can be accessed by bindings and scripts. They are also important for passing components
parameters from one view to another.

Creating Custom Properties

In the following example, we used the Thermometer component to add some custom properties in the Custom category.

Custom Properties are created by clicking on the " " link, or by right clicking on a property in the Property Editor to Add Custom Property...
bring up the . There are three property types to choose from: Value, Object, and Array.Action Menu

Several custom properties were created under in the Property Editor showing each of the different property data types (i.e., value, Custom
object, and array).

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-PerspectivePropertyEditor

2.

3.

In the image below, next to the Thermometer, three Text Fields were added to a view to write to each of the different custom properties in the
Thermometer. Each of their binding paths are listed next to the fields which are bound to the same custom property so you can see the
difference when the values changes on the labels.

Meta Properties

Meta properties are defined by the Perspective Module itself for common things like the component’s name, and if the component is visible. Every
Perspective component features Meta Properties. Each property under this category is listed below.

Name Description Data
Type

name Name of the component used when navigating tree paths by name. value:
string

visible Whether or not the component should be visible. value:
boolean

tooltip

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

When enabled, the component will display a customizable tooltip. Tooltips feature the following properties:

Name Description Data
Type

enabled If true, a tooltip for the component will display on hover or when requested by a script. value:
boolean

width Display width of the tooltip. Expects either numerical value that represents a number of pixels, or a string.
Expected strings can be either "auto" (which allows the tooltip to decide its own width), or a number and unit.
For example: "60px", or "100pt". Default value is auto.

value:
string

text The message to display in the component tooltip. See for more information.Multi-Line Tooltips value:

object

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

1.
2.

string

style Standard style object for the tooltip. See .Style Reference object

delay Time, in milliseconds, to wait before the tooltip is displayed when requested or when the component is
hovered over. A value of 0 results in immediate display.

value:
numeric

sustain Time, in milliseconds, to display tooltip before removing it. A value of 0 results in the tooltip displaying until
the mouse exits the component or is called on the component.removeTooltip()

value:
numeric

location The tooltip display location relative to the component. Valid values: mouse, top/center/bottom, top/center
/bottom- right, top/center/bottom - left

Tooltip locations are constrained by the available space, and will display with the following priorities:

The tooltip must remain in the viewport at all times.
The tooltip will expand away from the component relative to the pink guidelines shown below.

If the tooltip is too large to expand away from the component without leaving the viewport, the tooltip will still
display at the configured location but may obscure the component.

value:
string

tail Enables a decorative triangle on the tooltip that points to the component. Ignored when location is mouse. value:
boolean

context
Menu

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

When enabled, the component displays a context menu when right-clicked. The contextMenu property features the following
properties:

Name Description Data
Type

enabled Determines if the context menu for this component is on or off. If true, a context menu will appear when
items are added. The context menu is disabled by default.

value:
boolean

items Adds items to configure and display in the context menu. See below for more Context Menu Item Types
description on the type options.

Name Description Data
Type

text Text to display on the context menu item. value:
string

icon Configured icon to display before item text. Icons can be configured for all item types
except separator.

Name Description Data
Type

path Shorthand path to icon source, using format: library
/iconName.

value:
boolean

object

object

object

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RequestingorRemovingTooltips
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

color Selects the color of the icon to display. This is an optional
property, color may also be configured using the style
property.

value:
boolean

style Standard style object for the icon. Object

style Standard style object for the context menu item. object

type Selects the type of context menu item to display. Type options include submenu, link,
method, message, and separator.

value:
string

style Standard style object for the context menu. object

domId Hidden by default. When added to the Meta category on a component, allows you to set the DOM "id" of the output element. This
property is intended for testing purposes only, such as using a framework like Selenium to test a page.

value:
string

Multi-Line Tooltips

By default, the content in the property is all rendered as a single line, only wrapping when text length exceeds the width. meta.tooltip.text
However it is possible to render text that spans multiple lines.

First, set add " " to meta.tooltip.style. Then, make sure the content of the meta.tooltip.text property contains multiple lines. This white-space : pre
can be done by configuring an expression binding, and concatenating the items with " " characters:\n

"First Thing" + "\n" + "Another Thing"

Context Menu Item Types

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Context menus allow users to have more component control when right-clicking on the configured component. Once opened, context menus will stay
active until a new click is made elsewhere on the view. There are five item type options available to customize component context menus. Four of
these options allow further navigation functionality, with one type allowing for category separation within the menu design.

Item
Type

Description

subme
nu

This item type will display child items when clicked or hovered over and when child items exist, a simple arrow icon will be included after >
the parent item text. . When selected, a children property will appear in the property editor that consists of the same item types and
properties.

link This item type will act like a link component, which allows users to specify a link to navigate to when clicked. When selected, a link
property will appear containing url and target properties:

url: Contains the URL to be used for the link item. This can be an external URL or internal project page URL. To specify project
pages, provide the exact configured URL for that page, complete with the leading slash (/someUrl/myPage).
target: Determines if the link will open in the current tab or a new tab.

method When clicked, this item type will invoke a custom method defined on the component that the menu is enabled on. Any method defined
here will become a custom method of the component the context menu belongs to. You may configure arguments to be passed into this
custom method with the params object. When selected, a method property will appear containing name and params properties:

name: Displays the name of the method to be invoked.
params: Adds the object of params to pass to the method. Note that positional arguments are not supported.

messa
ge

When clicked, this item type will send a message with the given message type code, payload, and scope. This is allowed when specifying
a configured message handler for a perspective session or perspective component, such as a toggle switch. When selected, a message
property will appear containing type, payload, and scope properties:

type: Defines the message type that will trigger all component message handlers with the same type value.
payload: Object used to pass defined payload for message handlers.
scope: Defines the session, page, or view scope for sending the message.

separa
tor

This item type displays a non-interactable horizontal hard-rule to keep context menu items separate.

The image below shows an example context menu configured on a Button component. The first item, , is a link type and includes a menu-item
configured icon. is a submenu type with a single child item, . A separator item type divides and Menu-item1 child-menu-item menu-item1 menu-

, which is a method type. item2 This example demonstrates the context menu default style settings and you may notice different item type selections
 are not distinguishable in their default text display . Context menus can be further stylized in their entirety or within the individual item properties as

desired.

Params

Params are a category of properties that are used when passing parameters from one view to another view. The properties inside of the params
category define parameters that can be passed in and out of a view. It's through the use of parameters that views interchange information with other
entities such as a docked view, embedded view, or a page. To learn more about using parameters to pass properties across views, refer to Property

. Bindings in Perspective

Docked View

When configuring a page, it's possible to pass a value to a docked view. When you click on a docked view, you can specifiy one or more param
properties in the View Parameters field of the view that is docked. If you have any param category properties defined on that view, this interface allows
you to pass a value when you navigate to the configured page. To learn more, go to .Configure Docked View Parameters

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedviewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedviewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-ConfigureDockedViewParameters

Embedded View

The embedded view component allows you to embed one view inside of another. The only way to pass a property across views is by passing a view
parameter into an embedded view. Parameters can be defined as . Once you have param properties configured on input, output, or both input/ouput
your views, the embedded view component provides you with access to these parameters. You have options on how to pass a into an property
embedded view. How to set up passing a depends on how you design your project. You can set up passing a to an embedded parameter property
view using a with , , or even scripts. For more information on embedded views, refer to parameter property bindings Tag bindings Pass a Property into

 and .an Embedded View Using a View Parameter View Properties

Page

Passing parameters to a Page essentially means passing a URL parameter to a page. Parameters are used to allow a page to be mounted at a
 A primary view can see whatever dynamic , allowing information in the to be interpreted as URL URL input parameters to the page’s primary view .

parameters are passed in, and components inside the view can bind or use the values in some useful way.

The way you add parameters to the Page URL is by mounting the page at a special using a replacement syntax like so: <page>URL parameter /:
 towerNumber . The dynamic mounting uses a colon to signify that a portion of the is meant to by dynamic and map to an input oURL URL parameter

n the page’s primary view. To learn more, go to .Passing parameters (URL Parameters)

https://legacy-docs.inductiveautomation.com/display/DOC81/Views+in+Perspective#ViewsinPerspective-Input/OutputParameters
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaPropertyBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaTagBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/Views+in+Perspective#ViewsinPerspective-ViewProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLParameters)

Search Filter

In the Property Editor search bar, you can search for component properties. Start typing in the search bar and the property list updates based on the
text you enter. You can also set filter options to make the search case sensitive, or use wildcards, regular expressions, match from start, match
exactly, and match anywhere.

Bindings

Most properties have binding options. For more information on bindings, see The image below shows the properties Types of Bindings in Perspective.

in the Property Editor that are set on a Cylindrical Tank component. There are icons to the left of each of the properties that appear Binding

when you mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the property, it will open the Binding value
window and you can set what the Cylindrical Tank component is bound to. In this example, the property of the Tank is bound to the un10013 value
OPC Tag.

https://docs.inductiveautomation.com/display/DOC80/Bindings+in+Perspective

Styles

A full menu of style options is also available for text, background, margin and padding, border, shape and other miscellaneous settings to adjust the
 appearance of your components. Style classes enable you to set up a particular look and feel (fonts, colors, borders, etc.) once and then apply it to

multiple components.

Right-Click Menu

Right-clicking in the Perspective Property Editor brings up a number of items. These items are described
below by section.

Actions

The Actions items provides a means to modify properties on a component such as deleting a property, or
inserting a new property. Common utilities (i.e., copy, paste, duplicate) are available.

Structure

Add Before : Allows you to insert a new property into the hierarchy before an existing one. It is
only visible when right-clicking on an element in either an Array or Object.
Add After It is : Allows you to insert a new property into the hierarchy after an existing one. only

 right-clicking on an element in either an Array or Object. visible when
Insert : Allows you to insert a new property into the hierarchy. The "Add Before" and "Add After"

 Structure options in the Perspective Property Editor context menu are two unique items that are
only visible when right-clicking on an element in either an Array or Object.
Value : Allows you to change the type of the selected property to a Value, Array, or Object

Binding

This feature was changed in Ignition version :8.1.26

The Binding section of items allows you to configure or manipulate existing bindings on a property. If any
of the following are not current available options, they will not be visible selections. For example, if the clip
board does not contain a binding configuration, the menu won't display a Paste Binding option.

Persistent
Properties

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-ActionMenu
https://www.inductiveuniversity.com/videos/persistent-properties/8.0/8.1

Configure Binding...: Opens the binding configuration window, allowing you to add a binding to
the clicked property.
Copy Binding: Copies the binding configuration from the clicked property.
Paste Binding: If a binding configuration was previously copied via , this option Copy Binding
will paste the binding configuration on the clicked property.
Disable Binding: Disables the binding on the clicked property.
Remove Binding: Removes the binding configuration from the clicked property.

Options

Add Change Script: Enables you to add a script that will be called whenever the value of the
property changes. For more information, see .Property Change Scripts
Persistent : Determines if the property is Persistent or Transient .
Access: Allows you to .restrict property access

1.

2.
3.
4.

5.

Images and Icons in Perspective

Perspective supports the import and display of images, including PNGs, JPGs, JPEGs, GIFs, and SVGs.
Images can be loaded into Perspective via the utility, dragged and dropped directly Image Management
into a View, or derived from an external web address. Regardless of approach, the component is Image
used to display desired images, either as linked images with associated URLs, or as embedded images
stored within the View. Each of these approaches is detailed below.

Using the Image Management Utility

The following example walks through bringing an image from the Image Management tool using an
image component. For more information on the Image component and all of its properties, see Perspectiv

 e - Image .

Drag an component from the component palette onto the container.Image

At the top of the in the Menu Bar, select Designer Tools > Image Management.
In the , look through the different folders for an image file you want.Image Management tool
Right-click on the image and select .Copy Path

In the Property Editor, paste the image path into the source property for the Image component.
You need to add "/system/images" to the beginning of the path, to properly reference images
stored by the Image Management tool.

On this page ...

Using the Image Management
Utility
Drag and Drop an Image onto a
View

Embedding Images
Using Icons

Choosing Icons
Use a Custom Icon Repository
Example with Custom Icon
Repository
Converting SVG-based
Perspective Components to
Drawings

Images in
Perspective

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://www.inductiveuniversity.com/videos/images/8.0 inductiveuniversity.com/8.1

5.

1.
2.

3.

4.

The image now appears inside the Image component on the container.

For more information on the Image component and all of its properties, see .Perspective - Image

Drag and Drop an Image onto a View

In Perspective, you can drag and drop images from your computer onto a view. When an image is
dropped, it can either be uploaded into the Image Management tool and then referenced from an Image
component, or it can be embedded directly into the view. In this example, we'll pull in a .jpg photo of a
sunset to use as a background on a home page for our application.

In the Designer, open the view in which you want to put the image.
Locate the image on your computer and drag it onto the view.

Note: We already resized this image in a graphics editing program so that it is the size we
want.

You have the option of saving the image as a link or embedding the image in the view. To save
the image as a link, make sure the radio button is selected and then click Save and Link Upload
. This will save the image in the Image Management Tool where it can be used repeatedly.

The image now appears in the view. Drag one of the corner nodes to make the image
component border the same size of the image.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image

4.

5.

1.
2.

3.

Now your image is on the view. Save your project. We added a company logo SVG file as well
as some navigation buttons to this home page.

Embedding Images

If you don't want the image to be brought into the Image Management tool you can embed the image
instead. Embedded images can degrade performance, but can also allow you to view and modify image
elements directly in the Property Editor.

Locate the image on your computer and drag it onto the view.
After dragging the image onto the view, click the radio button. If the image is Embed image
larger than 100KB, you will see a warning message in the confirmation popup, since large
embedded images can degrade performance.

Click to embed the image.Embed

Using Icons

Icons in Perspective are specially curated SVG (Scalable Vector Graphic) images chosen to be helpful in
Perspective design. Perspective includes a starting collection of icons, and provides ways of including
your own (see "Use a Custom Icon Repository" below). Icons can be used in Perspective directly using
the component, or integrated into the configurations of other components, as with the Icon Horizontal

, , and components.Menu Map Accordion

Choosing Icons

The bulk of the icons included with Perspective are derived from the icon library, which is fully materials
detailed, with included icon names, (external link). Icons are referenced using icon paths within here
Perspective. For example, the path will reference the material design material/location_on location_on
icon.

Icons

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Icon
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Map
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Accordion
https://fonts.google.com/icons?selected=Material+Icons
https://www.inductiveuniversity.com/videos/icons/8.0/8.1

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

All icon properties (via the Icon Component or other applicable components) include an interface for
selecting icons from configured libraries, both built-in and custom. On the right-hand side of the icon

path, the icon can be used to browse and search for available icons. The icons will be arranged into
headings based on the originating icon files on the Gateway.

Use a Custom Icon Repository

The materials icon repository is a great source for icons, but if you have a custom library of icons, you can set it up to be accessible by Ignition. All
icon repositories are stored as SVG files within the Gateway's Installation Directory. A typical path to an icon file will look like:

Windows

C:\Program Files\Inductive Automation\Ignition\data\modules\com.inductiveautomation.
perspective\icons\<repository name>.svg

MacOS

/usr/local/ignition/data/modules/com.inductiveautomation.perspective/icons/<repository name>.svg

Linux

/usr/local/bin/ignition/data/modules/com.inductiveautomation.perspective/icons/<repository name>.svg

You can create custom libraries by adding your own SVG file at this path. The properties inside the file are defined using XML, which should follow the
pattern provided below. Note that each icon is placed in an enclosing SVG tag that defines values for the attribute, which is used to specify the id
name of each icon, and the attribute, which must have large enough dimensions to fully enclose the graphic.viewbox

<?xml version="1.0" encoding="utf-8"?>

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <!--Red Circle-->
 <svg viewBox="0 0 24 24" id="red-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="red" />
 </svg>

 <!--Blue Circle-->
 <svg viewBox="0 0 24 24" id="blue-circle">

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

1.

 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="blue" />
 </svg>
</svg>

Once an icon file has been added, a Designer restart is required to pull the new icons into the Designer for development.

Example with Custom Icon Repository

In this example we'll make a custom repository file with icons. The name of the file is . We'll then use the icons in this file and other example.svg
repositories to create a Horizontal Menu component for Proposal, Project Documents, and Appendix headings.

First we created the repository file in xml.

<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

 <!--a red circle-->
 <svg viewBox="0 0 24 24" id="red-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="red" />
 </svg>

 <!--a blue circle-->
 <svg viewBox="0 0 24 24" id="blue-circle">
 <circle cx="12" cy="12" r="6" stroke="black" stroke-width="1" fill="blue" />
 </svg>

 <!--a triangle-->
 <svg viewBox="0 0 24 24" id="triangle">
 <path d="M12 0 L3 22 L21 22 Z" />
 </svg>

 <!--roman numeral one icon-->
 <svg viewBox="0 0 24 24">
 <g id="one">
 <rect
 id="rect3723" width="15.09025" height="3.0526078" x="4.4548745" y="
2.4385488" />
 <rect
 id="rect3723-3" width="15.09025" height="3.0526078" x="4.4548745" y="
19.510113"/>
 <rect
 id="rect3755" width="3.4557824" height="16.990929" x="10.272108" y="
3.5045362" />
 </g>
 </svg>
 <!--roman numeral two icon-->
 <svg viewBox="0 0 24 24">
 <g id="two">
 <rect
 id="rect3723" width="15.09025" height="3.0526078" x="4.4548745" y="
2.4385488" />
 <rect
 id="rect3723-3" width="15.09025" height="3.0526078" x="4.4548745" y="
19.510113" />
 <rect
 id="rect3755" width="3.4557824" height="16.990929" x="6.8435426" y="
3.5045362" />
 <rect
 id="rect3755-9" width="3.4557824" height="16.990929" x="13.700686" y="

1.

2.

3.
4.

5.

3.5045002"/>
 </g>
 </svg>
</svg>

Once created, save the file in the following directory (assuming a Windows install and the default choice of install folder):

 C:Program Files\Inductive Automation\Ignition \data\modules\com.inductiveautomation.perspective\icons

Next, we'll need to restart our Designer for the changes to be recognized.
Now we can use the icons in this icon repository in our components. For this example, we put a Horizontal Menu component in a Coordinate
view.
We use two icons from the new example repository and one from the materials repository. We set the properties as follows for the Horizontal
Menu component:

Top Level Properties

Property Value

props.items.0.enabled true

props.items.0.icon.path example/one

props.items.0.icon.color #4747FF

props.items.0.label Proposal

props.items.0.style.color #4747FF

props.items.0.style.fontFamily Verdana

props.items.1.enabled true

props.items.1.icon example/two

props.items.1.color #008000

props.items.1.label Project Documents

props.items.1.style.color #008000

props.items.1.style.fontFamily Verdana

props.items.2.enabled true

props.items.2.icon.path material/folder_special

props.items.2.icon.color #AC00AC

props.items.2.label Appendix

props.items.2.style.color #AC00AC

props.items.2.style.fontFamily Verdana

props.style.borderBottomStyle double

props.style.borderLeftStyle none

5.

6.

props.style.borderRightStyle none

props.style.borderTopStyle double

props.style.borderTopWidth 4

props.style.borderBottomWidth 4

When we put the Designer into Preview mode, the Horizontal Menu appears.

Converting SVG-based Perspective Components to Drawings

The following feature is new in Ignition version 8.1.22
 to check out the other new featuresClick here

Right-clicking on a built-in SVG-based Perspective component will give an option to convert the SVG into a drawing.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Converting the component to a drawing will result in the component having different properties. For example, the Cylindrical Tank component props
list changes to include properties like viewBox, preserveAspectRatio, and elements instead when converted to a drawing.

Properties as a component:

Properties as a drawing:

Related Topics ...

Image Management Tool
Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

1.
2.

3.

Localization in Perspective
Localization in the Perspective module utilizes terms from Ignition's Translation syste
m. Once terms have been defined, translations can be enabled by the use of the
"locale" session property. This page covers using localization in Perspective. For
the Vision module, see .Localization in Vision

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Changing the locale of the session can also modify number formatting behavior (e.g., on the Numeric
 component or component).Entry Field Power Chart

On this page ...

Selecting a Language
Switching Languages within a
Session
Related Topics ...

Selecting a Language

Selecting a language for your Perspective session is done through , spec lt, this property session properties ifically the locale session property. By defau
is set to the language tag "en-US" for English USA. Once you set up a additional languages in the Translation system, you can set your locale session
property to different values depending on what language you want to see on your screen.

Switching Languages within a Session

In this example, we'll set up a dropdown list from which the user can choose a language. For this example, we've already set up a Spanish Translation
. We've added a key . List "Hot" and its Spanish translation, "Caliente"

Now we'll set up a view where the user can choose between English and Spanish.

Create a new view and put a Label component and a Dropdown component on the view.
Set the text property of the label to "Hot."

In the Project Browser, click on Perspective. The Session properties are displayed. Update the locale session property to "es-US" (the
language tag for Spanish USA).

See this link for a full list of valid locale tags: https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text

https://legacy-docs.inductiveautomation.com/display/DOC81/Translation
https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+in+Vision
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Numeric+Entry+Field
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Numeric+Entry+Field
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text

3.

4.

This results in anything in your session that contains the word "Hot" to be translated to its Spanish translation.

Similarly, if you set the locale session property back to "en-US", Ignition will translate your session text back to English.

Next we'll set up the Dropdown component with two options configured as shown below where the Spanish option is tied to the "es-US"
language tag and the English option is tied to the "en-US" language tag.
options.0.value: es-US
options.0.label: Espanol
options.1.value: en-US
options.1.label: English

4.

5.

6.

7.
8.

9.

Next we'll bi-directionally bind the Dropdown's Value property to the Locale session property. In the Property editor, click the iconBinding

for the value property.
On the Edit Binding screen, select the type. Property Binding

Next click the icon. Scroll to the session.props.locale and click . Property Details OK
Select the Bidirectional option. Click to save the binding.OK

Put the Designer into mode and test the Dropdown component. Since Preview your Dropdown component now drives your Locale
session property, you will be able to see your Label value go from its Spanish to English translation as you change the language selection.

Related Topics ...

Localization and Languages

https://docs.inductiveautomation.com/display/DOC80/Localization+and+Languages

Bindings in Perspective

Perspective allows for numerous types of bindings to allow for the dynamic
updating of properties associated with Views or their child components.

When configuring a binding, it is initially unidirectional: the value on the property that contains the binding
configuration will synchronize with whatever it is bound to. For example, if the text property on a Label
component is bound to a Tag (via a Tag Binding), then the text on the Label will update to match the
value of the Tag.

However, if the value of the Text property on the Label changed (say by a script, or someone opening the
view in the Designer and manually changing its value), the binding would not cause the value on the Tag
to change. However, it's possible to make a binding bidirectional.

Bidirectional Bindings

Tag and property bindings can be made simply by checking the checkbox in bidirectional Bidirectional
the section of the window. Typically this would be done on one of the Options Property Binding
PROPS properties of an Input component like a multi-state button or a numeric input.

Binding Interface

A can have many different types of bindings, for example it can have a or an Expression property Tag
binding. Instead of setting a label statically, the text might change based on a value or on-screen PLC
selection. There many ways to your to show values from PLCs, databases, other bind components compo

, or user input. nents

In addition, bindings can make use of Transforms, which allow a binding to further manipulate the
resulting value.

On this page ...

Bidirectional Bindings
Binding Interface

Tag Bindings in Perspective

A Tag binding is a straight-forward binding type. It simply binds a property directly to a Tag Property
(typically the value). This sets up a subscription for that Tag. Every time the chosen Tag changes, the
binding is evaluated and pushes the new value into the bound property. If you choose a Tag in the tree,
and not a specific property of that Tag, the Value property is assumed.

Tag Binding Interface

There are three different types of tag bindings in Perspective (direct, indirect, and expression), but they
all share some common interface elements.

Mode Selection

Allows the binding to switch between the different tag binding modes, which are described further down
this page.

Direct Tag Binding Mode
Indirect Tag Binding Mode
Expression Binding Mode

Options

The following options are available, regardless of mode:

Option Description

Enabled Determines if the binding is enabled. Unchecking this option will prevent the binding from executing.
Useful in cases where the binding needs to be temporarily disabled.

Overlay
Opt-Out

If the target of the binding returns a non-good quality code, this setting indicates whether the
component should reflect the quality code with a .component overlay

Publish
Initial
Uncertai
n Value

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

Which switching to the view where this binding is located, the binding is briefly provided an initial value
of "null" with a of . Because this quality code is not good, the quality code Uncertain_InitialValue
component will show a quality overlay. Once the most recent value of the target tag has been
received, the binding will replace the null value with the newly received value, and remove the quality
overlay.

If checked, this setting will cause the binding to ignore this initial null value. This prevents the quality
overlay from appearing due to the initial null value. All other overlays will function normally.

Bidirectio
nal

Determines if this binding should be allowed to write back to the target. Defaults to unchecked,
meaning that the binding will only ever read the target's value. If checked, then changes made to the
bound property will cause the binding to send a write request to the target of the binding.

Fallback When a value is manually written to the bound property, a write request will be sent to the target

On this page ...

Tag Binding Interface
Mode Selection
Options

Drag and Drop
Direct Tag Binding Mode
Indirect Tag Binding Mode

Indirect Tag Binding -
Bidirectional
Indirect Tag Binding Example

Tag Expression Binding
Tag Expression Binding -
Example

Tag Drop

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays#QualityCodesandOverlays-ComponentOverlays
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.1

Delay (assuming is checked). If the binding doesn't receive confirmation that the write request Bidirectional
was accepted, the value on the bound property will instead fallback to the value on the target. This
option determines the number of seconds until the binding value falls back.

Drag and Drop

Ignition automatically creates the bindings to several of the Tag component properties when you choose
to a to a component by dragging and dropping. This is true for both creating a component by bind Tag

ing and dropping a onto empty space in a container, and by dragging and dropping a dragg Tag dropping
. directly onto a component propertya Tag

You can drag a Tag onto a container. Perspective will give you an option for the kind of component you'd
like to use to represent the Tag. Configuration options for Tag drop are set in the Project properties. For
more information, see . Tag dropConfig In this example we drag the Tag for a tank onto a view and
choose the Cylindrical Tank option.

A Cylindrical Tank component is placed on the view. Notice that the value for the component and the value for the Tag match. The component's
displayed value will update as the Tag updates.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-TagdropConfig

Direct Tag Binding Mode

A direct binding binds a component to a path. property Tag Every time the Tag's value changes, the
 In the example below, the value of binding is evaluated and the new value is sent to the bound property.

the Active_Tank Tag is displayed as a percentage of the capacity of the Cylindrical Tank component.

Tag Binding

Watch the Video

https://www.inductiveuniversity.com/videos/tag-binding/8.0/8.1

Indirect Tag Binding Mode

An Indirect Tag binding is very much like a standard Tag binding, except that you may introduce any
number of indirection parameters to build a Tag These parameters are path dynamically in the session.
numbered starting at one, and denoted by braces, such as {intParameter}. The binding will be linked to
the represented by the path after the indirection parameters have been replaced by the literal Tag Tag
values they are bound to.

For example, instead of binding directly to the FlowRate Tag inside the Valve4 folder, as shown below,
you can build an indirect Tag path that will point to the FlowRate Tag for all valves between Valve0 to
ValveN where N is any valve number.

Tag Path

[default]MyPlant/EastArea/Valves/Valve4/FlowRate

Below, the valve number, 4, is replaced by {intParameter} where {intParameter} is a placeholder for a
dynamic reference that will be used to create a single Tag path capable of referencing every FlowRate
Tag inside every existing Valve.

[default]MyPlant/EastArea/Valves/Valve{intParameter}/FlowRate

Indirect Tag Binding

Watch the Video

https://www.inductiveuniversity.com/video/indirect-tag-binding/7.9/8.1

1.
2.
3.

The {intParameter} dynamic must be pointed to a or . Your Reference Property View Parameter
property can pointed to any component property value or Tag value to build an Indirect Tag Binding. In
this example, the {intParameter} dynamic reference is pointing to a view custom property named
valveNumber that is used to help users control which Valve the binding is reading a FlowRate from.

Indirect Binding - BidirectionalTag

Indirect Bindings can also be made Bidirectional by clicking the checkbox on the Edit Tag Bidirectional
Binding screen. This will allow any input from a user on that to be written back to the . To property Tag
work properly, the needs to have the proper to accept writes.Tag security

Indirect Binding ExampleTag
In this example, we have some different motors, where each motor is a folder of Tags. Each motor has an amps that is within the folder, so that Tag
our paths look like the following:Tag

Motors/Motor 1 /a mps

 Motors/Motor 2 /a mps

 Motors/Motor 3 /a mps

 Motors/Motor 4 /a mps

Instead of creating four different displays for these four different Tags, we can create a single display and make it indirect. We need two things for this
example: A component to display the value in, and a component which allows the user to select which motor they are looking at.

Drag an LED Display component onto the view. This will be the display component.
Drag a Dropdown component onto the view. This will be used to allow the user to choose what motor the LED Display is showing amps for.
Select the Dropdown component. In the Property editor, under the options property, click .Add Array Element..

3.

4.
5.

6.
7.

Set the value to 1 and the label to Motor 1.
Repeat steps 3 and 4 to add array elements for Motors 2, 3, and 4.

Click on the LED Display component. Select the icon in the value property. Binding

Click on the Tag binding type then click the button.Indirect

8.

9.

10.
11.

Click the icon and scroll down to the Motors/Motor 1/Amps Tag. Click .Tag OK

In the Tag Path field, replace the 1 with {1}. We are replacing "[default]Motors/Motor 1/Amps" with "[default]Motors/Motor {1}/Amps"
maintaining the space found between "Motor" and "1" in "Motor" and "{1}".

In the References list, select the row. Click the icon. Properties
Scroll to the Dropdown component and select the of the Dropdown. Click .value property OK

11.

12.

13.
14.

What we have done is configured the Dropdown component's property to be inserted into our indirect Tag path in place of "{1}". If we value
select "Motor 1" from the Dropdown component, its property then becomes 1. The number 1 then takes the place of "{1}" in the indirect value
Tag path making it "[default]Motors/Motor 1/Amps". Similarly, selecting "Motor 2" from the Dropdown component makes its property be value
2. The number 2 then takes the place of "{1}" in the indirect Tag path making it "[default]Motors/Motor 2/Amps".

Click to save the binding.OK

Put the Designer into to see the components and the indirect in action. Preview mode
Select a motor in the Dropdown component. The value in the LED Display component will change depending on the Motor that is selected in
the Dropdown list.

Tag Expression Binding

The Tag Expression binding uses the Expression language to specify an entire Tag path. This mode
allows the bound () to be bidirectional. The path in the Expression is expected to be a property Tag Tag
string. Note that is different and not to be confused with an . Expression Binding

1.
2.

3.

4.
5.

Tag Binding -
Expression

Watch the Video

Tag Expression Binding - Example
For this example, we start with two Tags: Tag A and Tag B and two buttons on a view.

Right-click on the first button and select .Configure Events
Select . onClick

Under Organize Actions, click the Add icon and select . Popup

Under Parameters, click the icon to add a new . Add parameter
Enter "tagToShow" in the Name field and " A" in the Value field. Click . Tag OK

https://www.inductiveuniversity.com/videos/tag-binding---expression/8.0/8.1

5.

6.

7.

Repeat steps 1 through 4 for the second button, but in the Value field, enter Tag B. Click .OK

Create a new view named .Popup

7.

8.
9.

10.

11.
12.
13.

14.

15.

Drag a Label component and a Text Field component onto the Popup view.
In the Popup view, click on .Add View ParameterA
Add a new parameter, .tagToShow

Select the Label component. Click on the icon next to the text property.Binding

On the Edit Binding screen, select the Property binding type. Enter in the Configure Property Binding field.view.params.tagToShow
Click .OK

Next set a binding on the Text Field component. Select the component then click on the icon next to the text property.Binding

15.
16.

17.

18.

On the Edit Binding screen, select the Tag binding type and select the button.Expression
Enter the following expression. This expression in the example tells the Text Field to display the value of Tag A if the view parameter is equal
to Tag A. Otherwise display the value of Tag B.

if(
 {view.params.tagToShow} = "Tag A",
 "Z_Other_Tags/Tag A",
 "Z_Other_Tags/Tag B")

Click to save. OK

Put the Designer into . When you click on the Open with Tag B button, the popup appears to show the Tag B label.Preview mode

In This Section ...

Drop Configuration

On in Perspective, the property (also called) enables you view objects dropConfig drop configuration
to associate a view with a Tag, allowing for drag-and-drop from the Tag browser to a view in the designer
to automatically create a view. There are two general approaches, which are displayed under the dropCo

 property: nfig

udt: Allows a view to be associated with a UDT. Useful in cases when a system is making use
of UDTs, and you'd like to be able to multiple bindings simultaneously.
dataTypes: Allows the associated to be based on the data type of a Tag. For example, you can
automatically create and bind a specific view when an Integer Tag is dropped onto another
view.

Both of these configurations are made directly on the view you wish to instantiate.

The param and action Properties

While udt and data types drop configurations are listed separately in the Property Editor, they share
some properties: namely and . param action

param

When using a drop configuration, param expects a string value to a view parameter on the same view.
The idea being that when a Tag drop creates an instance of this view, the view parameter on the
instance will be automatically set with something (determined by the). action

In the image below, the view has an element under configured, with param set to dropConfig.udts
"udtMembers". Further down, under the "PARAMS" heading, there is a parameter with the same name of
"udtMembers". Thus the next time the configured UDT (type of "My Type", as shown in the image) is
dropped onto a view, the "udtMembers" view param will automatically update its value.

On this page ...

The param and action Properties
action

UDT Drop Config
Example

Data Type Drop Configurations

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+View+Object

action

The property determines what happens to the specified view parameters (determined by the action param
property). There are two options for :action

bind: creates a Tag binding between the view parameter and the dropped Tag. This is useful if
components in the view instance need to bind directly to the value of the dropped Tag.
path: populates the view parameter with a Tag path leading to the dropped Tag. Useful if scripts
and expression bindings in the view instance are more interested in the path to the Tag.

UDT Drop Config

The type drop configurations can associate an entire UDT instance, along with its members, to a udt
view. Using a UDT drop configuration is exciting because if the associated view parameter is set to a
JSON object, then the configurations will also expose values on the members of the UDT to elements in
the JSON object. For example, say we have the following UDT.

On a view we wish to embed elsewhere, we can add a view parameter as a JSON object, with a key
("value" type) for each member we want in the embedded view. As long as the name of the keys
matches a UDT member, then the created view instance lookup values for the named members.

Tag Drop

Watch the Video

https://www.inductiveuniversity.com/videos/tag-drop/8.1

1.

In the image below, the dropConfig>udts parameter named is a JSON object with two udtMembers
values. The keys for the those values are and , which matches the names of UDT Member_1 Member_2
members in our UDT. As a result, the drop configuration will result the new view instance My_Type
having access to the value of the Member_1 and Member_2 Tags.

Example

First, create a UDT definition and instance. If you'd like to use the same Tags as this example, open the expand panel below, copy the JSON
string, and paste it into the Tags folder in your Tag Provider.

{
 "name": "",
 "tagType": "Provider",
 "tags": [
 {
 "name": "UDT_Drop_Target",
 "tagType": "Folder",
 "tags": [
 {
 "name": "New Instance",
 "typeId": "UDT_Drop_Target/My_Type",
 "parameters": {
 "thing1": {
 "dataType": "String",
 "value": "Hello!"

1.

 }
 },
 "tagType": "UdtInstance",
 "tags": [
 {
 "name": "Member_1",
 "tagType": "AtomicTag"
 },
 {
 "name": "Member_2",
 "tagType": "AtomicTag"
 }
]
 }
]
 },
 {
 "name": "_types_",
 "tagType": "Folder",
 "tags": [
 {
 "name": "UDT_Drop_Target",
 "tagType": "Folder",
 "tags": [
 {
 "name": "My_Type",
 "tagType": "UdtType",
 "tags": [
 {
 "valueSource": "memory",
 "name": "Member_2",
 "value": 123,
 "tagType": "AtomicTag"
 },
 {
 "valueSource": "expr",
 "expression": "\"Hello!\"",
 "dataType": "String",
 "name": "Member_1",
 "tagType": "AtomicTag"
 }
]
 }
]
 }
]
 }
]
}

It should look like the image below. Notice, both the instance and definition are placed into their own separate folders.

1.

2.

3.

4.

Create two views. The first will be Big_View that we'll be dragging Tags onto, and the second will be Small-View that we'll associated to the
UDT above. For the purposes of this example, we'll use Coordinate Containers as the root container for both views.

In the , we'll make a minor cosmetic change so it is easier to see when we're embedding it later. We'll change the background Small_View
color to something other than the default.
The, with the view selected, add a view parameter. When selecting the parameter type, choose . We'll name it . Object UDT_Prop

4.

5.

6.

7.

8.

Add two object members to . These members will represent the values on the two UDT members in our UDT. The values on our UDT_Prop
UDT members are integer and string, so both only have a single value. Thus, the object members we need to add here only need to show a
single value each. Thus we'll make the object members Value typed.

For the view parameters to know which members in the UDT to associate with, we need to rename them so they match the name of a UDT
member. Change the name of the view parameters to and , to match our UDT members. Member_1 Member_2

Now that we have some parameters that will eventually house values from our UDT, we can create components that use these parameters.
Add a component to .Label Small_View
On the Label, configure a on the property, leading to the . We're using Member_2 here since it's a Property Binding Text Member_2
memory Tag, and we can easily change the value of it later on.

8.

9.

10.

Next, we need to configure the drop configuration settings on . Select the view, and locate the property. Small_View udts

Add an array element to the array. For , click the dropdown and select our UDT definition.udts type

10.

11.

12.
13.
14.
15.

16.

17.

For , type in the name of the root view parameter we created earlier. If you followed along with the example, the name would be param UDT_
. Prop

For , leave that with the default value of , which will create some bindings for us when we create an instance of this view.action bind
Now we're ready to test this out. Save your project.
Switch over to .Big_View
Drag the UDT instance (or any UDT instance with a parent type of) onto . You'll be presented with a popup, which lists My_Type Big_View
any and all views that are associated with that type.

Select from the popup, and you'll see an instance of created. Further more, the values in our UDT instance are Small_View Small_View
made available to the view instance, so the value on the Tag will be shown on the label in the instance of Member_2 Small_View.

17.

1.
2.

a.
b.
c.

Changing the value on the Tag will update the label on the instance of .Member_2 Small_View

Data Type Drop Configurations

Data type drop configurations allow you to associate a view with a certain Tag data type, as well as specify what bindings occur when dropping the
view.

Let's use a Tag to create an embedded view with all the property bindings configured by simply dropping the Tag in a view.

In the , select your original view that contains the Tank, LED Display, Slider, and Labels (i.e., Tanks3). Project Browser
In the , expand the property, and then expand the property. Configure the following properties: Property Editor dropConfig dataTypes

Select the data type - Int4
Set the param - sliderValue
Identify the action - bind

2.

c.

3.

4.
5.

6.

Let's create a couple of Tags so we can use the feature to create multiple embedded views. Copy the Tag you created in the 'dropConfig'
last example (i.e., Test Tank Tag) to make two more Tags, and change their values. This example uses 52, 33, and 78 for the values.

Create a new large view so we have plenty of room to drop multiple of these tank views on the screen.
Drag and drop each of your three Tags into your new large view. You will be prompted for what type of component or view you want to
create. Choose your original view (i.e., Plant C / Tank3).

The three Tank components and their values are now displayed on your view.

6.

7. If you check the individual tank views, you will see a binding on the param. If you open the binding, you will see that each 'sliderValue'
embedded view is pointing to one of the Tags.

1.
2.

3.

4.
a.

Property Bindings in Perspective

Property bindings are important when designing projects in Perspective. Each Perspective component
has a number of properties that change the way a component looks and behaves, but it's through
property bindings that bring your Perspective sessions to life to accomplish useful things.

A property binding is the simplest type of binding. It's a way of linking one component property in a view
to another component's property in the same view. Not only can you link one property in a view to
another property in the same view, but you can also link a component to a property within a UDT, and
pass a property into an embedded view through a view parameter.

This page describes how to set up property bindings for properties in the same view, bind to a property
within a UDT, and how to use a view parameter to pass a property into an embedded view.

On this page ...

Property to Property Binding
Pass a Property into an
Embedded View Using a View
Parameter

Use a Property Binding
Using a Tag Binding

Property Binding

Watch the Video

Property to Property Binding

A property binding simply binds one component's property to another. When that property changes, the new value is pushed into the property that the
binding is set up on. In this example, we'll use a Tank, LED Display, and Slider components. We'll bind the 'value' properties of the Tank and LED
Display to the 'value' property of the Slider in the same view so whenever the value of the Slider changes, the Tank and LED Display will reflect the
same value.

In the Designer, create a view.
From the Component Palette, drag , , and components into your Designer workspace. Cylindrical Tank LED Display Slider

Select the . In the , click on the icon for the 'value' property.Tank Property Editor Binding

This opens the Edit Binding window. Configure the following settings:
Select the binding type.Property

Using Property Bindings Across Views

You cannot have a binding refer to a property in another view instance even view instances
that may be embedded in a view. You can pass a property into an embedded view through a
view parameter.

https://www.inductiveuniversity.com/videos/property-binding/8.0/8.1

4.

b.

c.

5.
6.

7.
8.

Under Configure Property Binding, click the icon to open the popup box. Expand the folders and Insert Property Property
select the Slider property. Click .'value' OK
Click to save the binding settings.OK

Select the . In the , click on the icon for the property and repeat Step 4.LED Display Property Editor Binding 'value'
To see the labels on the Slider, select the Slider and set the property to ' .show true'

Save your project. Put the Designer in .Preview Mode
Move the slider and you'll see both the tank level and LED display change to the value of the Slider.

1.
2.

3.
4.

a.

b.
c.

5.

6.
7.

Pass a Property into an Embedded View Using a View Parameter

The only way to a pass a property across views is by passing a view parameter into an embedded view. You have options on how to pass a property
into an embedded view, how you decide to set up passing a parameter depends on how you design your project. You can set up passing a property to
a embedded view using a parameter with strictly property bindings, or with a Tag binding. Tag bindings allow you to store values in a database in the
event you want to collect history but will force all sessions to see the same value.

Use a Property Binding

In this example, we'll use a Tank view containing the Tank, LED Display, and Slider that shows passing the 'value' properties from the Tank and the
LED Display to the 'value' property of the Slider. Now we will set the Slider to pass its value to a parameter on the embedded view. To demonstrate
this, you can use the same Tank view from the section above, or you can create another view using the same Property to Property Binding
components as in the example above, and assign the view a new name.

Using your original view from above, select the view in the Project Browser.
Create a view parameter under called sliderValue and make it bidirectional by toggling the icon until the arrowhead is at Params ' ' Arrow
both ends.

In the Project Browser, create a new view (i.e., Tank3Page) that will contain the embedded view.
Drag a from the Component Palette to the Designer workspace.Embedded View

With the Embedded View selected, set the 'path' property to your original view (i.e., BigView) from the dropdown list.

In the , Property Editor click the Add Object Member icon under props.params.
In the Parameters list, select the sliderValue parameter.

Save your project.

From this new view, put the Designer in . Drag the slider to a value to change the value on the Tank and LED Display. Preview Mode
You can see from the Embedded View (i.e., Tank3Page), that your sliderValue reflects the same values as your slider.

Using a Tag Binding

1.

2.

3.
a.

b.

c.
d.

Now, let's pass a property using a Tag binding. Using a Tag binding will allow you to maintain the value of the Slider when you relaunch a Client or
Session and store values in a database in the event you want to collect history.

In the Tag Browser, create a Memory Tag with a data type of Integer, and assign a name (i.e.,Test Tank Tag).

Select the Click on the icon next to the and bind it to the memory Tag (i.e., Test Tank Tag).Embedded View. Binding 'sliderValue'

This opens the Edit Binding window. Configure the following settings:
Select the binding type.Tag

Under Configure Tag Binding, click the icon to open the Property popup box. Expand the folders and select the Tag 'Test
. Click .Tank Tag' OK

Click the checkbox. allowing the Tag to be updated by the embedded view.Bidirectional
Click to save the binding settings.OK

3.

4. Now that all your bindings and Tag are configured, let's test out passing a parameter using a Tag. From the original view (Tanks), put the

Designer in and move the Slider to different values. Then, go to the embedded view and see if the value was passed. Preview Mode
Your embedded view should reflect the same values as in your original view.

1.

2.
3.

4.

Expression Bindings in Perspective

Binding Properties to the Outcome of an Expression

An expression binding is one of the most powerful kinds of property bindings. It uses a simple expression
 to calculate a value. This expression can involve lots of dynamic data, such as other properties, language

Tag values, results of Python scripts, queries, and so on. Any time information needs to be massaged,
manipulated, extracted, combined, split, and so on - think expressions!

Event Based and Polling

How an expression updates depends on what is being done in the expression. Expression bindings will
always update immediately when the window they are in is opened. When they update again depends on
if they are driven by events or polling. Typically, expressions are driven by events. If the expression was
adding multiple values together, then when one of those values changed the expression would update,
regardless of whether those values came from other properties or Tags. However, the expression
function has some unique functions that can update at a set rate such as the function. When these now()
functions are used within the expression, the expression binding will update based on the specified
polling rate.

On this page ...

Binding Properties to the
Outcome of an Expression

Event Based and Polling
Using Expression Bindings

Example 1
Example 2

Expression Binding

Watch the Video

Using Expression Bindings

The expression language has lots of tools available that help calculate a specific value such as , , and built in expression functions multiple operators
the ability to reference Tags. While all of these can be manually typed into the expression, the expression binding window makes it easy to reference
these options.

To the right of the Expression Binding window, there are four buttons which can be used to reference specific objects or functions easily.

Icon Function Description

Operators Places the operator into the expression at the cursor. Mostly used as a reference to what operators are available for use.

Functions Places the function into the expression at the cursor. Can be used as a reference for what functions are available, as well as
the parameters the function is expecting.

Tags Places a Tag reference into the expression at the cursor, pulling in that Tag's value into the expression at the time of
evaluation.

Properties Places a property reference into the expression at the cursor, pulling in that property's value into the expression at the time
of evaluation.

Example 1

In this first example we'll use an Expression binding to combine and display the value of two Tags.

Create a new view and place two LED components on it.

Select the first LED component and click on the icon for the value property.Binding
Select Expression the binding type.

In the Configure Expression Binding section, click on the icon.Tag

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/now
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax

5.

6.

7.

Scroll down to the Tag you want to use (Ramp0 in the example) and click .OK

Next click the icon. Select , and then choose the option.Operators Mathematical Addition

Click the icon again and select the second Tag. Click . Tag OK

Now when this Expression is run, the value of this Tag will be added to the first Tag. Note that a preview of the Expression binding value is
shown on the lower left.

1.
2.

3.

4.

5.

Example 2

Let's continue with the same view we set up in Example 1.

Select the second LED component and click on the icon for the value property.Binding
Select Expression the binding type.

In the Configure Expression Binding section, click on the icon. Scroll down to the functions and then select the Functions Math abs
(number) function.

Next click the icon and select the Memory Tag. Click .Tag OK

Next close the function with a closed parenthesis). Note that a preview of the Expression binding value is shown on the lower left. Click .OK

5.

6. The value is now displayed in the LED component.

1.

2.
3.

a.
b.

4.
5.
6.

Expression Structure Bindings in Perspective

What Is an Expression Structure?

An Expression structure is an type of property where several of the sub-items get their values object
from expression bindings.

An Expression Structure bindings allow us to create a custom Expression binding where several
expressions give you several values. That is, the output is an rather than a . This binding object value
type is useful in configuring parameters for a script transform, or in cleanly creating a complex object
from a single binding. It enables you to create a data structure using a separate expression to populate
each entry in the structure.

Binding Interface

The Expression Structure binding is configured similarly to any object in Perspective, except that every va
property in the object is evaluated via an individual expression.lue

Binding Properties

Property
Name

Description

Enabled Indicates whether the binding should fire.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a tag overlay.

Wait On All Indicates whether the binding should wait for every expression binding in the structure
to finish before completing. If false, each expression in the structure will resolve
individually and update their properties at that time. If true, all component properties will
receive their new values at the same time.

On this page ...

What Is an Expression Structure?
Binding Interface

Binding Properties
Example

Expression
Structure Binding

Watch the Video

 Example

Create a new memory Tag called NewTag1. Set the following:
Data Type: String
Value: It Works!
Click to save the Tag.OK
Create View called MyParentView.

Place a Carousel component and a Label component on the view.
Set the label text as "Parent View."

Create another view called .MyChildView
Place a Label component and an Icon component on the view.
Now we need to add two view parameters MyChildView.

https://www.inductiveuniversity.com/videos/expression-structure-binding/8.0/8.1

6.

a.

b.
c.
d.

7.

a.
b.

c.
d.

e.

f.

g.

In the Property Editor under PARAMS, click parameter and select the Value option. Add View

Change the word "key" to the parameter name we want, which is "iconPath."
Click Add View Parameter again.
Name the second view parameter "labelText."

Next we'll bind the components to the view parameters. On MyChildView, select the Label component.

Click the icon next to the text property.Binding

Select the Property binding type.

Click the icon.Property Editor
Scroll down to the labelText view parameter. Click . Click again to save the binding.OK OK

Select the Icon component.

Click the icon next to the path property.Binding

7.

g.

h.
i.

8.

9.

10.

11.

12.

Select the Property binding type.

Click the icon.Property Editor
Scroll down to the iconPath view parameter. Click . Click again to save the binding.OK OK

Back on MyParentView, select the Carousel component and set the viewPath property to .MyChildView

Next we need to add two view parameters. Still on the MyParentView, click the icon next to . The Edit Binding Binding viewParams
screen is displayed.
Choose Expression Structure as the binding type. Click and select .Add Object Member... Value

Name this parameter .iconPath

Click the icon, then enter "material/insert_emoticon" as the expression. Click .Expression OK

12.

13.

14.

15.

16.
17.

Click the icon and select Value to add another parameter.Expand

Name this next parameter labelText then click the Expression icon.

For the value, click on the icon then choose the tag. Click . Tag OK

Select the option. This will ensure that all expressions provide a value before this binding will publish its initial value. Wait On All
Click to save the binding. Now the label text we're using in MyChildView will be populated by this tag (NewTag1).OK

17.

Query Bindings in Perspective

The Query Binding allows you to pull data from the database using a named query. In Perspective, the
Query Binding requires the use of . Named Queries You can't type a query here from this interface, a

. Named Query must already exist. You can also add transforms. For more information, see Transforms On this page ...

Binding Properties

Query Binding

Watch the Video

Binding Properties

Property
Name

Description

Path
Here you can enter in the path to the Named Query. Click on the icon to get a list of all available Named Queries.Search

Return
Format

The Return format specifies how the query results are returned. Options are auto, json, dataset, or scalar.

auto: Query results are returned in the format native to the (typically).database dataset
json: Query results are returned in json format.
dataset: Query results are returned in format. dataset
scalar: Returns the first element from the query result. This format is best when a single value is expected.

Parameters Here you can see a table of all defined . You can pass in property or Tag values to the parameters by first Named Query parameters
highlighting the parameter and then selecting either the Property icon or the Tag icon.

Note: The fields under the Value column are evaluated as expressions, so strings will require quotations marks.

Query In the query section, there is nothing to configure, but you can see what the Named Query you have selected looks like.

Options

Enabled Allows the component to be active/in use /interactive on the screen.

Overlay
Opt-Out

If the target of the binding returns a non-good quality code, this setting indicates whether the component should reflect the quality
code with a component overlay.

Bypass
cache

This will cause the query to bypass/ignore any cached values from the Named Query and run every time it is called.

This feature was changed in Ignition version :8.1.12

This option was removed in 8.1.12 and replaced with Cache & Share

Cache &
Share

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://www.inductiveuniversity.com/videos/query-binding/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Parameters

The following feature is new in Ignition version 8.1.12
 to check out the other new featuresClick here

When this setting is enabled, the query will utilize a polling engine that is shared across all running Perspective sessions. The polling
engine will run the query once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful
for consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling
this option will bypass the cache.

Designer
Limit

This setting will force the results of the query to be limited to a few rows when run in the Designer.

Polling Here you can set the Polling Mode of the Named Query binding based on the Polling rate.

Related Topics ...

Named Queries
Transforms

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries

Tag History Bindings in Perspective

Tag History Binding

Tag History Bindings allow you to pull Tag History data that is stored in the database into a component
through a binding.

On this page ...

Tag History Binding
Tag History Binding Example
Using Dynamic Tag Paths

Tag History Binding

Watch the Video

Tag History
Binding -
Expression

Watch the Video

Configuration
Property

Description

Return Format Allows you to select the return format of the data. Possible options are:

Property Description

Wide Every column is a different tag, and each row is their values at different times.

Tall There are columns for Value, Quality, Timestamp, and Path, and each row is a new tag value at a specific time.

Calculations Will perform a calculation on the returned data, and return the calculated values instead. For example, using the Average calculation will generate an
average of each tags value over the time range selected.

Query Mode How you want to query out the data. Possible options are:

Property Description

PointCount Will return the number of records defined in the Point Count property.

Periodic Will return records separated by an amount of time specified in the Period property.

AsStored Will return the records as stored in the database. While querying data with this mode, multiple value changes at the same timestamp will result in multiple
rows, one row for each unique value.

https://www.inductiveuniversity.com/videos/tag-history-binding/8.0/8.1
https://www.inductiveuniversity.com/videos/tag-history-binding---expression/8.0/8.1

Time Range The time range to pull data values from. Possible options are:

Property Description

Realtime The start date will go back as far from the current time as the Most Recent property specified and the end date will be the current time when the binding
evaluates. Options are MS, SEC, MIN, HOUR, DAY, WEEK, MONTH, or YEAR.

Polling: You can specify a Polling rate to determine how often to update the times. Click the Functions icon to use operators, expressions, Tags, or
properties.

Historical You can specify the Start and End Date in an expression. No polling; times Click the Functions icon to use operators, expressions, Tags, or properties.
only changed if bound to something that changes.

Select Tags An area to select the Tags to trend. Tag Paths can be defined directly or using an expression. See below about Expression mode.Using Dynamic Tag Paths

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

Users may now browse for and select tags from both Realtime and Historical Tag Providers.

Aggregation
Mode

The aggregation mode that will be applied to each time slice, unless a more specific aggregation mode is defined on a Tag Path. For more information on how time slices are
populated, see the page. How the Tag Historian System Works

Aggregation
Mode

Description

(default) Use the mode set in the Default Aggregation Mode field.

Average The values are averaged together, weighted for the amount of time they cover within a time slice.

MinMax The minimum and maximum values will be returned for the window. In other words, two rows will be returned. If only one value is seen in the time slice,

Please note that intervals returned by Historical queries are inclusive of the End Date, including when the End Date is set to now(). This means
you may see one additional interval than expected that only contains future dates, which get interpolated to 0 and can cause trending issues.

For example, if you want data from 10am - 11am in 1 minute windows, you’ll need to set your query from 10am-10:59am. Querying to 11am
would create an interval to contain it and that window will often return 0 since there is typically no future value. Additionally, if you went on to add
the results of two queries of adjoining times, such as 10am - 11am and 11am - 12pm, the first window of the second period would have duplicate
data to the last window of the first period.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://legacy-docs.inductiveautomation.com/display/DOC81/How+the+Tag+Historian+System+Works#HowtheTagHistorianSystemWorks-Processor

only one row will be returned.

LastValue The value closest to the ending time of the time slice will be returned.

SimpleAverage The values are summed together and divided by the number of values.

Sum The values in the time slice are summed together.

Minimum The minimum value in the time slice.

Maximum The maximum value in the time slice.

DurationOn Returns the number of seconds that the value was recorded as non-zero.

DurationOff Returns the number of seconds that the value recorded as zero.

CountOn Returns the number of times the tag's value went from a zero value to non-zero.

CountOff Returns the number of times the tag's value changed from a non-zero value to zero.

Count Returns the number of times a value was recorded

Range Returns the range between the highest and lowest value for the period.

This feature was changed in Ignition version :8.1.17

Range mode will return "0" if the historical tag value remains static over the given Time Range.

Variance Returns the variance of values. Similar in concept to standard deviation. Only good quality values are used when calculating.

StdDev Returns the standard deviation of values, or how much spread is present in the data; low standard deviation shows the values are close to the mean,
and high standard deviation shows that the data points are spread out over a large range of values. Only good quality values are used when calculating

PctGood Time-weighted percentage of good values over the date range.

PctBad Time-weighted percentage of bad values over the date range.

Default
Aggregation
Mode

Aggregation mode to use as a default if the Select Tags are set to Default Aggregation mode.

Options Allows you to specify various options that will apply to the binding.

Option Description

Enabled Enable these options.

Overlay
Opt-Out

Opt out of displaying the .Tag quality overlay

Ignore
Bad
Quality

Only data with "good" quality will be loaded from the data source.

Prevent
Interpolat
ion

Requests that values not be interpolated, if the row would normally require it. Also instructs the system to not write result rows that would only contain
interpolated values. In other words, if the raw data does not provide any new values for a certain window, that window will not be included in the result .dataset

Cache &
Share

The following feature is new in Ignition version 8.1.12
 to check out the other new featuresClick here

When this setting is enabled, the binding will utilize a polling engine that is shared across all running Perspective sessions. The polling engine will poll once,
cache the value, and deliver the results to all registered consumers. The cache persists for a period of time that matches the configured poll rate. If polling is
off, the default cache duration is 250 milliseconds. This optimization is helpful for consolidating multiple identical polling tasks, particularly when you have
many Perspective sessions running at once. Disabling this option will bypass the cache.

Value
Format

Can be Dataset or Document.

Tag History Binding Example

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12

1.

2.

3.
4.

5.

6.
7.

In this example, we'll use a Table component to show the records from some Tags that have Tag History enabled.

Drag a Table component onto a view. Select the Table component.

In the Property Editor, click on the icon next to the property. The Edit Binding screen is displayed.Binding data

Select as the binding type.Tag History
In the section, select and the last 1 minute of data. Time Range

Under the Select Tags section, click on the Tag icon. Navigate to the first Tag and click OK. Repeat for additional Tags. In our example,
we chose the Sine0 and Sine2 Tags.

Notice the Binding Preview at the bottom of the screen. Click OK to save the Tag History binding.
Back in the view, the Table component now contains a column for the timestamp and one for each Tag. Notice how the timestamp does not
have a date format.

7.

8.

9.
a.
b.
c.

10.

In order to change the t-stamp values into a date format, in the Property Editor under columns, click Add Array Element...

You'll notice that once the Array Element is added, the other two columns (Sine0 and Sine2) disappeared. We'll add them back in Step 10.
In the property, enter (which is the column name).field t_stamp
For the property, select from the dropdown.render date
Select a from the dropdown. In this example, we used the date time format.dateFormat

Now, let's add the Sine0 and Sine2 columns back into our table by clicking on 2 times (refer to the yellow highlights in Add Array Elements...
the image above). There is no need to change any of the Sine0 or Sine2 column properties unless you want to change the default settings or
rearrange columns.

10.

1.
2.

3.

4.

Notice that columns 1 and 2 (Sine0 and Sine2, respectively) are collapsed in this image. To see all the columns properties, expand the
columns.

Editor notes are only visible to logged in users
Tag History Binding - Expression

This is supplemental video. Not sure if we need to put a full example in here (complicated). It can possibly be lower priority for now.

Using Dynamic Tag Paths

Tag History bindings have the option to list out Tag paths, or to use an expression to build a Tag path. It is common to create a dynamic path or set of
paths as a component property, that you then reference in other places. You can use as many Tag paths as you want, but they must all follow this
format:

key [array]
[0] {object}

aggregate value
alias value
path value

[1]{object}
aggregate value
alias value
path value

...

 For an example, you can create a custom property on a chart and use it to fuel the historical data.

Create a custom property named on a chart component that is an type.Key Array
Copy and paste the JSON below into this Key property.

JSON for Key Array

[
 {
 "aggregate": "Average",
 "alias": "tank_temp",
 "path": "[default]Tank/03/Temperature"
 },
 {
 "aggregate": "Average",
 "alias": "setpoint",
 "path": "[default]Tank/03/Setpoint"
 }
]

Open the property binding on your chart and select the binding type. Tag History

4.
5.
6.

Select the radio button to create your own tag structure.Expression
Click on the property selector button on the right and find your new custom property.
Click in the lower right. OK

HTTP Bindings in Perspective

The HTTP Binding type allows you to use HTTP get/post protocols to interface with other API's.

JSON Support

One perk of the HTTP binding is the ability to fetch JSON documents from a website or an API. Since the
Perspective property tree is also JSON-formatted, this allows you to dynamically create a property
structure from a JSON document directly.

On this page ...

JSON Support
HTTP Binding Configuration

HTTP Binding

Watch the Video

HTTP Binding Configuration

Binding
Property

Description

URL An expression indicating what web address to reference on the binding. If entering a static URL, quotation marks must be used.

Method Any HTTP method. Used to send HTTP requests to the specified URL. Options as follows:

Method Definition

GET The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-URI.

HEAD The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response.

POST The POST method is used to request that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI in the Request-Line.

PUT The PUT method requests that the enclosed entity be stored under the supplied Request-URI.

DELETE The DELETE method requests that the origin server delete the resource identified by the Request-URI.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back of the request message.

CONNECT The CONNECT method starts two-way communications with the requested resource. It can be used to open a tunnel.

Headers Used to pass key/value pairs in the header of our HTTP requests.

Field Definition

Key Allows dropdown selection from common header keys, or the ability to specify a custom one.

Value The Value field is an expression.

https://www.inductiveuniversity.com/videos/http-binding/8.0/8.1

Body An expression indicating what to send in the body of our HTTP requests.

Authenticat
ion Type

Indicates what HTTP authentication type to use. Equivalent to specifying the key in the header. Options are None, Authorization
Basic, Bearer, or Digest.

Authenticat
ion Value

The field takes an expression that should indicate what authorization string or token should be used in Authentication Value
combination with the associated authentication type. For example, if the header should contain the string:

Authorization: Basic aWduaXRpb246cGFzc3dvcmQ=

Then the Authentication Type should be and the Authentication Value should be .Basic aWduaXRpb246cGFzc3dvcmQ=

Connect
Timeout

Indicates how long the Ignition Gateway should wait for a response to our connect request.

Socket
Timeout

Indicates how long the Ignition Gateway should wait for a response to a given HTTP request.

Enabled Indicates whether the binding should be active.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a Tag overlay.

Allow
Cookies

Indicates whether to allow the remote web server to store cookies.

Cache &
Share

The following feature is new in Ignition version 8.1.12
 to check out the other new featuresClick here

When this setting is enabled, the binding will utilize a polling engine that is shared across all running Perspective sessions. The
polling engine will poll once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful
for consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling
this option will bypass the cache.

Polling Controls how frequently HTTP requests should be issued, and therefore how often the binding should be updated.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12

MongoDB Bindings in Perspective

The MongoDB Cloud Connector module introduces a Perspective Binding type called MongoDB. The
MongoDB binding follows the same format as the by allowing Perspective Expression Structure binding
users to to bind JSON data to individual aspects of a Perspective project such as properties. In other
words, building a MongoDB binding query is almost identical to building an Expression Structure binding.

Users can set polling on a MongoDB binding, updating the displayed result at set intervals.

MongoDB bindings are read-only, and will not allow any writes to your bound MongoDB collection. If you
need to write to a collection or document, use the MongoDB Cloud Connector's included system functions
instead.

On this page ...

MongoDB Binding Interface
Source and Query Type
Selection
Binding Options

MongoDB Expression Functions
Example

MongoDB Binding Interface

The image and table below detail various elements of the MongoDB binding user interface.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.mongodb

Source and Query Type Selection

The three dropdown menus at the top of the MongoDB binding window allow you to specify where the binding's data is coming from and what you
want to do with the information.

Connector
The Connector dropdown will show available configured connections to your MongoDB databases.

Collection
The Collection dropdown will display a list of available collections from the specified connection's database.

Query Type
The Query Type dropdown will offer different actions, including Find, FindOne, or Aggregate. The Query Builder will also change
depending on what Query Type you select:

Find contains filter, project, sort, collation, limit, and skip.

FindOne contains filter and project.

Aggregate contains aggregate and collation.

Binding Options

Option Description

Enabled Indicates whether the binding should fire.

Overlay
Opt-Out

Indicates whether the component should reflect a bad quality binding via a Tag overlay.

Cache &
Share

When this setting is enabled, the query will utilize a polling engine that is shared across all running Perspective sessions. The polling
engine will run the query once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful for

1.

2.

3.

consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling this
option will bypass the cache.

Polling Controls how often the binding should update.

MongoDB Expression Functions

The MongoDB Cloud Connector module also adds three new expression functions to assist in building Perspective bindings expression structure. See
the for more details.MongoDB expression functions

Example

The following example pulls data from a MongoDB Atlas connection to display in a .Perspective Table

Set up a MongoDB connection, if you haven't already. The can help guide you through steps outlined on the MongoDB User Manual page
setting up a connection.
Click on the icon next to the data property.Binding

Select the binding type.MongoDB

https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB+-+Expression+Binding
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB#MongoDB-ConnectingtoMongoDB

3.

4.

5.
6.
7.

Select the , , and you want to use. In this example, the Connector we are using is called Connector Collection Query Type MongoDB
, the Collection we are pulling data from is called , and we are using a Query Type.Atlas TEST planets Find

You can use the Query Builder to customize your data how you want. In this example, we are pulling in all the data in the collection.planets
Toggle or set any options you want, such as Polling or Cache & Share.
Once you have finished building your MongoDB binding, click .OK

7.

8. Our Perspective Table is now populated with data from our collection:planets

Note: You may need to add the column names from your target collection in order for users to be able to perform actions such as column
resizing or reordering. See the column row from the of the Perspective Table User Manual page for more details.Properties section

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Table#PerspectiveTable-Properties

Transforms

Transforms offer a chance to alter the value returned from a binding. For example, you can bind a
property to an integer value and use a transform to map the numerical value to a particular color, all from
the same interface.

Transforms can be used as a way of splitting up complex expressions. You can make several simple
expressions and chain them together as several transforms to manipulate your original value.

When multiple transforms are applied to a single binding, they are executed in order from top to bottom.

On this page ...

Map
Format
Script
Expression

Map

The allows you to set up a map of input values to output values. Inputs can be anything from specific values or strings, to numeric Map Transform
ranges of values. Each input value can then be mapped to an output value, such as a string, integer, color, style, etc. A great example of this is
mapping values to colors, so that you can easily show state changes.

Format

The applies a format string to the value returned from the binding, allowing you to format the output in any way. The format can be Format Transform
something like a date format or a number format.

Script

The will run a script that allows you to manipulate the value returned from the binding using any Python script you want. Script Transform

Expression

The runs an expression on the original value so you can manipulate it without creating more complex logic. This is most useful Expression Transform
when you are indirectly binding to a Tag but still want to apply an expression to it, it can now be done in two distinct steps.

In This Section ...

Map Transform

The Map Transform allows you to set up a map of input values to output
values. Inputs can be anything from specific values or strings, to numeric
ranges of values. Each input value can then be mapped to an output
value, which can be a string, integer, color, style, etc. A great example of
this is mapping specific values to specific colors, so that you can easily
bind visual properties to tag values.

The mapping table defaults to a value for both the input and output, but they can both be changed to one
of several types. Select the and for the mapping using the pull down arrows Input Type Output type
next to the Input/Output Type headers to make your selections.

Input Type

Input Type is The value coming into the transform (from the binding or previous transform)

Value: Individual numeric values designed to exactly match the input value.
Numeric Range: A range of values that the incoming value will fall between. Use brackets [x,y]
to indicate values that are to be inclusive, or parenthesis for values that are exclusive (x,y), and
you can mix them as needed. You can also omit start or end values to indicate no end to the
range. See the examples below for clarification.
Expression: Used in a similar manner to a Value Input Type. Use the Expression language to
create a Value.

Output Type

Output Type is the outgoing value from the transform.

Value: An alphanumeric value.
Color: A color.
Expression: A value result calculated by an expression.
Document: A manually created JSON document (You can also copy an existing or custom
made property and paste it in).
Style: A formatting style (best for simple edits of formatting style). To map to a named Style,
use the "Value" output type to call the name.
Style Class: A to use. Once selected, a dropdown list shows the available style style class
classes.

Use the icon to add rows to the Map table. The icon will delete the selected row. Add Delete
The up/down arrows will sort the order execution for the mapping. The first mapping (from top to bottom)
that matches will be the mapping that is assigned.

You can then double-click to set values for each cell except the Fallback cell. The Fallback allows you to
create a value to use in case non of your values, expressions, or ranges match to the input.

On this page ...

Input Type
Output Type

Examples
Numeric Range to Integer Value
Integer to String
Expression to Color
Numeric Range to Expression

Map Transform

Watch the Video

Examples

Numeric Range to Integer Value

Input Type: Numeric Range

Output Type: Value

You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value is 0, we
get an output value of 99, the Fallback value. This is because the first mapping uses an exclusive 0 (with a parenthesis) so it is testing for strictly
greater than 0, not "greater than or equal to."

Numeric Range to Number Mapping

(0,25] 0
(25,40] 1
[40,50] 2
Fallback 99

https://www.inductiveuniversity.com/videos/map-transform/8.0/8.1

Numeric Range to String Mapping - Range Values Omitted

(,25] "Below 25"
(25,) "Above 25"
Fallback "Invalid Value"

Integer to String

This is linked to a status text display.

Input Type: Value

Output Type: Value

You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value is 0, we
get an output value of "OFF".

Expression to Color

This is linked to the background color property of a text field.

Input Type: Expression

Output Type: Color

This input is passed through several expressions before selecting the Fallback value of black (#000000). You can see in the Binding Preview at the
bottom that the original value of the property binding is 15. For each expression past the first, a single bit of that integer is being tested. Since none of
bits 0, 1, or 2 are true, we get the fallback. For more information on the function, see the appendix.getBit()

https://legacy-docs.inductiveautomation.com/display/DOC81/getBit

Numeric Range to Expression

Input Type: Range

Output Type: Expression

This mapping maps different ranges of values to different parts of the current time. You can see in the Binding Preview at the bottom that the original
value of the property binding is 11 so we get an output value that pulls the minute out of the current time. That was 51 at the time this screenshot was
taken.

Format Transform

The Format Transform applies a format string to the value returned from
the binding, allowing you to format the way the output is
displayed. Typically this applies to a date or number format.

Select Format Type:

Datetime: A date will be formatted to appear a certain way.
Numeric: A number will be formatted to appear a certain way.

Format (Numeric only)

Pattern: Applies a number pattern (using 0 and #) and converts the results to string (good for
putting in leading 0's on a display).
Integer: Rounds input (float) to integer.
Number: Formats number based on Language setting (puts in comma or other number
separator).
Percent: Converts the input number into percent (0.123 would format to 12.3%).
Currency: Uses the currency specified by the Language setting.

Format (Datetime only)

Pattern: Custom date format string (for example - M/D/YYYY h:m:s a).
Date: Date only will be shown.
Time: Time only will be shown.
Datetime: Date and Time will be shown.

Date (Datetime only)

Full: Example format - Monday, March 18, 2019.
Long: Example format - March 18, 2019.
Medium: Example format - Mar 18, 2019.
Short: Example format - 3/18/19.

Time (Datetime only)

Full: Example Format - 2:02:46 PM Pacific Standard Time.
Long: Example format - 2:02:46 PM PST.
Medium: Example format - 2:02:46 PM.
Short: Example format - 2:02 PM.

Locale

auto: Default time zone of Client.
...(Language Selection):

Time Zone (Datetime only)

auto: Default time zone of Client.
...(Language Selection):

See the page for more information.Data Type Formatting Reference

On this page ...

Examples
Numeric Pattern
Datetime Short, Short, Time
Zone Adjusted

Format Transform

Watch the Video

Examples

Numeric Pattern

In the image below, an expression on a Tag binding is retrieving the value from a Tag. As shown in the preview, the value on the Tag shows 45.970097
.

The Format transform is taking that Tag value, then applying a numeric pattern of , which denotes that two digits must always be shown after the #.00
decimal point. As a result, the preview shows a Format value of , since any digits beyond the first two decimal places are ignored by the 45.97
transform.

https://legacy-docs.inductiveautomation.com/display/DOC81/Data+Type+Formatting+Reference
https://www.inductiveuniversity.com/videos/format-transform/8.0/8.1

Datetime Short, Short, Time Zone Adjusted

The image below is taking a Unix timestamp value (including milliseconds) of , and turning it into a human readable date (set to 1551823366022
Japan's time zone) of .3/6/19, 7:02 AM

Script Transform

Script Transforms are special functions that are applied only on an existing
binding. They take the result of a binding (or transform) as an input and produce a
single output. This will allow you to manipulate a binding result using whatever
python code you want.

When a script transform is first created it generates a template script with a few assumed input
Arguments (see below). From this template you can write your own script and reference an incoming
value as well as a few other parameters. It is assumed the custom script will end with a Return comment
that is a single output value, dataset, document, or other type of data.

Arguments:

self: A reference to the component this binding is configured on.
value: The incoming value from the binding or the previous transform.
quality: The quality code of the incoming value.
timestamp: The timestamp of the incoming value as a java.util.Date

Return:

Any single value of any data type. As with all other transforms, the type of data that is returned
will overwrite the data type of the property that is being bound.

Using Complex Properties in Your Transform

Any time you reference a complex component property (like an array or object), it will contain a Qualified
Value(s). This means they have a quality code and timestamp attached to each piece of data. Using your
script to access it will result in a Qualified Value but you can access the actual value manually using the .

 function. This means that fetching a complex property like an array must be looped through and value()
converted manually if you want a basic array. For ease, the output of any binding or transform will
automatically be stripped of quality and timestamp so you can use the value argument directly.

Example 1) Using the results of an array Property Binding in your script transform: You can reference the
property value directly by calling the value parameter that is passed in.

Example 2) Fetching an additional array Property inside your Script Transform: You must manually
convert the array property to a simple array.

On this page ...

Using Complex Properties in
Your Transform
Example Scripts

Dataset to Array of Objects
Dataset to Array with
Renamed Columns
Sparkline Chart

Script Transform

Watch the Video

Example Scripts

A lot of the components in Perspective expect arrays or JSON structured data in order to display data, but several binding types return single values
or datasets. In order to transform one into the other, you can add a Transform to the binding and fill in a script to change the data format. Here are a
few examples of code that can be added to a . Script Transform

Note: Don't forget to tab in correctly if you are copying scripts from this page. The Script Transform is a function (starts with "def") and every line of
the code below should be tabbed in one from the edge.

https://www.inductiveuniversity.com/videos/script-transform/8.0/8.1

These examples are not necessary with Tag History or Query binding types. For both of these, there is a dropdown setting at the bottom of the binding
page that allows you to select the return type of DOCUMENT.

Dataset to Array of Objects

This is a script to take a dataset and transform it into a json array. All header names will be included in the resulting structure. This type of array is
expected on many Perspective components like the Table component.

Dataset to Array of Objects

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
get the header names
header = pyData.getColumnNames()
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # create a new blank dictionary for each row of the data
 newDict = {}
 # use an index to step through each column of the data
 for i in range(len(row)):
 # set name/value pairs
 newDict[header[i]] = row[i]

 # append the dictionary to list
 newList.append(newDict)

return the results
return newList

Dataset to Array with Renamed Columns

This is another script to take a dataset and transform it into a json array. In this example, you create the header names to be included in the resulting
structure. This type of array is expected on many perspective components like the XY chart, Dropdown, etc.

Dataset to Array of Named Objects

set the header names. For the XY chart, these must match the values in the series property.
header = ["Column 1", "Column 2"]

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # create a new blank dictionary for each row of the data
 newDict = {}
 # use an index to step through each column of the data
 for i in range(len(row)):
 # set name/value pairs
 newDict[header[i]] = row[i]

 # append the dictionary to list
 newList.append(newDict)

return the results
return newList

Sparkline Chart

The data expected in a Sparkline chart is a bit different than other charts. Instead of having values paired with a timestamp, it just takes an array of
values to draw in order. This is a script to take a Tag History binding, apply the Script Transform, and output only the values in an array. Make sure
the Value Format dropdown is set to Dataset.

Tag History to list of Data Points

convert the incoming value data
pyData = system.dataset.toPyDataSet(value)
create a blank list so we can append later
newList = []

step through the rows
for row in pyData:
 # append the dictionary to list
 if row[1] is not None:
 newList.append(row[1])

return the results
return newList

Expression Transform

The Expression Transform runs an expression that allows you to manipulate the value of the binding
using an expression. An Expression transform uses the Ignition binding language and has Expression
built in links to several toolsets.

Those expression tools are as follows:

Operators: Mathematical, Logical, Bitwise operators to adjust the incoming value.
Functions: A library of expression functions to adjust the incoming value
Browse Tags: A link to the Tag browser
Browse Properties: A link to Session Properties or other properties in the same View.

Example - Function

Convert Into Hex

//Convert an integer to a Hexadecimal and put in leading 0's
switch(
 len(toHex({value})), // determine length of
string
 0,1,2,3, //
possible lengths
 'n/a', // 0
- results to display
 concat('000', toHex({value})), // 1 - results to display
 concat('00', toHex({value})), // 2 - results to display
 concat('0', toHex({value})) , // 3 - results to
display
 toHex({value}) // Failover
)

On this page ...

Example - Function

Expression
Transform

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://www.inductiveuniversity.com/videos/expression-transform/8.0/8.1

Binding Property Path Reference
Perspective component bindings can reference the value of other properties. These references take the form of a relative path that leads to the referenced
property.

Because of this, it can be helpful to understand how the paths work. This section details the various keywords and operators associated with these paths.
Only properties on components in the same view are eligible to be used in this way.

The format of the property path is like a file system path to get to the component combined with a dot-referenced object path to get to the property. The
section referencing the property must begin with the property scope (e.g., "props" or "position" or "meta"). For the following examples, suppose we are
designing a View with the following component hierarchy, and that each of these components has an "x", "y" property in "position", as well as a property
called "complex" in "props" which is a map containing "foo", which is a number, and "bar" which is an array of numbers.

View

root
LabelA
LabelB
Sub_Container1

ButtonA
ButtonB

Sub_Container2
ButtonA
ButtonB

Operator
/Keyword

Description Example

/ Slash Operator - When a path starts with this operator, then it defines an absolute path. That
is, a path that starts at the top of the view hierarchy and is not relative to where the binding is
being configured.

When not at the start of a path, the / operator moves further into a container, drilling further
down into the hierarchy.

// Absolute path.
Sequential slashes allow
for movement into a
container
/root/LabelA.position.x
/root/Sub_Container1
/ButtonA.position.y

. Dot Operator - You may access properties deep within a component's property document
structure using the Dot Operator.

Assuming the component LabelA had a META property named "foo", then we could use the
example on the right to retrieve the value of foo.

The Dot Operator can also be used to move further into a complex component. Assuming
LabelA has object under META named "rotate", we can move into rotate with further use of
the Dot Operator.

/root/LabelA.meta.foo
/root/LabelA.meta.rotate.
angle

[] Brackets - When referencing an array property, brackets allow you to specify an individual
index within the array. /root/LabelA.props.complex.

bar[5]

../ Parent Container Operator - This operator acts as a shorthand reference to the parent
container. Because the operator always returns the immediate parent container, the operator
is relative to the component trying to utilize the operator.

When moving up in the hierarchy, multiple uses of this operator may be used in sequence to
climb up multiple containers.

Alternatively, you may simply add additional dots to move up levels. Each additional dot
moves up another level.

// From ButtonA, we can use
this operator quickly move
to a sibling component
../ButtonB.position.x

Move Up Multiple Parent Containers

// Moving up multiple
parent containers
../../LabelA.position.x

// Also moves up: each
additional dot is another

parent container
.../LabelA.position.x

./ Container Self Operator - When configuring a binding from a container, this operator acts as
a shorthand reference to the container. This is similar in concept to the this keyword, but still
allows for the user of the other operators.

Note: This operator only works when the path is on a binding configured on a container.

./LabelA.position.x

this The this keyword allows you to easily reference the same component the binding has been
placed on.

This works on any object, including containers, views, and even the session.

this.meta.name

parent Parent shortcut - References your immediate parent. This keyword is only valid when being
evaluated from the scope of a component. For example, LabelA could reference the root
container variables.

All of these shortcuts cannot be used with any other path separators, so a path like this
/MyChild.position.x is invalid, for that, you'd use "./"

parent.props.complex.foo or
parent.position.x

view View keyword - Refers to the view that a component is contained in. This is only valid when
being evaluated from the scope of a component.

Lastly, the view shortcut references the view itself. Views may have input and output
parameters, and to reference these parameters simply specify the category and name of the
parameter, as shown in the example.

view.params.paramName

page Page keyword - refers to the page that the object is contained in. This is only valid when
being evaluated from the scope of a view.

session Session keyword - Refers to the session object. This keyword is valid from any object type.
Useful in cases where a binding needs to reference session properties.

Note: Normally, bindings can not reference properties on components in other views.
However, views can use custom session properties as a means of sharing or synchronizing
a value.

1.
2.

3.

4.

Component Events and Actions

In Perspective, events and actions are some of the fundamental building blocks of project functionality.
Actions give you the ability to respond to specific user inputs (such as mouse, keyboard, and touch
inputs), as well as broad session events (like the beginning and end of the session) in many different
ways. Thus, are a response to .actions events

Example uses for events and actions include:

Navigating to a new page when the user presses a button.
Opening a popup containing details on a specific PLC when a user double-clicks on it in a
diagram.
Logging the user out of the session when they press Ctrl + L on the keyboard.
Scanning a barcode from a mobile device, and sending it to the Gateway.

In this section, we'll cover the basics on how to configure actions and events to suit your project's needs.

Configure Events and Actions

To configure an event and action on a component:

Select the component.
Right-click on the component, and select . Configure Events

Choose an event from the left-hand side.

Note: You can configure actions for as many events as you'd like, but you'll need to configure
the actions separately for each one.

Next choose one or more actions to associate with the event, by clicking the Add icon. D
escriptions of the options for each component action are described in the sections on this page.

On this page ...

Configure Events and Actions
Perspective Events
Action Types
Shared Action Options
Action Setting Reference

Accelerometer Action
Alter Logging Action
Alter Dock
Dock Action
Fullscreen Action
Login and Logout Actions
Authentication Challenge
Action
Navigation Action
Request Print Action
Popup Action
Refresh Action
Scan Barcode Action
Scan Ndef NFC Action
Script Action
Theme Action
Workstation Mode Action

Events and Actions

Watch the Video

https://www.inductiveuniversity.com/videos/events-and-actions/8.0/8.1

4.

5. Configure the actions as you want. Click .OK

Perspective Events

Perspective offers a wide range of possible events, but in this section we'll highlight a few common ones. You can find details on all configurable
events at .Perspective Event Types Reference

Event
Type

Example Event

Compone
nt Event

Many components have their own events that are related directly to the functionality of the component. For a full list of components
with configurable component events, see .Perspective Event Types Reference

System
Event onStartup events occur when the View or component is loaded into the session. For example, if you configure an onStartup

event on a component, the event will occur when the view it is on is opened.
onShutdown events occur when the View or component is removed from the session. Typically this will occur when you navigate
away from the View containing the component, or if the session times out.

Mouse
Event onClick events occur when the user clicks on any of their mouse's buttons, while the cursor is hovered over the component.

onContextMenu events occur when the user clicks the mouse button associated with a context menu (typically the mouse right
button, on a two-button mouse).
onMouseOver events occur when the mouse pointer enters the component's borders.

Keyboard
Event onKeyUp events occur when a key on the keyboard is released, while the component is focused.

onKeyPress events will be run repeatedly, while a key is held down and the component is focused.

Touch
Event onTouchStart Fired when the user has touched the surface of a touch capable device.

Wheel
Event onWheel events occur when a user moves the scroll wheel while hovered over the component.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Event+Types+Reference
https://docs.inductiveautomation.com/display/DOC80/Perspective+Event+Types+Reference

Action Types

Each can have actions assigned to them, and each Action has some specific purpose. Each event can have any number of actions, and Event
different types of actions can do different things.

If you want to delete an action, use the icon.Delete

Each Action is called in order from top to bottom. To control this execution order, you can reorder the list of Actions using the and Up Arrow Down

 icons next to the list. However, Actions are not executed synchronously: sequential actions do not wait for any prior Actions to finish Arrow
executing before running. Thus, if Action 1 is a long-running script, while Action 2 is quick to finish, it is possible that Action 2 will finish before Action 1.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Event+Types+Reference

Shared Action Options

The bottom of each action lists a set of options. The options listed in the following table are shared across different action types.

Enabled Specifies whether the action should be used or ignored.

Prevent
Default

Prevents the browser's default behavior from occurring. Useful when you want to prevent the browser's built-in right-click menu from
showing.

Stop
Propagation

Prevents events from higher up in the component hierarchy from triggering when the selected event triggers.

Security
Settings

Opens a panel where you can specify required security levels that must be present for the action to trigger.

1.
2.

Action Setting Reference

The following headings detail unique settings for each action type. Shared options for each action are listed under . Shared Action Options

Accelerometer Action

Retrieves accelerometer data from the device's accelerometer (a common feature on smartphones). This is a Native App Action, designed to help in
gathering data from a mobile device. Each action needs to be configured in two parts:

The action is run on a mobile device, indicating that a type of data should to be gathered.begin
As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding .Session Event

Note: This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it will be Ignition Perspective App
ignored.

Action
Setting

Description

Continuous Begins recording accelerometer data, which repeatedly updates the object in the current session's .accelerometer Session Properties

Sample Rate indicates how often the accelerometer object should be updated.
Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event. A session
object is already provided to that event script.

Batch Records accelerometer data at a specified interval for a specified rate, then sends the accumulated data to the Gateway, to be
handled by the .Accelerometer Data Received Session Event

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AccelerometerDataReceived

Sample Rate indicates how often a reading should be made.
Duration specifies for how long data should be logged.
Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event.

Note: A object is already provided to that event script.session

Off Turns off accelerometer data recording.

Alter Logging Action

Perspective sessions log their session activity and errors to the . Alter Logging allows us to change how verbose this logs of the browser they run in
logging is. This is useful for session debugging.

Action Setting Description

Remote Logging
Enabled

Indicates whether the browser logs should also be sent to the Gateway to log in the Gateway logs.

Note: For all messages to be visible, the logger must be set to the same logging level as the level Perpective.Client
indicated in this action.

Set Logging Level Dictates how verbose the session's logging should be. A logging level of (or) shows all possible records, while a all trace
level of shows none. Options are:off

all
trace
debug
info
warn
error
fatal
off

Alter Dock

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

Allows you to alter the configuration of a docked view. Any action settings left blank will remain unchanged.

Action
Setting

Description

View The currently selected view. Changing this will change which view is mounted to this position.

Display This property allows you to show or hide the docked view. Options are:

Option Description

visible The docked view is always expanded/displayed.

onDema
nd

The docked view is collapsed, but allows the user to display the view by clicking on the docked view's handle.

auto Automatically shows or hides the docked view depending on how much space is available in the session: showing the
view if the page is wider than the width specified in the auto-breakpoint setting. (Works in conjunction with the Auto
Breakpoint property).

Resizabl
e?

Determines whether the docked view may be resized or not.

Modal? Determines if the view should be modal, meaning users will not be able to directly interact with other views while the modal view is
present. This property is only enabled when the property is set to .Display onDemand

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

Content Determines how the docked view interacts with other views on the page.

Option Description

push Opening or closing the docked view causes the content in the center to resize: the center view will be 'pushed' out of the
way.

cover When opening the dock, it slides in front of the center view, obscuring part of the center view: the dock will 'cover' part of
the center view.

auto Acts like the cover option when the viewport is smaller than the Auto Breakpoint value. Acts like the push option when
the viewport is larger than the Auto Breakpoint value.

Anchor Allows you to make a view always visible while scrolling. Only available on North docked view configurations.

Option Description

fixed The docked view will remain in a fixed position, relative to the page. Useful when a north-docked view should stay at the
top of a page. Select this option if a docked view is acting as a header that should always be present.

scrollable The docked view will not stay in a fixed position as the user scrolls down in the page. Select this option if the north dock
should move along with the page as the user scroll down.

Size Determines the size, in pixels, of the view.

If the view is docked to the North or South edge, then size determines the height.
If the view is docked to the East or West edge, then size determines the width.

Auto
Breakpoi
nt

Controls the minimum page width for Auto docked views to be visible. When the session is smaller than this width, these views will be
hidden and able to be displayed on demand.

This property is enabled when the property is set to .Display auto

Dock ID An optional arbitrary string that can be used to reference a docked view through other parts of Perspective such as in an action or as a
scripting call.

Handle Allows you to show or hide a handle for users to expand/collapse the view.

Option Description

Show Show handle at all times.

Hide Hide handle at all times.

AutoHide Hide handle when page is not active.

Handle
Icon

Path to an icon used to identify the view when the view is hidden.

View
Paramete
rs

Allows specific parameter values to be passed to the docked view when navigating to the page.

Dock Action

Allows you to open or close a docked view. The view must be configured as docked in the Page Configuration section of the designer, and must be
configured with a dock ID.

Action Setting Description

Dock Action There are three types of dock actions:

Open: Opens the docked view.
Close: Closes the docked view.
Toggle: Toggles the state of the docked view, so opens the view if it currently closed, or closes it when it is currently open.

Identifier The ID of the docked view. Dock ID values can be set when you configure a view as docked.

Parameters Parameters that can be passed into the docked view. The name of the parameters must match the name of the view
parameters that are already set up.

Fullscreen Action

Enters full screen mode. Requesting to enter full screen mode only works with events that originate from user interactions. Some browsers may not
support full screen requests.

Action Setting Description

Enter Enters full screen mode.

Exit Exits full screen mode.

Toggle Changes the Session's browser to whichever mode it is not currently in.

View Enters full screen mode on a targeted view.

Page Enters full screen mode on a targeted page.

Login and Logout Actions

Logs the current user in or out of the session. The only action property is the Enabled option which specifies whether the action should be used or
ignored.

Action Setting Description

Ask the IdP to re-
authenticate users

Determines how re-authentication requests sent to the Identity Provider will be handled. Identity Providers can choose to
ignore re-authentication requests, defaulting to their own behavior. Options are as follows:

Project - Use the re-authentication setting located in the General category of .Project Properties
Enable - Prompt the user to provide their credentials, even if they're already logged into the session.
Disable - When selected, the user will not have to provide their credentials if they're already logged in.

Authentication Challenge Action

The following feature is new in Ignition version 8.1.16
 to check out the other new featuresClick here

The Authentication Challenge action will navigate the user to an IdP, allowing a different user to authenticate against an IdP without logging out the
currently logged in user. After the user successfully logs in, the IdP navigates them back to Perspective and triggers a session event onAuthChallenge

 with contextual information about this second user’s identity and their security levels. The session's authentication state will remain Completed
unchanged — in other words, the second user will only be logged in as the user executing the session’s onAuthChallengeCompleted event handler
script. This provides the opportunity for workflows that include requiring a supervisor's "e-signature" before performing certain actions.

Note: The second user will not be logged into the IdP or remembered in any way by the IdP when the IdP is an internal Ignition type, since the
internal Ignition IdP is aware of “sessionless” authentication challenges. External IdP types (OIDC and SAML) are not aware of “sessionless”
authentication challenges since there is no such concept in the respective open standards. To work around this, a separate IdP tailored specifically
for the secondary users’ authentication challenges may be specified under the action setting. So long as this special IdP is only Identity Provider
used for these secondary user authentication challenges (and not used anywhere else), and so long as the setAsk the IdP to re-authenticate users
ting is enabled, secondary users should always be required to provide their credentials every time an authentication challenge is triggered.

Action Setting Description

Identity Provider Specifies the IdP to authenticate against. This may be different from the project's IdP. If set to None, the project default IdP is
used.

Ask the IdP to re-
authenticate users

Determines how re-authentication requests sent to the Identity Provider will be handled. Identity Providers can choose to
ignore re-authentication requests, defaulting to their own behavior. Options are as follows:

Project - Use the re-authentication setting located in the General category of .Project Properties
Enable - Prompt the user to provide their credentials, even if they're already logged into the session.
Disable - When selected, the user will not have to provide their credentials if they're already logged in.

Timeout An integer representing the number of minutes the system will wait in between the authentication request and the
authentication response before timing out the request. If set to zero, the default of two minutes will be used as the timeout.

Payload An opaque payload that may contain any information the user wants to pass to the Authentication Challenge Completed

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted

session event.

Framing How the challenge should be presented to the user’s current page:

Same Tab / Window - User is navigated away from the client and to the IdP in the same window/tab. Once
authentication is complete at the IdP, they are redirected back to the client.
New Tab / Window - A new tab is opened in the user’s browser, leaving the current client tab open while it waits for
the new tab to complete the authentication challenge at the IdP.
Embedded Frame - The redirect to the IdP is embedded in an Iframe within the current client’s page.

Note: Mobile and workstation clients do not support “New Tab / Window” and will fall back to “Same Tab / Window”. Mobile
clients do not support “Embedded Frame” and will fall back to “Same Tab / Window”.

Navigation Action

The Navigation action allows you to navigate to different views, pages, or URLs from an event. The Navigation action has several modes. Each mode
allows for a different type of navigation and different options. The following table lists the types of navigation:

Type Description

Page Navigates to a separate page.

Setting Description

Set Page A string denoting the page URL of the target page. See .Page URLs

Open in new tab Specifies whether the newly opened page should replace the current page, or open in a new browser tab.

View Replaces the current main View with a new main View.

Setting Description

Select
View

The path to the view that should be used.

Paramete
rs A set oparameters to pass to the view. Add or remove parameters with the Add icon and Delete icon. In the Value

 field for a given parameter, you can pass in a path to a property value using the Parameter icon

Url Navigates to an external web address.

Setting Description

Enter Url The URL that the action should navigate to. Example: https://inductiveautomation.com/

Open in new tab: Specifies whether the newly opened page should replace the current page, or open in a new browser tab.

Brows
er

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

Navigates either forward or backward using browser history.

Setting Description

Navigate Specifies whether to go forward or backwards in browser history when the action is triggered.

Prevent
Default

Prevents the browser's default behavior from occurring. Useful when you want to prevent the browser's built-in right-
click menu from showing.

Stop
Propagation

Prevents events from higher up in the component hierarchy from triggering when the selected event triggers.

Request Print Action

https://docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageURLs
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

Prints the contents of the page, view, or component. To print content using Perspective component methods instead, see . Requesting Print

Action Setting Description

Select Print Target
Page: Print the contents of the page.
View: Print the contents of the view.
Component: Print the contents of the component.

Document Title The name of the save file.

Popup Action

Opens a view as a popup, or closes an existing popup.

Action Setting Description

Popup Action
Open: Opens a view as a popup.
Close: Closes an existing popup.
Toggle: Opens a popup if it isn't open, and closes the popup if it is open.

Select View The path to the view that should appear as a popup.

Parameters
A set of parameters to pass to the view. Add or remove parameters with the Add icon and icon. In the Delete Value

field for a given parameter, you can pass in a path to a property value using the icon.Parameter

Identifier A string that specifies a unique popup identity. If you want to close an open popup from a popup action, you'll need to supply
the identifier that was used to open it.

Title A string of text to display in the titlebar. If omitted, no titlebar is used.

Show close
button

A boolean indicating if a Close Icon should be displayed on the popup.

Draggable A boolean indicating if the popup should be able to be dragged to new positions.

Resizable A boolean indicating if the popup is allowed to be resized.

Modal A boolean indicating if the popup should be modal, meaning it is the only view the user can interact with while open.

Background
dismissible

A boolean indicating if the popup can be dismissed by clicking outside of it. This setting is only applied if the modal option is
enabled. If omitted, defaults to false.

Position Exact Exact Positioning controls where in the session the popup should appear, and how large it should be. If no specifications are
given, the popup will open centered at its default size.

Top, , , and control how far the popup should be offset from each margin of the session.Left Bottom Right
Width and specify how large the popup should appear.Height

Position Relative

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RequestingPrint

1.
2.

Relative Positioning enables the popup to be positioned based off of the mouse cursor position when used with a Mouse Event.
The Circle icon in the center represents the mouse location. The arrows icons represent the location the popup will appear in
relation to the user's mouse cursor. Click on an arrow to position the popup window.

Viewport Bound

The following feature is new in Ignition version 8.1.3
 to check out the other new featuresClick here

If selected then Popups will be "shifted" on open to always open within the bounds of the viewport. If the Popup would have
been larger than the viewport then Popup will be resized to fit within the bounds. This setting also prevents a Popup from being
dragged even partially off-screen.

Refresh Action

Reloads the current browser tab.

Scan Barcode Action

Allows the user to scan a single barcode on their mobile device, which is then sent to the Gateway and handled by the Barcode Scanned Session
. Event

This is a Native App Action, designed to help in gathering data from a mobile device. Each action needs to be configured in two parts:

The action is run on a mobile device, indicating that a type of data should to be gathered.begin
As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding .Session Event

Action Setting Description

Barcode Type Indicates the format of the barcode to be scanned. can be used to catch all barcodes.Any

This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it will be Ignition Perspective App
ignored.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned

Barcode
Background Color The following feature is new in Ignition version 8.1.3

 to check out the other new featuresClick here

This option enables the reading of barcodes with light or dark backgrounds, or previously white barcodes with black
backgrounds couldn't be read. Options are Light, Dark, or Auto.

Context Provides the opportunity to pass a custom object through to the Barcode Scanned Session Event.

Note: A object is already provided to that event script.session

Scan Ndef NFC Action

Allows the Perspective app to catch any scans by the phone using the NFC data exchange format (Ndef), which is then sent to the Gateway and
handled by the . This suppresses any default behavior of the phone in catching the scan. NFC Ndef Scanned Session Event

Action Property Description

Single Mode Listens for a single NDEF scan to send.

Continuous Mode Listens indefinitely for NDEF scans, which are sent to the gateway as they are received.

Off Mode Turns off listening for NDEF scans.

Script Action

Write a script that happens on the event specified. See and for more details on how to Perspective Component Methods system.perspective Functions
configure script actions.

Script actions contain a built-in "event" object, that further contains values pertaining to the underlying event. These values and descriptions are
displayed in the docstring.

This action is designed specifically for the for Android and iOS devices. If it is run in a browser session, it will be Ignition Perspective App
ignored.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-NFCNdefScanned
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective

Theme Action

Changes the theme for the session.

Action Setting Description

Select Theme Theme that will be used, for example dark, light, light-cool etc. Dropdown list of all available themes.

Workstation Mode Action

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

Note: This action will only take effect if called from a Session running in Workstation.

When called from a session running in Perspective Workstation, changes the mode of workstation from Windowed Mode to Kiosk Mode.

Action Setting Description

Windowed Enters Windowed Mode.

Kiosk Enters Kiosk Mode

Toggle Toggles the current mode between Windowed and Kiosk.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

Perspective Pipes

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Pipes can be drawn within a coordinate container. These pipes can be used to visualize flow between
separate objects on a view.

Pipes are created by a dedicated , as opposed to being dragged onto a drawing tool on the toolbar
container like other components. Pipes are effectively drawn on the bottom of the z-order in a coordinate
container, hence any components added into the container will always be placed above the pipes.

Each pipe consists of an origin, its connections, connections of connections, and so on. Each pipe is
listed as a separate entry in the Project Browser, under "Pipes".

Terminology

On this page ...

Terminology

Creating Pipes
Moving Pipe Sets

Pipe Appearance Editor
Pipe Properties
Combining Pipes

Component Anchors

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-PerspectiveToolbar

Pi
pe

An object containing all the pipe connections and pipe segments. In addition, a Pipe contains a
name, appearance, and appearance specific props.

Pi
p
e
C
o
n
n
ec
tion

An XY coordinate within the pipe. Visualized as a circle.

O
ri
gin

The first Pipe Connection within a pipe. Note that origins differ visually from other Pipe
Connections, in that they contain a dot at their center.

Pi
p
e
S
e
g
m
e
nt

The segment formed by a Pipe Connection, and one of its immediate child connections. A
segment is a visual representation of relationship between other connections. Each connection
has an array of connection indices (starting at 0), and segments can be represented as a series
of indices. For example, [0,1,0] would represent the first pipe, second connection, then first sub
connection.

Consider the simple pipe below of three connections and two pipe segments. The top of Segment
[0,0] is the origin and the bottom of Segment [0,0] is the pipe connection where Segment [0,0,0]
begins, turning the pipe flow from a vertical to horizontal direction. The end of Segment [0,0,0] is
the final connection.

We can add two new connections, which could look like the following diagram. Because of the
connection locations, Segment [0,0,0,0] follows the existing naming structure, but Segment
[0,0,0,1] is given the number 1 since it was added later and is the second child.

Note that segment indices are represented in the Project Browser.

Example JSON

[
 {
 "name": "pipe",
 "appearance": "auto",
 "flanges": true,
 "lineVariant": "solid",
 "start": "none",
 "end": "none",
 "fill": "",
 "stroke": "",
 "width": 10,
 "origin": {
 "x": 258,
 "y": 168,
 "connections": [
 {
 "x": 258,
 "y": 236,
 "connections": [
 {
 "x": 307,
 "y": 236,
 "connections": [
 {
 "x": 360,
 "y": 236
 },
 {
 "x": 307,
 "y": 168
 }
]
 }
]
 }
]
 }
 }
]

Creating Pipes

Click on the Pipe Drawing Tool toward the top of the Designer. While active, clicking anywhere inside a coordinate container will create a new
Pipe with an at the mouse location. origin

Note:

Pipes can only be drawn in a Coordinate Container. The Pipe Draw Tool and Pipe Move Tool will be disabled while other types of containers are
selected.

By default, a Coordinate Container's aspectRatio property does not have a value. As such, setting your container's aspectRatio to a value like 1:1
when creating Pipes is recommended. This helps Pipes remain anchored to components if the components change size in proportion with the
container.

All connections, including the origin, can be repositioned by clicking and dragging.

New connections can be drawn by dragging the arrows around the connection. Letting go will create a new connection. By default, all segments are
drawn orthogonally. Holding the Alt/Option key will allow the segment to be drawn in fixed angles at 15 degree increments. Alternatively, holding Shift
while dragging allows the segment to be placed freely without snapping.

New connections can be added to existing segments. Doing so allows the segment to split off into a new segment.

To delete a segment, click on a connection in the segment and press the key, or by right-clicking and selecting "Delete". Delete

Existing connections can be moved by dragging. All attached segments will move with the origin.

If is held while repositioning a connection, then connecting segments will bend. Shift

Moving Pipe Sets

The Pipe Move Tool can be used to move an entire set of pipes, as well as resize the set.

Pipe Appearance Editor

While either the Pipe Draw Tool or Pipe Move Tool are selected, the top of the property editor will display some additional fields that can be used to
modify the appearance of the selected set of pipes. Additional fields are displayed depending on the selected Appearance of the pipe.

When multiple pipes are selected, only shared fields are displayed. For example, one pipe with an appearance of P&ID and another using simple
appearance are selected, only the Appearance and Width properties will be shown since those are the only fields available to both apperances.

In addition, a coordinate container that has one or more sets of pipes will display a pipes property in the Property Editor. Each origin is represented as
an element in the pipes array. Each origin has X and Y coordinates, and an array of connections, which lead to other origins.

Pipe Properties

Property Description

Pipe Name The name of the selected set of pipes, as they appear in the Project Browser.

Appearance Changes the look of the pipes. Note that different appearances have additional properties.

In addition to the appearance options, there is an value will will cause the set to use the appearance specified under auto session.props.pipes.
. autoAppearance

Width Determines the width of pipes in pixels within a single set.

Fill Color The fill color to use when appearance is set to either or . This setting is ignored when appearance is set to .Simple Mimic P&ID

Stroke
Color

The stoke color to use when appearance is set to either or . This setting is ignored when appearance is set to .Simple Mimic P&ID

Display
flanges on
pipe

(Mimic
Appearanc
e Only)

Determines if the pipe set should show flanges.

Line
Variation

(P&ID
Appearanc
e Only)

Allows a unique variation to be applied to the set.

Line Color

(P&ID
Appearanc
e Only)

The color to use for the pipe set.

Start

(P&ID App
earance
Only)

Determines what the start of a pipe set look like. Applies to the starting origin of a set.

End

(P&ID
Appearanc
e Only)

Determines what the end of a pipe set look like. Applies to all origins that don't lead into another origin.

Visible

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

Determines whether the pipe set is visible or not. Default setting is True.

Combining Pipes

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

Dragging a pipe to another will combine the pipes. Combining pipes will cause the pipes to share the same appearance. However this combination
can be overridden by pressing the Undo button (or by pressing) once. This allows different pipes to overlap without actually Ctrl-Z/Command-Z
combining.

Additionally, a connection can be dragged onto it's immediate sibling or parent, which effectively removes the dragged connection.

Component Anchors

While using the Pipe Drawing Tool, other components in the container will display anchor points.

Symbol type components have custom anchors, positioned at appropriate locations.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette

Dragging a segment near the anchor will cause the segment to snap to the anchor (unless the key is currently being held). This can be useful Shift
when leading segments into different components. Note that anchors are only used to guide the segment in the designer. The pipes are not
"connected" to the component, so moving the component later will not cause the pipe segment to move.

Perspective Project Properties

There are a number of properties you can set for your Perspective projects within the Designer. For
example, there are properties for setting security levels, configuring how the sessions receive updates,
and more.

To access the Project properties, in the , click on tab on the menu bar. Then select Designer Project Proj
. ect Properties

On this page ...

Perspective General Properties
Perspective Permissions
Properties
Perspective Tag Drop Properties
Perspective Inactivity Properties
Perspective Symbols Properties

Create and Apply a Custom
State

 Project properties span several functional areas each containing settings applicable to that area. Scroll down to the Perspective section.

Perspective General Properties

These general properties apply to the Perspective Sessions.

General

Property Description

Enable Update
Notification

Enables notifications for sessions when the project is changed. When notification is enabled, this is the message that will be
displayed. The token {timeLeft} will be replaced with the seconds remaining until update. If false, update will be immediate.

Project Locale Select a project locale.

Include regional
variations

Enables regional variations for the locale.

Hide from
Launch Page
and Native Apps

When selected, the project to be hidden from the Session Launcher and mobile app project listing.

Launch Icon The image specified here is used to represent the project on the launch page and the Ignition Perspective mobile app. This
needs to be a path to an image that has been . Use the browse button to choose or upload a new uploaded to the Gateway
image.

Project
Timezone

Timezone for this project. Dropdown list includes the Gateway timezone, Session timezone, or specific timezones around the
globe.

Identity Provider Identity Provider (IdP) for this project if a Perspective Project had an IdP set for it prior to .the release 8.0.6

Note: For new installations after 8.0.6, the Identity Provider property is now located in Project Properties > Project General >
 The property will also move to the new location under Security Settings Project Properties > Project General > Security Settings

if you change set this property to none.

Session
Timeout
Desktop

The time, in seconds, for that the Gateway will wait for desktop devices to respond.

Session
Timeout Mobile

The time, in seconds, for that the Gateway will wait for mobile devices to respond.

Session Closed
Message

Message to be displayed if system.perspective.closeSession is invoked.

Page Closed
Message

Message to be displayed if system.perspective.closePage is invoked.

Logged Out
Message

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

Determines the message displayed when a user logs out of a session. Only applies when the project requires authentication.

Perspective Permissions Properties

The Perspective Permissions properties restrict project access to specific security levels and security zones.

Permissions

Property Description

(Security Levels Tree) Interactive tree that shows the current authenticated and .roles security zones

(First radio button) If selected, then the security levels of the user must match the required security levelsall of

(Second radio button) If selected, then at least one of the security levels of the user must match the required security levels.any of

In the following example, a user must have the Administrator security level and Ridgefield East security zone to be able to access this project.

https://docs.inductiveautomation.com/display/DOC80/SVGs+and+Images+in+Vision#SVGsandImagesinVision-UsingImages
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.closeSession
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.closePage
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones

Perspective Tag Drop Properties

Tag Drop properties provide a way to link certain data types of Tags to commonly used components
when dragging-and-dropping a Tag onto a view. This is done in under in Project Properties Tag Drop
three steps: select the data type, select the component to create, and select the bindings that are created
on that component.

 This setting determines which components show up in the popup list Data Type Configuration:
when dragging a Tag into a view.
You can switch between the different Tag data types to see what sorts of components are
allowed to be dropped for each of those types. Add or remove new entries in the list using the A

 icon and icon. You can then double-click on the new blank cell and select a dd Delete
component from a dropdown.

Component Bindings Configuration: This setting determines which bindings are created
when a component is dropped into a view.
Select a component, then set up or modify the bindings for the selected component (which is
typically just the Tag value bound to the value/text prop on a component). Add or remove new

binding entries using the icon and icon. Double-click the Tag Property and Add Delete
Prop Path cells to fill in properties.

Note: The Component Binding Configuration table values are tied to the component currently selected
in the Component Type dropdown, they are not related to what is selected in the Data Type
Configuration table above.

Tag Drop

Watch the Video

Dropping tags onto existing components can now create bindings on those components if the data type of the tag matches a Tag Drop configuration in
the project. Tag Drop configuration is what determines if a binding is configured or not.

The Tag Drop interface enables the Bidirectional setting by default when adding Input Components.

https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.1

Tag Drop

Property Description

DataType Configuration This section is to set up a list of components to show for each data type that can be dragged onto the view.

Data Types Dropdown list of the available datatypes in Ignition. Choose a datatype to see a list of components associated with
it.

Components List of components associated with selected data type.

Component Bindings
Configuration

This section is to set up bindings when a dropped.Tag is

Component Type Dropdown list of the available components in Perspective.

Tag Property The name of a Tag's property to be used in a binding. " " is most commonly used.value

Prop Path The property path on the component where the binding will be created. props.value or props.text are most
commonly used.

Bidirectional Check box to indicate if the binding should be bidirectional. The Bidirectional property is set by default when
adding Input Components.

Perspective Inactivity Properties

Perspective has Inactivity Timeout settings in Project Properties. You can set an Inactivity timer that either closes the Perspective session or logs the
user out if no activity is detected after a specified number of minutes. Activity is considered opening a new tab, clicking, typing. If Perspective is
running on a mobile device, activity is considered a swipe or tap. The Gateway is the "time keeper" for inactivity timer.

This inactivity feature pertains to perspective sessions only. When the Inactive Session Action occurs (regardless of whether "Logout" or "Close
Session" is selected), the user will still be logged into the Identity Provider.

Note: When enabling this inactivity feature, it is highly recommended that you also enable the "Always ask the IdP to re-authenticate users by
 setting under , as this will require that any user attempting to log into a Perspective session will have to provide their default" Project Properties

credentials first.

The following are the properties for the Inactivity Timeout:

Inactivity

Property Description

Enabled Whether the automatic inactivity detection option is enabled.

Inactivity Timer Time (in minutes) in which a session can be inactive before the user is logged out or the session is closed. The maximum
value is 2,147,483,647.

Grace Period Grace period (in seconds) after the Inactivity Timer time has passed but before the user will be logged out or the session
closed.

Grace Period
Message

Message to be displayed before a session becomes inactive. Use the placeholder {seconds} to indicate remaining time. (Optio
nal.)

Inactive Session
Action

Action that occurs when the session becomes inactive. Options are:

Logout - Log the user out of the session. Note that the user will still be logged in with the
Close Session - Close the session.

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties

Perspective Symbols Properties

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

The Symbols section displays built-in states for symbol visual theme configurations and allows you to create your own customized states. Selecting a
state will bring up the Configure State settings, which display the state name and the Available and Applied Symbols lists. Selecting a visual theme
state under the main state name will access the Edit State Style settings, which allow further color and function customization. Additionally, there are
three icons on the right of the displayed States list to add and edit new states:

Add icon: Creates a new state with full customization access. Color and function settings pre-populate with the built-in default state built-
in settings, but will have no preset applied symbols.

Duplicate icon: Creates a new state based on a selected pre-existing state. Duplicated state names will automatically populate based on
the original state name. Duplicated states have full customization access regardless of the state they were created from.

Delete State icon: Deletes selected custom states. A popup message will require you to confirm your selection before deleting. Built-in
states can be edited, but not deleted.

When editing a built-in or custom state themes, you can use the Undo icon to replace changes with the last saved settings or the Reset Theme

 icon to return all settings back to their original configuration when the state was first created.

The following table lists the properties for the Symbols States:

Symbols

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

1.
2.

3.

Configure State (Only State Name Selected)

Property Description

State
Name

The name of the state containing the light/dark visual state styles. Built-in state names cannot be changed.

Available
Symbols

Lists the symbols that are available to use the selected state, but do not have it as a currently applied option.

Applied
Symbols

Lists the symbols that will show this state as an option to apply when configuring the symbol. Add or remove applied symbols by

selecting a symbol and using the Add or Remove Applied Symbol arrows.

Edit State Style (State Name > Visual State Selected)

Property Description

Primary
Color

Sets the symbol fill color.

Secondary
Color

Sets the alternate symbol fill color. This color is used when Enabled Flashing is checked.

Tertiary
Color

Sets the vessel fill color.

Stroke
Color

Sets the symbol outline color.

Enable
Animation

Enables symbol animation properties.

Enable
Flashing

Enables symbol fill color to alternate between the set Primary and Secondary Colors.

Create and Apply a Custom State

Open Project Properties.
Select .Symbols

Click the Add icon. Rename your new state if desired. In this example, it will be left as new-state.

3.

4.

5.

6.
7.

Use the arrow to select and apply your new state to desired symbols. This example will make this state applicable Add Applied Symbol
to the symbol.Motor
Use the state dropdown to select the visual themes you want to edit. This example will edit the light visual state.

Set your desired color, animation, and flashing configurations under Edit State Style.
Click OK.

7.

8.
9.

Access a view and place a symbol. Motor
Select the Motor and change the state field from default to the custom state, in this case . The new state configurations are new-state
immediately applied and displayed in the view.

Styles

Perspective components have Style properties that enable you to customize the look and feel of
components on the screen through various properties. These styles are based on Cascading Style
Sheets (CSS), a style sheet language used for describing the presentation of a document or webpage.
CSS is designed to enable the separation of presentation and content, including layout, colors, and fonts.
The Perspective module uses the popular standard HTML5/CSS3 technology for its user interface (UI)
layer.

Using CSS, the Perspective Style options for components are both detailed and flexible. Styles are used
in multiple places, and components can accept style information from multiple sources. There are many
CSS settings available through the user interface, they are described in the . Style Reference

The following feature is new in Ignition version 8.1.4
 to check out the other new featuresClick here

As of 8.1.4, CSS properties are also available through a properties dropdown menu. This menu provides
access to all available properties in the schema.

A group of Style settings can be saved together and given a name as a .Style Class

On this page ...

Style Editor
CSS Lengths

Creating a Style

Styles

Watch the Video

Style Editor

Wherever the style property and the icon appear in the Property Editor, you can click on the icon to display the style editor.Styles

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4
https://www.inductiveuniversity.com/videos/styles/8.0/8.1

The following menus are available in the style editor:

Text
Background
Margin and Padding
Border
Shape
Misc

You can quickly make adjustments to the styles by clicking on them in the Applied Styles panel.

When you hover over a style listed in the panel, a icon is displayed. Click on it to delete the style. Delete

If you made new edits to an existing style attribute, you can hover over the style and an icon is displayed. Click on it to revert to the Undo
previously saved setting.

You can minimize the Applied Styles panel by clicking on the icon to the left of the name. Click the arrow again to reopen the panel.Arrow

Expanding a category enables you to set the properties associated with it. Here is an example of the Style Editor with the Text menu expanded and a
few options selected:

color: #800080
font-family: times
font-size: 19px
font-weight: bold
text-align: center

Note:

Applying individual style elements to a component will overwrite the settings for the same style elements being applied from a .Style Class

Some components can have multiple individual Style elements, with each one focusing on a different part of the component. When these styles have
a conflict, the more specific style wins out, and sets the style for that particular property.

CSS Lengths

Styles, by default, make use of pixels (px) when it comes to length. However all are available and can be used by specifying the unit. For CSS lengths
example, a font can be specified in points by appending the unit "pt". For example:

35pt

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units#lengths

1.

2.

3.

4.

5.
6.

Creating a Style

In a coordinate view, drag a Gauge component and a Label component.

Select the Gauge component and click the icon in the properties for the component. Styles

The style editor is displayed. Each of the pull down menus has options. These options are described in the Style Reference.
Click on the Text menu then set the following style options:

 Family: VerdanaFont
: 16Size

: boldWeight

As you select Style elements, they appear in Applied Styles column on the left.

Click OK.

Next select the Label component and click the Styles icon.
Expand the menu and set the following style options:Text

Font family: Verdana
Size: 18px
Weight: bold
Color: #8034CC

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference

6.

7.

8.
9.

Expand the menu and set the following style option:Background
Background Color: #FFFFCC

Expand the menu and set the padding to 8 for all four sidesPadding .
Click OK to save the changes. You will notice those properties now appear in the components Style, letting you know that those particular
elements have a style applied to them.

9.

Perspective Built-In Themes

Themes

Perspective comes with several themes, providing initial styling to all components. The active theme in a
session is determined by a session property. Specifically, session.props.theme found on the home
screen of the Perspective workspace. Changing the value of this property in a Perspective Session will
change the active theme for the session.

Initial Theme

Ignition installations come with the following themes:

light
dark
light-warm
light-cool
dark-warm
dark-cool

On this page ...

Themes
Initial Theme

Theme Colors
Using Theme Colors
Built-in Theme Colors

Theme Colors

The built-in themes make heavy use of CSS variables for colors. For any of the default themes, colors are defined in the file. variables.css
Defining your own variable is simple. Add a line with the following to the variables file:

--variable-name: #FF0000;

Caution:

Be aware that changes made to the built-in theme files will be replaced on Gateway start up (including restarts caused by a Gateway Restoration)
and moved to a backup folder on upgrade. As a result, it is highly recommended that you create a custom CSS file that can then be imported into the
entry point CSS files.

For more information, see the markdown README file located in the Gateway's installation directory: %installDirectory%
\data\modules\com.inductiveautomation.perspective\themes\README.md

Using Theme Colors

Theme colors can be used on components by simply providing the variable name. For example, we can change the and of a backgroundColor color
button component by just stating the variable name for the appropriate styling properties on the component's object. style

If a component has a property outside of a style object, such as the Icon component, the same rules apply; simply set the value of the color color
property to the name of the variable.

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore
http://README.md

Style Classes

When using a Theme Color in a Style Class, the variable must be wrapped in the method, as shown below. var()

Built-in Theme Colors

The following color swatch represents the built-in color variables for each IA provided theme.

light light-cool light-warm dark dark-cool dark-warm

--neutral-10

--neutral-20

--neutral-30

--neutral-40

--neutral-50

--neutral-60

--neutral-70

--neutral-80

--neutral-90

--neutral-100

--seq-1

--seq-2

--seq-3

--seq-4

--seq-5

--seq-6

--div-1

--div-2

--div-3

--div-4

--div-5

--div-6

--div-7

--div-8

--div-9

--div-10

--div-11

--div-12

--div-13

--div-14

--div-15

--div-16

--qual-1

--qual-2

--qual-3

--qual-4

--qual-5

--qual-6

--qual-7

--qual-8

--qual-9

--qual-10

--callToAction

--callToActionHighlight

--callToAction--hover

--callToAction--active

--callToAction--disabled

--error

--info

--infoSecondary

--warning

--warningSecondary

--success

--indicator

--indicatorOff

1.

2.

3.

4.

Changing the Theme From a Session

A theme can be set by directly writing to property. The property is writable from a session.props.theme
session, so you can easily utilize component bindings in such a way that users can change the theme
directly from the session. In this example, we will create a dropdown component, and configure a component binding that allows the
dropdown to change the theme in the current session.

Open a view in the Designer that contains a few components and drag in a Dropdown component.

With the Dropdown component selected, click on the icon to create a property binding on the property Binding value

The Edit Binding window will open. The theme property is a session property. Click on the icon and expand , Property session > props
and select . Click .theme OK
Check and click to save your property binding. Bidirectional OK

4.

5.

6.
7.

With the Dropdown component still selected, locate the props.options property in the Property Editor.

Paste the following onto the "options" property of a dropdown component.

[
 {
 "value": "light",
 "label": "light"
 },
 {
 "value": "dark",
 "label": "dark"
 }
]

Save your project and open your view in a Session or enable Preview Mode in the Designer.
From the Dropdown component, select a desired theme (i.e., light).

7.

The selected theme will now be applied for the entire Perspective Session.

1.

2.

Style Classes

A Style Class is a group of Style settings that are saved together. Style Classes can be applied to
multiple components to provide consistency in design. A Style Class enables you to define style
elements in one place, and then quickly apply that style to different components. Style Classes are
stored in the Styles folder in the Project Browser.

Within the Styles folder, Style Classes can be placed into folders in order to keep them organized. In the
following example, we created separate folders for banner styles and logo styles in the Designer. As
projects grow and increase in complexity, use folders to more easily manage your Style Classes.

This feature was changed in Ignition version :8.1.22

The prefix is reserved for the base, predefined styling that is built into Perspective, and should not ia_
be used when naming user-created Style Classes. Using the prefix for user-created Style Classes ia_
may result in unintended behavior.

Creating a Style Class

In this example we'll create a 35 point Italic font, and center the text.

To create a Style Class, right-click on the Styles folder and select . New Style

On this page ...

Creating a Style Class
Enabling the Advanced
Stylesheet
Delete a Style Class
Rename a Style Class
Protect a Style Class

Multiple Style Classes
Animated Style Classes

Animated Settings

Bindings on Style Classes
Element States on Style Classes
Media Query on Style Classes

Media Query Settings

Style Classes

Watch the Video

https://www.inductiveuniversity.com/videos/style-classes/8.0/8.1

2.

3.
4.

5.
6.

Enter a name for the new Style Class. Style Class names must be unique to the project. You will
see a green check icon if the name you enter is acceptable. In this example we'll name ours
"Header".

Click .Create Style Class
On the Edit Style screen, use the to define the style. In this case we'll configure style editor
values for the following properties under :Text

: 35ptSize
: enabledItalic

: centerText align

Click to save the Style Class.OK
Once a Style Class has been created, it can then be applied to a component. In the
component's Style property, there will be a classes property with a dropdown list of all available
Style Classes that can be applied to the component.

Enabling the Advanced Stylesheet

This feature was changed in Ignition version :8.1.22

Users with extensive background working with CSS are now able to fine tune styling by modifying the
Advanced Stylesheet resource. The stylesheet is an advanced feature and is not placed by default. To
enable the Advanced Stylesheet, right-click on the folder and select Styles Enable Advanced

. Stylesheet

https://legacy-docs.inductiveautomation.com/display/DOC81/Styles#Styles-StyleEditor

The resource will now be available under Styles. The stylesheet allows users to insert stylesheet.css
CSS as in any normal CSS file. Note the editor does not support auto-complete CSS syntax.

Common examples of how this resource can be used include overriding or extending Perspective Style
Classes or CSS classes used within a component's structure. CSS classes are not exposed in a
component's Property Editor, where as Style Classes are exposed. Perspective uses the prefix . for psc-
Style Classes before they are injected onto the page, so if you are trying to target a Style Class, you’ll
need to add this prefix to the name of your style declaration. Then add the Style Class name (without the
prefix) to your Property Editor style field. Use the prefix .ia to edit CSS classes as shown. No further
steps are required to activate edits to CSS classes.

The rules defined in this resource are inserted into the Perspective project between the Theme files of
the Gateway and the Named Styles of the project. This means the resource is scoped to a project, unlike
Theming files being Gateway-scoped.

To disable this advanced feature, follow the process below.Delete a Style Class

Delete a Style Class

To delete a Style Class, right-click on the Style Class name in the Project Browser, then select . When a Style Class is deleted, it is no longer Delete
applied to any components it was previously applied to. The component returns to the default style settings with the exception of any inline styles.
Inline styles will remain applied to the component.

Rename a Style Class

To rename a Style Class, right-click on the Style Class name in the Project Browser, then select .Rename

Note: Once a Style Class is renamed, any component that was using the Style Class will lose reference to the newly named style class, meaning
you'll need to reapply the newly named style class.

Protect a Style Class

You can lock a Style Class from inside Designer by opening the Project Browser, right-clicking on the Style Class, and selecting the Protect option to
protect it. Once it's protected, it cannot be changed except by someone that has the permission to unprotect it and modify it. For more information on
protecting project resources see Project Security in the Designer.

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Security+in+the+Designer

Multiple Style Classes

Perspective allows you to select more than one Style Class for a component. Multiple Style Classes to a component in alphabetical order. Style
Classes further along in the alphabet will override earlier Style Classes.

In the example below, Bravo Style Class is blue, bold, italic, and 13px text with some borders. Charlie Style Class is red, bold, and 16px text.

When both styles are applied together, the color and text size in Charlie Style Class override Bravo. However, the italics and borders from Bravo
remain because Charlie does not have those properties set.

You can also apply inline styles to components that have a Style Class. The inline style properties override any properties in the Style Class. For
example, if the Style Class has a properties of 22pt bold text with a color of blue, but there is an inline style property of 18pt bold text with a color of
orange, the component will receive the inline style properties. In this example, we applied the Alpha style to a label and the applied inline styles of a
bottom and right border.

Animated Style Classes

An animated style class transitions through two or more style configurations over some period of time.
For example, using an animated Style Class can be powerful way to visually show data changes (such
as an alarm state) on a component over time. When the Animated option is set to true on the Edit Style
screen, several settings appear for customizing the animation.

Animated Settings

The following properties appear when the Animated checkbox is set to True.

Name Description

Duration Number of seconds for each animation stop.

Direction Options are normal, reverse, alternate, and alternate reverse.

Iterations Number of times you want the animation to run. Enter an integer, or check the infinite box to
have the animation run continually.

Timing Options are linear, ease, easeIn, easeOut, stepStart, stepEnd, and exaggerate.

Delay Delay, in number of seconds.

FillMode Options are none, forwards, backwards, or both.

0% to
100%

Animation stops. All of the animation and style settings can be set for each stop. Additional
stops can be added by right-clicking on the bar in between 0% and 100%.

Style
Settings

Sets the styles for an animation stop. Full menu of is available for text, style options
background, margin and padding, border, shape and miscellaneous.

Applied
Styles

Displays the style names and settings as you add them to a component.

Animated Style
Classes

Watch the Video

Bindings on Style Classes

In Perspective, you can dynamically change the Style Class on a component. Styles and Style Classes
can have binding options. For example, a component could use a Style Class when a Tag has one value,
and not use the class when the Tag has a different value.

Dynamic Style
Classes

Watch the Video

Element States on Style Classes

Element States are used on Style Classes to change the style configuration on a component based on
the state of the component. It is an additional styling configuration you can make on a Style Class. For
example, you could have the border on a component change when it is disabled. Or you could have the
background change when the user hovers the mouse over the component. See the table below for
element states that are available. These states are based in CSS pseudo classes.

Element States

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://www.inductiveuniversity.com/videos/animated-style-classes/8.0/8.1
https://www.inductiveuniversity.com/videos/dynamic-style-classes/8.0/8.1

Watch the Video

Name Description

Element
State

State of the component. Options are as follows:

State Description

active The component is being activated by the user. For example, clicking on it with a mouse.

checked The component is checked or toggled to an "on" state. Applies to checkboxes, radio buttons, etc.

disabled Component is disabled that is it cannot be selected, clicked on, typed into, or accept focus.

empty Represents any element that has no children. Children can be either element nodes or text (including whitespace).

enabled Component is enabled and can be selected, clicked on, typed into, or accept focus.

first-
child

Changes the style for the first element among a group of sibling elements.

fullscre
en

Automatically adjust the size, style, or layout of content when elements switch back and forth between full-screen and
traditional presentations.

focus The component receives focus. It is generally triggered when the user clicks or taps on an element or selects it with the
keyboard's "tab" key.

hover User hovers mouse over the component.

in-range Element whose current value is within the range limits specified by the and min max tes.attribu

read-
only

Component is read-only.

read-
write

Component is available for read and write.

visited links that the user has already visited.Component

Editor notes are only visible to logged in users
Per dev, some of these element states will not work yet in Perspective. There's a ticket. Some may end up being dropped/deleted
and some may be implemented in the future.

default-choice, invalid, last child, link, only-child, out-of-range, required, valid

Animated If checked, the Element State can be animated. The animate options are as follows:

Name Description

Duration Number of seconds for each animation stop.

Direction Options are normal, reverse, alternate, and alternate reverse.

Iterations Number of times you want the animation to run. Enter an integer, or check the infinite box to have the animation run
continually.

Timing Options are linear, ease, easeIn, easeOut, stepStart, stepEnd, and exaggerate,

Delay Delay, in number of seconds.

FillMode Options are none, forwards, backwards, or both.

Style
Settings

Sets a style animation stop. Full menu of is available for text, background, margin and padding, border, style options
shape and miscellaneous.

Media Query on Style Classes

https://www.inductiveuniversity.com/videos/element-states/8.0/8.1
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-min
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-max
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

A Media Query can be applied to a Style Class in order to change the style of your Perspective
components based on the device your session is running on. That is, you can change the style of your
Perspective components based on the device your session is running on.

Media queries don't change anything about your layout, rather they react to those changes in the device
and then choose from the various style rules you defined.

For example, you could make changes to your styles based on the width of the session. Media queries in
Style Classes are a direct import of CSS rules. Depending on the particular media query, the selector will
apply at less than or equal to, or vice versa.

Media Query

Watch the Video

Media Query Settings

Name Description

min-
width

Sets the minimum width in pixels. If the viewport is larger than the specified width (in pixels), this rule will be applied. If the viewport is
smaller than the minimum width, this rule has no effect. For example, a setting of min-width 361 means this rule is active if the screen is
at least 361 pixels wide.

max-
width

Sets the maximum width If the is smaller than the maximum width, it will automatically change the height of the in pixels . viewport
element. If the than the maximum width, rule has no effect. viewport is larger For example, a setting of 360 max-width means this rule is

 most 360 pixels wide or smaller.active if the screen is at

orientati
on

This rule will apply based on whether the browser window is in landscape mode (that is, its width is greater than its height) or portrait
mode (its height is greater than its width). Options are portrait or landscape.

min-
aspect-
ratio

Sets a minimum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5.

max-
aspect-
ratio

Sets a maximum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5. .

hover Applies the style settings when the device supports hovering. Options are hover or none.

Style
Settings

The style settings to apply during the media query. Full menu of is available for text, background, margin and padding, style options
border, shape and miscellaneous.

https://www.inductiveuniversity.com/videos/media-query/8.0/8.1
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

1.

2.

3.

4.
5.

How to Change Style on Hover

Element states provide an opportunity to change the styling on a component when a user simply hovers the mouse cursor over a component. In this
guide, we will create a Style Class with a hover Element State that changes the background color of a component using this Style Class.

Create a new style class, or edit an existing one. In this example, we will create a new style class called HoverLabel

Under Style Rules, click on the icon and select .Add Element State

On the Element State dropdown, scroll down and select . hover

Click on the icon next to Background to see the Background settings.Expand
In the field, enter a color code or click on the color wheel to select a background color. We chose , a light blue.background color #8AFFFF

5.

6.
7.

8.

Click to finish configuring the Style Class. OK
Next, apply the the Style Class to a perspective component. In this example, we will use a Label component.

Put the designer in preview mode, or launch a session. While hovering over the label, you will see that the background color of the
component will change while the mouse cursor is hovering over the component.

1.

2.

3.
4.

How to Change Text Size Based on Width

Since media queries react to viewport changes, we can use them to change the text size of a style class. Imagine a scenario where text needed to be
larger on a smaller display, such as phone, to improve readability. That same text could likely be smaller on a desktop.

In this example, we will configure a media query that will change the text size for the Style Class when the screen is smaller.

Create a new Style Class. We called ours .MediaQuery

Under Style Rules, click on the icon and select . Add Media Query

With the Media Query selected, change Media Query to and the pixel value to . We also set the Text Font size to . max-width 500px 24px
Click to save the Style Class.OK

4.

5.

6.

7.

Create a new component that contains text, or select an existing component within a container. In this example, we created a new Label
component and placed it on a view.
Assign the Style Class we just created to the Label component using the props.style.classes dropdown to browse Styles. MediaQuery

Save the project.

8. Launch a Perspective Session, and navigate to view containing the label (you may have create a page for the view). You will see the font
size on the label change as you adjust the size of your session window.

1.

2.
3.
4.

5.
6.

How to Create a Flashing Component
In some cases you may want to have a label or other display component flash, standing out from other components on the screen. This can easily be
accomplished by creating an animated style class, as they have a built-in mechanism to change styling over a duration, allowing us to create a
flash. However, you may might only want to have the component flash at certain times, such as in cases where an alarm is active on a tag, which can
be handled with a binding. In cases where we don't want the component to flash, we can simply remove the style class from a component.

Part 1 of this guide will show how to create the animated style class, while Part 2 will demonstrate using a binding and transform to switch between
different style classes on a component.

Part 1 - Creating an Animated Style Class

In the Project Browser, right-click Styles and select .New Style

Enter a Style Class name, for this example we used "InAlarm", and click .Create Style Class
On the Edit Style screen, check the option in the upper right corner. For this example, we'll leave the default settings in the fields. Animated
Next click on to set the style for the beginning of the animation. 0%

Click on the icon next to Background to see the Background settings.Expand
In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop. We
chose #FF8A8A, a light red.

6.

7.

8.
9.

10.
11.

12.

Next click on to set the style for the end of the animation.100%

Click on the icon next to Background to see the Background settings.Expand
In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop. We
chose , a bright yellow.#FFFF47

Click to save the Style Class.OK
Next drag a Label component onto a view. Select the component.

In the Perspective Property Editor, click the Expand icon under Style Classes. Select the InAlarm class.

12.

13.
14.

1.

The Label component will immediately display the animated Style Class, transitioning between the light red and yellow colors we selected.
The color change will be linear initially, which creates a pulsing sort of effect. You can edit the style class again, and change the to Timing
"exaggerated", which provides a more drastic switch between the two styles. Further more, selecting "exaggerated" will show the exact CSS
cubic-bezier function the animation is using, allowing you to type on values manually.

In addition, we can also reduce the overall duration of the animation, making the transition between the two colors occur more frequently.
Regardless, we now have an animated style class.

Part 2 - Dynamically Using the Style Class

In this part, we can use a binding to conditionally add or remove our animated style class. First, we need to identify what should cause the label to
flash. In this example, we'll use a simple tag value on a Memory Tag set to a Boolean value. However, you could use some other criteria, such as a
tag binding to the alarm property on a tag. HasActive

Identity the criteria that will cause our component to flash. In our case, we have a Memory Tag with a Boolean data type. When the value is
True on the tag, we will cause the label to flash.

1.

2.

3.

4.

5.
6.
7.

With our component selected, place a binding on the property. style.classes

Since we want a tag value to determine the flash, we'll select a , and set the path to our desired tag. Tag Binding

Next, click . We'll configure a transform that will return a string to the property, and use this as a way to add or remove our Add Transform
animated style class.
Select a type transform, and click in the popup.Map Add Transform >
Add one new row to the Map table by clicking the Add + button.
Under the column. Double click into the blank cell and type "true", without the quotation marks, then press Enter on your Input Type
keyboard to commit the new text.

7.

8.

9.

Change the Output Type column to by clicking on the header over the Output Type column, and selecting Style Class. Style Class

Note: For this example, we could use a Value type of output since the classes property simply needs a string value that matches the name
of our Style Class, but the Style Class output type is less error prone since you don't need to type the name of the Style Class.

Click the top cell under the Output Type column, and select the "inAlarm" Style Class from the popup. column, set the cell to Output Type
the first row to "inAlarm".

9.

10.
11.

Press to close the binding window. OK
Toggle the value on your tag. You'll notice that when the tag's value is "true", the animation will start playing. While the tag has a false value,
the style class will be removed, and no animation can be shown.

This example can be extended by adding an additional style class when the value of our binding is false. Furthermore, instead of setting just a single
style class, we can use the map transform to set multiple style classes on the component, allowing us to switch between multiple styles on demand.

1.

2.

3.

Creating and Using Custom Perspective Themes

Theme Overview

Themes help customize the look of components in your Perspective Sessions, acting as a foundation
from which you can customize components even further using . Perspective has some Style Classes
default themes already, which you can learn about on the page.Perspective Built-In Themes

By default, themes are stored as in cascading style sheets (CSS) %installDirectory%
. Default themes use CSS \data\modules\com.inductiveautomation.perspective\themes

variables for colors, which are defined in the file of every theme's folder. variables.css

In some cases, the default themes may not meet your requirements. For these situations, you can create
a . custom theme

On this page ...

Theme Overview
Creating a Custom Theme
Using Your Custom Theme

Creating a Custom Theme

Open a text editor, such as Notepad or Notepad++, as an . Opening the text editor as a standard user may result in your administrator
operating system blocking you from saving your file to the themes folder.
Save the text file as a .css file in the themes directory, and give it a name. In this example, we are naming the .css file " ".myTheme

After you save the file, add the following line as the first line of the new .css file:

@import "./light/index.css";

https://docs.inductiveautomation.com/display/DOC81/Perspective+Built-In+Themes

3.

4.

5.

This will import the properties of the file into your new .css file, acting as a base for your custom theme. You can change which .light.css
css file you want to reference by changing the folder name to another existing folder (such as) @import "./dark/index/css";

Note: Referencing and importing settings from existing themes is recommended over directly referencing .css files. Many of the required .
css files are nested deep within the various themes folders. Importing will allow you to skip over a few steps, reducing the chance of
problems arising.

Once you add the initial import line, you can start adding your own changes to your custom theme file. In this example, we are using the
default settings imported from the theme, with the only changes being the background color and text color for all button light.css
components.

.ia_button--primary {
 background-color: #00FF00;
 color: #000000;
}

Note: If you need a reference for all available Perspective component CSS class names, you can reference the various .css files located at
.%installDirectory%\data\modules\com.inductiveautomation.perspective\themes\light\common

After you make your desired theme changes, save the .css file.

Using Your Custom Theme

To use your custom theme, select it from the Session Properties in the Designer using the property. You can select your custom theme from theme
the dropdown menu.

Once you select your custom theme, your components will change their look according to your .css file.

There are some cases in which custom themes aren't enough to get your desired look. You can get around this by using to fine-tune Style Classes
your components.

Scripting in Perspective

This section is designed to familiarize you with some of the basics of Python scripting in Perspective.
Perspective scripting is particularly powerful, and can be used to control and fine-tune many aspects of
project design.

For a more general view of scripting in Ignition, and an introduction to Python, see in our Scripting
Ignition Platform section.

Perspective Scripting Fundamentals

Though Perspective uses the same basic platform (Jython) as other scripting environments in Ignition,
interfacing with some unique features in Perspective might make it feel like a new scripting experience.
Here are some key details that might be important to Perspective script writers.

Scopes

Perspective does not have a "Client" scope, because unlike Vision, Perspective does not have clients. All
Perspective scripting is run on the Gateway, although session-specific functions (like navigation) will only
affect a single session. Critically, this means that:

Client-scoped scripting functions (, , and functions) system.file system.gui system.nav
will work in Perspective.not
Other scripting functions, like , will run in a Gateway context. system.util.getLogger()

On this page ...

Perspective Scripting
Fundamentals

Scopes
Perspective Data Types

Object Traversal
Scripting Transforms
Extension Functions

Perspective Data Types

Component properties in Perspective are structured as JSON. However, interacting with them does not require any kind of specialized knowledge.
Critically, every property in Perspective is one of three types:

Type Description Example

Value A value is a simple piece of data, usually a number or string. Assigning a value to a value
property is just like assigning a value to an ordinary Python variable. self.props.text = "My Text"

self.props.startAngle = 5

Object An object is structured like a Python , holding any number of elements. Each Dictionary
element can be a value, object, or an array. motorObject = {"motorNum":

1,"motorState":"Running"}
self.custom.myObject =
{"operationNum":15,"
motorObject":motorObject}

Array An array is structured like a Python . Unlike an object where each element in the data List
type has an associated key, elements in an array only have a position, or offset. Elements in
an array can be values, objects, or other arrays.

rowObject1 = {"city":"
Folsom","country":"United
States","population":77271}
rowObject2 = {"city":"
Helsinki","country":"
Finland","population":
625591}
self.props.data =
[rowObject1,rowObject2]

Object Traversal

In scripting, we can use component properties and methods to access related components, and view and session info. See Perspective Component
 for details.Methods

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries
https://legacy-docs.inductiveautomation.com/display/DOC81/Lists+and+Tuples
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal

Scripting Transforms

Any property binding can make use of a Script Transform to apply any python script to the output value of the binding. For more information, see Trans
 and .forms Script Transforms

Extension Functions

Extension Functions can be found in the Script Configuration window in certain Perspective Components. They allow users to add extended
functionality to the component via scripting. These functions are generally more advanced and require better understanding of Python. Extension
Functions differ from Event Handlers in that they are not event driven and are called by their component for a specific purpose when appropriate.
Extension Functions are often called when the component first loads on a view or when it receives new input. For example, the Perspective Alarm
Status Table has an Extension Function named . This function is called by the Alarm Status Table for each event before it is displayed in filterAlarm
the table and it allows users to control what alarm events are displayed on the table or not.

From an object-oriented point of view, Extension Functions create a custom "subclass" of the base component type. Your subclass can then override
and implement parts of the functionality of the component itself, in Python. Following Python object-oriented methodology, each extension function's
first argument is called self. That is because these are methods that belong to the component's class itself, instance methods. The value of self will
always be the component itself. Notice that this is different than Event Handler scripts where you are also given an event object in your scope. When
you write an Extension Function, there is no event object so the component is given to you as the self object instead.

Each component Extension Function comes with its own documentation built-into the function's default implementation using a standard Python "docstr
ing". The built-in documentation will contain descriptions for the arguments the Extension Function takes in as well as its return value, if any. You will
find that you are unable to edit the function's signature or docstring. Changing the method's signature (arguments or function name) would prevent the
component from calling it correctly. Changing the docstring could be misleading or confusing as you would lose the documentation for how
your implementation of the function should work.

In This Section ...

Perspective Component Methods

A component method is a function that is defined on a component object. For example, this is how we
would call a component method defined on the component object :self

output = self.myMethod(param1,param2)

Perspective has a variety of component methods that are defined on components, and it also offers all
you the ability to configure your own using custom methods.

Autocomplete

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

A complete list of component methods (with their definitions) is available from the autocomplete popup.
Starting in 8.1.18, the autocomplete popup is enabled by default and will appear after typing "."

To disable this feature, right-click anywhere within the Script Editor window and deselect Automatic
Activation.

On this page ...

Autocomplete

Object Traversal
Object Traversal Examples

Built-In Methods
Refreshing Bindings
Requesting Focus
Requesting or Removing Tooltips
Requesting or Removing Context
Menus
Requesting Print

Custom Methods

Object Traversal

In most Perspective scripts, you are given a reference to a component object (often in the form of a parameter). The object is given in component self
scripts, but has several methods and properties associated with it to help traverse to the other objects in a Perspective View or get values from the
Session.

Object Traversal is limited to a single view. If a script needs to reference a component in a different view, or there is a possibility that the hierarchy of
the view will change, then should be utilized instead.Message Handling

Component/Container

Method
/Property

Description Example

.children Returns all of the component's children.
self.children

.
getChildren
()

Functionally similar to ".children" above.
self.getChildren()

.parent Calling this property will move up the component hierarchy, accessing the parent container of the
preceding object. Root containers will return the view, and views/sessions will return None. self.parent

.getParent() Functionally similar to ".parent" above.
self.getParent()

.getChild
(string)

Method that looks for a child component of a given name. Returns None if not found.

String can either be the name of a child object, or a path to an object delimited by a forward slash,
allowing you to move through multiple items in the hierarchy in a single call.

self.getChild
('Label_0')
self.getChild

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

('Container
/Label_0')

.getSibling
(string)

Returns a reference to an object in the same container that the source component is located in. Similar
to calling self.parent.getChild('component'). self.getSibling

('Label')

.view Calling this from anywhere within a view will return the parent view of the object.
self.view

.getView() A method that will return the view, similar to ".view" above.
self.getView()

.page Returns a page object associated with the page the current component is on.

.close() can be called on the page object, and can accept a message string as a parameter.

page = self.
page
pageID = page.
props.pageId
pagePath = page.
props.path

.getPage() A method that will return the page, similar to ".page" above.
self.getPage()

.session Returns the current Perspective Session you are in. From this object you can get any of the existing
properties of the Session, including custom properties. See the Session Objects sub table for more
details.

session = self.
session
sesName = session.
props.gateway.
address
sesProp = session.
custom.
propertyName

.
getSession()

A method that will return the session, similar to ".session" above.
self.getSession()

Session Objects

.close()

or

.close
(message)

When called will close the session.

Optionally accepts a string message which will be displayed after the session closes.

session = self.
getSession()
session.close
("The session has
now closed")

.getInfo() Returns a PyJsonObjectAdapter object, which is functionally similar to a Python Dictionary. The object
contain the same keys described on the page. system.perspective.getSessionInfo self.session.

getInfo()
["pageIds"]

.getPages() Returns a list of page objects.
self.session.
getPages()

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.getSessionInfo

.getPage
(ID)

Returns the page associated with the given string ID parameter, if it exists. Page ID values can be
determined with the .getInfo() method. self.session.

getPage
("2b2eb647")

.
getProjectIn
fo() The following feature is new in Ignition version 8.1.4

 to check out the other new featuresClick here

Returns a dictionary of project meta data, including name, title, description, lastModified,
lastModifiedBy, views, and pageConfigs.

self.session.
getProjectInfo()

View Objects

.
rootContain
er

Returns the root container of the View.
view.rootContainer

.id Returns a string that uniquely identifies the view instance. For example:

Perspective/Views/path/to/view yields path/to/view@C

view.id

.session Returns the current Perspective Session you are in. From this object you can get any of the existing
properties of the Session, including custom properties. See the Session Objects sub table for more
details.

session = view.
session
sesName = session.
gateway.address
sesProp = session.
custom.
propertyName

Object Traversal Examples

If you want to get other component properties in a view while scripting, you can use the above methods and properties to move around the View.

These examples assume you have the following structure/components in a View:

View
Button 1
Text Field 1
Container 2

Text Field 2
Container 3

Text Field 3
Container 4

Button 4
Text Field 4

Scripting Example: Get component properties from a Button script

this example code exists on the 'Button 1' in the above hierarchy.

get to the view that the button is in
view = self.view

get the text from 'Text Field 1'
text1 = self.getSibling('Text Field 1').props.text

get the text from 'Text Field 2'
text2 = self.getSibling('Container 2').getChild('Text Field 2').props.text

get the text from 'Text Field 3'

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

text3 = self.getSibling('Container 3').getChild('Text Field 3').props.text

get the text from 'Text Field 4'. Either of these will work the same.
text4 = self.getSibling('Container 3').getChild('Container 4/Text Field 4').props.text
text4 = self.getSibling('Container 3').getChild('Container 4').getChild('Text Field 4').props.text

Scripting Example: Get component properties from a Button script

this example code exists on the 'Button 4' in the above hierarchy.

get to the view that the button is in
view = self.view

get the text from 'Text Field 1'
text1 = self.parent.parent.getSibling('Text Field 1').props.text

get the text from 'Text Field 2'
text2 = self.parent.parent.getSibling('Container 2').getChild('Text Field 2').props.text

get the text from 'Text Field 3'
text3 = self.parent.getSibling('Text Field 3').props.text

get the text from 'Text Field 4'
text4 = self.getSibling('Text Field 4').props.text

Built-In Methods

Perspective components contain several shared methods. This section details such methods. Some methods are only available to certain types of
components. In these cases, the description for the method will state any limitations.

Refreshing Bindings

The function can be used to manually fire a binding, and is designed to be used on bindings that can poll (like query and Tag refreshBinding
history bindings). In these instances, using refreshBinding in lieu of polling can save Gateway resources. The refreshBinding() function takes a string
as a parameter, corresponding to the property that should be refreshed:

self.refreshBinding("props.data")

It is often useful to use refreshBinding() from a , since we can then refresh several applicable bindings via a single component message handler system
 call..perspective.sendMessage

Requesting Focus

The method can be called by a component to request focus in a view. This is useful if you wish to control where keyboard input is directed after focus
a particular action.

Due to the nature of focus, calling the method is only effective on components that can have focus. Input components such as the Text Field focus
and Numeric Entry Field components can gain focus, but Display components like Labels and Images can not gain focus.

self.focus()

Requesting or Removing Tooltips

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

The and methods can be used to display and remove tooltips from a scripting event. This is useful if you wish to requestTooltip removeTooltip
allow users to request tooltips in a mobile session, where there is no event.onMouseEnter

You may call these functions for any component with meta tooltips enabled. Requesting a tooltip will have no effect if tooltips are not enabled for the
component.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

self.requestTooltip()
self.removeTooltip()

enable and then call tooltip for 'Label 1' in the same view
self.getSibling('Label 1').meta.tooltip.enabled = True
self.getSibling('Label 1').requestTooltip()

Requesting or Removing Context Menus

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

The and methods can be used to show or hide the context menu from a scripting event. As with the requestContextMenu removeContextMenu r
 and methods, these methods are helpful to users in mobile sessions, to view or hide configured context menus. equestTooltip removeTooltip

Requesting or removing a context menu will have no effect if the component context menu is not configured.

self.requestContextMenu()
self.removeContextMenu()

Requesting Print

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

The method can be called by a component, view, or page to print the contents of the selected target. If no target is specified, the requestPrint
component serves as the default target. Titles can also be assigned if saving the printed file. To request print using a Perspective component action
instead, see the section on the Component Events and Action page. Request Print Action

self.requestPrint()
self.requestPrint('component', 'MyTitle')

Custom Methods

Perspective offers the option of configuring your own methods for a component. To configure a custom method:

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-RequestPrintAction

1.

2.
3.
4.

5.

6.
7.

Right-click on the desired component in the Designer, and select Configure Scripts...

Under , double click on Custom Methods Add method...
Enter a for your method, which will be used to call the method. We used in this example.Name myMethod
Enter any number of your method will need, separated by commas. For this instance, we have two parameters: and Parameters myParam1

.myParam2
Add code to implement your method.

self.props.text = myParam1
self.custom.myProp = myParam2

Note: A object is provided in every custom method, but should be provided as a parameter when calling the function.self not

Click to commit your method.OK
To call this method, use:

7.

self.myMethod(param1,param2)

For example:

self.myMethod("Hi!","This is a test")

Related Topics ...

Component Message Handlers

1.
2.

Component Message Handlers

In Perspective, Component Message Handlers are the preferred way to pass
parameters between components or Views. Doing this involves the system.

 perspective.sendMessage function. There are typically two steps involved:

Creating a message handler on the component that will listen for a particular call.
Create a script that will call the message handler.

This page will demonstrate how to prepare both steps. The goal of this example is to create a script that
will cause a button to change the text property of a Label.

Object Traversal

When writing a component based script, should be avoided where possible. Object Object Traversal
Traversal is the process of declaring hard-coded component paths in a script similar to how the Vision
module . While component paths exists in Perspective, they are brittle: uses component paths in scripting
changes to the hierarchy in the view (such as placing a component into a new container), or changing a
component name will invalidate any paths defined before the change, since the component's relative
location has changed.

Consider the following:

Pseudocode - Example Path

self.getSibling('Text Field').props.text

The path described above only works if there is component named "Text Field" in the same container as
the component that is running this script. If the Text Field component is renamed at any point, this
reference to the component will fail. Additionally, if the Text Field is placed in a different container, then
the getSibling() call will no longer work. Components in other containers (in the same view) are available,
but are not siblings.

Additionally, Object Traversal can't be used to reference a property in a separate view: i.e., a script in
View A cannot reference something in View B.

We suggest you utilize message handlers when a script is trying to interact with a component in strongly
another View.

Message Types

When sending a message, the Message Type field represents which Message Handler should respond.
If a script sends a message with a type of "foo", then any handler listening for a Type of "foo" will
execute. This means multiple components in the same window can all have Message Handlers with the
same Type: e.g., if a view has a "reset" button to clear out multiple input components, then each input
component can simply have a "reset" message type that clears the field, allowing a single message to
trigger multiple handlers. Alternatively, if only a single handler should execute when sending the
message, simply give that one handler a unique Type.

On this page ...

Object Traversal
Message Types
Message Handler Scope
Message Handler Example

Step 1 - Prepare Perspective
Workspace
Step 2 - Create A Message
Handler
Step 3 - Send A Message

Passing Parameters Example
Step 1 - Update the Button
Script Action
Step 2 - Update the Message
Handler

Message Handlers

Watch the Video

Component Paths

Watch the Video

Message Handler Scope

Message Handlers can be limited in scope, meaning the range of the sent message (or range of the listener) can be confined to a particular scope.
The available scopes are:

Scope Definition

View Messages can only be heard by listeners within the same View that are listening for view-scoped broadcasts.

Page Messages can only be heard by any listeners within the same Page that are listening for page-scoped broadcasts. This includes
listeners both within the same View and those in other Views contained within the same page (including Docked Views and Popup
Views).

Session Messages will be heard by any listeners in any open tabs in your workspace that are listening for session-scoped messages.

For example, you can send a message that is scoped to just the View where the message originated, meaning only listeners in the same View will be
able to respond. This is useful if you sent a message from a popup view, and didn't want any other views to respond.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Perspective#ScriptinginPerspective-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision#ScriptinginVision-AccessingaComponent
https://www.inductiveuniversity.com/videos/message-handlers/8.0/8.1
https://www.inductiveuniversity.com/videos/component-paths/8.0/8.1

1.
2.

1.
2.
3.
4.
5.

1.
2.

3.

There are two ways to limit the scope of a message:

The function contains a scope parameter that will restrict the range on the message being sent. system.perspective.sendMessage
The Message Handlers have a setting that can filter out messages from certain scopes. Listen Scopes

Message Handler Example

Step 1 - Prepare Perspective Workspace

Open the Designer.
Switch over to the Perspective Workspace by clicking on in the Project Browser.Perspective
Right-click on the Views folder and select New View.
Give the new a name and click the Create View button. The name of the view will not matter for this example.View
Place a and a component on the View. Button Label

Step 2 - Create A Message Handler

Message Handlers are effectively user-created scripting events. A user can define a Message Handler that listens for a particular message. The idea
being that some other component will broadcast a message, and if the type of the message matches what the Message Handler is listening for, the
Message Handler will execute a script.

Message Handlers are useful because they can respond to messages from multiple components: if something sends a message with the correct type,
then the Message Handler will execute. Additionally, message can be sent across separate views, pages, or throughout the entire session.

In our example, we want the Label's text property to change when something else in the view happens (in our case, our button is pressed), so it would
make sense to configure a Message Handler (listener) on the Label. This way, if we relocate the Label component in the view, the script will still work.

Right-click on the Label, and select . Configure Scripts
The Script Configuration window appears. Make sure the title bar on the window states that it's the component. Label

On the left side of the window, you will see a tree. Double-click on the item.Script Configuration Add handler...

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage

4.

5.

6.

7.

1.
2.

3.
4.
5.

A new handler named "type-name-here" will appear. Under type . Note that we're using all lowercase Message Type my-handler
characters: . The Message Type is effectively the name of the message handler. When sending a message handlers are case-sensitive
message, we will specify this message handler's type, which will cause it to respond by executing the script.
In our example, let's change the text on the Label to "Hello!". Under the script area, type the following script:

Python - Set the Text

self.props.text = 'Hello!'

This example is fairly limited to this one view. Thus, let's limit the scope so that it will only respond to messages from the same view the Label
is on. Under the , leave as the only selected scope. Listen Scopes Page

Click the button. We just created a Message Handler. In the next step, we'll create a script that will call the Message Handler. OK

Step 3 - Send A Message

In this step, we place a script on the Button that will call our Message Handler.

Right-click on the Button, and select The Configure Events... Event Configuration window appears.
We want our script to trigger when the button is pressed. On the left side of the window, in the Mouse Events folder, select .onClick

The list will appear. Press the icon. A popup list will appear. Organize Actions Add
Select the action. Script
Add the following code:

Python - Sending a Message

messageType = 'my-handler'
system.perspective.sendMessage(messageType)

Make sure the script lines are indented one time.

5.

6.

1.
2.

3.

Click to apply the script. OK

The example is now running. From the Designer, enable , and then click on the Button component. The text on the label should update. Preview mode

Note: In this simple example, the major issue you may run into is the Message Type. Recall from #4 in Step 1 of the example, that Message Type is
case-sensitive, so make sure the script on the Button is correctly referencing the message type, and try again.

Passing Parameters Example

Let's make the previous example more complicated and pass some values with the message. The example above can be modified to determine the
timestamp. When passing parameters in a script, the most direct approach is to include any parameters along with the message. Message Handlers
have a built-in argument called a , which is used to transfer values to the handler. The payload is simply a Python Dictionary, so please see payload
the page for more information. Dictionaries

Alternatively, we could create a session property to hold the value, and have the label reference the session property. However this would require that
we either create a new property to hold the value or overwrite the value of another property. Thus, our next example will demonstrate how to utilize the
payload.

Avoid Storing Values in Tags
Since Tag values are shared by all Perspective sessions, you may not want to write the parameters in Tags. Doing so would result in each session
instance potentially trying to overwrite the same value.

Step 1 - Update the Button Script Action

Right-click on the Button component and select Configure events...
Replace the code with the following:

Python - Check the Time, Send a Message

messageType = 'my-handler'

Look up the current time.
currentTime = system.date.format(system.date.now(), 'HH:mm:ss')

Create a payload to be passed with the message
payload = {'time':currentTime}

Send the message, pass the payload, limit the scope to the view
system.perspective.sendMessage(messageType, payload, scope = 'view')

Make sure the code is indented one time.

https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries

3.

4.

1.
2.

3.
4.

Note: On line 8, we're creating a dictionary, creating a key called "time", and storing the current time with the "time" key. When our handler
receives the payload, it can retrieve the value we passed by referencing the "time" key.

Once finished, click the button. OK

Step 2 - Update the Message Handler

Now that we're including a payload with the message, we need to modify our handler so that it will extract the time from the payload.

Right-click on the Label component, and select Configure scripts...
Replace the original code with the following:

Access the time by referencing the 'time' key
self.props.text = payload['time']

Click .OK
To test it, enable , and click the Button component. You will see the current time populate in the Label. Preview mode

Related Topics ...

Scripting
Dictionaries

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries

1.

2.

Perspective Property Change Scripts

With Perspective, individual component properties can have a property change script. When a change
script is set up on a property, it will run when the property changes its value. Multiple different properties
on the same component can each have different scripts configured. In Perspective, you can put a
property change script on any component property.

A very common example of a property change script would be to take the dataset from a binding and
modify it into a new dataset using other information on screen. This can be accomplished with a Script
Transform instead.

Note: Expression bindings are generally quicker and have less impact on session performance than a
script. Before creating a property change script, consider if the goal of the script can be accomplished
with an expression binding instead.

On this page ...

Add a Property Change Script
Property Change Arguments
Change Script Example

Property Change
Scripts

Watch the Video

Add a Property Change Script

To add a property change script to a property, right click on the property Property Editor and select Add Change Script...

The Edit Property Change Script screen is displayed.

https://www.inductiveuniversity.com/videos/property-change-scripts/8.0/8.1

2.

3. Type in the script that you want to run and click . OK

Property Change Arguments

Argument Description

self A reference to the component that has the property in question. If the property change script is on a , the session session property
object will be passed.

previousVal
ue

The previous value, as a QualifiedValue object. QualifiedValue objects have a value, quality, and timestamp. See also Scripting
.Object Reference

currentValue The new value, as a QualifiedValue object. QualifiedValue objects have a value, quality, and timestamp. See also Scripting Object
.Reference

origin The origin of the property value, as a unicode string. The origin parameter will take on one of six types depending on how the
property value is being updated:

Name Description Example

Browser Used when the change comes
from the Browser interface.

The user changes the property on a text field by typing a word into the field.text

Binding Used when the change comes
from a binding (or transform)
generating a new value.

A Tag changes value, and a property with a binding to that tag is updated.

Binding
Writeba
ck

Used when the change comes
from a bidirectional binding
writing back to its source.

ComponentB's property has a bidirectional binding to the property on value value
ComponentA. If ComponentB's changes, then a property change script on value
ComponentA will have an origin of .BindingWriteback

Script Used when the change comes
from a script.

A user presses a button, and a script on the button assigns a new value to a
custom property.

Delegate Used when a change to a
property comes from something
intrinsic to the component's
design.

A complex component that automatically fills itself with data, like the alarm status
table component.

Session Used when the session itself
causes the property change.

A change in user privileges causes access to be revoked, resulting in a change in
the session property.auth

Project Used when the default property
value is changed in the designer
and saved.

A session property was set to a value of "A." The default value of that property
was then changed in the designer to "B" and saved. The value for that property
changes from "A" to "B" in the running sessions.

missedEven

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue

1.
2.
3.

4.

5.
6.
7.

ts The following feature is new in Ignition version 8.1.4
 to check out the other new featuresClick here

A flag indicating that some events have been skipped due to event overflow.

Change Script Example

Place a component and component on a Perspective view. Text Field Label
Select the Text Field component then right click on the property.text
Click on .Add Change Script

The Edit Property Change Script screen is displayed. Enter the following script, which will write the current value of the Text Field component
to the Label component.

self.getSibling("Label").props.text = currentValue.value

Click to commit the script. You'll see that the Property Editor now shows a icon next to the text property.OK Change Script
Save your project.
In a Perspective Session, enter some text into the Text Field component and hit Return. You'll see that the contents are repeated to the Label
component.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

7.

1.

2.

3.

Perspective Session Event Scripts

Perspective offers a collection of designed to allow the Gateway to track and interact Session Events
with the Session at critical moments. Specifically, they are scripts that run in the Gateway when a
Session starts up, shuts down, or runs a .Native App Action

There are nine configurable Session events in Perspective:

Startup
Shutdown
Page Startup (new in 8.1.0)
Authentication Challenge Completed (new in 8.1.16)
Barcode
Bluetooth
NFC
Accelerometer
Message
Keystroke

Note: Although they are designed to handle Session Events, the scripts that you write will be run in a Ga
scope, not a Session scope.teway

Configuring Session Events

To start working on a Session event script:

In the Project Browser, double-click on the section:Session Events

The dialog will appear:Session Events

Configure a script by selecting one of the events on the left-hand side.

On this page ...

Configuring Session Events
Startup and Shutdown Event
Scripts
Page Startup
Authentication Challenge
Native App Event Scripts
Barcode
Bluetooth
Accelerometer
NFC
Message
Keystroke

Startup and Shutdown Event Scripts

Startup and events run, naturally, whenever a Session starts or ends. In each case, the Gateway will have access to the object Shutdown session
associated with the section, complete with all Session properties.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions

1.
2.

a.
b.
c.

3.
a.
b.
c.

4.
5.

6.
7.

When designing a startup or shutdown event script, custom Session properties can be used to pass any additional information to the Gateway, or, in
the case of a startup script, to pass information to the newly opening Session. You can configure custom Session properties from the Page

 Configuration dialog, by clicking on the Settings icon in the Designer.

A shutdown event script will run when a Session is ending. This happens specifically when any of the following events occur:specifically

The Session closes due to a timeout. Session timeout is configurable in the section of in the Perspective > General Project Properties
Designer
The user is no longer authorized to run the Session.
The redundancy system determines that the Gateway is inactive.
The licensing system no longer permits the user to run the Session.
The project is no longer runnable.
The project is deleted.

Note: Closing the browser tab with the Session will immediately close the Session; the Session must first time out.not

Startup and Shutdown Example

This example will record the Session start and end time to the database.

For this example, we need to set up a few queries that we can use to write our data to the database.
Make a new named query called .Startup Query

Set the Query Type to .Update Query
Set up a single Value type parameter with a name of and a datatype of string.SessionID
Add the query:

INSERT INTO sessions (session_id, start_time)
VALUES (:SessionID, CURRENT_TIMESTAMP)

Make a second new named query called .Shutdown Query
Set the Query Type to .Update Query
Set up a single Value type parameter with a name of and a datatype of string.SessionID
Add the query:

UPDATE sessions
SET end_time = CURRENT_TIMESTAMP
WHERE session_id = :SessionID

Next, we need to add Session Events so that Perspective knows to run those queries on startup and shutdown.
Under the tab, select .Project Session Events

On the screen, click the icon. Session Events Startup
Add the following script to the page:

This script will record the time when the Session is opened.

 # Create the parameters

7.

8.

9.

 queryParams = {'sessionID':session.props.id}

 # Run the query
 system.db.runNamedQuery('My Project', 'Startup Query', queryParams)

Click and then click the icon.Apply Shutdown

Add the following script to the page:

This script will record the time when the Session times out. Note that after the Session is closed,
the Session won't time out until the time out period is reached.

 # Create the parameters.
 queryParams = {'sessionID':session.props.id}

 # Run the query.
 system.db.runNamedQuery('My Project', 'Shutdown Query', queryParams)

9.

10.
11.

1.
2.

Click .OK
Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

You should see a new entry in the database table with the time the time the Session was started as well as the session ID.
After the Session times out (such as after it is closed) you should see the original entry get updated to include the new shutdown time.

Page Startup

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

This script runs in the Gateway when a Perspective page in a new tab or window. starts

Note: Navigating to a page configuration in a tab that's already opened (such as using system.
) will not trigger this event. perspective.navigate

Arguments Description

page A reference to the newly created page. Note that other page props will not return a
valid value on page startup.

Accessing properties under this argument requires that you include " " along .props.
the path. Demonstrations are included below:

Property Description Example

pageId Identifier associated with the target
page. # Provides the

page id.
pageId = page.
props.pageId

path Represents the Page URL of the page,
for example: / or /myPage. # Provides a

path to the page.
pagePath = page.
props.path

In addition to the arguments above, the Session is available from this event:

Page Startup

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://www.inductiveuniversity.com/videos/page-startup/8.1

For example, we can access the session id with the following:
sessionId = page.session.props.id

Authentication Challenge

The following feature is new in Ignition version 8.1.16
 to check out the other new featuresClick here

This event is fired when an authentication challenge is completed by the user.

Argument Description

session An object that references the Project Session that triggered the authentication challenge. Use this to identify the specific Session
that triggered the authentication challenge.

payload The opaque payload provided by the initial or invocation.Authentication Challenge Action Scripting function

result A Result object that can be parsed by the following functions:

Function Description

isSuccess() Returns true if the authentication challenge was a success. If true, optionally call getAsSuccess() to get the result
 as a Result.Success object for further parsing. If false, optionally call getAsError() to get the result as a Result.

 Error object for specific details pertaining to the error.

getAsSucc
ess()

Returns the result as a Result.Success object if the result is successful, otherwise throws an UnsupportedOperati
 onException if the result is an error. Check isSuccess() or isError() before calling this function to ensure you get

 the correct result type.

Note: It is not necessary to call getAsSuccess() . If isSuccess() returns true, the result type is Result.Success ,
 so all of the properties and functions of a Result.Success object are available on the original result reference.

isError() Returns true if the authentication challenge resulted in an error. If true, optionally call to get the result getAsError()
as a object for specific details pertaining to the error.Result.Error

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-AuthenticationChallengeAction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.authenticationChallenge

getAsError() Returns the result as a Result.Error object if the result is an error, otherwise throws an UnsupportedOperationEx
 ception if the result is successful. Check isSuccess() or isError() before calling this function to ensure you get the

 correct result type.

Note: It is not necessary to call getAsError() . If isError() returns true, the result type is Result.Error , so all of
 the properties and functions of a Result.Error object are available on the original result reference.

This object contains different properties depending on whether the authentication challenge result is a success or an error.

Object Description

Result.
Success

An object that represents a successful authentication challenge result. Call to return a getContext() WebAuthUserCo
object with the following properties:ntext

Property Description

idp The name of the IdP which challenged the user.

securityZones A string array containing the names of the security zones associated with the challenged user.

user A object that contains the following properties:WebAuthUser

Property Description

id The unique identifier associated with the challenged user

userName The challenged user’s username.

firstName The challenged user’s first name, or null / None if not defined for this user.

lastName The challenged user’s last name, or null / None if not defined for this user.

email The challenged user’s email address, or null / None if not defined for this user.

roles The challenged user’s roles as a string array.

securityLeve
ls

A string array of security level paths representing all of the security levels associated with the
challenged user

Result.
Error

An object that represents an error authentication result. It can be parsed by the following functions:

Function Description

isGeneric() Returns true if the error is not related to a timeout or user cancellation. Optionally call getAsGeneric()
 to get the Result.Error as a Result.Error.Generic object for specific details pertaining to the generic

error.

getAsGene
ric()

Returns the result as a Result.Error.Generic object if the error is generic, otherwise throws an Unsu
 pportedOperationException . Check isGeneric() before calling this function to ensure you get the

 correct result type.

Note: It is not necessary to call getAsGeneric() . If isGeneric() returns true, the result type is Resu
 lt.Error.Generic , so all of the properties and functions of a Result.Error.Generic object are

available on the original result reference.

isTimeout() Returns true if the error is due to a timeout. Optionally call getAsTimeout() to get the Result.Error as
 a Result.Error.Timeout object for specific details pertaining to the timeout error.

getAsTime
out()

Returns the result as a Result.Error.Timeout object if the error is due to a timeout, otherwise throws
 an UnsupportedOperationException . Check isTimeout() before calling this function to ensure

 you get the correct result type.

Note: It is not necessary to call getAsTimeout() . If isTimeout() returns true, the result type is Res
 ult.Error.Timeout , so all of the properties and functions of a Result.Error.Timeout object are

available on the original result reference.

isCancelled
()

Returns true if the error is due to user cancellation. Optionally call getAsCancelled() to get the Resul
 t.Error as a Result.Error.Cancelled object for specific details pertaining to the cancellation error.

getAsCanc
elled()

Returns the result as a Result.Error.Cancelled object if the error is due to user cancellation,
 otherwise throws an UnsupportedOperationException . Check isCancelled() before calling this

 function to ensure you get the correct result type.

Note: It is not necessary to call getAsCancelled() . If isCancelled() returns true, the result type is
 Result.Error.Cancelled , so all of the properties and functions of a Result.Error.Cancelled object

are available on the original result reference.

This object contains different properties depending on the cause of the authentication error:

Object Description

Result.
Error.
Generic

An object representing a generic error authentication result. Call to return a diagnostic getMessage()
message pertaining to the error, or null if such a message does not exist.

Result.
Error.
Timeout

An object representing a timeout error authentication result. Call to return the integer getTimeout()
timeout value (in minutes) that that was used to configure the timeout.

Result.
Error.
Cancelled

An object representing an error result due to user cancellation. This object has no functions or
properties.

Authentication Challenge Example

This example script will determine whether to proceed with a specified action after a completed . In this case, the Authentication Challenge Action
action is permitted only if the second user's roles include 'supervisor', If the action is not permitted, or the authentication challenge result is an error, a
message box will pop up with relevant context.

if result.isSuccess():
 # Parse information about the successful result
 success = True
 context = result.getAsSuccess().getContext()
 user = context.user
 roles = user.roles

 # Determine if the e-signature is valid:
 if 'supervisor' in roles:
 # If the user is a supervisor, proceed with the specified action:
 proceedWithSomeAction()

 else:
 # If the user is not a supervisor, write to a logger:
 logger = system.util.getLogger("Authentication Challenge")
 logger.info("%s is not authorized"% user.userName)

If the result is an error, write to a logger:
else:
 success = False
 error = result.getAsError()

 # Change the content of the logger message based on the type of error:
 if error.isGeneric():
 message = error.getAsGeneric().getMessage()
 logger = system.util.getLogger("Authentication Challenge")
 logger.info(message)

 elif error.isTimeout():
 timeout = error.getAsTimeout().getTimeout()
 logger = system.util.getLogger("Authentication Challenge")
 logger.info("Authentication challenge timed out after %d minutes."% timeout)

https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-AuthenticationChallengeAction

1.
2.

 elif error.isCancelled():
 logger = system.util.getLogger("Authentication Challenge")
 logger.info("Authentication challenge cancelled.")

 else:
 logger = system.util.getLogger("Authentication Challenge")
 logger.info("Unknown error occurred.")

Native App Event Scripts

When the Perspective App is running on a mobile device, it enables users to use tools available on the device, such as GPS location data, the
camera, or the accelerometer. The remaining Session events are designed specifically to handle the three .Native App Actions

Barcode

The scanned barcode action can make use of a mobile device's built in camera.

Arguments Description

session An object that references the project Session that called the Barcode Scanned event. Use this to
identify the specific Session that scanned the barcode.

data The data returned from the barcode scan. Access the underlying barcode data using:

The value that was scanned
data.text

An integer representing a unix timestamp of when the barcode was scanned
data.timestamp

This feature is new in Perspective Mobile App version 0.98
 to check out the other new featuresClick here

Version 0.98 of the Perspective Mobile App added the following property:

The type of barcode that was scanned.
data.barcodeType

context The user defined context object that can be defined on the action.

Barcode Example

This example will scan a barcode, and write its value to a Tag.

For this example, drag a Button component and a Label component onto a view.
Create a new memory Tag with a data type of String. Set the value to "Please scan a barcode."

Barcode Scanned

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-NewPerspectiveMobileAppFeatures
https://www.inductiveuniversity.com/videos/barcode-scanned/8.0/8.1

2.

3.

4.
5.

6.

7.

8.

Bind the text of the label to the new Tag.

Next right-click on the Button component and choose . Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Scan Barcode

Click . Next we need to set up a session event so that Perspective knows how to interpret OK
the scanned barcode data.
Under the tab, select .Project Session Events

8.

9.
10.

11.

1.

On the Session Events screen, select the icon. Barcode
Add the following script to the page:

system.tag.writeAsync(['[default]New Tag 5'], [data.text])

Note: We used the Tag created for this example, New Tag 5. You can enter your own Tag
name if different.

Click and save your project.OK

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

Click the button. Scan Barcode

1.

2.

If this is the first time scanning a barcode, you'll get a message requesting permission for
Perspective to take pictures and record.

2.

3.
4.

Click .Allow
You can now use the camera on the mobile device to scan the barcode.

4.

5. Ignition scans the barcode. Once it recognizes the barcode, the script will run and the text is
written to the Tag. The label then shows the new Tag value.

Bluetooth

The Bluetooth event is only used when a Session is running in a native application and it has received bluetooth advertising data. This Session event
script sends Bluetooth advertising data to Perspective. It supports iBeacon and Eddystone formats.

Eddystone will work on iOS and Android
iBeacon on iOS requires user to specify the specific region (iBeacon UUID) located on Session props bluetooth.config.iBeaconRegion.

Note: Bluetooth "Advertising Data" is the name of the communication data according to the Bluetooth spec. There is no connection to advertising as
an industry.

Arguments Description

session An object that references the Project Session

data List of buffered advertising data. The data comes in as a data object, which has various parts. The following is example output.

{
 "values":
 [
 {
 "rssi":-48,
 "timestamp":1570147485167,
 "manufacturerData":{
 "companyId":6,
 "dataBase64Encoded":"AQkgAl_edccdnHClMvecMCiM--
aAkLHAPibd"
 }
 },
 {
 "rssi":-48,
 "timestamp":1570147486012,
 "serviceUUIDs":[
 "FEAA"
],
 "serviceData":{
 "uuid":"FEAA",
 "dataBase64Encoded":"AOyqqqqqqqqqqqqqAAAAAAAA"
 },
 "eddystoneUID":{
 "txPower":-20,
 "namespaceID":"AAAAAAAAAAAAAAAAAAAA",
 "instanceID":"000000000000"
 }
 },
 {
 "rssi":-54,
 "timestamp":1570147485919,
 "manufacturerData":{
 "companyId":76,

1.
2.
3.

4.
a.
b.
c.

 "dataBase64Encoded":"AhV88isfQjVLY4VnXXfYqpTyAAAAAL8="
 },
 "iBeacon":{
 "uuid":"7CF22B1F-4235-4B63-8567-5D77D8AA94F2",
 "major":0,
 "minor":0,
 "txPower":-65
 }
 },
 {
 "rssi":-54,
 "timestamp":1570147485987,
 "manufacturerData":{
 "companyId":65535,
 "dataBase64Encoded":"vqwSNFZ4EjQSNBI0EjRWeJASAAAAAOwA"
 },
 "AltBeacon":{
 "manufacturerId":65535,
 "uuid":"12345678-1234-1234-1234-123456789012",
 "instance":"00000000",
 "txPower":-20,
 "manufacturerReserved":"00"
 }
 }
]
}

Accelerometer

The Accelerometer event is only used when data is coming in from a batched .Accelerometer Action

Arguments Description

session An object that references the Project Session that called the Accelerometer Data
Received event. Use this to identify the specific Session that triggered the batching of
accelerometer data.

data The data returned from the batched accelerometer. The data comes in as a data
object, which has various parts. Access the various parts like:

logger = system.util.logger('accelerometer')
for row in data.values.data:
 logger.info('X:' + str(row['x']))
 logger.info('Y:' + str(row['y']))
 logger.info('Z:' + str(row['z']))

context The user defined context object that can be defined on the action.

Accelerometer Example

This example will write accelerometer data to the Gateway logs.

For this example, put a Button component onto a view.
Next right-click on the Button component and choose .Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Accelerometer
Select mode.Batch
Set a of 400.Sample Rate
Set a of 2000.Duration

Accelerometer Data
Received

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/accelerometer-data-received/8.0/8.1

4.

c.

5.

6.

7.

8.

9.
10.

Click . Next we need to set up a Session Event so that Perspective knows how to interpret OK
the accelerometer data.
Under the tab, select .Project Session Events

On the screen, click the icon.Session Events Accelerometer

Add the following script to the page:

This script will take the accelerometer data and print it to the
Gateway logs.

Create the logger.
logger = system.util.logger('accelerometer')

Loop through the list of batched events and pull out the x, y, and
z values to print to the Gateway logs.
for row in data.values.data:
 logger.info('X:' + str(row['x']) + ', Y:' + str(row['y']) +
', Z:' + str(row['z']))

Click .OK
Save your project.

Test the Example

1.
2.

3.

1.
2.
3.

4.
5.

6.

To test the example, open the Perspective App on your mobile device and load the project.

Click the Accelerometer button.
After clicking the button, the script will record accelerometer data for the next two seconds, so
try moving the phone around.
After the two seconds, you should see the logged information appear in the Gateway logs.

NFC

The NFC event is used when the NFC Action is used and the mobile device scans an NFC Tag.

Arguments Description

session An object that references the Project Session that called the NFC Ndef Scanned
event. Use this to identify the specific Session that scanned the NFC Tag.

data The data returned from the NFC Tag scan. The data object is a list which can contain
multiple records from a single NFC Tag. Access the underlying NFC data using:

logger = system.util.logger('NFC')
for row in data:
 logger.info('Type:' + str(row['type']))
 logger.info('Type Name Format:' + str(row
['typeNameFormat']))
 logger.info('Payload:' + str(row['payload']))
 logger.info('String:' + str(row['string']))
 logger.info('Bytes:' + str(row['bytes']))

context The user defined context object associated with the scan event.NFC

NFC Example

This example will write the NFC Tag data to the Gateway logs.

For this example, put a Button component onto a view.
Next right-click on the Button component and choose .Configure Events
On the Event Configuration screen, select .Mouse Events > onClick

Click the icon and select action.Add Scan Ndef NFC
Select mode, then click . Single OK

Next we need to set up a Session Event so that Perspective knows how to interpret the NFC
data. Under the Project tab, select .Session Events

NFC Ndef Scanned

Watch the Video

https://www.inductiveuniversity.com/videos/nfc-ndef-scanned/8.0/8.1

6.

7.

8.

9.
10.

1.
2.

3.

On the Session Events screen, click the icon. NFC

Add the following script to the page:

This script will take the NFC data and print it to the Gateway
logs.

Create the logger.
logger = system.util.logger('NFC')

Loop through the list of records stored in the NFC Tag and pull
out the type, type name format, payload, string data, and raw byte
data from each record and print it to the Gateway logs.
for row in data:
 logger.info('Type:' + str(row['type']) + ', Type Name
Format:' + str(row['typeNameFormat']) + ', Payload:' + str(row
['payload']) + ', String:' + str(row['string']) + ', Bytes:' + str
(row['bytes']))

Click .OK
Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

Click the .NFC button
After clicking the button, the script will pass the next NFC Tag scanned to the script to be
handled.
After scanning an NFC Tag, you should see the logged information appear in the Gateway logs.

Message

The Message Handler scripts will run whenever the Session receives a message from or . Note that system.util.sendMessage system.util.sendRequest
these types of message handlers are different than component-based message handlers, which are accessed with . system.perspective.sendMessage
Session Message Handlers can not be called by system.perspective.sendMessage.

An efficient way to use this message handler in cases with user driven operations is by incorporating to system.perspective.getSessionInfo
lookup all sessions and then filter the sessions to target specific users.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequest
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://docs.inductiveautomation.com/display/DOC81/system.perspective.getSessionInfo

1.

2.

3.
4.
5.

Arguments Description

session The Perspective Session that is handling this message.

payload A dictionary that holds the objects passed to this message handler.
 Retrieve them with a subscript, e.g., myObject = payload['argumentName']

Message Example

This example shows how to set up a message handler script to send a simple log message to the Gateway. We will use a button component to run
the command. system.util.sendMessage

Under the Project tab, select Session Events.

On the Session Events screen, click the icon. Message

Click the Add icon.
Enter in the Message Handler Settings Name field.myMessage
Click .OK

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage

5.

6.

7.
8.
9.

10.

11.
12.

We will first define the define the message and assign the sessionId to our current Perspective session. Then, we will use Logger functions to
return a logger object to log message with level info. Add the following script to the page to complete these functions:

def handleMessage(session, payload):
 message = payload['message']
 sessionId = session.props.id

 logger = system.util.getLogger("myLogger")
 logger.info("Your session "+str(sessionId)+" received the message: "+str(message))

Click .OK
Add a Button component onto a view.
Right-click on the Button component and choose .Configure Events
On the Event Configuration screen, select .Component Events > onActionPerformed

Click the icon and select action.Add Script
For this example, we will use system.util.sendMessage, which means we need to add our project name, the message handler we created,
the payload message we want to send, and limit the scope to Session. Add the following script to the page:

def runAction(self, event):
 system.util.sendMessage("samplequickstart", "myMessage", {"message":"Hello World"}, "S")

12.

13.
14.

1.
2.

Click .OK
Save your project.

Test the Example

To test the example, launch your Perspective Session and click the button component we created.

After clicking the button, the script will send the "Hello World!" message to your session id.
Access your Gateway Status > Diagnostics > Logs page to confirm the message was received.

Keystroke

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

Keystroke scripts will run when the session detects a KeyboardEvent matching either a single key or a regex pattern. A single key match can be made
on either a key press (keyDown) or on a key release (keyUp). A regex match is always made on a key release. Key Event scripts can be triggered by
keyboards and any other device that is capable of generating a KeyboardEvent, such as an HID barcode scanner.

Keystroke detection is only active inside of a Perspective session and is not active inside of the Designer.

Note: The device being used to trigger key event scripts must be able to generate a KeyboardEvent. HID barcode scanners will generate
KeyboardEvents because they mimic a user typing keys on a physical keyboard. Scanners and other input devices that do not
create KeyboardEvents will not trigger this logic.

Arguments Description

page An object that contains information about the current page.

props Properties of the "page" object.

session An object that contains information about the current session.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

event An object that contains information from the Key Event.

altKey Returns a boolean that is true if the Alt (Option or ? on OS X) key was active when the key event was generated.

code Returns a string with the code value of the physical key represented by the event.

ctrlKey Returns a boolean that is true if the Ctrl key was active when the key event was generated.

isCom
posing

Returns a boolean that is true if the event is fired after " " and before " ".compositionstart compositionend

key Returns a string representing the key value of the key represented by the event.

location Returns a number representing the location of the key on the keyboard or other input device.

metaK
ey

Returns a boolean that is true if the Meta key (on Mac keyboards, the ? Command key; on Windows keyboards, the
Windows key) was active when the key event was generated.

repeat Returns a boolean that is true if the key is being held down such that it is automatically repeating.

shiftKey Returns a boolean that is true if the Shift key was active when the key event was generated.

matches Returns a list where the first entry of the list is the exact text which registered as a match for the regex, and all
subsequent entries in the list are the content which fell into capture groups.

Single Key

For single key matches, the match can be a physical key typed or the code generated by the key. are additional keys that can be held down Modifiers
during a KeyboardEvent and are detectable in the event data. These include Alt, Control, Shift, and Command/Meta.

In addition, the resulting Key Event that is used for match detection has the following advanced features:

Capture Phase - Allows execution during event capturing, which will let the resulting script execute other interface events that may before
be in place. By default, events execute during an event bubbling phase which is dictated by the position of the event binding in the Document
Object Model (DOM). In the case of Key Events, these are bound to the layer of the DOM and will execute other interface document after
events if this option is unchecked.
Prevent Default - Prevents any default browser functionality that would be associated with the event binding. This can be toggled on if there
is any functionality that be run when a / event has been fired at the level when a key match is should not keyDown keyUp document
made.

https://developer.mozilla.org/en-US/docs/Web/API/Element/compositionstart_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/compositionend_event

1.
2.
3.
4.
5.

6.

Stop Propagation - Prevents the event from propagating beyond the point in the DOM where it is bound (the level). This can document
be useful if combined with the option as it will prevent any interface / events from running that are bound Capture Phase keyDown keyUp
deeper in the DOM than the level. document

Regex Match

For a regular expression (regex) pattern match, a match will be based on a supplied regex pattern and a series of keys stored in a match buffer. This
buffer will always be the most recently typed characters and should be the length of a "correct match" to the supplied regex pattern.

Regex Example

This example will update a custom Session property when a regex pattern match is found.

For this example, place a Label component onto a view.
Add a custom Session property called .scannerInput
Bind the text value of the Label to the custom Session property.
Under the tab, select .Project Session Events
On the screen, select Session Events Key Events.

Click on the Add icon and select regex match.

6.

7.

8.
9.

10.
11.

Enter the regex pattern you want the Session to watch for. In the above example, a match occurs for any sequence of 12 numeric characters
followed by an "@"
Enter the length of the match buffer. The match buffer should equal the minimum number of characters required for a pattern match.
Add the following script:

page.session.custom.scannerInput = "Match found"

Click .OK
Save your project.

Test the Example

To test the example, launch a Perspective session and open the view containing your Label. Type a string of characters matching the regex pattern
you configured above. You should see the Label's text change:

1.
2.

3.
4.

5.

Security in Perspective

Security in Perspective is managed through Identity Providers (). IdPs offers a way for users to log in IdP
to using stored outside of . This level of security is set up through the Ignition credentials Ignition
Gateway. Setting up Security is covered in the of the User Manual. Security section

Once you have an IdP set up as well as Security Levels , Security Level Rules , and User Grants there
are additional ways to control security for the following:

Perspective Sessions
ViewsPerspective

Event actions on Perspective components

On this page ...

Perspective Sessions Security
Perspective Views Security
Event Actions on Perspective
Components
Using Component Bindings to
Check Authorization

Using isAuthorized in an
Expression
Using Session Props to
Check Roles
Deleted Security Level
Indicators

Perspective Sessions Security

For each Project, you can set the security for an associated Perspective Session. When you select the s
, you are granting any user with that access to the Perspective Session for ecurity levels security level

that Project.

In the Designer, select the on the Project menu. Select Project > General. Project Properties
In the Identity Provider field, use the dropdown to select the IdP you want to use or to select the
default user source.

Scroll down to select > . Perspective Permissions
Expand the tree to view the security levels you want to be able to access this project in a
Perspective Session.
Click the check box next to each of the security levels you want to grant access.

Requiring
Authentication

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Identity+Provider+Authentication+Strategy
https://legacy-docs.inductiveautomation.com/display/DOC81/Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Levels
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Level+Rules
https://legacy-docs.inductiveautomation.com/display/DOC81/User+Grants
https://www.inductiveuniversity.com/videos/requiring-authentication/8.0/8.1

5.

6.

1.

2.

3.
4.

Click OK to save all of the Project Properties changes.

Perspective Views Security

You can set the security for an individual View in Perspective. When you select the security levels, you
are granting any user with that access to the Perspective Session for that Project.

Note: Note that you must have the IdP selected in Project Properties > Project General.

In the Project Browser, right-click on the view and select Configure View Permissions...

On the Edit Permissions screen, click the check box next to the Roles that will be able to access
this View.
Next, click the check box next to the Security Zones that will be able to access this View.
Finally, choose one of the radio buttons at the bottom of the screen to indicate whether the user
much match of the required security levels you've checked or if matching at least one is all
enough.

In the example below, a user must have either the Administrator Plant1 security level, security
, or be in Ridgefield East to access this View.level

View Security

Watch the Video

https://www.inductiveuniversity.com/videos/view-security/8.0/8.1

4.

5.

1.

2.

Click to save the permissions for this View.OK

Event Actions on Perspective Components

All Perspective components can have event scripts. These are scripts that run on an action, such as
when the user clicks with the mouse on a component. For more information about event scripts see, Pers

. Security can be configured on events. In the following example, set security for the pective scripting
action of clicking on a Button component in the Perspective View.

Note: Note that you must have the IdP selected in Project Properties > Project General. Script Action
Security

Watch the Video

To add security to an event on a component, right-click on the component then choose Configure Events...

The Events Configuration screen is displayed. Many different types of events can be set for a component. For this example, choose Mouse
 > .Events onClick

https://www.inductiveuniversity.com/videos/script-action-security/8.0/8.1

3.

4.
5.

Under , click the Add icon, then select from the list.Organize Actions Script

Click the icon near the bottom of the screen. Security Settings
Click the check box next to the you want to grant access. In the example, we checked Administrator and Line1Oper for the security levels
security Roles. Then, we chose the requirement option that at least one of the security levels for the user must match for access. This means
anyone with Administrator or Line1Oper will have permission to run the script associated with the event on this button.security levels onClick

5.

6.

Click the icon to close the window, then click .Security Settings OK

Using Component Bindings to Check Authorization

Component bindings can also be used to determine if a user should have access to a certain component. For example, if a component has an
"Enabled" property that you want to toggle based off of security levels, then can simply apply one of these approaches.

Using isAuthorized in an Expression

The simplest method involves configuring an expression binding that uses the function. isAuthorized

isAuthorized(false, "Authenticated/Roles/YourRoleGoesHere")

In the image below, an isAuthorized function expression binding is configured on a Button's enabled property, which causes the property to change to
"false" if a user doesn't have the specified security level. This has the additional benefit of preventing the onActionPerformed scripting event from
triggering in cases where a user doesn't the security level.

https://legacy-docs.inductiveautomation.com/display/DOC81/isAuthorized

Using Session Props to Check Roles

Alternatively, a can be used to examine the property to determine if the current user has the script transform session.props.auth.user.roles
desired role. In this case, we can configure a property binding to the roles session property, and use the following line in a script transform:

return "Administrator" in str(value)

Deleted Security Level Indicators

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Since security levels are set through the Gateway, it may not be immediately obvious that a security level has been deleted. This can be checked
quickly in the Designer by accessing the Project Properties and navigating to > . In the example image below, the Perspective Permissions Plant1
role has been deleted. This is indicated by the security level, and any child levels, appearing grayed-out with a red warning underline. Hovering over

the security level displays a tooltip informing the user the security level no longer exists on the Gateway. A warning indicator icon will also appear
in the upper right-hand corner with the number of selected security levels that no longer exist. If you follow the security levels tree up to the parent
levels, you'll notice affected levels now include a dotted underline.

All warning indications are removed when deleted security levels are unchecked and new settings are saved. Additionally, the deleted security level
will no longer be visible.

These security level indications are visible on the Event Configuration, Edit Permissions, and windows when applicable. Tag Editor

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties#TagSecurityProperties-UsingSecurityLevels

A Vision-Oriented Guide to Perspective

An Intro to Perspective

Perspective is a flexible and versatile approach to HMI/SCADA design. Whereas Vision clients run on
any platform that supports Java, Perspective run anywhere that supports a web browser. Sessions
Additionally, sessions can run in the or . This opens the Ignition Perspective App Perspective Workstation
door for a new level of support for mobile devices and tablets. Perspective's features follow a responsive
design paradigm. This added dynamic and flexibility means you'll need put a little more planning into your
projects.

The purpose of this guide is to describe the core functionality of Perspective in ways that make sense for
Vision users.

The largest difference between Vision and Perspective is the way they do layout and project design.
Perspective is primarily designed to allow you to create mobile responsive interfaces. Perspective is an
Ignition module, using the same platform as the Vision module. It has access to all of the same systems
like Tags, database connections, reports, and security (though security got a few updates in Ignition 8
too).

On this page ...

An Intro to Perspective
Perspective Design
Considerations

Designing Your Main Views
Docked Views and Pages
JSON Component Properties
Bindings and Transforms
Components

Comparison of Perspective and
Vision Functionality
New Features in Perspective

As we developed Perspective, we took the familiar aspects of using the Ignition Designer and provided more tools and flexibility. You will find many
similarities between how you design a Vision project and a Perspective project. Anyone familiar with Vision can start designing quickly. For example,
you are still working with containers, components, properties, bindings, Python scripting, Tags, and databases. While it is visually different from Vision,
you will find the interfaces in Perspective familiar, but updated.

In order to take full advantage of the new systems in Perspective, there are a few things that you need to think about in a different way from your past
Vision projects. But first, there are a few terms that we need to define in Perspective. We will be using them a lot to talk about the differences, so
please familiarize yourself with them before continuing. A more complete set of terms is provided .below

View: Think of this as a Vision Template and Window all rolled into one. You can put components in it, you can pass parameters into it, and
you can nest them inside each other. Each view has a Layout type.
Layout: There are several types of containers in Perspective. Each has its own set of position attributes for the components inside it, which is
similar to the Vision Relative vs Anchored constraints. There is more than just X, Y, width, and height now.
Page: This is a new concept for Perspective. Instead of having a Vision Client with multiple windows open at the same time, you open a
single Page at a time and navigate by switching pages. Each page has its own main View and any docked Views you want.
Session: A is the Perspective equivalent to a Vision Client, except it runs in the browser instead of using Java. You can have session
multiple browser tabs open using the same session.
Style Classes: are style configurations, such as text color and size, and margins. Styling on components in Perspective Style Classes
utilizes CSS, and Style Classes are user defined configurations that allow you to quickly add several styling rules to a component. Style
Classes exhibit inheritance, so making changes to a Style Class configuration will propagate those changes down to any components using
the Style Class.

Perspective Design Considerations

With Perspective, it's more important than ever to have a plan before you start designing. Here is a short list of the things you want to think about
before starting to build you visualization system. Note that this assumes you already have your Tags, database, and other Gateway items taken care
of.

Make a flowchart of your project. How will users navigate, and what is the tree structure for your pages and popups?
Make a visual outline of each page. What docked windows do you want? What will you navigation look like?
Get an idea of what windows you want, and how you want them to look.
Does your project need to be mobile responsive? Plan the look for both a large and small version of each window.

Once you have an idea of what your session will look like, you can start designing.

Designing Your Main Views

Deciding on headers, tab strips, navigation trees or other methods of navigation is just a start in Perspective.

If you want to , you can use a . This will feel extremely similar to a Vision window since all the components keep things simple coordinate container
have an X, Y, width, and height. Just drag your components onto the View and use the handles to stretch them to the size you want. These views will
behave similar to a Vision window with all components anchored only to the top and left. You can change the Mode property in the root container to
"Percent" to make the components behave similar to the Relative layout mode in Vision. Many will use this with a single docked view for navigation.
This will create a project very similar to the Vision Single Tier Nav project template.

Views can be inside each other to create more complex structures. If you want a more structured layout, you can use the with nested flex container
other views inside it. A flex container creates a row or column structure out of your components. For example, you could use use a flex container with
a header at the top, and a coordinate container filling the rest of the view. This is another simple structure that creates a similar structure to a Vision
window with an anchored header and relative layout components in the main space.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Workstation
#
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Coordinate+Container
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Container

If you want to make your project , there are other types of containers that you can use. The allows you to mobile responsive breakpoint container
show two completely different views based on the width of the session.

Docked Views and Pages

A session, much like a client, is made up of more than one view, and you will often see multiple views at
the same time. In Vision, you have multiple windows open, and certain windows are designed to be
docked or floating. In Perspective you have instead. A Page contains a set of views that open and Pages
close together. Most commonly, a page will have a main View and a docked view.

Navigation in Perspective means moving from one page to another, not opening and closing multiple
windows. This allows you to use the forward and back buttons on your browser as a part of your
navigation strategy.

There is a shared space that all pages inherit from, so you can set up docked views there, and any page
that is open will automatically have those docked views open as well.

There are many settings for your docked views. You can set these views to be expandable, auto hide
depending on session width, and a number of other options.

Docked Views in
Perspective

Watch the Video

JSON Component Properties

Perspective components have a slightly different type of . In Vision, we used a flat property structure where everything was a basic data type property
like integer or string, except for datasets. If you wanted a dynamic number of properties, you had to create a dataset, then use scripting to pull the
values out. In Perspective, all of the properties on a component or container are JSON objects.

This means the properties have different types. They can be a Value (int, float, string, etc), an Array (a numbered set of sub-properties), or an Object
(a complex set of sub-properties with key:value pairs). For arrays and objects, the sub members can be any of the three types.

Datasets can now be stored on components as an array of objects, where each object is a row, and each object has several values that make up the
columns.

Bindings and Transforms

There are more options for that were not possible in Vision, and this is only partly due to the new property structure. For example, there is an bindings
HTTP binding that allows you to directly connect to a web service and download or upload data.

On top of that, any binding can have on it. A transform is an expression, map, or script that takes in the value of the binding and changes transforms
the output. If you chain together multiple transforms, the output of the previous transform is in input of the next. Think of number-to-color translations.
Instead of creating a custom property with an expression on it and then binding a color to that custom property, you can do it all in one binding. Just
create an expression binding, then add a map transform to change the output value to a color.

Components

Because of all the differences between Perspective and Vision, the two modules necessarily have a different set of components. There is no plan to
ever have a one-to-one parity between components, and not all of the will make their way into . Vision components Perspective components Some
components are new to perspective like the Menu tree and the Link components. The Link component was not feasible in Vision, but with Perspective
Sessions living in a browser it makes sense to have that component.

Comparison of Perspective and Vision Functionality

Here is a quick comparison of summary of basic Perspective concepts, and how they are similar to / differ from their Vision analogs.

Perspective
Concept

Similar
Vision
Concept

Perspective Description

Session Client A is a running instance of an application, much like a Vision client. Whereas Vision clients run Perspective Session
as independent Java programs on a user's machine, a Perspective session runs natively in a web browser (or the Ig

).nition Perspective App

Notably, a session can run across multiple pages in the same web browser. This is similar to how sessions function
elsewhere on the Internet: log into your favorite shopping website and then open several new tabs, each one knows
about your current shopping cart.

Page Desktop
(A.K.A
multi-
monitor
clients)

A page in Perspective equates to a single page in a web browser. Pages are the main navigational unit in a
session, and consist of one or more views. Each page is associated with a URL, which means the Forward and
Back buttons in a web browser can be used to navigate to pages that have already been visited. Multiple pages can
be open as part of the same Session, similar to how multiple desktops in a Vision may be open Client
simultaneously.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Breakpoint+Container
https://www.inductiveuniversity.com/videos/docked-views-in-perspective/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

Views can be docked to specific edges of the page, or be used as a "Main View". Each page consists of at least a
main view, but multiple views can be configured on a page. A page has specific regions where you can place
instances of your views.

View Window
and Templ
ate

A View is the primary unit of design for Perspective. Perspective Views fill the roles of both Windows and Templates
in Vision. Thus, you could think of a view as a window that can be nested inside other windows, or as a template
that can be maximized or docked. Views have a root container, much like in Vision.windows

Nesting one view inside another requires the Embedded View component. Parameters may be defined on the view,
and then passed into the embedded view

There are also that may dynamically create view instances (like the Flex Repeater component). In this components
way, views act like templates just as they do in the Vision module. Parameters can be passed into a view from an
external source.

Container Container
+ Layout
Constraints

Containers are objects that contain . You can nest one container inside of another.components

In Perspective, the way that components reposition and resize is managed on the container, and every component
contains only simple information about its size and position, which is interpreted based on the container's
specifications. There are several container types, and each type is defined by the layout type it uses.

Component Component Components, like in Vision, are displays, buttons, charts, labels, and other objects that display information to the
user viewing the session. Components are the elements displayed in the in the .Component Palette Designer

Property Property Properties serve as a place to change how a component looks or behaves, or store specific pieces of information.

In Perspective, the property tree of a component is a JSON object, and as a result, there are only three configurable
data types: , , and . Rather than characterize the expected format of the property's data (e.g., value object array
integer, boolean, or string), these data types control the structure of the property tree. No further configuration of
data types is required.

Session
Property

Client Tag Every session has a configurable collection of properties that can be managed from the designer. They can be
referenced from any view in the project, both from property/expression bindings and from scripting.

Events and
Actions

Componen
t Scripting

Event and Actions are configured similarly to the Component Scripting section in Vision. However, Perspective
offers additional configurable events along with possible responses to these events (Actions).

Styles Componen
t Style
Properties
/Customiz
er

Styles in Perspective use CSS, and are configurable from the properties on each component. However, Perspective
also offers the ability to configure style classes, which allow you to reuse configured styles across many different
components. Styles can also be configured to change based on more advanced properties, like whether a mouse is
hovering over the component, or how wide the viewport of the viewing device is.

New Features in Perspective

In addition to an entirely new set of components, Perspective offers a variety of new features in the realm of Project design.

Perspective
Term

Description

Transform A transform lies between a binding and the property it modifies, and provides an opportunity to change the value or format of the
binding's output. For example, if a tag binding yields 0 for Normal and 1 for Faulted, we could use a transform to map 0 to Green
and 1 to Red.

Component
Messaging

Perspective offers the ability to communicate between , using a similar style of messaging that one might use to components
communicate between clients in Vision. You can send messages from any component using the system.perspective.

 function, and you can configure message handlers on any component. This is useful for controlling the behavior of sendMessage
one component from another in a different view.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage

Perspective Co-Branding

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Perspective Co-Branding is a Gateway setting that allows users to customize the look their Perspective
Sessions with logos, pictures, and colors. Various aspects of Perspective can be customized, such as
the login screen, the desktop icon, and more. The table below lists various properties and elements that
can be modified. These settings will not affect the internal contents or styles of the Perspective Session:

Property Description

Custom
Branding

Choose to toggle custom branding on or off. Default is off.

Backgroun
d Color

Choose what the background color will be.

Text Color Choose what the text color will be.

Button
Color

Choose what color buttons will appear as.

Button
Text Color

Choose what color button text will appear as.

Logo Graphic logo used on the Perspective Session login and loading screen. Supports .jpg
or .png formats. Suggested logo size is 160x160 pixels.

Favicon Favicons will appear on your desktop browser tab after Session refresh. Supports .png
format. Suggested logo size is 180x180 pixels.

App Icon The iOS app icon is used when saving the page to the home screen. Supports .png
format. Suggested logo size is 180x180 pixels.

Note that the icon used on Android devices when is set by creating a project shortcut
"Launch Icon" . project property

Preview Shows a preview of the login and loading screens with custom branding applied.

Note: Perspective Co-Branding is currently only available for Standard and Cloud Edition.

On this page ...

App Bar Customization
Best Practices (Favicons and
App Icons)

Favicons
App Icons

Best Practices (Design)
Examples

Example 1 (Login and
Terminal Screens)
Example 2 (App Bar)

App Bar Customization

In addition to the login, loading, and terminal screens, you can also personalize the bottom-docked App Bar by:

Choosing to toggle the App Bar off or on.
Changing the icon for the About button.
Changing the view that displays the about modal.
Changing the title of the about modal.

The table below lists the customizable elements of the App Bar, as well as with what they look like by default. For more information about individual
Session properties that affect the App Bar, click .here

Name Default

Show False

About Icon

About View

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Perspective+App#IgnitionPerspectiveApp-CreateProjectShortcuts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveGeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable

About Title

Best Practices (Favicons and App Icons)

There are some considerations to take when selecting or designing a logo to use as a favicon or app icon. While these considerations are not
mandatory, they may give some insight into optimal logo design.

Here are a few tips that applies to both favicons and app icons:

Use a higher resolution of the final icon you have selected, if possible.
Since your image resolution may be downscaled, using a higher resolution picture will help retain image quality.

If bandwidth or some other bottlenecking factor is an issue, using smaller favicons may help reduce data load.

Favicons

Favicons are generally used in browser tab icons, desktop icons, and Android icons. The bullet(s) below contain tips on designing favicons:

(Chrome on Android specific) If your favicon is too small, then the favicon will not be used when saving to the home screen.
For typical uses in desktop environments, either 16x16px or 32x32px are recommended.

Modern browsers downsize images, so larger images will also work.
For multi-platform environments, either 180x180px or 192x192px are recommended.

Many Android devices will not use favicons smaller than a certain size.

App Icons

App icons are used by Apple devices and may follow some different rules than favicons. For Apple's official documentation detailing best practices
and creating an app icon for iOS and other Apple devices, click .here

One caveat to keep in mind is that while the favicon and logo fields will accept and render icons with transparent designs without issue, attempting to
use an icon with transparency as an app icon will result in the icon appearing all black.

https://developer.apple.com/design/human-interface-guidelines/foundations/app-icons/

Best Practices (Design)

While not exactly white labeling, the co-branding feature allows you to customize the look of your projects. Listed below are a few basic tips for
designing your Perspective login, loading, and terminal screens. These tips are not mandatory, as styles, personalization, and customization
preferences differ from person to person and organization to organization. Additionally, these tips may extend to apply during general Perspective
Session design.

Use text colors that can be easily seen against their backgrounds.
Keeping designs simple will help minimize cognitive load.
Use logos and icons that are easily identifiable.

Examples

Example 1 (Login and Terminal Screens)

The settings below will modify the look of the Perspective login, loading, and terminal screens:

Property Value

Custom Branding True

Background Color #1383C3

Text Color #FFFFFF

Button Color #1383C3

Button Text Color #FFFFFF

Logo Inductive Automation Logo

The following is the rendered output:

Example 2 (App Bar)

The settings below will modify the look of the Perspective Session's App Bar:

Property Value

show True

icon material/clean_hands

path appBarAboutView

title I am a new title!

The following is the rendered output affected by the icon property:

The following is the rendered output affected by the path and title properties:

	Perspective
	Perspective Designer Interface
	Perspective Sessions
	Ignition Perspective App
	Session Properties
	Perspective Session Proxy Considerations

	Perspective Design Tips
	Pages in Perspective
	Views in Perspective
	Docked Views
	Embedded Views
	Popup Views
	Self-Hiding Navigation Drawer

	Working with Perspective Components
	Perspective Component Properties
	Images and Icons in Perspective
	Localization in Perspective
	Bindings in Perspective
	Tag Bindings in Perspective
	Drop Configuration

	Property Bindings in Perspective
	Expression Bindings in Perspective
	Expression Structure Bindings in Perspective
	Query Bindings in Perspective
	Tag History Bindings in Perspective
	HTTP Bindings in Perspective
	MongoDB Bindings in Perspective
	Transforms
	Map Transform
	Format Transform
	Script Transform
	Expression Transform

	Binding Property Path Reference

	Component Events and Actions
	Perspective Pipes

	Perspective Project Properties
	Styles
	Perspective Built-In Themes
	Changing the Theme From a Session

	Style Classes
	How to Change Style on Hover
	How to Change Text Size Based on Width
	How to Create a Flashing Component

	Creating and Using Custom Perspective Themes

	Scripting in Perspective
	Perspective Component Methods
	Component Message Handlers
	Perspective Property Change Scripts
	Perspective Session Event Scripts

	Security in Perspective
	A Vision-Oriented Guide to Perspective
	Perspective Co-Branding

