L P ISPV . . ottt et e e 2

1.1 Perspective Designer INterface 7
1.2 PEISPECHVE SESSIONS . . ittt ettt e e e 22
1.2, 1 IgNitioN PeISPECHVE APP .« o v v ittt et e et e e e e e 31
12,2 SESSION PrOPE IS . o . ottt e e e 48
1.2.3 Perspective Session Proxy Considerationst 55
1.3 Perspective DeSiON TIPS . . vttt ettt et et e 56
1.4 Pages iN PerSPECHVE . ..ottt 59
1.5 VIEWS IN PeISPECHVE . . .ottt et e e 69
1.5 1 DOCKEA VIBWS . . oottt ettt ettt e e e e e e e e e 73
152 Embedded VIBWS 76
LD 3 POPUD VWS .ttt e e 79
1.5.4 Self-Hiding Navigation DraWerottt e e e e e e e e e e e 86
1.6 Working with Perspective COMPONENESottt e e et e e e s 95
1.6.1 Perspective COmMPONENt PrOPEITIES . . . o v ittt ettt ettt e e e e e e e e e e e e e 112
1.6.2 Images and ICONS IN PeIrSPECHVE ot e e e e 131
1.6.3 Localization in PerSPECHVE ittt e e e e e 140
1.6.4 Bindings in Perspective 144
1.6.4.1 Tag Bindings iN PerspeCtiveottt e e 145
1.6.4.1.1 Drop Configurationot e 158
1.6.4.2 Property Bindings in PEIrSPeCtiVEottt et 169
1.6.4.3 Expression Bindings in Perspective 174
1.6.4.4 Expression Structure Bindings in Perspectivet 178
1.6.4.5 Query Bindings in PerSpeCtVet 183
1.6.4.6 Tag History Bindings in PEIrsSpectivVettt e e e e 185
1.6.4.7 HTTP Bindings in Perspective e e 192
1.6.4.8 MongoDB Bindings iN PerspeCtiveottt e 194
1.6.4.0 TraNS OrMS . . . 201
1.6.4.9.1 Map TransS Orm . ..o 202
1.6.4.9.2 Format TransfOrm 207
1.6.4.9.3 SCHPt TranS OrM . o o 210
1.6.4.9.4 EXPression Transform 213
1.6.4.10 Binding Property Path Reference 214
1.6.5 Component Events and ACtIONS 216
1.6.6 PerSPECIVE PIPES . . oottt 229
1.7 Perspective ProjeCt PrOPEIiES ottt 239
LB YIS ot 248
1.8.1 Perspective Built-In Themes 256
1.8.1.1 Changing the Theme From @ SeSSIONottt e e e 260
18,2 StYIE ClaSSES . ittt et e 263
1.8.2.1 How to Change Style On HOVEro e e e e e e 271
1.8.2.2 How to Change Text Size Based on Width 273
1.8.2.3 How to Create a Flashing COmMPONENtottt e e e 276
1.8.3 Creating and Using Custom Perspective Themes e e e 282
1.9 SCHiPtiNG IN PeIrSPECHIVE . . . o\ ot e e e e e e e 285
1.9.1 Perspective Component MethOOS 287
1.9.2 Component Message Handlersot 294
1.9.3 Perspective Property Change SCHPISottt e e e e e 299
1.9.4 Perspective SesSioN EVENt SCIPLSottt e e e e e e 303
1.10 Security iN PEISPECLIVE ottt e e 328
1.11 A Vision-Oriented GuIde 10 PeIrSPeCVEttt e e 336

1.12 Perspective Co-Brandingot 339

Perspective

Perspectlve is the next J€Neration visualization system for industrial applications, optimized
specifically for mobile devices. Perspective puts the power of your plant floor in the palm of your hand by
empowering you to create beautiful, mobile-responsive industrial applications that run natively on any
mobile device and web browser. The Perspective module has full HMI and SCADA capabilities and
marks the beginning of truly mobile-optimized, touch-responsive, easily accessible applications for
monitoring, control, analysis and data gathering in industrial systems.

Perspective sits within the existing Ignition architecture so it can take advantage of our years of
development and work flawlessly with external databases, PLCs, reports, and so forth. It was designed
from the ground up as a means to deliver first-class mobile responsive applications and offer a browser-
based design environment.

The following are some key features of the Perspective module:

® Responsive Design - Perspective is mobile responsive so it responds to changes in screen
size and orientation, giving users a personalized view into their processes that are automatically
optimized for whatever device they are on.

® Browser-based - Perspective lives in a browser instead of a Java client. No mobile module is
required.

® Device Compatibility - Designers can create applications that run on any device that can
support a modern web browser using any major operating system: Windows, macOS, and
Linux. The native App runs on both iOS and Android devices.

® Designed for Touch - Perspective employs multi-touch technology to work with touchpad and
touch-screen interfaces allowing users to utilize commonly used gestures such as pinching,
panning, zooming, and scrolling.

® Sensor Information - Perspective is able to take advantage of cameras and GPS information
that are natively provided by mobile devices.

® Cascading Style Sheets HTML5/CSS3 technology - Enables users to control their application
on any device type such as smartphones, tablets, touchscreens, laptops, and desktop
computers.

* Transforms - Let you easily take the value coming into a binding, manipulate it even further,
and then transform it to the output of your choice.

Views and Containers

Views and Containers are an integral part of the Perspective design experience because they work
together to create your HMI screens, which are the windows into your application. The View is the

primary unit of design and the Container provides a way of laying out and organizing child components wit
hin a View.

Fle Edit View Project Component Tools Help
B e s 8 8RB >
Project Browser - X

W New View -
root

LedDisplay Temp
Label

T
MultiStateButton
Label -

Tag Browser a - X
Qg ¥ a D9 |HE-
Tag Value DataT.. Traits 2

100

@ Tas) Manual
» B DataTypes
» i _Simulator_
» i Motor 1 Multi-state
» i Refrigeraton Button in a Flex
» % NewTag Memory | 97 nt4 (& g Container
» W mtag Memon 55 Int4
» i System Auto

400

B Viewl NewView X

Components

On thispage ...

® Views and Containers
Components

® Perspective Symbols
Bindings

Styles and Style Classes
Security in Perspective
Perspective Co-Branding

INDUCTIVE
UNIVERSII

Perspective Project
Elements

Watch the Video

INDUCTIVE
UNIVERSII

Anatomy of a View

Watch the Video

Components are what give you flexibility in designing HMI and SCADA that reflect your company's design and your site's layout. Components are the
widgets you deal with every day: buttons, text areas, dropdowns, charts, gauges, linear displays, and so on. The Perspective module comes with a
host of built-in components that you can select from for use in your project. There are many ways to manipulate and arrange components when

working in the Designer.

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.1
https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer

] 100 200 400 p Perspective Compone... g1 _ [H *
- = 8 | Q|
= —= =
5 100 £ . : o= 1 ______'n
T __ SLItLor SLULLOr - = Display
80 —£
S 60 __§ 0 29%, m| Icon
40 __§ Image
= :% Inline Frame
o] 20—;
=] — E Label
: 0o £

LED Display

Linear Scale

sjusuodwo) anpadsiagd

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

Perspective Symbols

There is a category of components called Perspective Symbols found in the Component Palette. These HMI components are easy to configure usin
the built-in properties. You have the option of choosing any one of three appearances for the component. Each symbol has a number of states that
apply different visual effects. There are properties that allow you to change the size, orientation, appearance, and even select an Auto setting which
takes its value from the Session props.

_'__ll
Motor Vesszel
100% 09

Bindings

A binding is a mechanism that allows a property on a component to change based on a change to a value elsewhere in Ignition. For example, with
binding, the liquid level displayed in a tank graphic can be bound to the realtime liquid level in a tank. The value of a Tag could be bound to a linear
scale, a meter, or a label on your window. The power of bindings comes from the variety of binding types.

Click on the following links for complete information about binding types:

Tag - Binds a property directly to a Tag, which sets up a Tag subscription for that Tag.

Property - Binds one property to another.

Expression - A powerful type of property binding that uses simple expression language to calculate a value.
Expression Structure - A property binding that uses the property structure to pass data.

Query - A polling binding type that runs a structured Query against database connections.

Tag History - Used for dataset type properties. It runs a query against the Tag Historian.

HTTP - Used for passing data directly to and from a URL link.

g

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette
https://docs.inductiveautomation.com/display/DOC80/Tag+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Property+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Expression+Structure+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Query+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+History+Bindings+in+Perspective
https://docs.inductiveautomation.com/display/DOC80/Tag+Historian
https://docs.inductiveautomation.com/display/DOC80/HTTP+Bindings+in+Perspective

g Edit Binding: LedDisplay.props.value

Binding Type
W Tag
=] Property
fv Expression
¥ Expression Structure
£ Query
© Tag History

& HTTP

i Remove Binding

Configure Expression Binding

1 //Convert Tag value from Fahrenheit to Celsius Al *=

2 ({[default] Tank/@1/Temperature} -32 / (1.8) 5

o | ®

< » =
Options

(2 Enabled Overlay Opt-Out

Add Transform +

Binding Preview
Expression
10.0

._.[_;ﬂ J cancel @

Styles and Style Classes

Perspective gives you the power to style your project in just about any way and easily edit styles across your entire project instantly. You can use
powerful and flexible CSS3 styles to change the appearance and position of anything in your application. By combining styles into themes, you'll be
able to apply and edit styles across multiple applications in an instant.

[T Edit Style [Test_Style_Class] - O X

Style Classes

A style class Is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upon compenent element state or media query rules.

L

Style Rules Animated
»
CEETIN +
Duration Direction Iterations
i 25] alternate v (] infinite
I Timing Delay FillMode
linear - 0s & both -
+
0% 100%
Text =
Background

Background color

#0000FF

Background position

Box shadow

Marnin and Daddinm

Cancel Apply

Security in Perspective

Perspective’s approach to security covers a wide array of topics, including authentication, authorization and permission modeling, and transport layer s
ecurity (TLS).

® Uses single sign-on (SSO) with existing corporate credentials to get access to all of your assigned accounts and applications in one place.

® Clients launched from the Perspective module are secured using cutting-edge encrypting technologies and communication protocols to
provide the most secure web-based data transfer.

® Strongly enforced “guest mode” access to prevent against unauthorized writes on the Gateway.

® [Integrates with existing corporate identity infrastructure that uses two-factor authentication to verify the identity of users, thus adding extra
protection against phishing and brute-force attacks.

® [gnition now has security Levels (instead of/similar to Roles) that are assigned to users. This makes defining permissions simple. The
hierarchy of security levels can be used to simplify the security settings, because users with more specific security levels also “inherit” the
more general security levels (i.e., a user granted the security level of “Operator / LineB” also has the securitylevel of “Operator”).

® [gnition can now use popular authentication methods in addition to Active Directory. It uses trusted federated identity technologies such as SA
ML, OAuth, OpenID, and others.

For more information, see Security in Perspective.

Enter 2-Step
Verification Code

“heck your Google Authenbcalon apgp

{3} inductive | Ignition.”

Perspective Co-Branding

The following feature is new in Ignition version 8.1.20
Click here to check out the other new features

Perspective supports customization, color, and branding options, allowing you to make your Perspective project feel personalized and unique. You
can read more about Perspective Co-Branding here.

In This Section ...

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/Perspective+Co-Branding

Perspective Designer Interface

The Perspective Designer Interface includes a number of panels and menus containing functionality that
allow you to design and build your project. The Perspective Designer Interface has several basic panels
that are used for specific objects such as the Project Browser and Tag Browser. The Project Browser
panel allows you to view the different Designer Spaces and their component hierarchies at a glance as
you design and build your project, while the Tag Browser panel allows you to browse Tags in the
Designer and OPC server as well as create new Tags. Some of the menus, like the File Menu and Help
Menu, are shared throughout the Designer, and some are specific to certain objects that will only be
displayed when an object of that type is selected.

There are many dockable and draggable panels that surround the workspace, as well as the familiar
menu bars and toolbars. The default panels include: Component Palette, Property Editor, Project
Browser, and Tag Browser. The dockable panels can be rearranged as you wish and will snap into place
as you move them around the screen. Each workspace remembers its layout, which is the docking
arrangement of the panels around it.

If you closed a panel and want to get it back, re-enable it from the View > Panels submenu. To reset the
user interface back to its default arrangement, go to View > Reset Panels or click the Panel Chooser
1]

HE icon in the lower left corner of the window and select Reset Panels.

custom
0 -]

META

| ® ves i % B

22 projectsaved. (@5 ms

Perspective Menubar

On thispage ...

® Perspective Menubar
® File Menu
Edit Menu
View Menu
Project Menu
Component Menu
Tools Menu
® Help Menu
® Perspective Toolbar
® Resource Tabs
® Right-Click Menu
® Project Browser
® Badge Icons
® Configuration Explorer
Tag Browser
Perspective Component Palette
Perspective Property Editor
Page Configuration
® Recently Modified Views
Keyboard Shortcuts
Vertical and Horizontal Guides

INDUCTIVE
UNIVERSII

The Designer User
Interface

Watch the Video

There is a menubar at the top of the Designer that provides functionality that you can interact with when working in the Perspective workspace. Each
menu has a host of functions as it relates to that menu. The other menus that are shared between Vision and Perspective are discussed in the General

Designer Interface.

File Menu

See General Designer Interface.

Edit Menu

The Edit Menu is similar to other applications edit menus in that it provides much of the basic copy/paste functionality. You can also right-click on an

item in the browser to access this menu.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser
https://www.inductiveuniversity.com/videos/the-designer-user-interface/8.1/8.1
https://docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://docs.inductiveautomation.com/display/DOC80/General+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Ei Duplicate

¢’ Find/Replace

Function

Undo and
Redo

Cut/Copy

/Paste
/Duplicate

Find
/Replace

Delete

View Menu

Description

Can be used to revert to the previous state, essentially removing the last change, or redoing it again after having been removed.
This has a large queue that can be traversed, but does not include every change (i.e., Tag edits cannot be undone).

These functions perform similarly to most software applications.

Cut: Removes the selected item but keeps a copy on the clipboard.

Copy: Puts a copy of the selected item on the clipboard.

Paste: Pastes the current contents of the clipboard.

Duplicate: Duplicates the selected item (essentially a fast copy and paste action).

e o o o

Most things in the Designer can be copied and pasted elsewhere, from individual components to entire Views.

Brings up the Find and Replace interface to allow you to find specific objects within the project. See Find and Replace for more
information.

Deletes the currently selected component. This can also be done using the delete key.

The View Menu enables you to control the display of panels and toolbars in the Designer.

https://docs.inductiveautomation.com/display/DOC80/Find+and+Replace

2% FResetPanels 2% FResetPanels

Panels > Collapsible Palette Panels 3 _ % | ||J | |1:J:

Toolbars > Database Query Browser Toolbars > Perspective Designer Toolbar

Element Properties Report Designer Toolbar

Fill and Stroke Vision Main
Key Browser Shape Editing
OPC Browser Drawing Tools

Output Console Transaction Groups

Perspective Components Main Toolbar

SCooQoQoQQgn

Perspective Property Editor
Fipeline Block Editor
Pipeline Blocks

Project Browser
Property Inspector
Resource Motes
Security Settings

| Tabbed Palette

| Tag Browser

| Translatable Terms

| Translation Manager

Vision Property Editor

Function Description

Reset Resets the Panels in the Designer so that they are in the default configuration.
Panels

Panels A list of all the available Panels for the Designer in Perspective. Select the checkbox next to the Panel name to display that panel.
Panel options include the Perspective Property Editor, Project Browser, Tag Browser, and Perspective Components, among others.

Toolbars A list of all the available Toolbars for the Designer in Perspective. Select the checkbox next to the Toolbar name to display that
toolbar. Toolbar options include the Perspective Designer Toolbar, Drawing Tools, Shape Editing, and Main Toolbar, among others.

Project Menu

See General Designer Interface.

Component Menu

The Component Menu provides links to the Event Configuration and Script Configuration screens where you can add events, actions, and message
handlers to individual components.

Configure Events...

Configure Scripts...

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Function Description

Configure Events... | Displays the Event Configuration screen. For more information, see Perspective Events and Actions.

Configure Scripts... ' Displays the Script Configuration screen. For more information, see Component Message Handlers.

Tools Menu

Perspective's workspace makes use of the general Tools Menu options. However the Launch Project item holds several unique sub options.

Function Description

Launch Launches the current project, using the system's default web browser.
Session
External Opens Dev Tools, via the designer's JxBrowser, inspecting whichever view was currently being viewed in the designer.
Debugger
Note:

In cases where the gateway is on the same system as the designer, the external debugger may fail to connect when selecting this
option. This issue can be avoided by using the Copy Debug URL option, and replacing instances of "localhost" with "127.0.0.1",

which would look something like the following:

http://127.0.0.1: 9222/ devt ool s/ i nspect or. ht M ?ws=127. 0. 0. 1: 9222/ devt ool s/ page

Thisfeaturewasremoved from Ignition in version

8.1.37

As of version 8.1.37, the option to copy the debug URL has been removed.

Copy Copy's the URL used by the External Debugger. This can be useful in cases where Dev Tools is having trouble starting via the

Debug URL = External Debugger option.

Help Menu

See General Designer Interface.

Perspective Toolbar

The Perspective Toolbar contains shortcuts to options from the menubar as well as options to set the z-order for components.

File Edit View Project Component Tools Help

(B © Y S wlole raaalrd RO RN - = §
Project Browser g - X 0 100 200 300 400 500 &00
Icon Function/Description

H Save all outstanding project changes in Ignition Gateway.
Merges any new changes on the Gateway into the open project.

Ad]

= Undo the last action.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://developer.chrome.com/docs/devtools/
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

- Redo the last undo action.

W Cuts the current selection into the clipboard.

Copies the current selection into the clipboard.

A
W Pastes the current selection into the clipboard.
5L Gateway communication such as queries and Tag subscriptions disabled.
1]" Read-only communication operations such as SELECT queries and Tag values allowed.
‘"' Full read-write Gateway communication allowed
> Toggle the active view between Preview mode and Design mode.
|

Zoom into the currently open window.

Zoom out of the currently open window.

Zoom reset to 100%.

ol p »

_f

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

Toggles the component selection tool, allowing the mouse to select and interact with components. Disabled when a container other than a
coordinate container is deeply selected.

The following feature is new in Ignition version 8.1.10

Click here to check out the other new features
Toggles the Pipe Draw Tool, allowing the mouse to draw pipe connections. Disabled when a container other than a coordinate container
is deeply selected.

The following feature is new in Ignition version 8.1.10

Click here to check out the other new features
Toggles the Pipe Move Tool, allowing the mouse to move existing pipes. Disabled when a container other than a coordinate container is
deeply selected.

Move the selected components to the back of the z-order.

Move the selected components backward in the z-order relative to the overlapping components.

Move the selected components forward in the z-order relative to the overlapping components.

W O

Ij Move the selected components to the front of the z-order.

The remainder of the icons on the Perspective toolbar are for aligning components. See aligning for more information.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-ManipulatingComponents

Resource Tabs

The Resource Tabs allow you to change which resource is being edited in the workspace, as well as navigate to the Settings ﬁ’ area of the

Perspective Workspace.

200

300

File Edit View Project Component Tools Help
CHCH B W > e aa
Project Browser a _ X 0 100
Q 4
e =
b g Test
&) Alarm Journal test page
&) Alarm Status Practice
) EastView =
) Flex View -
&) Horizontal-Menu-Nav
&) New Toolbar Examples
) WestView
B Transaction Groups v
=
Tag Browser g - X||®
Q o ¥-8 0 90 B
Tag Data Type Traits
L Systeml =]
» il All Providers
=
[
£ AnotherView X
2= Projectsaved. (108 ms)

e

- * *

Perspective Property E... 1 — >

Q

PROPS

defaultSize
width
height

dropConfig
udts
dataTypes

| sjuauodwo? andadsiag @|

loading

mode :no. ..
Add Property

CUSTOM

100%| 246 /1024 mb S|

Right-Click Menu

The right-click menu provides multiple ways to close one or more views.

=
=
L]

1

X Tester AnotherView So many views X

lose & Revert

Option Description

Close &
Revert

| Close
Close Others
Close All

Closes the selected view, and reverts any changes that have been made, but not yet saved. This option should only be used when
you wish to lose any changes made to the view.

Close Closes the selected view, and commits changes (meaning changes will be retained in the designer session).

Close Closes all views except for the view selected. Changes made to the views are committed.
Others
Close All Closes all views. Changes made to the views are committed.

Project Browser

The Project Browser panel allows you to view the different Designer Spaces and their component hierarchies. You can expand folders and navigate
down through each folder to see elements of a project such as windows, views, containers, and components. The Project Browser shows the entire
tree structure from the project level folder down to the component level. You can view or change many of the project properties settings by clicking the

Project Properties ”3 icon. The Project Browser is also discussed on the General Designer Interface page.

Project Browser O - X

Q Project Properties

4*) Alarm Notification Pipelines |
oF, Sequential Function Charts /A Project Properties — O o
b @, Scripting
[z} Session Events B General
| 5'_@"95 B Permissions ,__, Mote that these preferences are saved on a per-project basis.
~ g Production % Vision Startup Options
Ea Plant1 Report B Design Initial Gateway Comm Mode | Comm Read/Write - |
I " Geners
CylindricalTank - Lau.nchlng
CylindricalTank_0 - Logln.)
LedDisplay B Permissions
LedDisplay_0 ® Timing
Label B User Interface
Label 0 W Perspective
Label_1 B General
Label_2 B Permissions
9 RightNav N TagDrop
) test
@ TopMav
2% Transaction Groups
> @ vision 0K Apply Cancel
B Named Queries
Reports

Badge Icons

Perspective has host of useful icons in the Project Browser that can show extra configurations on a component, such as scripting, security, deep
selection, message handler, etc. These icons, as shown in the image below, are extremely useful when trying to navigate through a view to find
components with extra configurations. Here is a list of the Perspective Badge icons.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Praoject Browser

¢ Badges @ -
[] root @
%, LedDisplay &2
W CylindricalTank B

g

[Label B
x Button 4
k Button 0 2 v
Badge Name Description
Icon
C : Binding Indicates the component has a binding script. Appears next to the name of the component.
Custom Indicates the component has a custom method. Appears next to the name of the component.
z Method
Deep Shows a selected component within a selected container. Indicates you have deeply selected into the component and not
'@' Select just selected the component itself. Appears next to the name of the selected component.
Event Indicates that the component has its own event actions which are related directly to the functionality of the component.
+ Action Appears next to the name of the component.
Message = Shows that the component contains a user-created script that listens for a particular message. Appears next to the name of
E Handler | the component.
a Script Identifies that the component has a property change script. Appears next to the name of the component.
e Security | Indicates that the component has security permissions applied to the view. Appears next to the name of the component.

Configuration Explorer

The following feature is new in Ignition version 8.1.22
Click here to check out the other new features

The Configuration Explorer allows you to view the dynamic configuration of all of your views and components. Right-click on a view or component in
the Project Browser and select Configuration Explorer to examine the following configurations:

Bindings and Transforms
Custom Methods
Embedded Views

Events and Actions
Extension Functions
Message Handlers
Property Change Scripts

https://docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection
https://docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Perspective#SecurityinPerspective-PerspectiveViewsSecurity
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Configuration Explorer - barcode - Compenentlnstancel — O ey

Configuration Explorer

=i
Explore the dynamic configuration of your views and components
Filter By Show All v | | | Exclude Disabled | Filter... [)
Location Type State
M root/FlexContainer/Componentinstance3/Barc... [+ 4 DOM Event - onClick Enabled

M root/FlexContainer/Componentinstance3/Barc.. [+ 4 DOM Event- onContextMenu Enabled

B Popup Action Enabled
I root/FlexContainer/Componentinstance3/Barc.. ~ 4 DOM Event - onTouchEnd Enabled
B Popup Action Enabled

Showing & configuration item(s) of 6 total

Details
draggable : true i
id : JTh1Gasn
modal : false

Go To Reference Close I

Select a configuration and click Go To Reference to highlight the relevant view or component in the Project Browser and, if applicable, open an Edit

window to view details about the selected configuration.

Configuration Explorer - coordinate o O *

Configuration Explorer

Explore the dynamic configuration of your views and components

W Edit Binding: CoordinateContainer.props.mode —

Filter By | Show All ¥ | || Exclude Disabled | Filter.. [x] J
— = Binding Type Configure Property Binding
Location Type | State -

O root/Title.props.path B Embedded View % Tag AHEXCOnGINCHDIONLPITES VEHKE

ptions

root/CoordinateContainer.props.mode D Property Binding

|EI Property Enabled | Overlay Opt-Out | | Bidirectional

fx Expression

Add Transform + |
L - 1

Showing 2 configuration item(s) of 2 total

CaEE Tag History

path : . /FlexC

& HTTP Binding Preview

Go To Reference

L]

Tag Browser

The Tag Browser allows you browse Tags in the Designer and OPC servers. In addition, Tags can be created, edited, exported and imported directly
from the Tag Browser. For more information on Tags, the different Tag types, and how they work, see Tag Browser.

Tag Browser a - X
Q S| ¥-a D6 B
Tag Value Data Type Traits ~

* & Data Types

b 2 Area
r 2 Motor
r % Sensor
r Il Motors
¢ B Ramp
» W Sensor Types
b I Sine

* il VFD Motors
F il Writeable

+ % Machine On Memary Boolean
* % Poll Time Express Boolean |
P % Areal Area Area
b % Area 2 Area Area
b % Area 3 Area Area
» Il System

F I Vision Client Tags
r m All Providers

Perspective Component Palette

The Perspective module contains numerous components, such as buttons, labels, and charts. Perspective utilizes modern web technologies so many
of the built-in components may look reminiscent of components you may have seen on your favorite websites. Components are created by dragging
the component from the Component Palette and dropping it onto a view. A complete list of components is found on the Perspective Components page.

The Component Palette is located in the upper right side of the Perspective Designer Interface. If the component palette is not visible, click
Perspective Components to open. This panel defaults to auto-hide itself. Components are grouped into different categories based on functionality.
Each category can be individually expanded to show all components in that category, or collapsed to hide the components in that category.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

4
@ ThirdView Test x

File Edit View Project Component Tools Help
R)
B B - r aaa
Project Browser ol - X 0 100 200 00
Q- A
- Hg Views A
& A _Production
- @ Test =
[v] root @&
b @ Custom_Example
b mm Test >l e
Tag Browser g - X
+ - Q 2 |default v | i~
Tags UDT Definitions g
Tag Value
il Taos N
E Drag a compe

Pe

Perspective Companents
Q- = =
* Chart
|_£'} Chart Range Selector
b (M Gauge
+ & PiecChart
|% Power Chart
b () Simple Gauge
b |2 Time Series Chart
[+ Xy chart
~ Container
=

1] column
b pv] Coordinate

b [Z] Flex
b [Tab

- Display

Breakpoint

B Alarm Journal Table

sjuauodwo) aanradsiad o

In the Component Palette search bar, you can search for components. Start typing in the search bar and the component list will update based on the

text you entered. You can also set filter options by clicking on the Search

use wildcards, regular expressions, match from start, match exactly, and match anywhere.

g - H X

sjuauodwo) annzadsiad @

Perspective Components
B 2] |[|O-
Case sensitive
= Chart) .
O Caseinsensitive
Gauge _
wdl Use wild cards
Pie ;
Use regular expression
Simple Match from start
XY Cha Match exactly
) Match anywhere
= Containe yw
Breakpoint

Perspective Property Editor

icon to expose the filter selection to make the search case sensitive, or

As with other areas of Ignition, the Perspective module has a dedicated Property Editor panel that allows for fine-tuning of individual objects. The
Property Editor is contextual, meaning that the properties available are dependent on which object or component is selected.

The Property Editor contains a search field, allowing you to filter properties based on the text typed into the field. The image below shows the

properties that are set on a Cylindrical Tank component. There are Binding

icons to the left of each of the properties that appear when you

mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the Value property, it will open the Binding window and
you can set what the Cylindrical Tank component is bound to. In following example, the Value property of the Tank is bound to a Sine2 OPC Tag.

In the Property Editor you can also set Position properties and add Custom properties to components, as well as create Params for passing values
from one view to another. To learn more about each of the categories in the Property Editor, refer to the Perspective Component Properties page.

(| LW CylindricalTank @]

b @ Custom_Example

b @ Test
b @ TestProject v
Tag Browser al - X
Q o ¥-a 0 00C B
r O E Udid Types "
» I _Sim-Dairy_
» i _SimSLC_
~ T _Sim_
» il Ramp
» il Random
» @ ReadOnly
» I Realistic
~ @ Sine
» W SineQ OPC
» % Sinel OFC
» W Sine3 OFC
» % Sineq OFC
» W Sine5 OPC
» W Sines OPC

File Edit View Project Component Tools Help
B« (s 6|08 »laaa
Project Browser a - X 0 100 200
Q. A
[Session Events =
b g Styles
v g Views
& A_Production
- [/ Test -
- E]root @ DTl—TU

~ =
=
S
e
e 7 A /___‘“E
=]
=]
2
4 -
=
]
g
=2
2

4

£ View-Test Test X

Perspective Property Editor

Q.

PROPS
<] value : 4

capacity @1

liquidColor : #4@A40F

tankColor : #D909D0
liquidOpacity :

liquidWarningCelor : #. ..
tankWarningColor @ #F9. ..

warningThresheold : !
strokewidth : 1
valueDisplay
style b |
Add Property
POSITION
¥
y 137
width : 174
height » 233
rotate
anchor 0% 5
angle :
Add Pos
CUSTOM
META

| sjuauodwo) aandadsiag @|

The Property Editor will allows show warnings if there an an issue with the selected component. This is commonly used to show when the quality on a
property is non-good, or if there is some other configuration issue with a property. Clicking the red triangle in the upper right corner of the property

category will display additional information.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-PropertyCategories

100 200 300
e #1. value: null found, number expected

Tank 100

(==

#2. Data quality: Bad_Disabled

PROPS 24 0

value :null

iiHE

liquidColox
tankColor :
liquidOpacity

liguidWarningColox
ERROR | .

tankiWarningColor :
0 warningThreshold :
strokeWidth

enabled : true

2o

ETHH

. gl

Page Configuration

Pages are how you navigate within a Perspective project. Each page represents a collection of views that are displayed in a single space. Just like a
single tab of a web browser, this represents a single page (at a time). Before you begin to configure a page, it's important to understand the page
layout. It has several specific regions and each behave differently: Top Dock, Bottom Dock, Left Dock, Right Dock, and a Primary View. The type of
content you create and the design strategy you use for your views will determine where you place them on the page layout. For example, you may
want a staff schedule to be available on every page, but not displayed all the time on the page. What you could do is configure the view on a docked
window, thus making it available on demand when someone wants to see it by clicking on a tab in a sesson to view it, and clicking the tab again to
hide it. Pages in Perspective describes in detail about page layout, page configuration, configuring docked views, and more.

Open the Page Configuration window by clicking on the Settings a icon in the lower left corner. This is where you'll configure your pages in
Perspective.

Initially, Shared Settings allow you to apply configuration changes to all pages (such as adding an omnipresent docked view), as well as specify the C
orner Priority.

To the right of the Page Configuration column, the following buttons are present:

® Add - Creates a new Page Configuration.
® Trash - Removes the selected Page Configuration.

Recently Modified Views

You'll also notice in the Page Configuration image below, there is a Recent Modified Views list. These are your most recent modified views along with
a timestamp denoting when the last edit to the view was made and who made the modifications. If the project does not contain any views, the listing
will be empty.

https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageLayout
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageLayout

Page Configuration

!
fplantl-report
ftest

T +

Recently Modified Views

TopNav #

Corner Priority

| left-right | top-bottom

TopNav
Last edit: admin
05/03/19 11:44 AM

Plant 1
Last edit: admin
05/03/1910:05 AM

test
Last edit: admin
05/03/1909:52 AM

RightNav
Last edit: admin
04/03/19 03:51 PM

Plant1 Report
Last edit: admin
04/03/19 03:40 PM

ﬁ Plant1 Report RightMav Plant1 TopMNav

Keyboard Shortcuts

There are a lot of ways to speed up development once you are familiar with how Ignition works. There are many keyboard shortcuts in Perspective Des
igner that are listed throughout the Designer interface alongside menu options. To learn about keyboard shortcuts, go to the Windows, Linux, and Mac

Keyboard Shortcuts page.

Vertical and Horizontal Guides

In the Designer workspace, you can set vertical and horizontal guides to help you align components. To set a vertical guide, slide your cursor along
the top horizonal ruler and click it where you want it. The number of pixels will be displayed in the top ruler and a red vertical line will appear the length
of your workspace. To remove the guide, click on the guide and drag it to the left into the vertical ruler and it will disappear.

To set a horizontal guide, slide your cursor in the vertical ruler and click it where you want it. The number of pixels will be displayed in the left ruler and
a red horizontal line will appear on the width of your workspace. To remove the guide, click on the guide and drag it to the top into the horizontal ruler

and it will dsappear.

You can add multiple vertical and horizontal guides.

https://legacy-docs.inductiveautomation.com/display/DOC81/Windows%2C+Linux%2C+and+Mac+Keyboard+Shortcuts
https://legacy-docs.inductiveautomation.com/display/DOC81/Windows%2C+Linux%2C+and+Mac+Keyboard+Shortcuts

_u....l.... 100 - T174200 a0 400 Ta’ﬂ'ﬂ'
"ECompany Name
_éﬁéiﬁt;::IIIIIIIIIIIIIIZIIZIIIIIIIIIIIII'
;’S’t’éié """"""""""""""
E_;iﬁé;ﬁé%é::::::ZIIIIZZZZIZZIZZZZIZZIZZZZIZZIZZZZIZZIZZZZIZZIZZZZIIZIIIIIIIIIIIIIIIIIIIIIIIIIZ

The Perspective Designer toolbar also has options for aligning components.

Related Topics ...

® Perspective Components

® Perspective Component Properties
® General Designer Interface

® Pages in Perspective

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-Aligning
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface

Perspective Sessions

A Perspective Session represents one instance of a project running on a
web browser or mobile app. The term "session" might be new to some

users, where "client" or "runtime" may sound more familiar. So anytime we On thispage ...
refer to a session, we are talking about a runtime application in
Perspective.

® Session Anatomy
L]

Now that you know that a session is effectively running an instance of the application, it can have Component

multiple Pages in the same web browser. Perspective Sessions work the same way as web pages do on : Container
your favorite website on the internet. You can log into your favorite shopping website and then open . View
several new tabs, where each tab is aware of your user credentials without having to retype them. . Ilzfc?peerties

® A Simple Example
® Launching a Perspective Session
® Launching a Session from the
Designer
® Launching a Session from the
Gateway Webpage
. ® Session App Bar
A Perspective Session contains a hierarchy of logical elements, as shown in the example below. * About Ignition Information
Popup
® Session Status Popup
Project Updates
Page URLs
Browser Version Requirements
Session Disconnections

A session appears fairly simplistic, but there is actually a rich hierarchy of elements to be aware of. This
page details the various moving pieces that comprise a session.

Session Anatomy

A session can have any number of pages at a time, pages can have any number of views, and
containers can have any number of components, including other containers as children, which can also
be nested to support multiple layout strategies. In this section, we discuss each building block of this
hierarchy, starting at the bottom and working our way up. When describing each element, it helps to
understand the smallest piece first which is a component, and then move up the hierarchy simply
because that's where the design process begins in Perspective.

Session

P s
- @ INDUCTIVE
s UNIVERSIT

View View View
SO Perspective Project
Elements
Compenent Em\mm Container
Watch the Video
Compenent Component E’"bf::fed
Component

Components are elements that you can select from to design your project. Perspective has a host of built-in components such as displays, buttons,
charts, and other elements that display information to the user viewing a session. There is also an Embedded View component that allows you to
include a view in the place of any component in the above structure.

Container

Containers are elements that contain components. You can nest one container inside of another container. It is important to note that containers do
more than simply contain components, they also define a layout strategy of how components inside a container resize and reposition. Because of this,
there are several different types of containers and each behave differently, and support different layout strategies.

View

Views are the primary unit of design in Perspective. Views are unique in that they can act as both a top level screen (a whole page in your session) or
a component (embedded in another view). Each View is a project resource, which are named and organized into folders in the Ignition Designer’s
Project Browser tree. These folders/paths are important not only for organization and referencing, but also because these paths uniquely identify each
view, and are used in the session (runtime) for navigation. Each View has a container type that decides how the components inside it will

behave. Multiple Views can be present within the same page, and views can also be nested. Parameters can be passed into a view from an external
source.

Page

https://www.inductiveuniversity.com/videos/perspective-project-elements/8.0/8.1
https://docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://docs.inductiveautomation.com/display/DOC80/Views+and+Containers+in+Perspective

A Page represents a collection of views that are displayed in a single space such as a browser window or tab, and is the main navigation element in a
session. Each page consists of a primary view, but multiple views can be defined from within a single page. Some views can be docked to specific
edges of the page, or “popups” floating on top of the other views. Multiple pages can be open as part of the same session, but can show

different information. A URL is defined for a page, which means the Forward and Back buttons in a web browser can be used to navigate to pages
that have already been visited.

Properties

A session has its own properties that can be customized. For information, see Session Properties.

A Simple Example

If you are just starting to explore Perspective, you will most likely create a single view, add a few components (no containers), and then launch a
session. In this case, our structure seems much simpler than the diagram above, but your session has one page, which is displaying one view, which
has a few components. As you add to your project, it will become more complex and start to resemble the image above.

Launching a Perspective Session

There are three ways to launch a Perspective Session: @ IN DUC T I VI
UNIVERSI1

® From the Designer
® From the Gateway Webpage
® By entering the web address of the project in your web browser

Launching a Session from the Designer Launching a
Launching a Perspective Session from the Designer is a great method if you're testing your Session

changes. When you're in the Designer, simply click the Tools > Launch Perspective > Launch Session

from the top menubar. This opens a session for the project you are working on directly from the Watch the Video
Designer.

Launching a Session from the Gateway Webpage

On the Gateway Webpage, you'll notice the Get Started page is the home page. Under the Perspective
logo, click View Projects.

The window will refresh with a list of Perspective projects. Find your project and click the Launch Project
button. This opens your project in a browser tab.

Perspective Projects

Filter Projects L : |

n Compressor n Controller
Aush

lines
rom the
n 7 global project

C — W — W —]

https://www.inductiveuniversity.com/videos/launching-a-session/8.0/8.1

Session App Bar
At the bottom of every Perspective Session, there is an app bar with a few options that provide @ IN DUC T I VI

information about Ignition and the current session. To display the app bar, click the Maximize icon in U NIV E RS I'I
the lower right corner of the screen.
c @® Notsecure | 10.10.110.52:8088/data/... & 3 a Paused .
Session App Bar
E My First Project Login ; WatCh the Vldeo
Widget 3
e pgemneaad

This brings up the app bar at the bottom of the window.

7

Ignition-ignition8-ubuntu-64bit

You can change the location of the Maximize/Minimize icon on the app bar in the Property Editor. Scroll
down the list of properties in the Perspective Property Editor and expand the appBar property. Right-
click on the togglePosition property and select one of the three options: left, right or hidden.

https://www.inductiveuniversity.com/videos/session-app-bar/8.0/8.1

Perspective Property Editor o - X

o]

SESSION PROPS
id .
host :
theme : light

locale : en-US

timeZoneld : America/Los_Angeles
auth

gateway

address
timezone
connected :
device
bluetooth
enabled : false
options
data
geolocation
enabled : false
permissionGranted
options
data
appBar

I togglePositionI:r:gﬁt

SESSION CUSTOM left
right
hidden

About Ignition Information Popup

On the lower left of the app bar, click the Ignition icon to open the About Ignition information popup. This screen has a short introduction to
Ignition and a link to the Inductive Automation website. Use the scroll bar on the right to scroll down.

About Ignition

Ignitio ‘./

by inductive automation

Ignition by Inductive Automation

Ignition by Inductive Automation® is the world's first unlimited industrial
application platform because it empowers you to connect all your data,
design any kind of industrial application with ease, and instantly web-
deploy an unlimited number of clients to anyone, anywhere. Ignition puts
your plant floor in the palm of your hand with beautiful, mobile-responsive
industrial applications that can run natively on any device with a web
browser, S0 you can view your processes remotely and control them with
the touch of your finger.

Here you'll see the number of modules installed on the Gateway, along with a list of those a modules, their version numbers, and whether they are
currently running.

About Ignition

Modules E -

Alarm Notification
2.0.0-rc RUNNING

Allen-Bradley Driver
2.0.0-rc RUNNING

DNP3 Driver
3.0.0-rc RUNNING

Enterprise Administration
3.0.0-rc RUMMIMNG

Session Status Popup

In the middle of the app bar at the bottom of the window, the current Gateway ID is displayed. Click on this for additional information. The pop-up
screen shows the current user and connected Gateway. If no user is signed in, a Sign In button is displayed in the upper right corner.

Click on the right arrow or anywhere on the Gateway name to open the Session Status popup.

admin SIGN OUT

E Connected: Ignition-ignition8-ubuntu-64bit
http://10.10.115.3:8088/data/perspective/client

B Insecure Connection STATUS

The Session Status popup has two tabs: Gateway and Project. Under the Gateway tab, you can see the connection status, Gateway URL, Session
ID, and Page ID. The Visit Gateway button is a shortcut to the Gateway Homepage.

Session Status

GATEWAY PROJECT

EI Ignition-ignition8-ubuntu-64bit

v CONNECTED

http://10.10.115.3:8088

26b9815b-9ef8-4760-93b6-9d52e10e1bb6

1086bcda

Under the Project tab, you see the name of the project, the last modified date for the project, and whether the project is up to date.

Test Project SJP

+ Project Up to Date

R ¥ R 1

[

Project Updates

If you have a Perspective Session open and a change was made in the Designer that was saved and
published, one of two things may happen. Either the project will silently update, or an Update Notification
window will appear in your session. Your session will automatically update in 30 seconds or you can click
Update Now.

| l I This project has been changed. Please save your
work, this session will automatically update in 22

seconds

In order to receive update notifications in a Perspective Session the Update Notification option must be
enabled. To access the Project Properties, in the Designer, click on Project tab on the menu bar. Then
select Project Properties. Scroll down to Perspective > General and then check Enable Update
Notification.

A Project Properties - [u] X
e Perspective / General
General

Permissions Enable Update Notification Timeout| 30 -3 sec

Designer “This project has been changed. Please save your work, this session will automatically update
= in {timeLeft} seconds.
Vision
Design
General
Launching
R Project Locale | Browser v

Login

L Include regional variations
Permissions
Timing Launch Icon [+

User Interface
Project Timezone | Gateway Timezone v

Identity Provider | Default User_Source v

Session Timeout

spective

Permissions

Tag Drop
Desktop 60 5

Mobile 600

[o Apply cancel

Page URLs

INDUCTIVE
UNIVERSI1

Session Update
Notifications

Watch the Video

Because Perspective is designed to operate in a web browser, each page must be “mounted” at a given URL. The URL setting of the page will be
reflected in the browser's URL bar if the session is running in a consumer web browser. To learn more, refer to the section on Page URLs in Pages in

Perspective.

Pages can be mounted at URLSs that also include parameters. These parameters are used to allow a page to be mounted at a dynamic URL, allowing
information in the URL to be interpreted as input parameters to the page’s primary view. Go to the section on Passing Parameters to get more detailed

information on passing URL parameters.

Browser Version Requirements

Browser version requirements are hard to define since each major or minor browser versions may introduce new CSS specifications which are
leveraged by individual features in Perspective. For example, a container component built around a relatively new and exciting CSS layout system will
likely require a more recent browser version. In general however, the supported browser listed below do a good job at staying up to date with

implementation and support of these new specifications.

Our general policy is to only use features that have been supported for some time, whenever possible. We are currently using features that have been
standardized for a few years before Perspective was even released. Overall, we will always recommend that you keep your browser up to date to take

advantage of browser features, fixes, and most importantly for security updates.

Ignition (as well as browsers) is constantly evolving and leveraging new APIs to provide you with the best experience possible, so it's difficult to pin
down minimum versions for 100% of Perspective's functionality. We do take care to ensure Perspective sessions will always work on the browsers
and versions listed below. Perspective sessions may very likely work for some browsers that are not even listed below, but we do not test against

them, and thus cannot guarantee their behavior.

Some browsers that are not listed below may also work, but we cannot guarantee them.

Basic Session Functionality Requirements for Ignition 8.1.0

Browser Minimum Version Required

https://www.inductiveuniversity.com/videos/session-update-notifications/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageURLs
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLparams)

Chrome 57

Firefox 52
Safari 11
Edge 16

Session Disconnections

If a Perspective Session loses its connection to the Ignition Gateway, a message will immediately display on the upper right-hand corner of the
Session to inform a user of the lost connection status and the time of connection loss.

No Gateway Connection * a minute ago

\ Lost connection to the Gateway at 1:06:14 pm

The Session itself will continuously attempt to reconnect to the Gateway. When the connection between the Session and the Gateway is re-
established, your Session will resume its normal operation. If the project associated with the Session is somehow deleted, the Session will fail to
reconnect because its source project is missing. A project can be manually deleted or overwritten by a Gateway restore.

Related Topics ...

® Pages in Perspective

In This Section ...

Ignition Perspective App

The Ignition Perspective App is a native mobile application that can be
downloaded and installed on Android and iOS mobile devices. It provides
users with a single location to access all of their Perspective projects.
While a Perspective Session can be launched from a mobile device's web
browser, the Perspective App enables the use of many built in pieces of
hardware within your mobile device, such as the camera, the
accelerometer, or the NFC Scanner. Data from these tools can be pulled
into the Perspective Session and used in various ways: a barcode can be
scanned and the data inserted into a database, the accelerometer can be
used to remote control a device with motion rather than buttons, or an NFC
Tag can provide vital information about a system. For information about
setting up native app actions in Perspective, see Perspective Events and Actions .

Download the App

You can download the Ignition Perspective App from a local online app store, such as the Google Play
Store for Android or the App Store for iOS.

1. In your app store, search for Ignition Perspective.
2. Click the Install button.

.. = WU B 93% 458
¢ Q i
/ Ignitinn PEI‘SEJECti'I.FE
A |
-] Imductive Automation LLC
500+ -}
Downloads Everyone (@

\
4

3. Once installation is complete, click the Open button, or click on the Perspective . icon on
your device's home screen.

On thispage ...

® Download the App

® Launch a Perspective Session
® Launch the Online Demo
® Launch a Project
® Switch to a Different

Application

® Additional Options

® Create Project Shortcuts

® Managed Configurations

@ INDUCTIVE
UNIVERSIT

Perspective App

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/the-ignition-perspective-app/8.0/8.1

Em ¥ © . B 9% 508

Ignition Perspective
/

Imductive Automation LLC

Tools

What's new @
Last updated Apr 1, 2019

- Improved project navigation back to Applications
page
Added pull-to-refresh action within projects

Read more

54 B0 sm

/

Ignition Persp..

Phane

4. The homepage is displayed. This will show a list of your projects. Initially, just the OnlineDemo
is listed.

v o B 88% 527

Applications Q «

ALL FAVORITES

Ignition 8.0 Demo Server

OnlineDemo
A Demo project showcasing a num

Launch a Perspective Session

On the home screen, you can launch the Online Demo, which is on the Ignition 8.0 Demo Server or launch a project on a different Gateway.

Launch the Online Demo

To launch the demo, just click the Perspective icon or click on the demo description.

B 55% 5:45

/

= Ignition\ : C

See what you can do with Ignition

Welcome to the Ignition 8.0 Demao!

A demo project showcasing most of Ignition’s
features: realtime status & control, historical trending,
UDTs & temiplates, reporting, alarming, security, and
more. To login as an Administrator use
admin/password as the username/password. To login
as an operator use operator/password as the

username/password,

Launch a Project

1. To launch a different project, click the Plus icon in the lower right corner of your screen.
2. You then have two options:

® Scan a QR Code

® Search for an available Gateway with Perspective projects.

3. For this example, we'll search for available Gateways. Click on Gateway Search.

Gateway Search

Scan a QR Code

4. Select the Gateway you want to connect to.

< Gateways

Recently Used

E| Ignition 8.0 Demo Server

|§| lgnition-UNLINDVIGME

|;| ignition-51169

=| ignition-51291

Manually Input Gateway

< O O

a. If the Perspective App doesn't find the Gateway automatically, you can manually input a Gateway host name and port. Click on Man
ually Input Gateway.

b. Type in the host name including the port, for example: http://10.10.115.3:8088 (or https://10.10.115.3:8043 if using SSL).

http://10.10.115.3:8088
https://10.10.115.3:8043

-4 B 95% 8:28

Manually Input Gateway

Hostname (including port)

http://10.10.115.3:8088

MEXT: SELECT APF

5. Click on the project you want to open.

v @ 7T 10:40

Select Application

Ignition 8.0 Demo Server

OnlineDemao %
A Demo project showcasing a nun

ignition-51169

test .
ignition-31291

test R
ignition-51293

test -

6. If security is set up on the project, you'll be prompted to sign in with your credentials.

TestProject

You must Sign In to continue.

Switch to a Different Application

When you are running a project or the demo app, you can switch to a different application, as follows:

1. Click the App Bar icon in the lower right corner.
2. Click the Exit "ﬂ icon.

3. At the confirmation prompt, click Exit.

Exit Application?

Are you sure you want to exit application
“OnlineDema™

BAMEEL @

Additional Options

Click on the Search E icon at the top of the screen to filter the project list.

Click on the Settings E icon at the top of the screen to view the settings for the Perspective app. Here you can organize your list of available

Gateways. You can also turn the Auto-Launch option on and select a project that will be automatically launched when the Perspective App is opened
on this device.

. e S . § 63% 1:47

< Settings

Your Applications

Organize Gateway List

Auto-Launch Off
About

Privacy Policy

Inductive Automation

°
Individual projects also have additional options that can be seen by tapping the Three Dots ¢ icon for the project on an Android device or swiping
to expand the options on an iPhone device. The additional project options include making the project a Favorite, editing the project, and removing the
project. Android devices also have the option to Create Shortcuts. Tapping Add to Favorites or Favorite, on an Android or iPhone device
respectively, means that project will appear on the Favorites tab in the app. If you have multiple projects listed on your All tab, marking certain
projects as Favorites can give you a quick and easy way to access a tailored list of projects.

https://docs.inductiveautomation.com/display/DOC81/Ignition+Perspective+App#IgnitionPerspectiveApp-CreateProjectShortcuts

Applications Q £

Q - Favorites
Applications

ALL FAVORITES

Online Demo Project 1 a Q Filter

Test

A Demo project showcasing a ° Onlins Bemo Projesct
number of Igr
realtime staty] Edit Application

trending, UDT 10 : o
reporting, alar sing a number of []
more. Add to Favorites me status & control,

; & templates, Remove

Jrity, and more.
Create Shortcut

Remove Application

Selecting Edit will access the Manage Application screen, where users can:

Add an Application Alias

Add the project to Favorites

Remove the project

Save any changes made on the Manage Application screen

Return to the previous screen by tapping the X icon or Cancel, on an Android or iPhone device respectively.

X Manage Application Cancel Manage Application

Perspective Demo
V4

https://demo.ia.io:443/data/perspective
/client/OnlineDemo

Perspective Demo

https://demo.ia.io:443/data/perspective/
client/OnlineDemo

A Demo project showcasing a number of Ignition's
features: realtime status & control, historical trending,
UDTs & templates, reporting, alarming, security, and
more.

A Demo project showcasing a number of Ignition's
features: realtime status & control, historical
trending, UDTs & templates, reporting, alarming,
security, and more.

Details .
Details

Application Alias

Test

REMOVE APPLICATION Remove Application

Users can alternatively remove a project by simply tapping the Remove Application or Remove option, on an Android or iPhone device respectively,
from the homepage.

Create Project Shortcuts

If the Ignition Perspective App is downloaded on an Android mobile device, you can create a project shortcut to open a project directly from your
Home screen. Although iOS users are not able to create project shortcuts currently, the Long Press can still be used to select and open a project
without launching the Ignition Perspective App. Long Press instructions are covered below under the second method for creating project shortcuts.

1. To create the shortcut, open the Ignition Perspective App.
L3

2. Push the Three Dots ¢ icon for your project.
3. Select Create Shortcut.

2:03 2l 46% =&

Applications aQ =

ALL FAVORITES

Online Demo Project 1 a

Perspective Demo m

A Demo project showcasing a
number of Igr

realtime statu Edit Application
trending, UDT

reporting, alat

more. Add to Favorites

Create Shortcut

Remove Application

4. Select Add.

A shortcut is now added to your Home screen and will open a project as if you were launching from within the Ignition Perspective App without
needing to use the Ignition Perspective App.

203 ,”-‘::r .|||| 46% .

The shortcut icon and App Name will match what is displayed in the Ignition Perspective App project list.
® The shortcut icon can be edited in the Designer Project Properties > Perspective > General > Launch Icon.
®* The App Name can be edited by selecting the Three Dots icon > Edit Application and entering an Application Alias. If the Alias is
changed after creating the shortcut, make sure to re-launch the project inside the Ignition Perspective App. This will trigger the shortcut name
to update on your Home screen.
A second method to create a Home screen shortcut is to use the Long Press (press and hold) feature.

1. Long Press the Ignition Perspective App on your Home screen until the Information popup appears.

203 =l ABGE

Ignition Perspective

Sran R Cade

Dpen Perspective Dema

2. Locate the project name (or Alias) from the popup. Note that a project has to be opened at least once from inside the Ignition Perspective
App before it will appear in this popup.
3. Drag and drop the project to your Home screen to create a shortcut in the same manner as detailed above.

Managed Configurations

The Ignition Perspective App can be configured via iOS and Android enterprise services , allowing third-party tools to install the app with some initial
configurations. The actual configurations are pushed out by the Enterprise Mobile Management (EMM) solution, so there are no configurations to be
made on the Ignition side.

For Android devices, EMMs pull the keys from the APK and manages the configuration from a console in the EMM software.

For iOS devices, you will need to provide the EMM software with a sample PLIST. See the Ignition Perspective iOS App - AppConfig XML on our
Extra Materials page.

The following keys will be made available to the EMM solution.

Key Description

auto_launch ' Contains keys that control the auto-launch capability of the app, allowing you to determine if the app should immediately launch into
a project or not. Contains the following keys:

Key Description
auto_launch_lo If true, prevents user from disabling auto-launch or changing the auto-launch URL within the app.
cked
prevent_exit If true, prevents the user from exiting the auto launched project

auto_launch_url | If set with a project URL, auto launch is enabled and the project specified in the URL will automatically launch
upon startup of the app.

hide_demo If true, the built-in demo project will become hidden.

initial_applic = Allows you to add projects to the main app page. Each application has the following keys:
ations

Key Description
project_url = A URL leading directly to the application, for example:
http://ww. soneurl.com 8088/ dat a/ per specti ve/client/ myproj
R

perspective: // ww. soneur| . com 8088/ nypr 0]

alias The name for the application, as it will appear in the project list.

is_favorite = Sets this project as a favorite.

https://inductiveautomation.com/downloads/extra-material

initial_gatew = Allows you to add Gateways to the Recent Gateways list. Each gateway has the following key:
ays

Key Description

gateway_url = A URL to the Gateway you'd like to add to the list, for example:

htt p: // ww. soneur| . com 8088

Session Properties

Session properties are available for use throughout Perspective Sessions. Sessions of a given project
will have the same list of properties, however, the actual values are unique and independent for each

running Session.

Each Session creates its own instance of these properties. This makes them very useful as in-project
variables for passing information between views or browser tabs, and between other parts of the

Session, such as scripting.

The Property Editor displays Session properties when viewed from the Perspective Start screen. Each
Session contains a series of properties with unique values. These properties provide some useful
information about where the Session is running. Additionally, custom properties may be added, providing
a way for a Session to store additional values that can be used in bindings and scripts, and are

also important for passing parameters from one view to another.

Restrictions from System Properties

Some Session props are intentionally restricted with a System property and cannot be changed or

removed. These properties have a System ™ & icon displayed next to them in the Property Editor.

On thispage...

® Restrictions from System
Properties
® Session Properties Table

INDUCTIVE
UNIVERSII

Session Props

Watch the Video

File Edit View Project Component Tools Help

= ik |1k Pla a @

Project Browser g - X
A Perspective [samplequickstart]

2.1.20-SNAPSHOT (b2022080515)

4+ Alarm Notification Pipelines
&%, Sequential Function Charts
» [E scripting
) @ Perspective

Page Configuration
srareaseings D
!

O- .
~g Transaction Groups
s P /components

D Create New View

left-

Perspective Property Editor o - X

containers

b @ Vision /components/ : folder/ : comp
» B Named Queries /ignition-101
b Reports v /ignition-101/:folder/:fe
/1 t
Tag Browser o - X S
flayouts/coordinate
+- Q O |sampleTags v - /layouts/fluid
Tags UDT Definitions /layouts/fluid-max-width
Tag Value | Data Type TR > <
b i Ramp
> H Random Recently Modified Views
+ i ReadOnly
b il Realistic
b i Sine
b il Writeable h

embedded-view

native-app

SESSION PROPS

id :
host :

theme : 1

siuauodwoe) anndadsiad o

locale :en-Us
timeZoneld : Etc/UTC
lastActivity
auth

gateway
device
bluetooth
geolocation
appBar

pipes

symbols

address :

SESSION CUSTOM

device
barcode :

321/1024mb | &2

Session Properties Table

Name Description

id Unique Session identifier.

https://www.inductiveuniversity.com/videos/session-props/8.0/8.1

host

theme

locale

timeZon
eld

lastActi
vity

auth

Reflects the connecting system's IP address or hostname.

This feature was changed in Ignition version 8.1.10:

The value of this property is impacted by the gateway's Resolve Client Hostname setting. While Resolve Client Hostname is enabled, the ge
attempt a reverse DNS hostname lookup. Whatever is returned by this lookup will be set as the value for host.

The theme to use in the Session. The default theme is | i ght . Writing a theme name to this property will change the theme for the Session.

The current locale of this Session.

Timezone identification code, for example America/Los_Angeles.

This sessionProps.timeZoneld is the root property. The other timezone.id properties you may see are gateway.timezone.id and device.timezo
both read-only representations of what the Gateway and user agent (mobile device, browser, workstation, etc.) report back to the session. Yo
of these properties to override the sessionProps.timeZoneld by setting the project property Timezone Behavior for Perspective to Gateway or
update the timeZoneld session property on session startup to the reported value.

Beyond manually updating in Session Props or binding the property, you can also update the timeZoneld session property so Perspective will
dynamically.

The following feature is new in Ignition version 8.1.8
Click here to check out the other new features

A readonly that represents the last time the session was interacted with, such as a user clicking within the session. The time reported by this |
off of the gateway's time.

Represents the user's authentication and authorization for this Session.

Name Description

authenti = True if the user is authenticated. False if the user is unauthenticated. Null if the user's authentication status is unknown.
cated

user Contains information about the user, if they are authenticated.
Name Description Property
Type
id The 1dP's unique identifier for this user. Null if the user is not authenticated. value:
string
userNa The user's username. Null if the user is not authenticated. value:
me string

firstNa The user's first name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if value:

me no mapping was configured for this attribute. string
lastName The user's last name. Null if the user is not authenticated, if the IdP did not provide this attribute, or if value:

no mapping was configured for this attribute. string
email The user's email address. Null if the user is not authenticated, if the IdP did not provide this attribute, value:

or if no mapping was configured for this attribute. string
roles The roles that the IdP assigned this user. Null if the user is not authenticated, if the IdP did not provide value:

this attribute, or if no mapping was configured for this attribute. string
timesta = A timestamp representing the last time the current user authenticated against the Identity Provider. value:
mp timestamp

security = The deepest security levels in the tree granted to the current user, starting with the children of the Public security level. The Public
Levels security level is never shown since all Sessions include Public.

Name Description Property Type

name The name for this security level. Must be unique among its siblings. = value: string

children = Security levels which descend from this security level. array

https://legacy-docs.inductiveautomation.com/display/DOC81/Web+Server+Settings#WebServerSettings-HTTPandHTTPSSettings
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Levels

idpld The identity provider's ID. Replaced by the i dp property
idp The name of the Identity Provider configuration set on the project.

idpAttrib = Represents the JSON object returned by the identity provider after logging in. The structure of this object will match that of the
utes JSON provided by the Test Login Identity Provider page.

Note: The Designer does not authenticate against identity providers in Ignition 8.0, so this object will always appear empty in the
designer. Use the Test Login page to determine the shape of this property, or use a simple binding to something visual (i.e. a
label) display and parse the results while developing your project.

Note: Ignition currently supports the Ignition and OpenlD Connect (OIDC) Response Documents, but not SAML. Attempting to
use a SAML IdP will result in the idpAttributes property containing an empty string. This note will be updated once support for
SAML Response Documents has been implemented.

Editor notes are only visible to logged in users
The note directly above these Editor Notes is from this request in the Training channel. This should be updated once IC
N-4637 has been completed.

gateway = Properties for the Gateway that this Session is running on. The value of this property will not be saved with the view. Does not persist by defa

Name Description

address = Remote host address of the connected Gateway.

timezone Document providing time zone information.

Name Description Property Type
id Time zone identification code, for example America/Los_Angeles. ' value: string
name Name of the timezone. value: string
utcOffset = Offset of the current timezone relative to UTC, in hours. value: numeric

connect = True when connected to a websocket. All tabs in the Session must have a connected websocket to become true. If a Session
ed disconnects but is still open in the browser, the property will not change, as the property write from the Gateway can't write to the
disconnected Session.

device Properties for the device that is running the Session.

Name Description

type Type of device that created this Session. Read only. Options are ios, android, designer, browser, and workstation. Empty string if
device is unknown during loading.

identifier = Unique ID representing this device. This is a convenience property not intended/suited for security purposes. May change via
device/application re-installs or browser cache clears.

timezone Document providing time zone information.

Name Description Property Type
id Time zone identification code, for example America/Los_Angeles. ' value: string
utcOffset = Offset of the current timezone relative to UTC, in hours. value: numeric

userAg User agent string of the connected device.
ent

settings = Array of settings for the device.

Name Description Property

https://legacy-docs.inductiveautomation.com/display/DOC81/Test+Login+and+Logout
https://inductiveautomation.slack.com/archives/C5Q6KGVGD/p1654704846237539
https://youtrack.ia.local/issue/IGN-4637
https://youtrack.ia.local/issue/IGN-4637

pullToR

efresh . . . » .
The following feature is new in Ignition version 8.1.5

Click here to check out the other new features

If true, swiping down from the top of page and holding for two seconds will refresh the project in the
mobile Perspective App. If false, swiping down will scroll the screen. Default is true.

prevent = Prevents the device from sleeping while viewing project in the mobile Perspective App. Default is false.

Sleep

acceler ~ When continuous read mode is active, represents values retrieved from the accelerometer.
ometer

Name Description Property Type

timestamp | Timestamp represented as standard 'milliseconds since unix epoch'. | value: string

X Acceleration force (in m/s2) along the x axis (including gravity). value: numeric
y Acceleration force (in m/s2) along the y axis (including gravity). value: numeric
z Acceleration force (in m/s2) along the z axis (including gravity). value: numeric

bluetooth Options and data provided by device Bluetooth services.

Name Description

enabled ' If true, enables bluetooth capability.

options = Bluetooth options.

Name Description

updatel =~ How often should the Session check for new data packets. Duration in ms to buffer Bluetooth data
nterval before sending to Perspective.

limit Maximum number of packets to display. The order of packets is strongest RSSI (Received Signal
Strength Indicator) to weakest.

filter Bluetooth filtering options.
Name Description Property
Type
enabled ' If true, will enable filtering on the packets. value:
boolean
minimu = Minimum strength of RSSI to return. Enter O to ignore. value:
mRSSI numeric
altBeac = AltBeacon format. object
on
Name Description Property
Type
exclusive Exclude other beacon types that are not value:
altBeacon. boolean
uuid The 16 byte beacon identifier. Ignores packets | value:
that don't match the value specified. string
eddysto = Eddystone open beacon format. object
ne

Name Description Property

Type

value:
boolean

value:
boolean

Property
Type

value:
numeric

value:
numeric

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

data

geoloca
tion

Name

enabled

permiss
ionGran
ted

options

data

exclusive

nameSp
acelD

iBeacon

Name

exclusive

uuid

Exclude other beacon types that are not
eddystone.

Namespace identifier. Ignores packets that
don't match the value specified.

iBeacon format.

Description

Exclude other beacon types.

16 byte proximity uuid of iBeacon. On iOS this
must be specified in order to receive iBeacon
data.

Will populate with most recent packets from any detected beacons.

Description

Options and data provided by web or native device geolocation services.

If true, will attempt to populate location data into the 'data’ property.

Type

value:
boolean

value:
string

object

Property
Type

value:
boolean

value:
string

If geolocation is enabled and a geolocation permission prompt is requested, this field populates true if the user allowed permissiol
Otherwise, it is false. Read only.

Name Description Property
Type
accuracy Indicates the mode of accuracy the application uses to receive results: max, balanced, and low. value:
boolean
Name Description Property
Type
max Maximum accuracy (and highest battery use). Accurate to the level value:
allowed by the environment/device. string
balanced Balanced accuracy - accuracy resolves ~100m (about a city block) using a | value:
more efficient poll rate and supplementing with device data. Balanced is string
the default value.
low Low accuracy typically does not use a GPS sensor, but relies on value:
environmental meta data (such as cell tower information, Wi-Fi string
connectivity, etc.). Most efficient, accurate to approximately town/3
kilometers.
maximu = A positive long value indicating the maximum age in milliseconds of a possible cached position that is value:
mAge acceptable to return. If set to 0, it means that the device cannot use a cached position and must numeric
attempt to retrieve the real current position. If set to infinity, the device must return a cached position
regardless of its age. Default is 0.
If geolocation is enabled and the device can provide geolocation data, this will hold information about location.
Name Description Property
Type
latitude = A floating point value representing the position's latitude in decimal degrees. Null if location is disabled. | value: float
longitude = A floating point value representing the position's longitude in decimal degrees. Null if location is value: float
disabled.
altitude = A double representing the position's altitude in meters, relative to sea level. This value can be null if value:
the implementation cannot provide the data. double
accuracy A double representing the accuracy of the latitude and longitude properties, expressed in meters. value:

double

altitude = A double representing the accuracy of the altitude expressed in meters. May be null if device fails to value:
Accuracy provide or if geolocation is disabled. double
heading = Returns a double representing the direction in which the device is traveling. This value, specified in value:

degrees, indicates how far off the device is from heading true north. O degrees represents true north, double

and the direction is determined clockwise (which means that east is 90 degrees and west is 270
degrees). If speed is 0, heading is NaN. If the device is unable to provide heading information, this

value is null.
speed Returns a double representing the velocity of the device in meters per second. This value can be null. value:
double
timesta = Time the last location update was received. value:
mp string
appBar = Settings relevant to the bottom-docked App Bar, which lists Gateway information.
Name Description Property Type
togglePosition = The position of the overlaid toggle button that shows the app bar: right, left or hidden. value: string
about object

The following feature is new in Ignition version 8.1.20
Click here to check out the other new features

Settings allowing for more customization of the bottom-docked App Bar.

Name Description Property Type
show Determine if a custom about page should be shown. ' value: boolean
icon The path of the about button icon. value: string
path Path of the view to display in the about modal. value: string
title The title of the about modal. value: string

pipes
The following feature is new in Ignition version 8.1.10
Click here to check out the other new features
An object containing properties that pertain to pipes.
Name Description
autoApp | The styling to use when a set of pipes is set to an "auto” style.
earance
overlap
Gap . . . » .
The following feature is new in Ignition version 8.1.18
Click here to check out the other new features
The width of the gap to draw when P&ID pipes overlap. When this property is set to 0 or a negative number, no overlap is
rendered. This may result in a rendering performance boost when using complex P&ID pipes. Default is 4.
symbols

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

Settings relevant to the components on the Perspective Symbols Palette.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette

Name Description

autoAnimationS = Sets the animation speed for any Perspective symbol components that have their animationSpeed property set to auto.
peed

autoAppearance = Sets the appearance for any Perspective symbol components who have their appearance property set to auto. Options
are auto, p&id, mimic, and simple.

google
MapsAp))) =)
iKey The following feature is new in Ignition version 8.1.33
Click here to check out the other new features
Google Maps API Key. This key is required to use a functional version of the Google Map component.
address

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

Represents the IP address of the Session as the gateway sees it.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.33
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Google+Map
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

Perspective Session Proxy Considerations

In cases where a reverse proxy or other middleware is located between the Gateway and a running Perspective session, then the proxy server will need to
whitelist several custom headers. Doing so insures that the proxy allows requests from the session to pass through to the gateway.

Prior to 8.1.17

client_timezone
device_id

device_type
version_code
perspective-session-id
designer-session-id

8.1.17+

client-timezone
device-id

device-type
version-code
perspective-session-id
designer-session-id

Perspective Design Tips

There are many things to consider when designing for mobile-responsive

applications that can run in a web browser. Designs must work .

everywhere, on any device from a small smartphone to an oversized On thispage....
desktop, in an optimized format, using one design. Unfortunately, there is

no one design strategy that fits all projects, but you can have a single o _ _
design for a project that works well across many different screen sizes R er Mobtie-Responsive

based on content and context. * Design Principles
® Touch and Ergonomics
® Mobile-First Design Approach
® Fluid Content
® Content as Ul
® Declutter

® Understanding Views and
Containers

bl =

f‘,\k

With mobile devices ranging from smartphones to tablets, understanding how your website will display on the variety of formats is critical. This page
provides some design principles to consider when designing in Perspective, but it only scratches the surface. You can augment these design
principles with the design processes from your company.

Before designing your first project in Perspective, understanding terms like mobile optimized, responsive design, and user experience are sure to
come up in conversation when defining the requirements for your project.

® Responsive Design - is a method of developing web pages that are completely flexible and renders on any device type. Responsive
designed websites "respond" to the screen size of the device being used from smartphones to industrial monitors.

* Mobile Optimized - means the website will reformat itself for mobile devices such as smartphones and tablets.

User Experience - can separate a good a successful app from an unsuccessful one. You want users to have a quality experience using your

app such as fast loading time, easy to use, and navigation for starters.

Building a good mobile-responsive app starts with defining specific goals and objectives to clearly identify the problem you're trying to solve whether
your starting a new project or redesigning an exising one. Equally important is understanding the needs of the users and integrators. Some things to
ask your users about is, what types of devices they plan to use to access the project, what type of data they want to see, are they viewing data,
entering data, or controlling equipment. What do they want the components on the screen to do. Do they need to work offline.

It's extremely important to capture and document all the user requirements. When doing requirements gathering, it's also important to audit the
workflow process. This way you get to see firsthand what the users are doing so you can define requirements prior to entering the design phase. This
doesn't mean that you can't refine requirements as you progress through the design process. You most certainly can!

Designing for Mobile-Responsive Applications

You have choices when it comes to designing in Perspective. You can design for desktop or mobile devices, or both. Ignition Perspective allows you
to design your apps to work well across many different screen sizes, whether a user is seated in the control room, grabbing a tablet to walk into the
field, or receiving a notification to respond to a crisis after hours.

One of the first considerations when tackling a design project is to determine the types of devices your users are going to use to access the project.
This often dictates whether you design for a desktop, mobile devices, or both. Something to keep in mind, is designing for multiple screen sizes at the
start of your project will be far easier, less time consuming, and less costly than adding it on later. This way you have one design that adapts to many
screen sizes.

Think of a responsive design as a layout strategy, allowing your apps to work well across many screen sizes. It's a single design that reorganizes and
responds to the available browser space to display the same content in a more usable way whether your using a smartphone, table or desktop. You
also get a consistent Ul and functionality across various screens, and it works everywhere. If you open a responsive site on the desktop and then
change the size of the browser window, the content will move dynamically and arrange itself optimally for the browser window. On mobile devices, this
process is automatic; the site checks for the available space and the reformats itself in the size matching the device while optimizing the content for an
ideal arrangement. This is responsive design!

Design Principles

We all know what good design looks like in the desktop world. Now let's expand our knowledge to mobile devices using the following design principles.

Touch and Ergonomics

Good design begins with touch and ergonomics. On mobile devices all input is touch driven and have smaller touch targets. The smaller the target,
the harder they are to use, and the more chance for errors. For example, turning on/off an industrial motor or some other critical process can lead to
serious repercussions in the event the wrong button is inadvertently pressed.

When designing for mobile devices like smartphones and tablets, it's important to make touch targets big enough so they are easy for users to tap. As
a good rule of thumb for sizing touch targets; 25 pixels is considered touchable, 40 pixels is optimal, and at a minimum, 10 pixels between elements.

Next, let's talk about the ergonomics of mobile devices. Designing for mobile devices isn't only about making targets big enough, it's also about
considering the way we hold our devices. There is a comfortable area for touch on a screen called the 'thumb zone'. A touch device like a smartphone,
the bottom of the screen is the best area for your most important actions because it's easy and most comfortable to reach with your thumb. You might
consider placing destructive actions in hard to reach areas such as the top of the screen if you don't want them pressed accidentally. Also, keep in
mind that the bigger the display area is on a smartphone, more of the screen is less easily accessible.

J
~

Hard to reach
one-handed or
with thumb

~
Comfortable
to reach

Be sure to test your applications on different operating systems and devices, including all sizes of smartphones and tablets. Even better, is to have
some of your users do some testing. Nothing works better than getting some real feedback from your users.

Mobile-First Design Approach

The Mobile-First design approach prioritizes the app design on smaller devices instead of designing a desktop app and then forcing it to fit into a
mobile box. A mobile-first approach is exactly as it sounds: designing for the smallest screen and working your way up. It is one of the best strategies
to create either a responsive or adaptive design. This design strategy focuses on progressive enhancement of features and content as browser size
and available space increases. Mobile-first design can lower development costs over the lifetime of your applications because single data model is
maintained instead of maintaining several specific solutions for specific devices.

Fluid Content

Fluid design offers users a consistent experience across multiple devices and screen sizes. In responsive design, you want to design your app with a
fluid layout that works good on small and large screens. You don't want them to look too busy on small screens and too empty on big ones. Think of
web content as a box. In a responsive app, these boxes are going to move and change depending on their container. Perspective containers provide a
way of laying out and organizing components within a view. This is really important because containers and views are an integral part of the
Perspective design experience and play a major role in creating fluid content. Not only does Perspective containers and views allow you to create fluid
content, but they also provide reusability throughout your existing project and other projects.

Content as Ul

You can't talk about content without talking about design. Together, they both create a great user experience. By including design techniques in your
discussions about content, you truly discover what is important and how to communicate to the user. We are all familiar with how various interface
elements behave on a screen and how to directly interact with the content, but each design is different.

As a designer, the content Ul focuses on what interface elements the user needs to understand to easily access content, so you want to be consistent
and predictable. There are many different types of interface elements such as input controls, navigational and informational elements to name a few.
It's important to know your users so you make the right choices so here are a few things to keep in mind:

® Keep the content Ul simple.

® Be purposeful when designing your page layout.

® Create consistency and use common Ul elements.

® Provide visual clues about behavior before actions are taken.

Declutter

Good Ul design is about delivering relevant information and avoiding irrelevant information. By cluttering your interface with elements and content, you
overwhelm users with too much information. Every element you add makes the screen more complicated, and if looks complicated on a desktop, it's
even worse on mobile devices where there's not a lot of real estate. It's imperative to remove anything in the Ul that isn't absolutely necessary.
Decluttering the screen will improve the user's comprehension. A good rule of thumb is "less is more."

With limited screen space, you have to create focused content. Here's a couple things to remember:

® Keep content to a minimum and present the user with only what they need to know.
® Keep interface elements to a minimum. A simple design will make your Ul more intuitive and ultimately more productive.

Understanding Views and Containers

We covered some of the basic design principles for designing mobile responsive apps, but we must also stress that views and containers are an
integral part of the Perspective design experience because they work together to create your HMI screens, the windows into your application. The
View is the primary unit of design and the Container provides a way of laying out and organizing child components within a View. Every view and
container in Perspective has an associated layout, simply put, it is a way of defining and describing the way that elements inside the container interact.

A container is also a component that contains other components. They also indicate what layout strategy should be used to control the size and shape
of any housed components. The layout strategy defines how the container displays each of its child components in the view. There are a variety of
container types that support different layout strategies.

It's also important to understand how each of the container types behave when they are big and small. This dictates what container types you should
use for your design. There is a bit of learning curve so you will need to experiment with each container type and physically test them out.

To learn more about each container type, refer to the section on Containers in Perspective.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette

Pages in Perspective

Pages are the main method of navigation in Perspective. When talking about pages, there are two
distinct objects to be aware of.

® Page - A collection of views that are displayed within a single tab of a browser during runtime. A On th|S page
page consists of at least one view (called a "primary view"), any number of additional views that
can be docked along the edges (called "docked views"), and a partial URL associated with the
page,

® Page Configuration - A collection of settings that dictate how the page will behave during
runtime, including which views are present on a page, as well as rules for docked views in the
page.

® Methods of Navigation

Page Configuration
® Creating a Page Configuration

Thus, Page Configurations are used to define pages that can be opened in the session, while Pages are ® Initial Page URL

running instances that are defined by the Page Configuration. .
g 4 9 g Page Properties

Page Layout

Methods of Navigation Page URLs
® Corner Priority

Users will traverse the various views in a project by navigating to different pages. There are many ways

to navigate to a page in Perspective. Passing Parameters (URL
Parameters)
* The Navigation Component Action is the easiest way to switch to a different page based on ¢ URL Query Parameters

some user action.
® The system.perspective.navigate scripting function can be used as an alternative to the
component action if more logic is desired.
® Some components have built-in navigational functionality, such as the Link and Menu Tree
components. @

INDUCTIVE
UNIVERSII

Furthermore, all of the methods mentioned above can be used to navigate to arbitrary web addresses,
allowing you to add links to popular sites that might be useful to your users.

Creating Pages

Watch the Video

Page Configuration

All page configuration happens on the Perspective Page Settings tab. Any number of pages can be created for a project, each with their own Primary
View and Docked Views. When configuring a docked view in Page Configuration you can choose to dock the view on a specific Page URL with a set
primary view, or you can choose to share the view across all pages under Shared Settings. Each project can configure a Shared Settings that will be
“inherited” by all pages in that project, allowing multiple pages to use the same docked views and corner priority settings.

You can open the Page Configuration from any view in the Perspective workspace by clicking on the Perspective @ icon at the bottom of the
Designer window. Here you can assign the Page URLSs to your primary views and add docked views to your pages. You can even create a new view
without going to the Project Browser.

Below is an image of a Page Configuration screen. The Page Configuration column on the left side shows all the Page URLs assigned to views in
your project. You can click on the Shared Settings to see all docked views that are shared across all pages of your project. To see docked views that
are specific to a Page, navigate through each page of your project. In the following example, you'll notice that the TopNav view is a shared view
across all pages, and the Plant 1 view has one docked view called, RightNav, which is specific to this page and only visible when this page is open in
your browser.

The following feature is new in Ignition version 8.1.6
Click here to check out the other new features

As of 8.1.6 the Page Configuration page includes a new setting called Page Title, where you can set a title for the page being edited. If the field is left
empty, the browser's tab for the page will be the project name. If there is text in the field, the browser's tab for the page will be the exact content of the
field.

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418407#PagesinPerspective-PageConfiguration
https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NavigationAction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Link
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Menu+Tree
https://www.inductiveuniversity.com/videos/creating-pages/8.0/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

Perspective [Controller1]
2.1.6-SNAPSHOT (b2021041614)

Page Configuration

Shared settings

— Main_Nav
/plant-1
/rightnav
/topnav

=L 3

Q) Create New View

Main_Nav

left-right

Primary View

Page Title

Corner Priority

top-bottom

inherited

Creating a Page Configuration

Pages can be manually created by pressing the Add + icon under the Page Configuration area of the Perspective Workspace. Pages created this
way will need to have a primary view specified.

Perspective [University]
2.1.5-rc1 (b2021041213)

Page Configuration

D Create New View

[

Corner Priority

left-right top-bottom

Alternatively, whenever a new view is added to a project, a page can be created automatically by opting into the Page URL setting and typing value
for the Page URL. Note that all Page URLs should start with a forward slash character ("/"). Creating a page through this method will automatically
set the newly created view as the primary view on the new page.

New View

MName
View
Root Container Type

Coordinate Container

X

[7] Page URL

/my-new-page

[

3

Initial Page URL

Perspective assumes the initial page within a project will be located at page URL "/". When a session is launched, the session will start at the "/" page.
It's recommended that the "home" or starting view for your project uses a page URL of just "/".

Page Configuration

Shared settings +
— Welcome_View ! e
fdaily ! + Edd L
Page URL
f
Primary View
Welcome_View w

Page Properties

Like most objects in Perspective, pages have their own properties. However, since pages aren't selectable in the Designer, page properties can't
appear in the Perspective Property Editor. However, pages do have properties that can be accessed via component property bindings and scripts.

ﬁ Edit Binding: Carousel.props.views[0] = O X
Binding Type Configure Expression Binding
% Tag 1Concat("pagelD: " +{page.props.pageld}) 2 ;:=
[l Property o | %
< > =
fv Expression Options Q-

; i Enabled | | Overlay Opt-Out
J¥ Expression Structure

= Query Add Transform +

@ TagHistory

B primaryView
& HTTP B appBarVisible
i dimensions

B urlParams
| title
v 1) view
b il props
~ [E] root
» il props
b meta
~ 0 Carousel

oK
Property Description Property
Type
pageld The unique identifier associated with the page. Can be used with other features to identify the page, such as the system | value:
.perspective.navigate function. string

Note, that the value of of this property in the Designer will match the name of the active view. However, during a
session the value will return a uniquely generated string, such as "2bf737f8".

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate

path Represents a string "path" to the page. Effectively the same as the Page URL.

primaryView Represents a path leading to the page's primary view. The "path" is based off of the view's location in the Project
Browser, starting under the Views item, and including folders.

appBarVisi = A Boolean value representing whether or not the app bar is visible on the current page. Writing to this value will hide or
ble show the app bar.

dimensions

The following feature is new in Ignition version 8.1.6
Click here to check out the other new features

Settings for the dimensions on a page.

Property

enabled

viewport

screen

primaryView

urlParams

Description

The page dimensions in this object will update accordingly if true. While false, the
dimension values will not update.

The remaining dimension properties in this section are read-only.

Current settings for the "inner" boundaries of the browser, i.e., the dimensions of the
page (read-only).

Property Description Property Type
width Width of the inner boundary. = value: numeric
height Height of the inner boundary. = value: numeric

Settings for the dimensions of the screen the page is on. Note that this only updates on

browser resize and page startup (read-only).

Property Description Property Type
width Width of the screen the page is on. | value: numeric
height Height of the screen the page is on. | value: numeric

Settings for the dimensions of the primary view in use for the page, and how much
scroll is currently applied to that view (read-only).

Property Description Property Type
width Width of the primary view. value: numeric
height Height of the primary view. value: numeric

scrollLeft Distance in pixels that the view scrolled to the left. | value: numeric

scrollTop Distance in pixels the view is scrolled from the top. | value: numeric

The following feature is new in Ignition version 8.1.13
Click here to check out the other new features

Property
Type

value:
boolean

object

object

object

URL query parameters. Perspective supports the use of query parameters, such as those passed by an API call. When
Perspective detects a ? in a URL string, any key:value pair supplied after the ? is mapped as a key:value pair within
this object. This property is read-only.

Note: All values passed in a URL are passed as Strings.

value:
string

value:
string

value:
boolean

object

object

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

title The title shown in the browser's tab. The value of this property defaults to the project's title if there is one. The property | value:
falls back to the projects name if a title isn't configured. The property is writeable, so scripts and bindings can be used string

to create a unique title.

Page Layout

Page layout has specific Ul regions where you can place instances of your views. Depending on screen size and orientation, the Ul regions have
different behavior. There are six primary content regions: Center area, Top Dock, Bottom Dock, Left Dock, and Right Dock. There is also the Popup

region that floats on top of the other content regions.

The Primary View is in the center of each page taking all available space in the browser window. Each page must have a single view configured to be
its primary view.

Docked views, "docked" or positioned towards the edges of the Primary View. In a session, docked views can appear permanently along the edges or
the browser, or be opened an dismissed by the user.

Top Dock(s)

Primary View

Left Dock(s) EEIE?&L}

Bottom Dock(s)

Page URLs

Perspective is designed to operate in a web browsing environment. A Page is the main navigational element in a Perspective Session, so when a
Perspective Session starts, it typically begins at the page mounted to the Page URL "/". Although users can directly navigate to any page in a project if

you know the URL.

Perspective [Examples_2019_11_and_Later]
2.1.1-SNAPSHOT (b2020110202)

Page Configuration

/dash-page
/dock_page

*
=+

least_page

A — Flex View
[flex view test
/myparentview

[popup

/Teservoir_page

fsml-view — Sml view = =Z02ZWBW i :
/surveillance_page |
[tab-view

/top-header-flex -

P Create New View

%) HeaderMain

/new-page flex-view

Primary ViewD

......... I Flex View -

Page URL

Corner Priority

The Corner Priority setting determines which docked sides push all the way to the corners when the user navigates to that page: whether the top and
bottom docked views get the full width of the page or whether the left and right docked views get the full height of the page. Whichever sides have
priority, those docked views will extend on those sides to the edges of the page, thus shrinking the opposing sides down to fit within the page. If the

Inherited option is selected, then the page will inherit the Corner Priority setting from the Shared Settings.

Corner Priority

left-right | top-bottom | inherited

Passing Parameters (URL Parameters)

Pages can be mounted at URLs that include parameters. These parameters are used to allow a page to
be mounted at a dynamic URL, allowing information in the URL to be interpreted as input parameters to
the page’s primary view . For example, suppose we had a page that displayed information about a Tower
site and our system had many Tower sites. Each Tower has an ID number that uniquely identifies it.

Our Tower site view, called Towers, needs an input parameter called towerNumber that is used in
indirect bindings throughout the view configuration to allow this view to correctly display information
about any Tower.

1 Certain characters can cause issues when passed as part of a parameter string in a URL. The
following characters are invalid and should not be used in page parameters: / ? # %

@ INDUCTIVE
UNIVERSIT

Passing
Parameters to
Pages

Watch the Video

https://www.inductiveuniversity.com/videos/passing-parameters-to-pages/8.0/8.1

Edit Binding: Dropdown.props.value - m] X

Binding Type Configure Property Binding

% Tag view.params.towerNumber =
Options

=l Property

2 Enabled Overlay Opt-Out Bidirectional

Jx Expression
Add Transform +

Jx Expression Structure
S Query
© Tag History

& HTTP Binding Preview

Property

i Remove Binding T

D Cancel Apply

We configured our project to have a page, and set the page’s primary view to Towers. We now need to configure the page’s URL so that a user can
navigate to any Tower using their browser's URL bar. To do this, we mount the page at a special URL using a parameter replacement syntax for the
Page URL: /:towerNumber . Our dynamic URL mounting uses a colon to signify that a portion of the URL is meant to by dynamic and map to an input
parameter on the page’s primary view.

Page Configuration

Shared settings + 2
I

New View
fTest
fViewl
[first Page URL

/:towerNumber R TEEE

=]

ItowerNumber

Primary View

Towers b

Page Title

Corner Priority

left-right | top-bottom inheri(ed.

Perspective understands this URL format. Therefore if the user were to navigate to the <URL> /Tower2, Perspective would render "/* as the primary
view with an input parameter mapping of "towerNumber = Tower2", displaying the Tower2 information.

Tower2

Fan Speed 143285657

T

Temp &5.39

Adding parameter passing to an existing set of pages follows a strict formula. The table below assumes your project is named: MyProject.

Original Page URL Parameter Name
Property
/ param
/new-page param
/new-page areaNumber and lineNu
mber

URL Query Parameters

New Page URL

/: param

/ new- page/ : par am

/ new page/ : ar eaNunber/ :

I'i neNunber

The following feature is new in Ignition version 8.1.13

Click here to check out the other new features

Sample URL in Browser

http://localhost:8088/data/perspective/client/MyProject/value

http://localhost:8088/data/perspective/client/MyProject/new-page
Ivalue

http://localhost:8088/data/perspective/client/MyProject/new-page
/100/101

Perspective supports the use of query parameters, such as those passed by an API call. When Perspective detects a ? in a URL string, any text after
the ? is mapped to the urlParams property. This property is read-only.

You may pass query parameters to a Perspective URL by manipulating the URL in your browser, or by a URL navigation call using system.
perspective.navigate() and specifying the URL argument.

Note: Page navigation will not work for passing query parameters, since page navigation is used exclusively for navigating to pages within the

Perspective session.

URL Example

syst em perspective.navigate(url= "http://Iocal host: 8088/ dat a/ per spective/client/MProject/view?

<key>=<val ue>")

Original Page URL Property Parameter Name

New Page URL Sample URL in Browser

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://medium.com/@fullsour/when-should-you-use-path-variable-and-query-parameter-a346790e8a6d
https://docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate

Iview key Iview?key=value http://localhost:8088/data/perspective/client/MyProject/view?key=8

Views in Perspective

Perspective views are unique in that they can act as both a top level screen (taking up a whole page in

your session) or a component (embedded in another view). Each view is a project resource, which are

named and organized into folders in the Ignition Designer’s Project Browser tree. These folders/paths are O th

important not only for organization and referencing, but also because these paths uniquely identify each n IS page
view, and are used in the session (runtime) for navigation. Each view has a Container type that decides

how the components inside it will behave.

While views themselves are not strictly components, there are components that can display an instance : View Properties
of a view, such as nesting views inside of other views. There are also repeater components that may . Input/Output Parameters
dynamically create view instances at runtime. Configuring Views

Views can be mounted in a Page as a primary, docked, or popup views. For more information on how
pages work, see Pages in Perspective.

@ INDUCTIVE
UNIVERSIT

Anatomy of a View

Watch the Video

View Properties

Views, like components, have properties. They are organized into a few types: props, params, and custom. Custom properties can be defined for
views. They act just like custom properties of a component and are internal to the view, and can be referenced by all child components and containers
in that view.

Each view contains exactly one “root” level container, which may be any of the available container types. Therefore, the design experience of a view is
simply the design of the selected container type.

The view properties have three categories:

®* Props - Properties used to configure the component's visual appearance, behavior, and data.
® Custom - Properties defined by the user. They have no direct effect on the component, but are used as variables for the application
designer's convenience.

® Params - Properties only found on views. They define the parameters that may be passed in or out of that view.

For complete description of each of the view properties, see Perspective - View Object. To access the properties for a view, first select the view in the
Project Browser.

Project Browser Al

Cl A

- mm Views -
~ o Custom _Example
I ~(Custom Example
b ¥ Footer
b 4 Header
) Main View 2
b & Popup
) PopUp-EX
b A View - Example
b @ Test

The property types will now be displayed in the Perspective Property Editor.

https://www.inductiveuniversity.com/videos/anatomy-of-a-view/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+View+Object

Perspective Property Editor a _ X

defaultiize
width :
height

dropConfig
udts
dataTlypes

loading

mode @ non-blocking

Input/Output Parameters

The properties inside of the params collection define parameters for the view. This is how views interchange information with other entities, such as a
parent view or the page. Parameters must be defined as "input", "output" or "in/out". The default direction will be "input".

® Aninput parameter is not bindable from within the configuration of a view. The purpose of an input parameter is to receive information from
an external entity. For example, when a view is opened, it may receive parameter values which will become the values of its input
parameters. Or, if a view is placed inside another container, that instance of the view will show the input properties, and they will be bindable.

® An output parameter is the opposite. These parameters are bindable from within the configuration of the view. If an instance of that view is
then placed inside another container, the output values will appear as properties, but not be bindable; they will be read-only from the outside.

® Anin/out parameter combines the features of both input and output. An in/out parameter is bindable from both inside the definition of a
view, and from the outside. This can be useful when making a view that acts as a decorator around an input, for example. Suppose you had
a view that contained a Text Field component and an Image component, and the image displayed whether or not the text in the Text Field
meets some criteria. You would use an in/out parameter to mirror the text across the view boundary.

Configuring Views

Views can be configured in many different ways. They can be displayed as the entire browser window if it is configured to be the primary view of a
page. Views can also be displayed across the top, bottom, or sides of the browser window if it is configured to be a docked view. A view can also be
displayed floating on top of the page as a popup view. A view can also be embedded within another view in various ways using a variety of
components that are able to display embedded views. Pages in Perspective talks more about page layout and how views are configured on a page.

When you start designing your project in Perspective, the first thing you'll do is create a view and how you want to configure it. You can configure it as
a primary view attached to a Page URL, or as a docked view on a specific Page URL with a primary view, or you can choose your docked view to be
shared across all pages in your project. You also have the option of creating folders for your views or simply leaving all your views in the Views folder.

1. In the Project Browser, right click on the Views folder and click New View.
a. In the New View window, enter a name for your view.
b. Select a root container type.
c. Check the Page URL checkbox if you want your view attached to the Page URL. Perspective will match the Page URL with the
view's folder structure upon creation.

d. Click Create View.

Project Browser a - X
Q- Filter A
~ [Perspective -
[Session Events
b @ Styles

» 5 D NewView..

bl '

i ;] = N E new view X
du r

@‘m Name

@ Second| View Test ©
) Welcom
Ef] EastView Root Container Type
@ Horlzqntal Coordinate v
ffl WestView :
Page URL
f V]

When creating additional views, the Page URL will automatically fill in if the Page URL option is checked. If you use a space in your
view name, the Page URL will replace the space with a hyphen. For example, a View named Line A will have a page URL of /line-a.

New View X

Mame

Line A (V]
Root Container Type

Coordinate -
Page URL

fline-a &

N |

2. Once you create your view, the view will open in the Designer workspace, and you can begin adding and configuring components.
File Edit View Project Component Tools Help
B o Yau(noefriaecalgonw ~f -el 3
Project Browser a _ X 0 | “IOD ‘200 4 | Perspective Property | Perspective Components 0! — [H X ?
= -
Q- £ - - EEA
d Temp Q < n
i ~ w1
- @E:]E'W PROPS ~ Chart a
w [o] root & - H
: % ChartR: Select
b [Z] FlexContainer L1 value :f I Chart Range Selector g
[Label mubezFary » @ Pie Chart E
» 9 Transaction Groups backgzoun ¥
,LE\ diodeOnCo’ L& Power Chart —
Tag Browser a_ X[1 diodedffCc b 7 Simple Gauge
=
+- Q O | default A -s locale :ei |© Time Series Chart
Tags UDT Definitions - style | x¥ Chart
Tag Vi crlasses ~ Container
_ Add Prop
Fs e |l B ereakpont
4 _Sim-Dairy_ = POSITION
b W _Sim-SLC_ o D Column
3. If you want to add additional containers, simply select another container type and drag it to your workspace. The container type added in this

example is a Flex container.

Note: To add components to this container, deep select it and drag components into the container. Notice that the properties are now in the

Flex container.

File Edit View Tools

B O

Project
T |

Component
"l

[4

- 4]

& view
~ [[root
I Thermometer
§_CylindricalTank
FlexContainer &
R MultiStateButton
[# Label

> Trancactinn Groune

o
Tag Browser

+-a

~

o | default

Tags UDT Definitions

Tag Value
B _Generic_Programmable
_Sim_New_Pregrammabl
M Tanks_OPC

&V BooleanTag2 &

@ Float Tag 1

@Y Float Tag 2

@% Test Tank Tag

&% TestTank Tag 1

&% zHigh Temp &
OB ohom Tond 0D M

Bad_AccessDen
n
n

Help

> & L
0

Hand

100

Off

200

300

400

B View X

100 200

Multi-State
Buttonin a
Flex Container

Perspective Property Editor
Q-

* PROPS
direction : row
wrap
justify : flex-st
alignItems : e
alignContent : stret
L)

overflow : aut

- style

* POSITION
x:
y:
width :
height :

= CUSTOM

visible : true (9
~ Iotate
anchor : 50

angle

[sausuoduios sansadsisd @)

Once you create your view, the next step is to set up your navigation using Pages.

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components#WorkingwithPerspectiveComponents-DeepSelection

Docked Views

Views can be anchored to an edge of a session. This configuration is called a docked view, as the view is
"docked" to an edge in the session.

Docks are created in the Page Configuration interface.

On thispage....

Conflgu“ng a Docked View ¢ Configuring a Docked View
o " L)
Docked views can be added to a page configuration in the following way: Editing an Existing Docked View

® Docked View Properties
1. Select the configuration you wish to add the dock to

2. and then clicking the Add button on the desired edge. In this example, we'll add a north docked
view by clicking at Add button at the top of the diagram.

A O woucrive
UNIVERSIT

Corner Priority

0 o - Docked Views in
= — Perspective

Watch the Video

3. You'll see a popup tree showing all views in the project. At this point you'll select the view that

will be placed in the docked. Select the desired view and click OK. You'll find your new dock
has been added.

Editing an Existing Docked View

g
Once a view has been docked, it can be further customized via the Configure Docked View popup by left-clicking on the docked view's Edit », icon
on the docked view configuration.

https://inductiveuniversity.com/videos/docked-view-properties//8.1

'+ Add
Page URL
/my-page
Primary View
MapWithControls v
P—
wbley 20 (e
o : B
| + Add | PageTite | i
Corner Priority
left-right top-bottom inherited

' 4 Add |

£ ¥
Docked View Properties
Property Description
Name
View The currently selected view. Changing this will change which view is mounted to this position.
Display This property allows you to show or hide the docked view. Options are:
Option Description
visible The docked view is always expanded/displayed.

onDema @ The docked view is collapsed, but allows the user to display the view by clicking on the docked view's handle.
nd

auto Automatically shows or hides the docked view depending on how much space is available in the session: showing the

view if the page is wider than the width specified in the auto-breakpoint setting. (Works in conjunction with the Auto
Breakpoint property).

Resizable? ' Determines whether the docked view may be resized or not.

Modal? Determines if the view should be modal, meaning users will not be able to directly interact with other views while the modal view is
present. This property is only enabled when the Display property is set to onDemand.

Content Determines how the docked view interacts with other views on the page.

Anchor

Size

Auto
Breakpoint

Dock ID

Handle

Handle Icon

View
Parameters

Remove

Option Description

push Opening or closing the docked view causes the content in the center to resize: the center view will be 'pushed' out of
the way.
cover When opening the dock, it slides in front of the center view, obscuring part of the center view: the dock will ‘cover' part

of the center view.

auto Acts like the cover option when the viewport is smaller than the Auto Breakpoint value. Acts like the push option when
the viewport is larger than the Auto Breakpoint value.

Allows you to make a view always visible while scrolling. Only available on North docked view configurations.

Option Description

fixed The docked view will remain in a fixed position, relative to the page. Useful when a north-docked view should stay at
the top of a page. Select this option if a docked view is acting as a header that should always be present.

scrollable | The docked view will not stay in a fixed position as the user scrolls down in the page. Select this option if the north
dock should move along with the page as the user scroll down.

Determines the size, in pixels, of the view.

® |f the view is docked to the North or South edge, then size determines the height.

® |f the view is docked to the East or West edge, then size determines the width.
Controls the minimum page width for Auto docked views to be visible. When the session is smaller than this width, these views will
be hidden and able to be displayed on demand.

This property is enabled when the Display property is set to auto.

An optional arbitrary string that can be used to reference a docked view through other parts of Perspective such as in an action or as
a scripting call.

Allows you to show or hide a handle for users to expand/collapse the view.
Option Description
Show Show handle at all times.

Hide Hide handle at all times.

AutoHide | Hide handle when page is not active.

Path to an icon used to identify the view when the view is hidden.

Allows specific parameter values to be passed to the docked view when navigating to the page.

Deletes the view from the page.

Embedded Views

An embedded view is an instance of a view that is used as a component within another view. Similar to
how containers can be added inside another container. An embedded view in Perspective is actually
created using the Embedded View component, which internally opens the view. You'll notice when you @

INDUCTIVE
UNIVERSI1

nest a view inside another that the Embedded View component has some properties that are distinct
from those of the view you're nesting:

® path is the path to the view you wish to embed.
® params is an object in which you'll put any parameters you wish to pass through to the
embedded view. When passing parameters into the embedded view, the names must match the .
parameters on that view. Embedded View
* useDefaultViewWidth and useDefaultViewHeight are two very critical properties when
nesting a view. They control whether a view's default configured dimensions are carried into the .
embedded view (using scrollbars if the defaults are too large for the embedded setting), or WatCh the Vldeo
whether the view is scaled from its defaults to match its new setting. Typically if you're finding
unwanted scrollbars, unchecking these properties often achieves the desired result.

When designing your project, views need not be specified as embedded. It is possible that a single view
may end up being instantiated as a regular view and an embedded view, even simultaneously in the
same session. For example, you may have a view that shows 10 tanks using a view repeater as well as a
popup that shows the details for just tank_1. This is common when the properties of a view are used to
pass in parameters.

File Edit View Project Component Tools Help

MM |« . | LIS S | 2 P a a @ ~§ - B
Project Browser a _ X 0 100 200 300 400 500
[=]
Q A
~ g Views -
b A Viewl
4 - 42%
T
~ [root & =

CylindricalTank .
v y_) Embedded View component
B CylindricalTank_01 displaying View3

B Embeddedview
- Bereemeen N /

« 7 view3 =
[=]
- [root of 7
Tag Browser =L 4
+ - Q o |default v i~
Tags UDT Definitions =
=
Tag Value ~
» Il _Generic_Programmable,
> B _Sim_New_Programmabl 7 5
} i Tanks_OPC

The following feature is new in Ignition version 8.1.4
Click here to check out the other new features

As of release 8.1.4, the view parameters available from the embedded view, will appear on a dropdown list of parameters in the Property Editor. You
can select any or all of the parameters to add. Two additional operations are available:

® Sync Params - Adds all the embedded view's parameters and removes any parameters that don't exist on the embedded view.
® Sync & Reset - Resets the parameter values to their default.

The following is an example of passing parameters from a view called Big View into an embedded view.

https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://inductiveuniversity.com/video/embedded-view/8.1/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

1. Click the Add Object Member icon under props.params. A dropdown list appears with all available parameters from the view that is
embedded.

Perspective Property Editor

Q-

FROPS

path : Big View

=

params

L it I'-'-I'.In.'lu" i F= Tl =T=1

usen Parameters k| &= Test(inpuf)

useld value + Test_2 (input)
styl object « Test_3(input)
cl Array

Sync Params

Sync & Reset

POSITION

¥ 2E

y :162.6
width : 320
height : =220

2. Click the Left Arrow - icon next to the parameter you want to add.
3. The parameter now appears in the the params list.

Perspective Property Editor
Q- |
PROPS
path : Big View
params
Test : 15
usebDefaultViewWidth : false
useDefaultViewHeight : false
style .
classes
Add Property
POSITIOM
¥ o2
y 1162
width : 320
height : =20

Popup Views

A Popup View typically floats on top of the primary view in a Perspective
Session, and it can be resized and moved around at the user's discretion.
Popup Views are great for displaying additional information about an item
on the primary view. Popup Views are often opened by components such
as a Button on another view. When a user doesn't need to have the
additional information displayed on the screen, it can be closed by clicking
the Button again or simply closing the view.

Title Bars on Popups

When called as a popup, a built-in title bar will be applied to the view if any of the following conditions
have been met via the Popup Action configuration, or the corresponding parameters have been set on
the appropriate system function, such as system.perspective.togglePopup:

® A non-empty string title is provided (the ti t | e parameter on scripting functions)

® The popup is marked as with a "close" icon, meaning the "show close Icon" setting is enabled
(the showd osel con scripting parameter)

® The popup is marked as "Draggable”, (the dr aggabl e scripting parameter).

Configuring a Popup View

On thispage ...

® Title Bars on Popups

® Configuring a Popup View

® Configuring a Parameterized
Popup View

@ INDUCTIVE
UNIVERSIT

Popup Views

Watch the Video

Let's assume you already have a primary view that contains some Tanks. At a glance, an operator can view some basic information on all the Tanks
at a particular site, but they cannot see the additional information that is being collected that is unique to each Tank. The perfect way to display that

unique information is to use a Popup View for each Tank.

» i@ Ramp
~ @ Sine =
» % Sined orc 55 Double -
> % Sine1 ocrc | -3.24 Double
b W Sine2 crc 1955 Double
» W Sine3 orc 1821 Double
+ % Sined cPC 9966 Double
» % Sines oFc 55 Double =
b W Sinef orc | -3.24 Double P ——
b B CinaT oo nAE Mankla - # Tanks X

Project Browser o - X] 100 200 400 500
Project Properties /4
v g SiteA - Site A Tanks
||~ @ranks |
* oot
CylindricalTank Tank 100 Tank 101 Tank 102
CylindricalTank_0 =))
CylindricalTank_3 _ 1 pe=== " = -
Label "
Tag Browser g - X
Q o ¥-a 9 & |- S 18% o
Tag Value DataType Traits ~ L -
- T Tags —
L] ===

GG
-
]
=
o

Here is an example of how to use a Button component to set up a popup view for displaying the current tank temperature and history for the last 24

hours of the selected tank.

1. First create a new view, and give it a name. You many want to assign a name that you can easily recognize as a Popup View and the Tank

ID number. This example uses the name Popup100.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.togglePopup
https://www.inductiveuniversity.com/videos/popup-views/8.0/8.1

2. Next add some components to the Popup View. In this example, a Thermometer, Sparkline, and Label components were added.

Project Browser =LY (] 100 200 300 400
Q. Project Properties 4
Tank 100 - Temp Data
- root
Thermometer c 100
Label
Sparkline = 8o 5
Label_0 80 rih 1
Label_1 v © * 1 | L
Tag Browser g _ X - Vo | A
aQ o (- 6 90 B = N
2
Tag Value DataType Traits ~ 24 Hour Trend
- @ Tags
B Data Types
» W Ramp Tank Temp
~ '@ Sine s - 4
b W Sined oFc |25, Double D "
+ W Sine1 oFc 10 Double D
+ W Sine2 oFc 10 Double D M. W Tanks

Note: To display the additional data for all Tanks, you will need to create a Popup View for each Tank. You can use the Flex Repeater
component to easily create multiple instances of components for display in another view each having the same look, feel, and functionality
of the original components .

3. Now, let's go back to the primary view and add a Button component for each of the Tanks and label them 'Temp'.

0 100 200 300 400 500 -
Site A Tanks
Tank 100 Tank 101 Tank 102

100

200
E .1
1
l
e

Tank ——
_ Temp: | i Temp | Temp | | Temp |
4 3 y

£ Popup100 Tanks X

4. Righ- click on the Temp button for Tank 100, and select Configure Events.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Repeater

—— %= Cut
i Copy

B Duplicate

Delete

=it

Send to Back
Move Backward

Mowve Forward

L el

Bring to Front

I Configure Events... |

Configure Scripts...

5. The Event Configuration window opens. Under Events, select onClick.

6. Under Organize Actions, click the Add + icon to choose the appropriate action for the Temp button. Since we are opening a Popup View,
select Popup from the dropdown list.
7. You have several Popup Actions to choose from.
® Open - Opens the Popup View.
® Close - Closes the Popup View.
® Toggle - Opens and closes the Popup View. Select Toggle so you can use the Temp button to both open and close the Popup
View for the specified tank.
8. In the Configure Popup Action area under Select View, select your Popup View that you created in Step 1. This example uses Tank 100 and
the Popup View is 'Popup100'.
9. You also have some additional settings for customizing the behavior and appearance of your popup. Some of these options are set by
default, and others you can customize. When you're finished, click OK.
10. Repeat Steps 4 through 9 for Tank 101 and Tank 102.

0 Event Configuration on Button — O *
Events Configure [onClick] Actions
o-
Organize Actions Configure Popup Action
=y Al
v B System Events
i 1. Popup + .
B onStartup i Popup Action
i
B onShutdown 1 Open Clo... Toggle
~ @ Component Events i
3 Select View
B onActionPerforr
~ @ Mouse Events | Popup100) s
Parameters
B onContextMenu +
B onDoubleClick e palue .
i
B onMouseDown i
B onMouseEnter
B onMouseLeave
B onMouseMove
B onMouseQut 2 e
Identifier Position
B onMouseQver
B onMouseUp gCokgPlu Sl Exact Relative
~ @ Keyboard Events Title
B onKeyDown Top Left
=
B onKeyPress
B onKeyUp Behavior Eoidn it
~ @ Text Composition E B show clase button Size
[] C itionE -
onf nmpos! !on 7 Draggab.. Width Height
B onCompositiens v —
iewport Bount
B onCompositionl, i Resiza... e
~ @ Focus Events Modal
B onFocus Background dismissible
B onBlur
~ @ Selection Events Optian
B onSelect 4 Enabled
~ @ Touch Events Prevent Default
< N nnTouchCance)\ M Stop Propagation
Cancel Apply

11. Save your project.
12. Now let's see how your Popup View works in a Perspective Session. While in the Designer, go to the top menubar and click Tools > Launch
Perspective > Launch Session.

— O =

0l ewProject - Perspective x +
(/] y p
C @ Notsecure | 10.10.110.52:5088/d... & ¥ Paused & &
Site A Tanks
Tank 100 Tank 101 Tank 102

13. Click on the Temp button for Tank 100. You'll notice Tank 100's Popup View will open displaying its Temp Data. You can drag the
Popup View around the screen or even change its size.

14. To close the Popup View, click either the Temp button, or click the Close icon in the upper right corner of the Popup view.

MewPraoject - Perspective X +

aen

C @ Notsecure | 10.10.110.52:8088/data/per... & ¥ rﬂ [] Paused o

Site A Tanks

Tank 100 Tank 101 Tank 102

- Tank 100 - Temp Data
iC 100
a0
&
Tank
Temp: “
20
(]
24 Hour Trend
Tank Temp

Configuring a Parameterized Popup View

It is often useful to pass information to a popup view as it is being opened. The popup can use this information in its design, usually to make it
dynamic in some way. For this example, we will build a dynamic message box. We will have a message box view which will accept a parameter value,
the message to display.

1. Create a new popup view, and name it Message Box. We can use the Coordinate root container type for this example. No page URL is
required.
2. Add a Label component to this View.

Project Browser a - X

Q- A

4#) Alarm Notification Pipelines .
&% Sequential Function Charts
» & scripting
~ @ Perspective

LU

rLabel + C

[& Session Events
¥ Styles
~ & Views

- @ Message Box

L I

~ [root @ B L _ 4
T o
2 Transaction Groups
@ Vision
B Named Queries
Reports

U

-

3. Select the Message Box view from your Project Browser, and from the Property Editor, define a new value parameter named "message" with
a default value of "Sample Message."
4. Bind the Label component to our newly created view parameter.

0 100 200 EC 400 | | Perspective Property Editor

-1 | L o | L L L
| l Q-
(= 0

B2 alignVertical :
] A o M textStyle »
S5ample Message b
P g + classes :
style .
(=] classes :
4 [+E
s 0 sl POSITION
CUSTOM
= [7) Edit Binding: Label.props.text - a X
=
7 Binding Type Configure Property Binding
=
e Options
El Property Enabled | | Overlay Opt-Out Bidirectional
¥ Expression
Add Transform +
S| fr Expression Structure
b
1 = query
| © Tag History
(=]
2
& HTTP
=
=)
Binding Preview
) Property
| i Remove Binding sample Message
=
=
1 n Cancel Apply

Our popup is now ready to be used.

Next we have to trigger this popup to open, passing the appropriate parameter value. You can use a Popup Action from any Component Event like in
the previous example. The only difference will be that now you are passing in a value for the Message Box view's message parameter. Pressing the +
button on the upper right-hand corner of the Parameters table will allow you to pass in a value for the Message Box's message parameter. In this
example, we are passing the popup text property value of a simple Text Field component.

Event Configuration on Button

Events

a-

~ W System Events

B onStartup

B onShutdown
~ @ Component Events
[T onictionperformed |
\d Mouse Events
onClick
onContextMenu
onDoubleClick
onMouseDown
onMouseEnter

|

|

|

| |

|

B onMouseleave
B onMouseMove
B onMouseOut

B onMouseOver
B onMouselp

- Pointer Events

]
i
onPointerDown
onPointerMove

onPointerUp

|

|

|

B onPointerCancel

B onPointerOver

B onPointerCOut

B onPointerEnter

B onPointerLeave

~ @ Keyboard Events
B onKeyDown

B onKeyPress w

Note

Configure [onActionPerformed] Actions

This event is fired when the 'action’ of the component occurs.

[0 Learn More

Organize Actions

== 5 +

Configure Popup Action
Popup Action a
© open Close Toggle

Select View
Message Box E ~
Parameters

Name Value

s+

Identifier Position
|m95539950"| = | | Exac | Relative
Title
= Top Left

e Bottom Right
Show close button St
Draggable Width Height
Resizable Viewport Bound

Modal

Background dismissible

Apply

The "messageBox" identifier is the string that specifies a unique popup identity. If you want to close this Message Box popup from a popup action,
you'll need to supply the identifier that was used to open it.

It is also possible to trigger the opening of the popup using scripting through the use of the system.perspective.openPopup()

syst em per specti ve. openPopup(" nessageBox", ' Popups/ MessageBox', parans = {' message':self.getSibling

("TextField").props.text})

Self-Hiding Navigation Drawer

Navigation Drawer

A navigation drawer is a special type of docked menu, usually appearing on the left side of a session. On th IS page s
What makes a navigation drawer special is its responsive design. On smaller devices, this docked menu
can hide itself and pop out when the user needs it. These drawers have become ubiquitous in User
Interface (UI) design, particularly in apps.
® Navigation Drawer
Here's what one might look like on a computer monitor: ® Configuring a Navigation Drawer
® Navigation View
® Header Views
® Page Setup
® Configure Menu Icon

All About Navigation!
= Menu ltem 1 >

= Menu ltem 2 >

Content Goes Here

Here's what one might look like on a mobile device:
= All About Navigation!
Content Goes Here
oA

As the screen becomes smaller, the menu is hidden and an icon appears in the top left to allow us to
toggle its visibility. This particular navigation drawer will probably need about 200 pixels horizontally,
which on a desktop is fine, but on a mobile device takes up too much of the screen.

Note: This guide assumes a bit of knowledge about how views and components work. Please see
those sections of this manual for more information as needed.

Configuring a Navigation Drawer

The following example walks through how to configure this self-hiding navigation drawer. There is no mention of setting up the Menu Tree or any
content pages, it is strictly a guide to show you the layout type.

Navigation View

. In the Project Browser, right click on Views and click New View.

Name the view Menu View and set the Root Container Type to Coordinate.

. Click Create View.

. Set the width of the view to 200 pixels.

. Drag a MenuTree component onto the Menu View. Configure the component as you would if you were using a standard docked view.

arwN R

Note: You can set the root of the Menu View to use the Percent Mode. This way it is easy to make the Menu Tree fill all the space.

0 100 200 300 Perspective Components o - H X

Menu = =a ==
Menu Item 1 >

% Horizontal Menu

MenuItem2 2 ¢ === El MenuTree

nn 200 0o
sjusuodwo) anpadsiad o

AR

S0

® MenuView x

Header Views

Next, we will create our header views. The two views will be set up in a breakpoint container, which will swap between a small header with an icon,
and a big header without one.

1. Create a small header view for our mobile UL.
a. In the Project Browser, right click on Views and click New View.
b. Name the new view HeaderSmall, and set the Root container Type to Coordinate.

c. Click Create View.

) New View X
MName
HeaderSmall (V]

Root Container Type
Coordinate b
Page URL

®

d. Set the height of the view to 75 pixels.

e. Drag an Icon component onto the upper left side of the view, then click on the component to select it.

f. In the Property Editor, set the path property to material/menu. You can of course use whatever icon you'd like; a list of all the icons
in the material folder can be found here.

g. Add a title for the header. We used a Label component with the text "All About Navigation!"

0 100 200 300 400 500 600 700 60D

= All About Navigation!

2. Create a large header view for our desktop Ul
a. Create another view called HeaderLarge, again with a layout of Coordinate.
b. Set the height to 75 pixels.
c. Don't add the icon to this one, but add the same Label as above.

3. Finally, create a Breakpoint view to toggle between them.
a. Create a view called HeaderMain with a layout of Breakpoint.
b. Set the height to 75 pixels.
c. Inthe Property Editor, click on Large (under Children).
d. Drag an Embedded View component on the HeaderMaster view.
e. Under PROPS, click on the Expand W icon next to the path property then select HeaderLarge.

https://material.io/tools/icons/?style=baseline

Perspective Property Editor /1 _ X

"r.
Breakpoint 640 PX
Children]
small (< 640) ()
Large (== 640) Fa)
=
o
.-ﬂf‘
PROPS -
a\
path :
params

Adi
useDef: | @HeaderLarge

useDefz £ HeaderMain
) Headersmall

tyl)
style 1) Menu View
clas:) Popup100
posrrion | |” M Test
size : 1

f. Now we'll do the same for the small child of this Breakpoint container. In the Property Editor, click on Small (under Children).
g. Drag an Embedded View component on the HeaderMain view.

h. In the Property Editor, click on the Expand W icon next to the path property then select HeaderSmall.

Page Setup

Now that we have our header and menu views, we need to set up our pages to display the views properly.

1. Click on the Perspective @ icon in the bottom left of the Designer to access the Page Configuration menu. Select Shared settings. We're
going to add our two docked views here, so they show up on every page.

Perspective [NewProject_S]P]

) Create New View
1.0.15-rc1 (b2020070813)

Page Configuration

e B

! m ?
/breakpointtypeview

fcolumntypeview
/drawingtypeview

{flextypeview Co
{secondview left-rig|
/tabtypeview
/thirdview

Menu View #

Recently Modified Views -~

#® | Menu View HeaderSmall HeaderLarge HeaderMain

2. On the top dock, click the Add + icon. Select the HeaderMain view and click OK.

) HeaderLarge s

HeaderMain
) HeaderSmall
) Horizontal-Menu-Nav
0 Inline-view

3
3. Click the Edit +, icon next to the HeaderMain docked view.
4. In the Configure Docked View menu, set the size to 75.

HeaderMain &

Configure Docked View

View
HeaderMain v
Display Resizable? Modal?
visible v false
Content Anchor
push - fixed -
Size Auto Breakpoint
75 =
Dock ID Handle
hide -

Handle Icon

View Parameters

Remove 0K Cancel

5. On the left dock, click the Add + icon. Add the Menu View and set the following:

Size: 200

Display: Auto (This enables us to configure a breakpoint below)

Autobreakpoint: 640 (This is the same width that the breakpoint container on the HeaderMaster view is using)
Dock Id: menu (This will be used in our dock action on the menu icon to toggle the menu.)

Configure Docked View

View
Menu View w
Display Resizable?
auto - false
Content Modal?
push
Size Auto breakpoint
200 = 640 =
Dock Id Handle
menu hide -
Handle icon
View parameters
Add Object Member...
oK Cancel

6. In the center of the Page Configuration menu, set the Corner Priority to top-bottom. The other option won't look quite right.

Perspective [NewProject_S]P]

Page Configuration

) Create New View

+
/ i *
/breakpointtypeview
Jcolumntypeview

HeaderMain #

/drawingtypeview
Iflextypeview
/secondview
ftabtypeview
/thirdview

Menu View

Corner Priority

| left-right I top-bottom I

Configure Menu Icon

Now we need to configure the menu icon we created on HeaderSmall to pull up Menu View.

1.
2.

Open the HeaderSmall View.
Right-click on the Icon component, and select Configure Events...

D........1?:'...|....2.:':'.......|3?:'
] r— Adl Adanaat 1
_: =7 Y cut Ctrl+X NaVI
i & Copy Ctrl+C

g: Ei Duplicate Ctr+D
]]
_j m Delete e
_: M SendtoBack
g L1 Move Backward
_: M Move Forward
] # Bring to Front
?_ Configure Events...
E’ Configure Scripts...
_: dp Flatten

3. Under Mouse Events, select onClick.

. Next click the Add + icon to add an action. Select the Dock action.

Configure [onClick] Actions

Organize Actions

+

Accelerometer
Alter Logging
Debug

Dock

Login

Logout
Mavigation
Fopup
Refresh

Scan Barcode
Scan Ndef NFC
Script

Theme

5. This action needs the identifier we created. Set the Dock Action to Toggle, and the Identifier to menu. Click OK.

Organize Actions Configure Dock Action

Dock Action
Open Close | © Toggle

Identifier

| menu {}

Options
Enabled

= = B 4

Now go test it out! It's easiest to open a browser on your desktop and change the size to toggle between the different views.

Using this strategy, you can configure a navigation drawer in combination with any basic navigation component or method.

Working with Perspective Components

Components give you flexibility in designing HMI and SCADA that reflect your company's design and
your site's layout. Components represent widgets you deal with every day: buttons, text areas,
dropdowns, charts, gauges, linear displays, and so on. The Perspective Module comes with a host of
built-in components that you can select from for use in your project. There are many ways to manipulate
and arrange components when working in the Designer.

This section introduces you to how to work with components so you can learn how to quickly select,
move, resize, duplicate, and customize components during the design process. Properties and specifics
for individual components are covered in the Appendix.

Component Categories
Components are separated into the following categories in Perspective:

Chart - Charts allow you to display and show off your data in a graphical way.

Container - Containers provide a way of laying out and organizing components within a view.
Display - Display components display static and dynamic information.

Embedding - Embedding components can be embedded in multiple views of a project.

Input - Input components enable users to enter data, or select data, and even control a device.
Navigation - Navigation components provide you with design strategy options to navigate within
a Perspective session.

Component Properties

Properties on Perspective components are separated into categories.

® Props - Properties that control the configuration and provide the runtime data for the
component. See individual Perspective components for a list of the properties and their
descriptions.

® Position - Properties defined by the component’s parent container which control the location of
the component. The available properties listed under this category depend entirely the container
type that the component is placed in.

® Custom - Custom properties defined by the designer for each component instance.

® Meta - Properties defined by the Perspective Module itself for common things like the
component’s name. See Meta Properties on Perspective Components.

The following feature is new in Ignition version 8.1.2
Click here to check out the other new features

Variants

On thispage ...

® Component Categories
® Component Properties
® Variants
® List View vs Tile View
® Adding Components
® Selecting Components
® Mouse Selection
® Tree Selection
® Deep Selection
® Select Through
® Select View
® Right-Click Menu
® Manipulating Components
® Moving
® Resizing
® Aligning
® Alignment Guides
® Rotating
® Image Source
® Web Address
® |mage Management

@ INDUCTIVE
UNIVERSIT

Component
Overview

Watch the Video

Some Perspective components have multiple pre-configurations, called variants, based on options a user might commonly use. For example, the Time
Series Chart components has variants that set the chart up as a Line chart, Area chart, Bar chart, or Scatter chart. Using a variant can save you time.

Variants have a group of properties pre-set to affect the appearance and functionality of the component.

When a component has variants, a number appears next to its name or thumbnail image. Click the arrow to the left of the component to view a

dropdown menu of variants. Refer to Perspective Components for information about individual components.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Chart+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Display+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedding+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Input+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Navigation+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Properties#PerspectiveComponentProperties-MetaProperties
https://www.inductiveuniversity.com/videos/perspective-component-overview/8.0/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

[‘ Pie Chart

& Power Chart

P () Simple Gauge

|12 Time Series Chart

|E:' Line
L© Area
L© Bar
L® scatter

| xv chart

List View vs Tile View

As of release 8.1.2 there are two options for viewing Perspective Components in the Designer. Click on the List View = icon to see components
am
listed just by category and name. Click on the Tile View "* icon to see the components listed by category and thumbnail icon. The following image

shows the Tile View of the variants for the Time Series Chart component.

Time Series ...
(4) «

Line Area

Bar Scatter

Adding Components

To add a component, open the Perspective Components palette. Click on the component you want (or click on a variant of the component) and drag it
onto your view. In this example, we put a Label component under the Gauge component.

File Edit View Project Component Tools Help

| sjuaucdwo) anndadsiad Q|

T 1
BE« s e/tao rleaca/doas c 8 b
o B | o, w0, e, 0, 00, (50, o | (B Pesedie Copmens & - B X
=
& A 60 Q- =% = o=
& Firstvi i 50 70
irstview S] |] =
] 40 RS 20 -)
D Inline-View] Container
D Large View i = Breakpoint
) Menu Bar E [column
w [Second View 1 100)
v i : » [Coordinate
- [] root @& .
(D Gauge] 10 110 » [Z] Flex
I [Label ? b [Tab
O- ——————— =4
b Tg Transaction Groups - ~ Displa
[1 0 = 120 play
b & Vision
) b B Alarm journal Table
» B Named Queries]
= R [E W Alarm Status Table
< > -
Tag Browser g - X E: » M Barcode
+-Q O |defaut v |i-|| | W Cylindrical Tank
———— 4 -
Tags UDT Definitions m Dashboard
Tag Value .. | @ Icon
= =
rmras ||l & mage
] Ef’j Inline Frame
:
= » ‘5 LED Display
= -

Selecting Components

Mouse Selection
Using the mouse is the most common way to select components, where a single click on a component selects it and double clicking Deep Selects it.

You can also select components by clicking and dragging the mouse to draw a selection rectangle. If you drag the window left-to-right, it will select all
components that are completely contained within the rectangle. If you drag the window right-to-left, it will select all components that the
rectangle touches. Lastly, you can start dragging a window selection and then hold-down the Alt key to use touch selection. This will draw a line as
you drag, and any components that the line touches will become selected. As you're using these techniques, components that are about to become
selected will be given a yellow highlight border.

(@) Mariah Energy

Temp 2

Hand Hand

Tree Selection

By selecting nodes in the Project Browser tree you can manipulate the current selection. This is a handy way to select the current view, the
root for the container, and any components on the view. This is also the only way to select COMPONENLS that are invisible.

Project Browser g _ ¥ |=]
Q- Filt A | | @) Mariah Energy
~ @ Perspective A
[& Session Events]
b mm Styles Ex F -
- g Views]
- g Test] =
ffl FirstWiew 7] -
0 secondview] 100
v (4 ThirdView] -
~ root =8 .
Label 1
Image_0 _'
Label 01 0]
CylindricalTank_3 i
I — Temp 2
Thermometer_2 F

Deep Selection

Perspective makes great use of its many containers to help create a layout and design to fit any scenario on any device. To accommodate this,
components sometimes need to be nested within a series of containers, which are themselves nested in other types of containers. With this comes a

true tree of components, and selecting components nested inside containers works differently than components on the root. Deep Selection allows
you to select into a container and select a component within.

To deep select a component, double-click on it. Three things happen to indicate you have deeply selected into the component and not just selected
the component itself:

® The border of the component changes to a thick solid line that can't be manipulated.
® The surrounding area darkens.

® Inthe Project Browser, a Deep Selection @ icon appears next to the component.

Once inside this new deep selection space, you can then select a component much like before, either by clicking or dragging to select components, or
by deep selecting into another container inside the original container.

The following feature is new in Ignition version 8.1.26
Click here to check out the other new features

In addition to double-clicking a component, you can use a single-click while holding the Alt and Shift keys to enable deep selection. For the Button, Lab
el, Checkbox, and Toggle Switch components deep selection also enables inline text editing.

To cancel the deep selection, click anywhere outside of the component.

Project Browser o - X 0 100 200

Q Project Properties ./ .

+ ® Perspective - e —
[& Session Events
b mm Styles
- mm Views
v A View
+ [root
| 0 Thermometer @
W CylindricalTank
[¥ Label
[¥ Label D

2% Transaction Groups Lahel Lahel

8
|
|
|
|

100

200

Select Through

When working with nested containers, Alt + left clicking on a component in a container will select the clicked component, and automatically deeply
select the component's parent container. This can save time compared to first deeply selecting the container, and then selecting the component.

Select View

The following feature is new in Ignition version 8.1.37
Click here to check out the other new features

Starting in Ignition version 8.1.37, you can click the grey design area in the Designer's workspace to directly select the top level view when a nested
child component is already selected.

Right-Click Menu

When working with components in the Designer, you can right-click to get quick access to options.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Button
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Label
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Label
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Checkbox
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Toggle+Switch
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37

Yo Cut

Delete

A Copy
Ei Duplicate
B Paste

i Paste & Replace

Send to Back

Mowve Forward

[
o
L] Move Backward
L
o

Bring to Front
Wrap in Container

Configure Events...

Configure Scripts...

The top portion of the menu is similar to an edit menu in that it provides much of the basic copy/paste functionality

Function Icon

Cut ‘ho

Copy _.9
Paste i
Duplicate | |RW
Delete

S
D
Paste & i

Replace

Z-order

Description

Removes the selected component but keeps a copy on the clipboard. You can also use the Ctrl-X shortcut to quickly cut a
component.

Copies the selected component to the clipboard. You can also use the Ctrl-C shortcut to quickly copy a component.

Pastes the current contents of the clipboard. Does not paste over and replace components. You can also use the Ctrl-V
shortcut to paste.

Duplicates the selected item (essentially a fast copy and paste action). Components can also be duplicated by dragging
them and holding down the Ctrl key. You can also use the Ctrl-D shortcut to quickly duplicate a component in place.

Deletes the currently selected component. This can also be done using the delete key.

Pastes the current contents of the clipboard over the currently selected component and replaces it. You can also use the Ctrl
-Shift-V shortcut to paste over.

The next section of the right-click menu contains options or setting the z-order of components. The z-order is the order in which two-dimensional
objects are stacked, for example shapes in a graphic that overlap each other. In Perspective, z-order defines relative order of components when they
overlap. There are four z-order icons and actions that will reorder any selected components.

Function

Send to Back

Move Backward

Move Forward

Bring to Front

Icon Action

o
L
L

o

Move the selected components to the back of the z-order.

Move the selected components backward in the z-order relative to any overlapping components.

Move the selected components forward in the z-order relative to any overlapping components.

Move the selected components to the front of the z-order.

In the following example, we have an image component with a photo of a warehouse, an icon, and a label. We placed an icon (the truck) and a label
"Local Delivery" on the view as well, and then set the z-order so the label is on top, the truck icon is in the middle, and the image in the background.

=
=]
=]
%]

100

Wrap in Container

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

Perspective features a one-step wrapping option. The Wrap In Container action, will "wrap" a component into a new container within the existing
container. This is functionally similar to creating a new container, and copy-pasting the component into the new container.

Wrap in Container is available on the right-click menu from any Perspective component.

%= Cut

A Copy

Ei Duplicate
m Delete

Send to Back
Mowve Backward

Mowve Forward

W WO W

Bring to Front

Wrap in b | Breakpoint

Configure Events... Coordinate

Configure Scripts... Flex Column
1 Flex Row

Modify Source View

The following feature is new in Ignition version 8.1.6
Click here to check out the other new features

This option only appears in the list after right clicking on an embedded view component or flex repeater component. Selecting this option will take you
to the source view's configuration in the designer.

Configure Events

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Repeater

The Configure Events option takes you to the Event Configuration page where you can set up actions for the component based on events such as a
mouse click or key press. For complete information, see Component Events and Actions.

Configure Scripts

The last option is Configure Scripts, which takes you to a Script Configuration page where you can set up Custom Methods Custom Methods and Mess
age Handlers on the component.

Manipulating Components

Manipulating components can be done with both the mouse and the keyboard. You can move components around, resize them, and rotate them.

Moving

To move the component, click on it once then drag it anywhere within the container's bounds.

Resizing

When you click on the component you want to resize, you'll see eight handles displayed around the edge of the selection. When you click on a handle,
the mouse cursor will change to a two-way arrow. Use the mouse to drag the handle and change the size of the component. You can also select
multiple components and resize them together. To resize around the center of the current selection, hold down Shift.

You can also resize the current selection using the keyboard. To nudge the right or bottom edge of the selection in or out, use Shift combined with the
arrow keys, which resizes by the nudge distance, which defaults to one pixel at a time. To nudge the top or left edge of the selection, use Ctrl-Shift co
mbined with arrow keys.

m]
E_

Aligning

New alignment tools are available in the Perspective Designer Toolbar. These tools allow easy alignment of selected components within a Coordinate
container including align top, bottom, left, right, as a row, and as a stack. Align as row, and align as stack include a normalize version, that adjusts the
size of the selected components to match the component that was selected first. Rotated components being aligned will correctly align along the top-
most, bottom-most, left-most, right-most point of the rotated component. If a rotated component is being normalized is within the group that is being
aligned, normalizing the component will adjust the pre-rotated dimensions.

Note: These tools can only be used with components in a Coordinate container.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-CustomMethods
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-CustomMethods
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Coordinate+Container

Icon Function

||;| Align Left
|:|| Align Right
I—n Align Top

Align
| Bottom

Align
ke Centers
Horizontal

E Align

Centers
Vertical

Align as
Row

Align as
Row and
Normalize

Align
as Stack

Align as
Stack and
Normalize

e Center Hori
zontally

@ Center Verti
cally

Description

Align the left edges of a group of components.

Align the right edges of a group of components.

Align the top edges of a group of components.

Align the bottom edges of a group of components.

Aligns all of the selected components horizontally on their centers.

Aligns all of the selected components vertically on their centers.

Aligns all of the components on their centers as a row, and will add padding between them that you can select.

Aligns all of the components on their centers as a row, and changes the size of all of the components to the first selected
component. If a rotated component is within the group that is being aligned, normalizing the component will adjust the pre-
rotated dimensions.

Aligns all of the components on their centers as a stack, and will add padding between them that you can select.

Aligns all of the components on their centers as a stack, and changes the size of all of the components to the first
selected component. If a rotated component is within the group that is being aligned, normalizing the component will

adjust the pre-rotated dimensions.

Centers the currently selected components horizontally.

Centers the currently selected components vertically.

Align and Normalize Example
In the following example, we have a stack of buttons that are various sizes. We want to align them, stack them with equal space in between them, and
make them all the same size.

1. Select the buttons, then choose Align as Stack and Normalize.

S F kb o -[f w3

— 1400 | & Alignas Stack

Align Stack and Normalize

Button 1

One-Shot
Button

. Enter a padding distance in pixels. We use 8px for this example.

Input >

Padding between components:

g

3. Click OK. The buttons will be stacked and normalized.

S F Lk b @ o
300 400

One-Shot Button

Alignment Guides
When you drag a component near another component in a container, Alignment Guidelines appear to help you better align your elements.

® A dashed red line will appear to guide alignment to the center of the components or to the right or left edge, depending on where you drag.
® A solid red line indicates distance, in pixels, between components.

100 200 300 400

X 31.2% v T.T%
w:12.2% h: 24.5%

0 100 200 300
=
=8
] o
] X 12.9% y:24.3%
i w: 12.2% h: 24 .5%
1 []
= | Temp 2 I

The Designer also has Vertical and Horizontal guide that can be set up to help you align components. For more information, see Vertical and
Horizontal Guides.

Alignment Guides Example
In the following example we've added a Label component beneath a Cylindrical Tank component. | want to align the label so
that it is centered with the center line of the tank.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-VerticalandHorizontalGuides

1. Drag the Label component underneath the Cylindrical Tank component. As the Label component approaches another component, you'll see
Alignment Guides appear.

i-l"'.-.-.__i__.-_""h
h-‘-‘—-—l_—-—'-—".

30%

pam e e -

-

gla

x 15.5% y: 30%

w: 11.3% h: 6.6%

[°2)
[}

’

Now the starting edge of the Label is aligned with the center of the Cylindrical Tank. But we want the text to be centered under the tank.

. Select the Label component and click the Modify Style » icon next to the style property.
. Expand the Text settings. Set the color to blue, the font weight to bold, and the text align to center.
. Click OK to save the style settings.

A wWN

< Applied Styles Text

Text Font family Size

font-weight : bold
Calor Weight

|- #0000D9 ”bold - Italic

text-align : center

Line height Letter spacing Word spacing

Alignment

Text align

center hd

Indent White space

Text Options

Transform Decoration

Tt |TT| tt 5 5|5 Break-word
Shadow

Cancel

5. Now the text is centered in the Label component. Drag the Label component underneath the Cylindrical Tank component again. You'll see
Alignment Guides appear.
6. Stop dragging when the Label is centered under the Cylindrical Tank.

x99% y:29.0%
w:11.3% h: 6.6%

Rotating

Components place on coordinate containers can be rotated. The Rotate property is located on Position Properties section of the Perspective Property
Editor. For a definition of all the position properties see the individual container pages. Rotated components being aligned to other components will
correctly align along the top-most, bottom-most, left-most, right-most point of the rotated component.

There are two ways to rotate a component:

® Enter a rotation angle in the props.rotate.angle property.
® Grab the rotation handle on the component and drag it with your mouse until the component is rotates as you'd like.

The rotation anchor sets the point of rotation around which the component will be rotated.

] 100 200 Perspective Property Editor o — X

rotation

handle ™~
PROPS
rotation

Tank 410 anchor text : Tank 418
+/

alignvertical : top

100

— . style »

syuauodwo) anndadsiad (§

classes :

color : #seeese I
fontWeight : bold
textAlign : center

B Add Propert

POSITION

200

b
y
width :
height
rotate

i0a

anchor : 58% 58%

na

angle : Bdeg

_:::......: opert

L Test X ThirdView CUSTOM

-

Note: If a component is smaller than 28px by 28pXx, the rotation handle and anchor + symbol are not displayed. Use the property editor to set rotation
and anchor properties in this case.

Rotation Examples
Example 1

The following example shows icon component at default (no rotation), at 18 degrees rotation, and then at 39deg rotation with the rotation anchor (point
of rotation) placed over the earth image. In the latter, the icon has a better angle in relation to the earth graphic.

0 100 | 200

300 | 400

[.0

[, %0, [T | "

400

default
(no rotation)

18deg
rotation

« Perspective Property Editor a -

Q- Filte

- PROPS
path :material/chat_bubble_outline
color : #eecone W
- style -
Add Object Member...
Add Property...
 POSITION
x :B.1968
y 1 @.1682
width ;0. 1127

.

height : 2. .2966

- rotate
anchor : 25% 2268%
angle : 39deg
Add Position Property...

b CUSTOM
b META

| sjuaucdwo) andadsiad @|

Example 2

If a rotated component is within the group that is being aligned, normalizing the component will adjust the pre-rotated dimensions. The component on

the left of the following image are not aligned but were resized at some point. The components on the right show what they look like after align stack

and normalize.

0 100

200

300

[8

100

L I

Before Align

Button

N

After Align Stack
and Normalize

Image Source

Many components in Perspective contain a i mage. sour ce property, that allows you to show an image on the component. The property expects a
URL to the image, which can either be on the internet or something that is stored on the Gateway. For example, here is a Button component with an
image:

k|

Save

Web Address

Simply enter the wed-address for the image you wish to display. Both raster images and SVGs can be displayed via this method.

Image Management

Images stored in Image Management are available at http://{your gateway's IP address}:{your gateway's port}/ syst enf i nages/ { path to your
i mage}.

http://gat ewayl pAddr ess: 8088/ syst enml i mages/ Buil tin/icons/24/1i ghtbul b_on. png

For additional information on using images in Perspective, see Images and Icons in Perspective.

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool

Perspective Component Properties

Each Perspective component has a unique set of properties that can be set and modified within

the Perspective Property Editor. A component property is simply a named variable with a distinct type
that affects something about the component's behavior or appearance, such as size, color, name,
visibility. You can also create your own custom properties on a component which act like variables that
can store any information that you want on the component.

The available properties for each Perspective component are described individually in the Perspective
Components section. In the default panel settings, the Property Editor appears on the right side of the
Designer screen and contains all the properties that can be configured on a component, including custom
properties.

The image below shows the properties that are set on the selected Button component.

Property Categories

Each Perspective component has a list of available properties. Each property is placed into one of
several categories, and each property category groups the properties by some commonality. The
property categories are described below.

® Props - Properties that control the component's configuration and provides the runtime data for
how the property appears and behaves in a session. See individual Perspective Components for
a list of the properties and their descriptions.

® Position - Properties defined by the component’s parent container control where the
component is located inside the container. The available properties listed under this category
depend entirely on the container type that the component is placed in. For more information,
see the pages for each type of container.

® Custom - The Custom category was designed as an ideal location to add user created
properties.

® Meta - Properties defined by the Perspective Module itself for common things like the
component’s name, and if the component is visible.

® Params - Only available on Views. This category of properties is used when passing
parameters from one view to another view via navigation, or the Perspective - Embedded View ¢
omponent

The following image shows an example of the Property Editor for a Button component. Here we see
Props is expanded, while the other categories are collapsed.

On thispage ...

Property Categories
User Created Properties
Property Data Types
Restricting Property Access
® Restricting Access to
Component Properties
® \Writing to Private or Protected
Session Property
® Persistent Properties
® Persistence and User-Created
Properties
® Bindings and Persistence
® Custom Properties
® Creating Custom Properties
® Meta Properties
® Multi-Line Tooltips
® Context Menu Item Types
® Params
® Docked View
® Embedded View
® Page
Search Filter
Bindings
Styles
Right-Click Menu
® Actions
® Structure
® Binding
® Options

INDUCTIVE
UNIVERSII

Component
Properties

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://docs.inductiveautomation.com/display/DOC80/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Container+Palette
https://docs.inductiveautomation.com/display/DOC80/Perspective+-+Embedded+View
https://inductiveuniversity.com/video/perspective-component-properties/8.1/8.1

Perspective Property Editor 0 X

PROPS
text : Button
textStyle b]
classes
primary @ tTue
enabled @ tTue
image
spurce
icon
width
height :
position : left
style)
align : center
justify : center
style 5, |
classes
B} Add Propert
POSITION
CUSTOM
META

User Created Properties

User created properties can be added to any property category. New properties can be added by clicking the Add Property icon.

It is strongly advised to add new properties to either the Custom or Params categories. C omponents can contain hidden properties in either the
Props, Position, or Meta categories. These hidden properties are typically used on the backend to help the component function. By adding a user
create property to Props, Position, or Meta, you could unintentionally create a property that matches the name of a hidden property, resulting in uninten
ded behavior from the component. The Custom and Params categories don't have such properties, so they're a safe location for user created
properties.

Alternatively, new elements can be added to objects and arrays by hovering over the object/array in the property editor, and clicking the Add icon.

Perspective Property Editor [4

Q

PROPS
text : Button
textStyle .

classes :
primary : true
enabled : true
image
SOUTCE ©
—
icon [+
width - Properties b

height : 24 Value
position @ gpject
style Array
align : center—
justify : center
style »
classes :
B3 Add Property
POSITION
CUSTOM
META

Property Data Types

Before you create a property, you must first understand the different property data types. When you create a new custom property, you must first
select the appropriate property data type based on how you want the component to behave or appear. Technically, all values delivered to the frontend
are encoded as JSON. Meaning they are either a Value (boolean, number, string, null), an array, or an object (string-keyed map). For convenience,
Perspective offers some addition support for certain types, such as dates and datasets. The table below describes each property data type.

Property Types

Value = A value is an single variable for the property. It has a 'key" and a "value".
(primi
tive)

key : value

"Key" is the name given to the property, and "value" is the actual value of the property. Value types are as follows:
® Boolean - A true/false value.

® Numeric - An integer up to the maximum value for a long integer.
® String - A string of characters can be numeric, alpha, or a combination

Object

Array

Datas
et

An object is a one or more values stored under one variable name. Objects are indicated by curly braces { }. In this example, the Object
has three sub- properties.

intervals

An array can hold many values under a single name, and you can access the values by referring to an index number. Array is indicated by
square brackets [].

A good example of an array is the Thermometer component's default setup as shown in the example below. There is an array called
"intervals" with three values, 0 through 2. Each of the array items is an object type that has three values: color (string), high (humeric), and
low (numeric).

FPROPS

|intervals |
]
color : #CF46ES
high :
low :

The Dataset property type is a special variant of a Value. It can only be used when a binding returns data in a dataset format, or if a script
writes a dataset to a property.

A Dataset lists the number of rows and columns [rowsxcolumns] and has an Edit Dataset icon that appears after a binding has been
created. This icon brings up the Dataset Viewer panel and allows you to make changes to the raw data. Note that any changes will be
overwritten the next time your binding polls.

Datasets are generally only returned by SQL queries and Tag History bindings, though both have the ability to select from several different
return formats. A good example of this is a table bound to a Historical Tag query.

FROPS =

ldata : Dataset[158x3] g5
virtualized : tTue

selection

Dataset properties have an dataset viewer and editor in Perspective's Property Editor. Once a property is bound to a dataset, you can

access the viewer by clicking on the Dataset Browser Eﬂ icon.

Perspective Property Editor g - X

Q-

* PROPS .

& data : Dataset[10@x3]]/B88
virtualized : true [

+ selection
mode : single -
enableRowSelection : true [
enableColumnSelection: alse
selectedColumn : null

selectedRow : null

With the Dataset Editor you can add and delete columns and rows, delete all rows, and copy information to or from the clipboard.

Dataset Editor x
t_stamp Compressorl | Compressor2 =
10/10/19, 9:56:24 AM 189 143 il S
10/10/19, 9:57:00 AM 147 123 -+
10/10/19, 9:57:36 AM 168 151 Ll
10/10/19, 9:58:12 AM 151 143 i
10/10/19, 3:58:48 AM 147 105 a
10/10/19, 9:59:24 AM 165 111 o
10/10/19, 10:00:00 AM 105 a9 ¥,
10710419, 10:00:36 AM 108 132 &
10710419, 10:01:12 AM 111 152
10/10/19, 10:01:48 AM 91 a7
10/10/19, 10:02:24 AM 122 193
10710419, 10:03:00 AM 194 147
10/10/19, 10:03:36 AM 213 199 | |«

Column Name: Compressor2 Column Type: Long
n Cancel

The Dataset Editor icons and their corresponding actions are shown below.

Icon Action

=+ Add row
-
3 Delete selected rows
-
=
n Add a column

I Delete selected column
Y Delete all rows

| Add to clipboard

- Paste from clipboard

Date @ Dates are a special variant of a Value. On the frontend they're represented in in a YYYY-MM-dd HH:mm:ss format, but on the backend
they're treated as long integers. The date variant is used when a binding returns a date object (such as an expression binding that uses the
now expression function).

Date properties always feature a calendar icon.

CUSTOM

somelate : 2621-8-18

=]
F

[==]
b

(=]
[
(23]

Clicking the icon will cause a popup calendar to appear, making it easy to select a different date.

CUSTOM
someDate : 2821-8-18 18:19:16 (B
14 4 August 2021 L

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 19 20 21
22 23 24 25 26 27 28
20 30 3

a

101916 AM 5

Color | Color properties are another variant on the Value type. Many components provide color properties as a means to select the color of a
certain object. On the backend, colors are simply strings, but the designer renders them as colored blocks.

P e g e

color

Y il

Clicking the block will cause an color selector to appear, allowing you to change the color on the property.

https://legacy-docs.inductiveautomation.com/display/DOC81/now

color k
style (0)[Wheel | Palette RGB HSL

\dd|
POSITION
¥
y
width :
height :
rotate

anchor A |FFECECECEOD|| 100

angle
. { Hex | COCOCO

Note:

JavaScript uses double-precision floating-point format numbers as specified in IEEE 754 and can only safely represent numbers between -(2753 - 1)
and 2753 - 1. This means any value greater than 9,007,199,254,740,991 (or ~9 quadrillion) or less than -9,007,199,254,740,992 will be changed to a
value calculated using floating point math up to a max value of 2°63.

This could potentially cause issues with very large numbers, especially when in a dataset property:

® Modifying a value in the Perspective Dataset Double or Long column could lead to an unexpected value.
® |f bound to a Dataset tag, the value of the tag could be changed to an unexpected value.
® A Perspective Component rendering a dataset Double or Long could render an unexpected value.

Restricting Property Access

Perspective components have the ability to restrict access to properties from the app/browser. Property access settings do not restrict or inhibit built-in
component interactions with bindings and python scripts. Instead they protect against malicious code execution in the browser. Normally a user can
potentially execute arbitrary JavaScript code via developer tools (which generally are included with all web browsers) to interact with components and
properties in the session. However setting property access level to Private or Protected will prevent such approaches, as browser-side script
execution will be unable to access property values on the server side.

To understand what property access in Perspective is, you'll need to understand how the Document Object Model (DOM) works. In short, each active
session is represented in a browser (which is the user interface side of the DOM) and on the Gateway (the back-end of the DOM). Interacting with
components on the browser-side, such as writing to the text property on the text field, impacts the back-end and allows the gateway to react
appropriately (i.e., trigger a property change script).

When a property is set to Public, then arbitrary JavaScript execution can freely write to the back-end, which is likely undesirable in most cases.
However, a property set to Protected will disregard any such write requests from the browser, meaning only the back-end is allow to write to the
property (i.e, Bindings, component Script Actions, etc). While the browser-side of the DOM is still interactable, the back-end will ignore such value
changes.

In this same example, setting a property set to Private will also disregard write attempts, in addition to remaining hidden from any read attempts made
by the arbitrary JavaScript.

One caveat to property access is that the names of style classes are always visible and interactable from the browser, so style class names should
not included sensitive information.

Property Description
Public Unrestricted Access. This is the default setting for all non-system properties.

Private Hidden. The property is not readable from JavaScript, and write requests will be ignored (assuming the script correctly guesses the
property path)

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

Protected Read only. The browser's DOM may be interacted with via JavaScript, but the back-end will ignore any write requests.

System This property's value is updated automatically. Not user-writable, read-only, and cannot be removed. System properties will not
accept writes from the browser, and bindings will not be allowed to write to these properties either.

Restricting Access to Component Properties

In the example below, we used an LED Display component to restrict access on the components 'value' property.

Restricting Access to Component Properties

1. Inthe Property Editor, select the property you want to restrict acces:

S on.

2. Right-click on the property, select Access and choose the restriction level: Public, Private or Protected.

‘WOO ‘200 ‘300 Perspective Property Editor
PROPS
o = value :
- W _
=i = 7) segme Actions
numbe K Duplicate
backg Copy
dioder
i Paste
diode!
local @ Delete
style Structure
Change to
cla

e Binding
AQQ

POSITION

Configure Binding...

Options

X :
y -
width

Add Change Script...

L4 Persistent

=]

- X

heigh

Access

rotate
anchor

annla

3. Once the restriction access is configured, the Property Editor will place one of three badges on any non-public property: Private

Protected , and System

1 50% 50%

+ Adan

FROPS

segmentFormat : 14 segment
numberFormat : # &40

Perspective Property Editaor a - X

value : D

Writing to Private or Protected Session Property

Public
Private

Protected

sjuauodwo) aAdadsIad P

To write to a Private or Protected session prop, you can write to it through a scripting action.

Event Configuration on Button - O *

Events Configure [onClick] Actions

Q-

e —— = Organize Actions Configure Script Action

" onstartup N + . | . . pili
= pageX (int | float): The X coordinate relative to the whole

B onShutdown I document .

~ @ Component Events t pageY (int | float): The Y coordinate relative to the whole
B onActionPerformed + document .

~ @ Mouse Events screenX (int | float): The X coordinate in global (screen)

| E _oncice] . oondinates
B onContextMenu screenY (int | float): The choordlnate in global (screen)
B onDoubleClick . ICOOIdlI"Iat?S.

shiftkey (bool): True if the 'shift' key was held down when the

® onMouseDown event was fired,
B onMouseEnter
B onMouseleave 2| self.session.custom.privateProp = "test” I
B onMouseMove v
W onMouseOut 4 >
B onMouseOver)
B onMouseUp Options

~ @ Keyboard Events £ Enabled

. M _onKevDown - @ Security Settings

n Cancel Apply
You can also use a property binding to write to a Private or Protected session prop. Remember to enable the bidirectional option.
Edit Binding: TextField.props.text - O X
Binding Type Configure Property Binding
W Tag session.custom.privateProp El
Options
[l Property 2 Enabled | | Overlay Opt-Out Ia Bidirectional
o :
BT Add Transform +
F¥ Expression Structure
= Query
© TagHistory
A Binding Preview
. - Property
M Remove Binding privateValue
ﬂ Cancel Apply

Persistent Properties

By default, component properties and their values are saved with the project. Meaning that a property in a Perspective Session will initialize with a
value matching the last saved value. This is why you can create a label with a static text value, save, and then see the same text value in the session.
These properties are considered Persistent.

Conversely, properties can be configured to not retain their value in the session, meaning they'll initialize without a value. These properties are not

-
Persistent . These properties are denoted by the Transient [Y icon to the right of the property's value in the Property Editor.

Perspective Property Editor [4

PROPS

POSITION

CUSTOM
persistent-prop : This propertiy is Persistent
transient-prop : This property is not Persistent

META

Changing the Persistent state of a property can easily be accomplished by right-clicking on a property in the Property Editor, and toggling the Persiste
nt option.

Perspective Property Editor a - X
PROPS
mode : fixed
aSFAtnDns
sty Ei Duplicate
, # Copy
B § Paste
posiT] @ Delete
ClSTOStructure
Change to L R S
el) [y 15 Fersistent
tIEGpUDnS ¥ 15 not Persistent
. Add Change Script...
— 2 Persistent [}
Access b

Persistence and User-Created Properties

User created properties missing the Persistent flag will not be saved in your project. Meaning, properties that are both user-created and not flagged as
Persistent will be lost once the view containing the property is closed in the Designer (not just the value, but the property itself), regardless of whether

or not the project was saved. This is also true for launching a session, as the user created property that is not Persistent will not be present in the
session.

The one exception to this rule is if a binding was configured on the property. Binding configurations are always saved along with the component, and
will execute in the session. When the binding executes and returns a valid value, the property will be re-created in the session.

Bindings and Persistence

When configuring a binding on a property, the property will automatically be configured to not persist. The idea being that properties with bindings
generally don't need to save their value along with the view: when a view is opened, all bindings will need to evaluate on startup, which means the last
saved value on the property is likely to differ from the result of the binding.

Imagine a table component, with a binding on the table's data property. In most cases, you'll likely want the data in the table to be generated in the
session from the binding, retrieving the most update-to-date results. In this case, it doesn't make sense to persist the dataset in the table along with
the table, as it's just extra data that will quickly be replaced by the binding at runtime.

Bound properties default to a non-persistent configuration, but sometimes this isn't desirable. For example, Embedded View components have an
empty state when their "path" property is blank. When a binding is placed on the path property, opening the parent view will result in the Embedded
View quickly transitioning between the empty state and the loaded view, which can cause an undesirable "flash" as the binding evaluates. This can be
prevented by configuring the property as Persistent, and configuring an initial path for the Embedded View (which can lead to an empty placeholder
view), allowing for a controlled transition.

Custom Properties

User-created properties may be added to any property category such as the Props, Position, Custom and Meta Property Categories to enhance
functionality. The Custom Category was designed as an ideal location in the Property Editor for users to create their own custom properties. These
Custom properties allow components to store additional values which can be accessed by bindings and scripts. They are also important for passing
parameters from one view to another.

Creating Custom Properties
In the following example, we used the Thermometer component to add some custom properties in the Custom category.

1. Custom Properties are created by clicking on the "Add Custom Property..." link, or by right clicking on a property in the Property Editor to
bring up the Action Menu. There are three property types to choose from: Value, Object, and Array.

POSITION

X
¥
width
height
rotate
anchor : 50% 50%

angle : Bdeg
B -
CUSTOM

Add Custom Property

META Value =

_ Object
name : Button

visible : tTus Array

[+

2. Several custom properties were created under Custom in the Property Editor showing each of the different property data types (i.e., value,
object, and array).

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Embedded+View
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-PerspectivePropertyEditor

CUSTOM

myATrTay
@ :sample arra
. ! Ele
myObject
value : sample

myValue : sample walu

3. In the image below, next to the Thermometer, three Text Fields were added to a view to write to each of the different custom properties in the
Thermometer. Each of their binding paths are listed next to the fields which are bound to the same custom property so you can see the
difference when the values changes on the labels.

0 Labels

100

Property Binding Path

../Thermometer.custom.myValue

300

../Thermometer.custom.myQbject.value

../Thermometer.custom.myArray[0]

=

£ View (14) x

new value

sample object value

sample array valus

Perspective Property Editor

PROPS
POSITION
CUSTOM

myAITay

@ : sample arra

myDbject
value : sa

I_myValue: e
\

META

name : Thermometer

visible : f1

3

Meta Properties

Meta properties are defined by the Perspective Module itself for common things like the component’s name, and if the component is visible. Every

Perspective component features Meta Properties. Each property under this category is listed below.

Name Description

name Name of the component used when navigating tree paths by name.

visible Whether or not the component should be visible.

tooltip

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

When enabled, the component will display a customizable tooltip. Tooltips feature the following properties:

Name Description Data
Type
enabled ' If true, a tooltip for the component will display on hover or when requested by a script. value:
boolean
width Display width of the tooltip. Expects either numerical value that represents a number of pixels, or a string. value:
Expected strings can be either "auto" (which allows the tooltip to decide its own width), or a number and unit. = string
For example: "60px", or "100pt". Default value is auto.
text The message to display in the component tooltip. See Multi-Line Tooltips for more information. value:

Dati
Typ

value
string

value
boole

objec

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

string

style Standard style object for the tooltip. See Style Reference. object
delay Time, in milliseconds, to wait before the tooltip is displayed when requested or when the component is value:
hovered over. A value of 0 results in immediate display. numeric
sustain = Time, in milliseconds, to display tooltip before removing it. A value of O results in the tooltip displaying until value:
the mouse exits the component or removeTooltip() is called on the component. numeric
location = The tooltip display location relative to the component. Valid values: mouse, top/center/bottom, top/center value:
/bottom- right, top/center/bottom - left string

Tooltip locations are constrained by the available space, and will display with the following priorities:

1. The tooltip must remain in the viewport at all times.
2. The tooltip will expand away from the component relative to the pink guidelines shown below.

top-left top top-right
tooltip center-left ceﬂer center-right tooltip
bottom-left bottom bottom-right

If the tooltip is too large to expand away from the component without leaving the viewport, the tooltip will still
display at the configured location but may obscure the component.

tail Enables a decorative triangle on the tooltip that points to the component. Ignored when location is mouse. value:
boolean

context objec

Menu i : : . i
The following feature is new in Ignition version 8.1.25

Click here to check out the other new features

When enabled, the component displays a context menu when right-clicked. The contextMenu property features the following

properties:
Name Description Data
Type
enabled = Determines if the context menu for this component is on or off. If true, a context menu will appear when value:
items are added. The context menu is disabled by default. boolean
items Adds items to configure and display in the context menu. See Context Menu Item Types below for more object

description on the type options.

Name Description Data
Type

text Text to display on the context menu item. value:
string

icon Configured icon to display before item text. Icons can be configured for all item types = object

except separator.

Name Description Data
Type
path Shorthand path to icon source, using format: library value:

/iconName. boolean

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RequestingorRemovingTooltips
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

color Selects the color of the icon to display. This is an optional value:

property, color may also be configured using the style boolean
property.
style Standard style object for the icon. Object
style Standard style object for the context menu item. object
type Selects the type of context menu item to display. Type options include submenu, link, ' value:
method, message, and separator. string
style Standard style object for the context menu. object

domid Hidden by default. When added to the Meta category on a component, allows you to set the DOM "id" of the output element. This
property is intended for testing purposes only, such as using a framework like Selenium to test a page.

Multi-Line Tooltips

By default, the content in the net a. t ool ti p. t ext property is all rendered as a single line, only wrapping when text length exceeds the width.
However it is possible to render text that spans multiple lines.

A

First Thing
Anaother Thing

First, set add "whi t e- space : pre"to meta.tooltip.style. Then, make sure the content of the meta.tooltip.text property contains multiple lines. This
can be done by configuring an expression binding, and concatenating the items with "\ n" characters:

"First Thing" + "\n" + "Another Thing"

META

name : Thermometer

visible : tTue 3

tooltip
enabled : true [
width : autco
text :First Thing... =
style .

classes :

| white-space : pre |

Context Menu Item Types

value
string

The following feature is new in Ignition version 8.1.25
Click here to check out the other new features

Context menus allow users to have more component control when right-clicking on the configured component. Once opened, context menus will stay
active until a new click is made elsewhere on the view. There are five item type options available to customize component context menus. Four of
these options allow further navigation functionality, with one type allowing for category separation within the menu design.

Item Description
Type
subme | This item type will display child items when clicked or hovered over and when child items exist, a simple arrow > icon will be included after
nu the parent item text. . When selected, a children property will appear in the property editor that consists of the same item types and
properties.
link This item type will act like a link component, which allows users to specify a link to navigate to when clicked. When selected, a link

property will appear containing url and target properties:
© url: Contains the URL to be used for the link item. This can be an external URL or internal project page URL. To specify project
pages, provide the exact configured URL for that page, complete with the leading slash (/someUrl/myPage).
© target: Determines if the link will open in the current tab or a new tab.

method = When clicked, this item type will invoke a custom method defined on the component that the menu is enabled on. Any method defined
here will become a custom method of the component the context menu belongs to. You may configure arguments to be passed into this
custom method with the params object. When selected, a method property will appear containing name and params properties:

© name: Displays the name of the method to be invoked.
© params: Adds the object of params to pass to the method. Note that positional arguments are not supported.

messa = When clicked, this item type will send a message with the given message type code, payload, and scope. This is allowed when specifying
ge a configured message handler for a perspective session or perspective component, such as a toggle switch. When selected, a message
property will appear containing type, payload, and scope properties:

o type: Defines the message type that will trigger all component message handlers with the same type value.
© payload: Object used to pass defined payload for message handlers.
© scope: Defines the session, page, or view scope for sending the message.

separa | This item type displays a non-interactable horizontal hard-rule to keep context menu items separate.
tor

The image below shows an example context menu configured on a Button component. The first item, menu-item, is a link type and includes a
configured icon. Menu-item1 is a submenu type with a single child item, child-menu-item. A separator item type divides menu-item1 and menu-
item2, which is a method type. This example demonstrates the context menu default style settings and you may notice different item type selections
are not distinguishable in their default text display . Context menus can be further stylized in their entirety or within the individual item properties as
desired.

Button .
- menu-item

menu-item1 * | child-menu-item

menu-itema2

Params

Params are a category of properties that are used when passing parameters from one view to another view. The properties inside of the params
category define parameters that can be passed in and out of a view. It's through the use of parameters that views interchange information with other
entities such as a docked view, embedded view, or a page. To learn more about using parameters to pass properties across views, refer to Property
Bindings in Perspective.

Docked View

When configuring a page, it's possible to pass a value to a docked view. When you click on a docked view, you can specifiy one or more param
properties in the View Parameters field of the view that is docked. If you have any param category properties defined on that view, this interface allows
you to pass a value when you navigate to the configured page. To learn more, go to Configure Docked View Parameters.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedviewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-PassaPropertyintoanEmbeddedviewUsingaViewParameter
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-ConfigureDockedViewParameters

Configure Docked View
View
Params/WestDock w
Display Resizable?
wvisible - false
Content Modal?
push v
Size Auto Breakpoint
150
Dock ID Handle
hide -
Handle Icon
View Parameters
display : value
Remove OK Cancel

Embedded View

The embedded view component allows you to embed one view inside of another. The only way to pass a property across views is by passing a view
parameter into an embedded view. Parameters can be defined as input, output, or both input/ouput. Once you have param properties configured on
your views, the embedded view component provides you with access to these parameters. You have options on how to pass a property into an
embedded view. How to set up passing a parameter depends on how you design your project. You can set up passing a property to an embedded
view using a parameter with property bindings, Tag bindings, or even scripts. For more information on embedded views, refer to Pass a Property into
an Embedded View Using a View Parameter and View Properties.

Page

Passing parameters to a Page essentially means passing a URL parameter to a page. Parameters are used to allow a page to be mounted at a
dynamic URL, allowing information in the URL to be interpreted as input parameters to the page’s primary view . A primary view can see whatever
parameters are passed in, and components inside the view can bind or use the values in some useful way.

The way you add parameters to the Page URL is by mounting the page at a special URL using a parameter replacement syntax like so: <page> /:
towerNumber . The dynamic URL mounting uses a colon to signify that a portion of the URL is meant to by dynamic and map to an input parameter o
n the page’s primary view. To learn more, go to Passing parameters (URL Parameters).

https://legacy-docs.inductiveautomation.com/display/DOC81/Views+in+Perspective#ViewsinPerspective-Input/OutputParameters
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaPropertyBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-UsingaTagBinding
https://legacy-docs.inductiveautomation.com/display/DOC81/Views+in+Perspective#ViewsinPerspective-ViewProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PassingParameters(URLParameters)

% nav topbar

' 4 Add
Page URL
ftower/towerNumber
--------- 1 Primary View
+ Add ' 4 Add
ccmmmmoed) Towers w [—
Corner Priority
| left-right | top-bottom | inherited |

Search Filter

In the Property Editor search bar, you can search for component properties. Start typing in the search bar and the property list updates based on the
text you enter. You can also set filter options to make the search case sensitive, or use wildcards, regular expressions, match from start, match
exactly, and match anywhere.

Perspective Property Editor o - X
Q e
Case sensitive A

f
O Caseinsensitive

B Usewild cards
Use regular expression
Match from start
I Match exactly
© Match anywhere

Bindings

Most properties have binding options. For more information on bindings, see Types of Bindings in Perspective. The image below shows the properties

in the Property Editor that are set on a Cylindrical Tank component. There are Binding icons to the left of each of the properties that appear
when you mouse over them. If you have a Cylindrical Tank on your view and click the Binding icon for the value property, it will open the Binding
window and you can set what the Cylindrical Tank component is bound to. In this example, the value property of the Tank is bound to the un10013
OPC Tag.

https://docs.inductiveautomation.com/display/DOC80/Bindings+in+Perspective

100 200 300 400

o

1

X
=

Ict Browser

A

&= Syles = o —
Basic
Corporate
NewStyle

m Views

- @ Custom_Example

100

27%

- tankColor :
v [Custom Example m 1'?” 'ZOOI o
- iquidopacity :
root
CylindricalTank S - liquidWarningColer : #. .. =
CylindricalTank_0 = tankWarningColor : #F0... =
| CylindricalTank_1 of [warningThreshold :
rowser g - X strokeWidth :
o - ;A 9 - |H- style (1 ®
» % un10010 OPC &= classes :
_— 2

b % un10011 F POSITION
r W un10012 OPC
~ % un10013 COFC %

® Enabled y o

B OpcltemPath width :

- Opc;erver 2 height :

= Quality rotate

W TagGroup . 5p% 508

B Timestamp anchor @ 50% 50%

B value angle
b W x1 OPC = _.-;.-; ositic e
» =1
N 0 CUSTOM
R 0 META
+ 0 name : Cylin 1T
! 0 visible : tn
- 0 ~| | % Custom Example X Add Meta " =

Perspective Property Editor o - X
Q.
PROPS =
It:—:- value :
[‘tapacity : 100,000

liquidColox

Styles

A full menu of style options is also available for text, background, margin and padding, border, shape and other miscellaneous settings to adjust the
appearance of your components. Style classes enable you to set up a particular look and feel (fonts, colors, borders, etc.) once and then apply it to

multiple components.

Right-Click Menu

Right-clicking in the Perspective Property Editor brings up a number of items. These items are described
below by section.

Actions

The Actions items provides a means to modify properties on a component such as deleting a property, or
inserting a new property. Common utilities (i.e., copy, paste, duplicate) are available.

Structure

* Add Before : Allows you to insert a new property into the hierarchy before an existing one. It is
only visible when right-clicking on an element in either an Array or Object.

® Add After : Allows you to insert a new property into the hierarchy after an existing one. It is only
visible when right-clicking on an element in either an Array or Object.

® |nsert : Allows you to insert a new property into the hierarchy. The "Add Before" and "Add After"
Structure options in the Perspective Property Editor context menu are two unigue items that are
only visible when right-clicking on an element in either an Array or Object.

® Value : Allows you to change the type of the selected property to a Value, Array, or Object

Binding

This feature was changed in Ignition version 8.1.26:

The Binding section of items allows you to configure or manipulate existing bindings on a property. If any

of the following are not current available options, they will not be visible selections. For example, if the clip

board does not contain a binding configuration, the menu won't display a Paste Binding option.

INDUCTIVE
UNIVERSIT

Persistent
Properties

Watch the Video

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://docs.inductiveautomation.com/display/DOC80/Perspective+Component+Properties#PerspectiveComponentProperties-ActionMenu
https://www.inductiveuniversity.com/videos/persistent-properties/8.0/8.1

® Configure Binding...: Opens the binding configuration window, allowing you to add a binding to
the clicked property.

® Copy Binding: Copies the binding configuration from the clicked property.

® Paste Binding: If a binding configuration was previously copied via Copy Binding, this option
will paste the binding configuration on the clicked property.

® Disable Binding: Disables the binding on the clicked property.

®* Remove Binding: Removes the binding configuration from the clicked property.

Options

® Add Change Script: Enables you to add a script that will be called whenever the value of the
property changes. For more information, see Property Change Scripts.

® Persistent : Determines if the property is Persistent or Transient .

® Access: Allows you to restrict property access.

Images and Icons in Perspective

Perspective supports the import and display of images, including PNGs, JPGs, JPEGs, GIFs, and SVGs.
Images can be loaded into Perspective via the Image Management utility, dragged and dropped directly
into a View, or derived from an external web address. Regardless of approach, the Image component is
used to display desired images, either as linked images with associated URLs, or as embedded images
stored within the View. Each of these approaches is detailed below.

Using the Image Management Utility

The following example walks through bringing an image from the Image Management tool using an
image component. For more information on the Image component and all of its properties, see Perspectiv
e - Image .

1. Drag an Image component from the component palette onto the container.

100 200 Perspec Perspective Components 3 _ [H X

image = = =

‘—________.‘JB(—E Image

160
sjuauodwo) anndadsiad o

2. At the top of the Designer in the Menu Bar, select Tools > Image Management.
3. Inthe Image Management tool, look through the different folders for an image file you want.
4. Right-click on the image and select Copy Path.

| Image Management = O *
& G @ W TFTBSRD

Current Folder | Builtinficons/48/

business.. calculato.. calendar... cameraZ.. chartpng -
e -]

‘J T Dl l
= B

check2... clientspng dipboar.. diphoar.. dockpng

D eXHE

copypng cutpng deletez.. disk_gre.. documen..
E D . W Ll Copy Path
Q Tip: You can drag images and folders |ntoth|kv " Rename)admg

@ Delete

5. In the Property Editor, paste the image path into the source property for the Image component.
You need to add "/system/images" to the beginning of the path, to properly reference images
stored by the Image Management tool.

[Tools Help
Py A0 AN

100 Perspective Property Editor

PROPS

;2; | source : /systensimages/Builtin/icons/4s
i altText :

fit
mode : none
width :

On thispage...

® Using the Image Management
Utility
® Drag and Drop an Image onto a
View
® Embedding Images
b Usmg Icons
® Choosing Icons
® Use a Custom Icon Repository
® Example with Custom Icon
Repository
® Converting SVG-based
Perspective Components to
Drawings

v,

Images in
Perspective

INDUCTIVE
UNIVERSII

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image
https://www.inductiveuniversity.com/videos/images/8.0 inductiveuniversity.com/8.1

The image now appears inside the Image component on the container.

For more information on the Image component and all of its properties, see Perspective - Image.

Drag and Drop an Image onto a View

In Perspective, you can drag and drop images from your computer onto a view. When an image is
dropped, it can either be uploaded into the Image Management tool and then referenced from an Image
component, or it can be embedded directly into the view. In this example, we'll pull in a .jpg photo of a
sunset to use as a background on a home page for our application.

1. In the Designer, open the view in which you want to put the image.
2. Locate the image on your computer and drag it onto the view.

Note: We already resized this image in a graphics editing program so that it is the size we

want.
« © A |« Pictures 5 Project Images v b | serchbr. p
Sumetfor
2F-: sma\Upg Designe
Tools Help
> & 08 &
[700 200 300
User Manual 80 Ima
9 eiogervst
B Thiep Pagempg
Sitems 1 e selected 124K
e ™=
> = ~
: =
> im Page
8 Footer + Copy
ks
4 (/JV\EWWBE =
V(2 view0198765 g
||~ views Test cover A

o &

3. You have the option of saving the image as a link or embedding the image in the view. To save
the image as a link, make sure the Save and Link radio button is selected and then click Upload
. This will save the image in the Image Management Tool where it can be used repeatedly.

Link Image X

Save and link; Embed image

o @ @@ &

Builtin/ ignitienle.. iu-lego- L. Newtens_.. ROWW-Lo..

File Name: Sunset for Home Page 1C
File Extension: .jpg

Cancel

4. The image now appears in the view. Drag one of the corner nodes to make the image
component border the same size of the image.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Image

Fle Edt View Progct Component Took Hep
BO(e« 6/noorfoanw

Project sromser 8. x

5. Now your image is on the view. Save your project. We added a company logo SVG file as well
as some navigation buttons to this home page.

Main Field West

Embedding Images

If you don't want the image to be brought into the Image Management tool you can embed the image
instead. Embedded images can degrade performance, but can also allow you to view and modify image
elements directly in the Property Editor.

1. Locate the image on your computer and drag it onto the view.

2. After dragging the image onto the view, click the Embed image radio button. If the image is
larger than 100KB, you will see a warning message in the confirmation popup, since large
embedded images can degrade performance.

Link Image X

Save and link Embed image.

Image size is large (124 KB)! Embedding an image larger than 100KB might degrade
performance. Save and link option is recommended for larger images.

m Cancel

3. Click Embed to embed the image.

Using Icons

Icons in Perspective are specially curated SVG (Scalable Vector Graphic) images chosen to be helpful in
Perspective design. Perspective includes a starting collection of icons, and provides ways of including
your own (see "Use a Custom Icon Repository" below). Icons can be used in Perspective directly using
the Icon component, or integrated into the configurations of other components, as with the Horizontal
Menu, Map, and Accordion components.

Choosing Icons

The bulk of the icons included with Perspective are derived from the materials icon library, which is fully
detailed, with included icon names, here (external link). Icons are referenced using icon paths within
Perspective. For example, the path material/location_on will reference the location_on material design
icon.

INDUCTIVE
UNIVERSII

Icons

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Icon
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Horizontal+Menu
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Map
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Accordion
https://fonts.google.com/icons?selected=Material+Icons
https://www.inductiveuniversity.com/videos/icons/8.0/8.1

The following feature is new in Ignition version 8.1.6
Click here to check out the other new features

All icon properties (via the lcon Component or other applicable components) include an interface for
selecting icons from configured libraries, both built-in and custom. On the right-hand side of the icon

path, the E. icon can be used to browse and search for available icons. The icons will be arranged into
headings based on the originating icon files on the Gateway.

PROPS
path : materia ert_e
material v
Q|

Use a Custom Icon Repository

The materials icon repository is a great source for icons, but if you have a custom library of icons, you can set it up to be accessible by Ignition. All
icon repositories are stored as SVG files within the Gateway's Installation Directory. A typical path to an icon file will look like:

Windows

C.\Program Fi |l es\ I nductive Autonation\Ilgnition\data\nodul es\com i nductiveautomation.
perspective\icons\<repository nane>.svg

MacOS

/usr/1ocal/ignition/datal/nodul es/ cominductiveautonmation. perspective/icons/<repository nane>. svg

Linux

/usr/1local /bin/ignition/datal/nodul es/ cominductiveautomati on. perspective/icons/<repository name>.svg

You can create custom libraries by adding your own SVG file at this path. The properties inside the file are defined using XML, which should follow the
pattern provided below. Note that each icon is placed in an enclosing SVG tag that defines values for the id attribute, which is used to specify the
name of each icon, and the viewbox attribute, which must have large enough dimensions to fully enclose the graphic.

<?xm version="1.0" encodi ng="utf-8"?>

<svg xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: xl i nk="http://ww. w3. or g/ 1999/ x| i nk" >
<!--Red Circle-->
<svg viewBox="0 0 24 24" id="red-circle">
<circle cx="12" cy="12" r="6" stroke="bl ack" stroke-w dth="1" fill="red" />
</ svg>

<l--Blue Crcle-->
<svg viewBox="0 0 24 24" id="blue-circle">

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

<circle cx="12" cy="12" r="6" stroke="bl ack" stroke-wi dth="1" fill="blue" />
</ svg>
</ svg>

Once an icon file has been added, a Designer restart is required to pull the new icons into the Designer for development.

Example with Custom Icon Repository

In this example we'll make a custom repository file with icons. The name of the file is exanpl e. svg. We'll then use the icons in this file and other
repositories to create a Horizontal Menu component for Proposal, Project Documents, and Appendix headings.

I Proposal II Project Documents B Appendix

1. First we created the repository file in xml.

<?xm version="1.0" encodi ng="utf-8"?>
<svg xm ns="http://wwmv w3. or g/ 2000/ svg" xm ns: x| i nk="htt p://ww:. w3. or g/ 1999/ xI i nk" >

<l--aredcircle-->
<svg viewBox="0 0 24 24" id="red-circle">

<circle cx="12" cy="12" r="6" stroke="bl ack" stroke-w dth="1" fill="red" />
</ svg>

<!--a blue circle-->
<svg viewBox="0 0 24 24" id="blue-circle">

<circle cx="12" cy="12" r="6" stroke="bl ack" stroke-w dth="1" fill="blue" />
</ svg>

<l--a triangle-->
<svg viewBox="0 0 24 24" id="triangle">
<path d="ML2 0 L3 22 L21 22 Z2" />

</ svg>

<!--roman nuneral one icon-->
<svg viewBox="0 0 24 24">
<g id="one">
<rect
id="rect3723" wi dt h="15.09025" hei ght ="3.0526078" x="4.4548745" y="
2.4385488" />
<rect
id="rect3723-3" width="15.09025" hei ght="3.0526078" x="4.4548745" y="
19.510113"/ >
<rect
id="rect3755" width="3.4557824" hei ght="16.990929" x="10.272108" y="
3.5045362" />
</ g>
</ svg>
<!--roman nuneral two icon-->
<svg viewBox="0 0 24 24">
<g id="two">
<rect
id="rect3723" wi dt h="15.09025" hei ght="3.0526078" x="4.4548745" y="
2.4385488" />
<rect
id="rect3723-3" wi dt h="15. 09025" hei ght =" 3. 0526078" x="4.4548745" y="
19.510113" />
<rect
id="rect 3755" w dt h="3. 4557824" hei ght ="16. 990929" x="6.8435426" y="
3.5045362" />
<rect
id="rect 3755-9" widt h="3.4557824" hei ght ="16.990929" x="13. 700686" y="

3.5045002"/ >
</ g>
</ svg>
</ svg>

C:. Program Fi | es\ I nductive Autonation\lgnition \data\nodul es\com i nductiveautomation. perspective\icons

2. Once created, save the file in the following directory (assuming a Windows install and the default choice of install folder):

e -
Home Share View

« v 1

[« Local Disk (C:) > Program Files > Inductive Automation > Ignition > data > modules » com.nductiveautomation.perspective > icons |

Inductive Automation
Designer Launcher
Ignition

data
certificates
datacache
db
eam_archive
jar-cache
metricsdb
module-info
modules

com.inductiveautomation.persg

~

~
Name

Ia examplesvg

a ignition.svg
a material.svg

Date medified

Type

SVG Document
SVG Document
5

VG Document

Size

3KB
5KB

382 KB

. Next, we'll need to restart our Designer for the changes to be recognized.

. Now we can use the icons in this icon repository in our components. For this example, we put a Horizontal Menu component in a Coordinate

view.

. We use two icons from the new example repository and one from the materials repository. We set the properties as follows for the Horizontal

Menu component:

Top Level Properties

Property
props.items.0.enabled
props.items.0.icon.path
props.items.0.icon.color
props.items.0.label
props.items.0.style.color
props.items.0.style.fontFamily
props.items.1.enabled
props.items.1l.icon
props.items.1.color
props.items.1.label
props.items.1.style.color
props.items.1.style.fontFamily
props.items.2.enabled
props.items.2.icon.path
props.items.2.icon.color
props.items.2.label
props.items.2.style.color
props.items.2.style.fontFamily
props.style.borderBottomStyle

props.style.borderLeftStyle

Value

true

example/one
HATATFF

Proposal

HATATFF

Verdana

true

example/two
#008000

Project Documents
#008000

Verdana

true
material/folder_special
#ACO0AC
Appendix
#ACOOAC

Verdana

double

none

props.style.borderRightStyle none
props.style.borderTopStyle double
props.style.borderTopWidth 4

props.style.borderBottomWidth | 4

6. When we put the Designer into Preview b mode, the Horizontal Menu appears.

I Proposal II Project Documents B Appendix

Converting SVG-based Perspective Components to Drawings

The following feature is new in Ignition version 8.1.22
Click here to check out the other new features

Right-clicking on a built-in SVG-based Perspective component will give an option to convert the SVG into a drawing.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

m 0 w

e ¥ Cut i
A Copy Ctri+C
Ei Duplicate “tr+D
M Delete Delete
™ SendtoBack
L] Move Backward
M Move Forward
M Bring to Front

Wrap in Container r

Configure Events... Ctrl+

Configure Scripts... Ctrl+k
Configuration Explorer Ctrl+

dp Flatten

Convert to Drawing

Converting the component to a drawing will result in the component having different properties. For example, the Cylindrical Tank component props
list changes to include properties like viewBox, preserveAspectRatio, and elements instead when converted to a drawing.

Properties as a component:

PROPS

value
capacity
liquidColor :
tankColor
liquidOpacity
liquidWarningColor
tankWarningColor
warningThreshold
strokeWidth :
valueDisplay
enabled : tTue
style »

style »

Properties as a drawing:

PROPS

i AT

viewBox : @ @ 3358 4508
preservefdspectRatio : none
elements

@

1
2
3
4
]

style »

classes :
pd Add Property

Related Topics ...

® |mage Management Tool
® Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC81/Image+Management+Tool
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Localization in Perspective

Localization in the Perspective module utilizes terms from Ignition's Translation Syste

m. Once terms have been defined, translations can be enabled by the use of the .

"locale" session property. This page covers using localization in Perspective. For On thispage...
the Vision module, see Localization in Vision.

® Selecting a Language

® Switching Languages within a
Session

® Related Topics ...

The following feature is new in Ignition version 8.1.2
Click here to check out the other new features

Changing the locale of the session can also modify number formatting behavior (e.g., on the Numeric
Entry Field component or Power Chart component).

Selecting a Language

Selecting a language for your Perspective session is done through session properties, specifically the locale session property. By default, this property
is set to the language tag "en-US" for English USA. Once you set up a additional languages in the Translation system, you can set your locale session
property to different values depending on what language you want to see on your screen.

G} See this link for a full list of valid locale tags: https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text

Switching Languages within a Session

In this example, we'll set up a dropdown list from which the user can choose a language. For this example, we've already set up a Spanish Translation
List. We've added a key "Hot" and its Spanish translation, "Caliente".

Translation Manager B X
Languages ¢ Translation Terms
(Al O Key English (Alternate) Spanish (4]
englsh T =" S -
Spgnish o " S ©
a
E
x

Now we'll set up a view where the user can choose between English and Spanish.

1. Create a new view and put a Label component and a Dropdown component on the view.
2. Set the text property of the label to "Hot."

0 100 200 300 400 Perspective Property Editor o - X
(=]

PROPS
Ho3-

text : Hot

= alignVertical :cen. ..
style »
Select.. hd classes :
Add Property
POSITION

3. In the Project Browser, click on Perspective. The Session properties are displayed. Update the locale session property to "es-US" (the
language tag for Spanish USA).

https://legacy-docs.inductiveautomation.com/display/DOC81/Translation
https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+in+Vision
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Numeric+Entry+Field
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Numeric+Entry+Field
https://docs.inductiveautomation.com/display/DOC81/Perspective+-+Power+Chart
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://docs.inductiveautomation.com/display/DOC80/Creating+Translation+Lists
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#util-text

Perspective Property Editor o - X

SESSION PROPS =
id
host :
theme : light

locale : es-US

timeZoneld : America

auth
authenticated
user
securitylevels
idp .

gateway

address
timezone

connected

This results in anything in your session that contains the word "Hot" to be translated to its Spanish translation.

0 100 200 300 400
o
Caliente
\;I
(]
Select W
gl
(=]
=

Similarly, if you set the locale session property back to "en-US", Ignition will translate your session text back to English.

. Next we'll set up the Dropdown component with two options configured as shown below where the Spanish option is tied to the "es-US"
language tag and the English option is tied to the "en-US" language tag.

options.0.value: es-US

options.0.label: Espanol

options.1.value: en-US

options.1.label: English

a'a Sequential Function Charts
» @, Scripting
~ @ Perspective
[& session Events
b i Styles
~ mm Views
~ Z translate
~ [root €

» DCE Transaction Groups
¥ vision

Named Queries
Reports

[Label
I 7E Dropdown

Caliente

100

E Espafiol +

200

E|

BT EREY 7 i 00 FIT] 500 300 | [Perspective Praperty Editor 8- X
Q- A Q-
¥ [#) Alarm Notification Pipelines PROPS =

value :es-US
opticns

multiSelect
placeholder
text : Sel
color

5. Next we'll bi-directionally bind the Dropdown's Value property to the Locale session property. In the Property editor, click the Binding icon

for the value property.
6. On the Edit Binding screen, select the Property Binding type.

. Next click the Property Details @ icon. Scroll to the session.props.locale and click OK.
. Select the Bidirectional option. Click OK to save the binding.

0 ~N

Edit Binding: Dropdown.props.value

Binding Type

W Tag

=l Property

¥ Expression

¥ Expression Structure
= Query

© Tag History

& HTTP

@ Remove Binding

Configure Property Binding
session.props.locale

Options

[Enabled | | Overlay Opt-Out |E4 Bidirectional

Add Transform +

Binding Preview

Property
en-Us

Q-

i bl

v v wwowow

H id

} B page

~) view

- [root

v M session =
~ [props
H theme
I — locale
B timeZoneld
i auth
B gateway
W device

uetooth

@ geclocation
i appBar

B host

b i props

oK

E Cancel

Apply

9. Put the Designer into Preview bmode and test the Dropdown component. Since your Dropdown component now drives your Locale
session property, you will be able to see your Label value go from its Spanish to English translation as you change the language selection.

Caliente

Espanol

English

Related Topics ...

® Localization and Languages

https://docs.inductiveautomation.com/display/DOC80/Localization+and+Languages

Bindings in Perspective

Perspective allows for numerous types of bindings to allow for the dynamic
updating of properties associated with views or their child components.

Edit Binding: Label.props.text - [m] X

Binding Type
% Tag

[E Property

No Binding

f* Expression

f¥ Expression Structure

£ Query
© Tag History Select a binding type to explore the possibilities.

& HTTP

I:l Cancel Apply

When configuring a binding, it is initially unidirectional: the value on the property that contains the binding
configuration will synchronize with whatever it is bound to. For example, if the text property on a Label
component is bound to a Tag (via a Tag Binding), then the text on the Label will update to match the
value of the Tag.

However, if the value of the Text property on the Label changed (say by a script, or someone opening the
view in the Designer and manually changing its value), the binding would not cause the value on the Tag
to change. However, it's possible to make a binding bidirectional.

Bidirectional Bindings

Tag and property bindings can be made bidirectional simply by checking the Bidirectional checkbox in
the Options section of the Property Binding window. Typically this would be done on one of the
PROPS properties of an Input component like a multi-state button or a numeric input.

Binding Interface

A property can have many different types of bindings, for example it can have a Tag or an Expression
binding. Instead of setting a label statically, the text might change based on a PLC value or on-screen
selection. There many ways to bind your components to show values from PLCs, databases, other compo
nents, or user input.

In addition, bindings can make use of Transforms, which allow a binding to further manipulate the
resulting value.

On thispage ...

® Bidirectional Bindings
® Binding Interface

Tag Bindings in Perspective

A Tag binding is a straight-forward binding type. It simply binds a property directly to a Tag Property
(typically the value). This sets up a subscription for that Tag. Every time the chosen Tag changes, the
binding is evaluated and pushes the new value into the bound property. If you choose a Tag in the tree,
and not a specific property of that Tag, the Value property is assumed.

Tag Binding Interface

There are three different types of tag bindings in Perspective (direct, indirect, and expression), but they
all share some common interface elements.

Edit Binding: Label props.text - o ®

Binding Type Configure Tag Binding
% Tag © Direct (_ Indirect () Expression f_MOdE Selection

Tag Path L3
= Property

Options
3 Enabled | | Overlay Opt-Out
Publish Initial Uncertain Value 1&=——Options

Fx Expression

f¥ Expression Structure Bidirectional Fallback Delay = 2.5 =

£ Query
Add Transform +

© Tag History
& HTTP
& Binding Preview

Tag

il Remove Binding B BrowseValue [value=[null, B...

E Cancel Apply

Mode Selection

Allows the binding to switch between the different tag binding modes, which are described further down
this page.

® Direct Tag Binding Mode
® |ndirect Tag Binding Mode
® Expression Binding Mode

Options
The following options are available, regardless of mode:

Option Description

On thispage ...

® Tag Binding Interface
® Mode Selection
® Options
® Drag and Drop
® Direct Tag Binding Mode
® Indirect Tag Binding Mode
® |ndirect Tag Binding -
Bidirectional
® [ndirect Tag Binding Example
® Tag Expression Binding
® Tag Expression Binding -
Example

@ INDUCTIVE
UNIVERSIT

Tag Drop

Watch the Video

Enabled | Determines if the binding is enabled. Unchecking this option will prevent the binding from executing.

Useful in cases where the binding needs to be temporarily disabled.

Overlay If the target of the binding returns a non-good quality code, this setting indicates whether the

Opt-Out ' component should reflect the quality code with a component overlay.

Publish

Initial))) .)

Uncertai The following feature is new in Ignition version 8.1.8

n Value Click here to check out the other new features
Which switching to the view where this binding is located, the binding is briefly provided an initial value
of "null" with a quality code of Uncert ai n_I ni ti al Val ue. Because this quality code is not good, the
component will show a quality overlay. Once the most recent value of the target tag has been
received, the binding will replace the null value with the newly received value, and remove the quality
overlay.
If checked, this setting will cause the binding to ignore this initial null value. This prevents the quality
overlay from appearing due to the initial null value. All other overlays will function normally.

Bidirectio = Determines if this binding should be allowed to write back to the target. Defaults to unchecked,

nal meaning that the binding will only ever read the target's value. If checked, then changes made to the
bound property will cause the binding to send a write request to the target of the binding.

Fallback = When a value is manually written to the bound property, a write request will be sent to the target

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays#QualityCodesandOverlays-ComponentOverlays
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.1

Delay (assuming Bidirectional is checked). If the binding doesn't receive confirmation that the write request
was accepted, the value on the bound property will instead fallback to the value on the target. This
option determines the number of seconds until the binding value falls back.

Drag and Drop

Ignition automatically creates the Tag bindings to several of the component properties when you choose
to bind a Tag to a component by dragging and dropping. This is true for both creating a component by
dragging and dropping a Tag onto empty space in a container, and by dragging and dropping a dropping
a Tag directly onto a component property.

You can drag a Tag onto a container. Perspective will give you an option for the kind of component you'd
like to use to represent the Tag. Configuration options for Tag drop are set in the Project properties. For
more information, see Tag dropConfig. In this example we drag the Tag for a tank onto a view and
choose the Cylindrical Tank option.

Tag Browser a _ X
Qo W-8 ¢ a2 B
- E_Slm_NEW_ngrammab\E_ - =
» i _Controls_]
» W New TagImport Folder
> il Ramp
~ '@ Random
» % RandomBoolean1 OPC Boolean
» % RandomBoolean2 OPC Boclean = Cylindrical Tank
» % RandomDouble1 OPC 39.76 Double Gauge
» % RandomDouble2 OFC 65.3 Guble
13 Integer aoel
W AlarmEvalEnabled Boolean LED Display
® Deadband) 0 Double = Progress
® Documentation String = .
® Enabled Boolean Simple Gauge
B EngHigh 100 Double slider
= Englow 0 Double ™
= EngUnit String ermometer
W FormatString ###0.... String = One-Shot Butten
H
B HistorvEnabled Boolean o

A Cylindrical Tank component is placed on the view. Notice that the value for the component and the value for the Tag match. The component's
displayed value will update as the Tag updates.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveTagDropProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective#PropertyBindingsinPerspective-TagdropConfig

Project Browser g - X 0 100 2010
. . N =
Q- Filte Project Properties i
hd E?J' FirstView - N
v [0 root & 1
[F Label]
% Button |]
—, " 5 = |
I- W COylindricalTank &2 =] I o
ﬁfﬁ Flex_View Test 1 —_—
f0) Horizontal-Menu-Nav —
0 Inline-view -
0 Signature_Ex]
) sml View =2
A T b i -~ ﬁ_
Tag Browser a - X ||| 7
Q o ¥-a b & 2 @|H.]
* @ _Sim_Mew_Programmable_ 2 ?
» W _Controls_ =]
» B MNew Tag Import Folder]
F W Ramp -
~ & Random -
¢ % RandomBooleanl OPC Boolean]
» % RandomBoolean2 OFC Boolean =]
¢ % RandomDouble1 OFC 26.65 Double y
¢ % RandomDouble2 OFC 98.09 Double E
~ % Randomlnteger1 OPC 46 Integer -
B AlarmEvalEnabled Boolean]
B Deadband 0 Double |
B Documentation String E:
B Enabled Boolean .
Direct Tag Binding Mode
A direct binding binds a component property to a Tag path. Every time the Tag's value changes, the INDUCT I VI
binding is evaluated and the new value is sent to the bound property. In the example below, the value of ¥ ’
the Active_Tank Tag is displayed as a percentage of the capacity of the Cylindrical Tank component. .""}. . i,’,‘ UN IVE RS I 'I
[- | pembrapety i E XF
o Q- Filte 5
H Tag Binding

value : 22
capacity : 4o
liquidColor : #47FFFF
tankColor : ¥FFCABA
liquidopacity : 1
liquidWarningColor : #769491 M
tankwarningColor : #F9CCCC
warningThreshold : 50
strokewidth : 4

- style) 8

3
a
g
3
<
-
H
=
7

Watch the Video

classes: +

boxsizing : border-box +
fontsSize : 15px
fontweight : bolder ~

https://www.inductiveuniversity.com/videos/tag-binding/8.0/8.1

Edit Binding: CylindricalTank 3.props.value

Bindirg Type Configure Tag Binding
O pirect () Indirect () Expression
|w Tag B
Tag Path | [defaultjTank/Active_Tank.value
& Property options
Expression [Enabled | | Overlay Opt-Out
f¥ Expression Structure A
= Query
© TagHistory
& uTTP
Binding Preview
Tag
i Remove Binding =

Cancel

Apply

Indirect Tag Binding Mode

An Indirect Tag binding is very much like a standard Tag binding, except that you may introduce any
number of indirection parameters to build a Tag path dynamically in the session. These parameters are
numbered starting at one, and denoted by braces, such as {intParameter}. The binding will be linked to
the Tag represented by the Tag path after the indirection parameters have been replaced by the literal

values they are bound to.

For example, instead of binding directly to the FlowRate Tag inside the Valve4 folder, as shown below,
you can build an indirect Tag path that will point to the FlowRate Tag for all valves between ValveO to

ValveN where N is any valve number.

Tag Path

[def aul t] MyPl ant / East Ar ea/ Val ves/ Val ve4/ Fl owRat e

Tag Histery

& HTTP

[Binding Preview

Tag
i Remove Binding 29

[0 Edit Binding: LedDisplay.propsvalue -
Binding Type Configure Tag Binding
O pirect L) Indirect () E;
& 12 O Direct () Indirect () Expression
Tag Path | [default]MyPlant/EastArea/Valves Valve4/FlowRate
= Prope
pery Options.
#+ Expression EdEnabled | | Overlay Opt-Out || Bidirectional | | Publish Initial Uncertain Value
Fallback Delay | 2.5 o
£ Expression Structure
Add Transform +
= Query

Apply

Below, the valve number, 4, is replaced by {intParameter} where {intParameter} is a placeholder for a
dynamic reference that will be used to create a single Tag path capable of referencing every FlowRate

Tag inside every existing Valve.

[def aul t] MyPl ant / East Ar ea/ Val ves/ Val ve{i nt Par anet er } / Fl owRat e

INDUCTIVE
UNIVERSII

Indirect Tag Binding

Watch the Video

https://www.inductiveuniversity.com/video/indirect-tag-binding/7.9/8.1

Edit Binding: LedDisplay.props.value - o x

Binding Type Configure Tag Binding
Direct @ Indirect _ Expression
% Tag P
TagPath y FlowRate s =
& Property Reference Property
intParameter {view.customintParameter} s

£ Expression

£ Expressionstructure | o
& Enabled Overlay Opt-Out Bidirectional Publish Initial Uncertain Value
Fallback Delay | 2.5 =

£ query
O Tag History
Add Transform +

& TP

2 Binding Preview

Tag
@ Remove Binding 2
Bl o || o

The {intParameter} dynamic Reference must be pointed to a Property or View Parameter. Your
property can pointed to any component property value or Tag value to build an Indirect Tag Binding. In
this example, the {intParameter} dynamic reference is pointing to a view custom property named
valveNumber that is used to help users control which Valve the binding is reading a FlowRate from.

Indirect Tag Binding - Bidirectional

Indirect Tag Bindings can also be made Bidirectional by clicking the Bidirectional checkbox on the Edit
Binding screen. This will allow any input from a user on that property to be written back to the Tag. To
work properly, the Tag needs to have the proper security to accept writes.

Ecit Binding: Label props text - o x
Binding Type Configure Tag Binding
Direct @ Indirect () Exprassion
W Tag P
Tag Path ty ameter}/FlowRate =
Sl Reference Property
intParameter {view.customiintParameter} £
f¥ Expression
£ Expressionstructure | o
2 Query [enabled Overlay Opt-Out | 4 Bidirectional Publish Initial Uncertain Value
Fallback Delay | 2.5 -5
© TagHistory
Add Transform +
& HTTP

[Binding Preview

i Remove Binding P

Indirect Tag Binding Example

In this example, we have some different motors, where each motor is a folder of Tags. Each motor has an amps Tag that is within the folder, so that
our Tag paths look like the following:

Mot ors/ Motor 1/anps
Mot or s/ Motor 2/ anps
Mot or s/ Motor 3/ anps

Mot or s/ Motor 4/ anps

Instead of creating four different displays for these four different Tags, we can create a single display and make it indirect. We need two things for this
example: A component to display the value in, and a component which allows the user to select which motor they are looking at.

1. Drag an LED Display component onto the view. This will be the display component.
2. Drag a Dropdown component onto the view. This will be used to allow the user to choose what motor the LED Display is showing amps for.
3. Select the Dropdown component. In the Property editor, under the options property, click Add Array Element...

Q-

Perspective Property Editor

FROPS

value :
options

Add Array Element...

multiselect : false

placeholder

text : 5

elect...

enabled : true [

search

enabled : true [

4. Set the value to 1 and the label to Motor 1.
5. Repeat steps 3 and 4 to add array elements for Motors 2, 3, and 4.

0

100 | 200

rFe

Motor 1

™
LE

1

100

(i

i

0]

30

Perspective Property Editor

Q-

PROPS

value : 1

options

]

lahel

lahel

label

lahel

value :

value ;4

value 1

: Motor 1

: Motor

value : 2

: Motor

: Motor

(=]

[EX]

Add Array Element...

6. Click on the LED Display component. Select the Binding
7. Click on the Tag binding type then click the Indirect button.

G2

icon in the value property.

8. Click the Tag ‘ icon and scroll down to the Motors/Motor 1/Amps Tag. Click OK.

',,f Edit Binding: LedDisplay_2.props.value

] x

Binding Type

=l Property

¥ Expression

¥ Expression Structure
= Query

© Tag History

& HTTP

i Remove Binding

Configure Tag Binding

Direct}© Indirec] Expression

Tag Path
Reference Property
Options
2 Enabled Overlay Opt-Out Bidirectional

Add Transform +

Binding Preview

Tag
null

E Cancel

[xl=

q

& Tags

B Data Types

W Better HMI Tags
W Demographics
i\ Glycol

i HMI

= Motors

- % Motor 1

} W Parameters
» % Amps

+ % Derived Member
r % HOA

» % Level

% Motor 2

% Motor 3

% Motor 4

% Motor 5

% Motor 6

% Motor 7

>
b
»
b
>

Ny

9. In the Tag Path field, replace the 1 with {1}. We are replacing "[default]Motors/Motor 1/Amps" with "[default]Motors/Motor {1}/Amps"
maintaining the space found between "Motor" and "1" in "Motor" and "{1}".

Configure Tag Binding

Direct £ Indirect ' Expression

Tag Path | [default]Motors/Motol Amps % =
Reference Property
e s
1 Al *=
2

10. In the References list, select the row. Click the Properties @ icon.
11. Scroll to the Dropdown component and select the value property of the Dropdown. Click OK.

Configure Tag Binding
Direct £ Indirect (_ Expression
TagPath [default]MotorsfMotoAmps % =

Reference Property

] ”

1 o] *=
z
L
Options
Enabled Overlay Q
¥ et "
Add Transform + b i LedDisplay
.) i LedDisplay_0
o . < > b @ LedDisplay_1
Binding Preview = & Dropdown
T oK Cancel P
9) _ ~ W props
© Error_Configuration
» M options
B multiSelect
b placeholder
B enabled
b search
B showClearlcon
B allowCustomOptions

b style

What we have done is configured the Dropdown component's value property to be inserted into our indirect Tag path in place of "{1}". If we
select "Motor 1" from the Dropdown component, its value property then becomes 1. The number 1 then takes the place of "{1}" in the indirect
Tag path making it "[default]Motors/Motor 1/Amps". Similarly, selecting "Motor 2" from the Dropdown component makes its value property be
2. The number 2 then takes the place of "{1}" in the indirect Tag path making it "[default]Motors/Motor 2/Amps".

12. Click OK to save the binding.

13. Put the Designer into Preview mode " to see the components and the indirect in action.

14. Select a motor in the Dropdown component. The value in the LED Display component will change depending on the Motor that is selected in
the Dropdown list.

e~ R

Moaotor 2

Motor 3

Motor 4

Tag Expression Binding

The Tag Expression binding uses the Expression language to specify an entire Tag path. This mode IN DUC T I VI
allows the bound property (Tag) to be bidirectional. The Tag path in the Expression is expected to be a
string. Note that is different and not to be confused with an Expression Binding. U NIV E RS I'I

Tag Expression Binding - Example
For this example, we start with two Tags: Tag A and Tag B and two buttons on a view.

Tag Binding -
Expression

Watch the Video

File Edit View Project Component Tools Help
G R R O - =R
Project Browser [L4 0 | 100 | 200 | 300
= |
Q- Filte Project Properties /4]
- QJ’ Main View 2 _
Button_0]
Button_2 =
2 Popup =
b g Test]
b @ TestProject +A I
Tag Browser o - X]
Qo w-a b 006 B <5
~ '@ Z_Other_Tags 1
» W TagA Memory Helle String J
v % TagB Memory Helle Again String]
r % TagC Memory Testing Text L]
¢+ % Auditing OPC Boolean =8
b % EstimatedReturnTime COPC DateTime]
r % My Memory Tag Memory -50 Integer —
1. Right-click on the first button and select Configure Events.
2. Select onClick.
3. Under Organize Actions, click the Add + icon and select Popup.
4. Under Parameters, click the Add + icon to add a new parameter.
5. Enter "tagToShow" in the Name field and "Tag A" in the Value field. Click OK.

https://www.inductiveuniversity.com/videos/tag-binding---expression/8.0/8.1

Event Configuration on Button

Events Configure [onClick] Actions
Q-) -]
Organize Actions Configure Popup Action
~ @ System Events A
v 1. Popup + .
W onStartup - Popup Action =
m
= onShutdown © Open Close Toggle
~ @ Component Events t)
B onActionPerformed o B
~ @ Mouse Events =~
I — onClick*
B onContextMenu Parameters
B onDoubleClick Name Value +
B onMouseDown tagToshow i
B onMouseEnter
B onMouseleave
B onMouseMove
B onMouseOut
B onMouseOver Identifier Location & Dimension
B onMouseUp
NMKNT2IT = =
~ @ Keyboard Events Top -
B onKeyDown Title =
Left
B onKeyPress = hd
B onKeyUp a
. E— v Behavior Bottom >,
n Cancel Apply
6. Repeat steps 1 through 4 for the second button, but in the Value field, enter Tag B. Click OK.
Event Configuration en Button_0 - X
Events Configure [onClick] Actions
Q-) ; ;
Organize Actions Configure Popup Action
v System Events -
= +
B onStartup - Popup Action &
L
® onshutdown © open Close Toagle
~ @ Component Events t)
B onActionPerformed no s
~ @ Mouse Events Custom_Example/PopUp-Ex & ~
I
B onContextMenu Parameters
B onDoubleClick Name Value +
B onMouseDown tagToShow i
B onMouseEnter
B onMouseleave
B onMouseMove
B onMouseOut
B onMouseOver Identifier Location & Dimension
B onMouselUp
mLem+z6F = -
~ @ Keyboard Events Top v
B onKeyDown Title =
Left
B onKeyPress = >
B onKeyUp ry
M T = Behavior Bottom >,
n Cancel Apply

7. Create a new view named Popup.

Mew View x

Mame

Popup o
Root Container Type

Coordinate v
[Page URL

| /popup) o

8. Drag a Label component and a Text Field component onto the Popup view.
9. In the Popup view, click on Add View ParameterA.
10. Add a new parameter, tagToShow.

Project Browser g _ X [} . ‘m |2nn | | Perspective Property Editor (=4
Q. Project Properties .5 | Label | Q-
CylindricalTank_2 4 ~ PROPS
Label
Label_0 ~ defaultSize
Label 1 =] width : 80
IR | - height <14
~ root B ~ dropConfig
Label - b udts
Tag Browser a - X » dataTypes
Q o|w-8 090 @ ? + loading
mode : non-blocking
i
» % TaghA Y Hello String] ~ CusToM
» % TagB Hello Again string B3 Add Custom Property.
» % TagC Memory Testing Text L1
» % Auditing OPC Boolean E ™ PARAMS
» % EstimatedReturnTime OPC DateTime tagToShow : «
> % My Memory Tag Memory -50 Integer =

11. Select the Label component. Click on the Binding ©S icon next to the text property.

12. On the Edit Binding screen, select the Property binding type. Enter view.params.tagToShow in the Configure Property Binding field.
13. Click OK.

Edit Binding: Label_0.props.text - O #
Binding Type Configure Property Binding
W Tag I view.params.tagToShovJI =
Options
= Property [Enabled Overlay Opt-Out Bidirectional

F Expression Add Transform +

f¥ Expression Structure
£ Query
@© Tag History

) (R Binding Preview

Property
T Remove Binding

E Cancel Apply

14. Next set a binding on the Text Field component. Select the component then click on the Binding oo icon next to the text property.

15. On the Edit Binding screen, select the Tag binding type and select the Expression button.
16. Enter the following expression. This expression in the example tells the Text Field to display the value of Tag A if the view parameter is equal
to Tag A. Otherwise display the value of Tag B.

if(
{vi ew. parans. tagToShow} = "Tag A",
"Z_Other_Tags/ Tag A",
"Z_Other_Tags/ Tag B")

+/ Edit Binding: TextField.props.text - m} *
4 g prop:
Binding Type Configure Tag Binding
Direct [ndirec
% Tag —p +
1if(Al 7=
2 {view.params.tagToShow} = "Tag A", b3
5 rapEy) 3 "Z_Other Tags/Tag A", S
4 "Z_Other_Tags/Tag B"
f¥ Expression 5) S
J¥ Expression Structure
£ Query : 2
Options
© Tag History 2 Enabled overlay Opt-Out [Bidirectional
& HTTP

Add Transform +

Binding Preview

Tag
T Remove Binding

n Cancel Apply

17. Click OK to save.
18. Put the Designer into Preview mode ’ When you click on the Open with Tag B button, the popup appears to show the Tag B label.

Tag B

Hello Again

In This Section ...

Drop Configuration

On view objects in Perspective, the dropConfig property (also called drop configuration) enables you
to associate a view with a Tag, allowing for drag-and-drop from the Tag browser to a view in the designer
to automatically create a view. There are two general approaches, which are displayed under the dropCo
nfig property:

® udt: Allows a view to be associated with a UDT. Useful in cases when a system is making use
of UDTs, and you'd like to be able to multiple bindings simultaneously.

® dataTypes: Allows the associated to be based on the data type of a Tag. For example, you can
automatically create and bind a specific view when an Integer Tag is dropped onto another
view.

Perspective Property Editor o - X

PROPS

defaultsize
dropConfig
udts
1]
type :
param
action :
dataTypes
1]
type : Intd
param

action :

lnadinn

Both of these configurations are made directly on the view you wish to instantiate.

The param and action Properties

While udt and data types drop configurations are listed separately in the Property Editor, they share
some properties: namely param and action.

param

When using a drop configuration, param expects a string value to a view parameter on the same view.
The idea being that when a Tag drop creates an instance of this view, the view parameter on the
instance will be automatically set with something (determined by the action).

In the image below, the view has an element under dropConfig.udts configured, with param set to
"udtMembers". Further down, under the "PARAMS" heading, there is a parameter with the same name of
"udtMembers". Thus the next time the configured UDT (type of "My Type", as shown in the image) is
dropped onto a view, the "udtMembers" view param will automatically update its value.

On thispage ...

® The param and action Properties
® action

UDT Drop Config
® Example

Data Type Drop Configurations

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+View+Object

Perspective Property Editor o — X

PROPS

defaultSize
dropConfig
udts
4]
type : My Type

| pazam : udtMenbers |

action : bind
dataTypes
loading

A
CUSTOM

A
FARAMS

udtMembers —_

exp : value

..

action

The action property determines what happens to the specified view parameters (determined by the param
property). There are two options for action:

® hind: creates a Tag binding between the view parameter and the dropped Tag. This is useful if
components in the view instance need to bind directly to the value of the dropped Tag.

® path: populates the view parameter with a Tag path leading to the dropped Tag. Useful if scripts
and expression bindings in the view instance are more interested in the path to the Tag.

UDT Drop Config
The udt type drop configurations can associate an entire UDT instance, along with its members, to a @ IN DUC T I VI

view. Using a UDT drop configuration is exciting because if the associated view parameter is set to a
JSON object, then the configurations will also expose values on the members of the UDT to elements in U NIV E RS I'I
the JSON object. For example, say we have the following UDT.

Tag Browser o - X
Qo ¥-a0 - Tag Drop
Tag Value Data Type Traits
~ fw Tags .
> = Data Tvpe. WatCh the V|deo
~ @ My_Type
+ % Member_1 Expressior "Hello!" String
+ % Member 2 | 123 Integer
» & Newlnstance My Type Wy_Type
b il System
L i All Providers

On a view we wish to embed elsewhere, we can add a view parameter as a JSON object, with a key
("value" type) for each member we want in the embedded view. As long as the name of the keys
matches a UDT member, then the created view instance lookup values for the named members.

https://www.inductiveuniversity.com/videos/tag-drop/8.1

In the image below, the dropConfig>udts parameter named udtMembers is a JSON object with two
values. The keys for the those values are Member_1 and Member_2, which matches the names of UDT
members in our My_Type UDT. As a result, the drop configuration will result the new view instance
having access to the value of the Member_1 and Member_2 Tags.

Perspective Property Editor o - X

FROPS

defaultSize
dropConfig
udts
4]

type : My_Type

paramy . UdTHMemoers

action : bind
dataTypes
loading
mode : non-blockin
B Add Propert
CUSTOM
B3 Add Custom Property

PARAMS

uditMembers —_
Member_ 1 : valuel
Member 2 :value
-ii Add View Paramete

Example

1. First, create a UDT definition and instance. If you'd like to use the same Tags as this example, open the expand panel below, copy the JSON
string, and paste it into the Tags folder in your Tag Provider.

{

name": ,
"tagType": "Provider",
"tags": [
{
"nanme": "UDT_Drop_Target",
"tagType": "Fol der",
"tags": [
{
"nanme": "New | nstance",
"typel d": "UDT_Drop_Target/ My _Type",
"paraneters": {
"thingl": {
"dataType": "String",
"val ue": "Hello!"

}
b
"tagType": "Udtlnstance",
"tags": [

{

"nane": "Menber_1",
"tagType": "Atom cTag"

}
{
"nane": "Menber_2",
"tagType": "Atom cTag"
}
]
}
]
}
{
"name": "_types_",
"tagType": "Fol der",
"tags": [
{
"name": "UDT_Drop_Target",
"tagType": "Fol der",
"tags": [
{
"name": "M/_Type",
"tagType": "UdtType",
"tags": [
{
"val ueSource": "nenory",
"nanme": "Menber_2",
"val ue": 123,
"tagType": "Atom cTag"
3
{
"val ueSource": "expr",
"expression": "\"Hello!\"",
"dataType": "String",
"nanme": "Menber_1",
"tagType": "Atom cTag"
}
]
}
]
}
]
}

It should look like the image below. Notice, both the instance and definition are placed into their own separate folders.

Tag Browser o - X
Q o ¥-8 0 a2 HB-
Tag Value DataType Traits

* &= Data Types
~ 'mw UDT _Drop_Target

b @ My Type
~ aw UDT _Drop_Target
+ @ NewlInstance UDT Drop Target/My Type UDT_..
» W Parameters Docu...
b % Member_1 Expression Hello! String
% Member_2 Memory 123 Integer
F I System

2. Create two views. The first will be Big_View that we'll be dragging Tags onto, and the second will be Small-View that we'll associated to the
UDT above. For the purposes of this example, we'll use Coordinate Containers as the root container for both views.

Project Browser o - X
Q- A

b /%) Alarm Notification Pipelines
of Sequential Function Charts
» & Scripting
+ @ Perspective
[& Session Events
g Styles
- mg Views
~ (# Big_View
[=] root &
- (71 Small_View
[=] root
b Tg 1Tansacton Groups

3. Inthe Small_View, we'll make a minor cosmetic change so it is easier to see when we're embedding it later. We'll change the background
color to something other than the default.
4. The, with the view selected, add a view parameter. When selecting the parameter type, choose Object. We'll name it UDT_Prop.

File Edit View Project Component Tools Help
B ¥« S L L 1 b a a @ v
Project Browser o - X (] 100 200 Perspective Property Editor o - X
=
A
b i¥ Alarm Notification Pipelines PROPS
&% Sequential Function Charts
» [scripting defaultsize
2 dropConfi
~ [Perspective = |Drag a component into the container| P g
[Z Session Events loading
W Styles B Add Propert
- g Views CUSTOM
~ (4 Big_View
% Add Custom F
[v] root
|~ small view PARAMS
e root 9 UDT_Prop -
» D Transaction Groups -
B Add Ohiect Marmbe
= e dd Object Membe
Tag Browser g - X ‘
o~ AR A BE

5. Add two object members to UDT_Prop. These members will represent the values on the two UDT members in our UDT. The values on our
UDT members are integer and string, so both only have a single value. Thus, the object members we need to add here only need to show a

single value each. Thus we'll make the object members Value typed.

PARAMS
UDT_Prop -
key : value
key_1 :value

6. For the view parameters to know which members in the UDT to associate with, we need to rename them so they match the name of a UDT
member. Change the name of the view parameters to Member_1 and Member_2, to match our UDT members.

PARAMS
UDT_Prop -
Member_1 :wvalue

Member_ 2 :wvalue

7. Now that we have some parameters that will eventually house values from our UDT, we can create components that use these parameters.

Add a Label component to Small_View.

8. On the Label, configure a Property Binding on the Text property, leading to the Member_2. We're using Member_2 here since it's a

memory Tag, and we can easily change the value of it later on.

Edit Binding: Label.props.text

Binding Type Configure Property Binding
W Tag view.params.UDT_Prop.Member_2 =
Options Q-
[Z] Property
4 Enabled Overlay Opt-Out Bidirectional » W session
f¥ Expression b W page
Add Transform + v () view
fx Expression Structure » il props
~ [params
= Query ~ T UDT Prop
O B Member_1
‘ag Histol
gty T T ez
~ D » [root
4 Binding Preview
Property
@ Remove Binding value

OK

ﬁ Cancel App.;

9. Next, we need to configure the drop configuration settings on Small_View. Select the view, and locate the udts property.

CIEIE PRI EEEEY B
Project Browser o - X 0 | |100 | |200 Perspective Property Editor L4 Il
o Al Q-

b 4% Alarm Notification Pipelines o] ~ PROPS

&% Sequential Function Charts

» [scripting 1 Label / b defaultS::Lze

~ @ Perspective a ~ dropConfig

[& Session Events - udts

s Styles N Add Array Element.

- &G Views R |
~ (7 Big_View =] = a ~ loading
5] root h mode : non-blocking w
| o
~ [root €
07 Label | ~ CUSTOM

P o TR S, B E A Property...

Tag Browser a _ X e —

10. Add an array element to the udts array. For type, click the dropdown and select our UDT definition.

dropConfig .E
=
udts 2 |
e
@
type @
pazam : | =
action ~ = Data Types
dataTypes - ' UDT_Drop_Target
loadi b2 My Type A
pading b System
mode :non-b |» i All Providers
Add Property
CIICTMRA

11. For param, type in the name of the root view parameter we created earlier. If you followed along with the example, the name would be UDT_
Prop.

12. For action, leave that with the default value of bind, which will create some bindings for us when we create an instance of this view.

13. Now we're ready to test this out. Save your project.

14. Switch over to Big_View.

15. Drag the UDT instance (or any UDT instance with a parent type of My_Type) onto Big_View. You'll be presented with a popup, which lists
any and all views that are associated with that type.

File Edit View Project Component Teools Help

: =)

BOE . | s w1 > @aa
Project Browser g - X
Q- A

F 15 SCrpung -
~ @) Perspective

|1un |2on 300

[Session Events
s Styles
- &g Views

[Tgsane
[7] root &
~ 7] Small_View
« [root
[¥ Label &2 "

Lt 0

I/\\?Small_\iiew

iHE

ool

£

Tag Browser (=]l
Qo|¥-ma 0 a2 @

Tag ~
~ ' Tags

» B Data Types |
~ '@ UDT_Drop_Target /l

ool L oooeaseel L

» W Parameters
» W Member_1 Expression
» % Member_2 Memory
b Il System
+ il All Providers

Drag a cql

4

Y

: 5 ® Big_View x Small View

BB Projectsaved. (75 ms)

16. Select Small_View from the popup, and you'll see an instance of Small_View created. Further more, the values in our UDT instance are
made available to the view instance, so the value on the Member_2 Tag will be shown on the label in the instance of Small_View.

17. Changing the value on the Member_2 Tag will update the label on the instance of Small_View.

File Edit View Project Component Tools Help

B Y5 e (oo (racaalfon s

Project Browser o - XI....|1.UQ..I....|2.UE.'....
Q- B

P SCrpung Py

+ () Perspective
[Session Events
s Styles
- @G Views
~ [Big_View
- [root €

R

~ (# Small_view

oo, 0

100

0 456 +

260

- [o] root "]
Tag Browser (=L 4 _:
Q g ¥-a b a2 B | b o
Tag Value = E:
~ G Tags

» B Data Types
~ @ UDT_Drop_Target
.
» W Parameters f’l
» % Member_1 Expression Hello!
» % Member_ 2 Memory
> System
+ i All Providers

N

Ak

4

: 5 ® Big View x Small View

R Project saved. (75 ms)

Data Type Drop Configurations

Data type drop configurations allow you to associate a view with a certain Tag data type, as well as specify what bindings occur when dropping the
view.

Let's use a Tag to create an embedded view with all the property bindings configured by simply dropping the Tag in a view.

1. Inthe Project Browser, select your original view that contains the Tank, LED Display, Slider, and Labels (i.e., Tanks3).

2. In the Property Editor, expand the dropConfig property, and then expand the dataTypes property. Configure the following properties:
a. Select the data type - Int4
b. Setthe param - sliderValue
c. ldentify the action - bind

3. Let's create a couple of Tags so we can use the 'dropConfig’ feature to create multiple embedded views. Copy the Tag you created in the
last example (i.e., Test Tank Tag) to make two more Tags, and change their values. This example uses 52, 33, and 78 for the values.

Q

» I Vision Client Tags
» i All Providers

Value

File Edit View Project Component Tools
RO o
Project Browser a - X
Q- Fite B
| ke [
@TankEPage

b g PlantD

~ fw PlantE v
Tag Browser a - X
Qc ¥-a0d D0 M

DataType Traits

|300 Perspective Property Editor

40

60 80

100

£ Tank3 x Tanks

o |

T x

~ PROPS
~ defaultSize
width : 27

height

>

~ dropConfig
boudts
~ dataTypes
- B8
type 1 Intd -
param : sliderValue

action :bind

B3 Add Array Element.
~ loading
mode : non-blocking
b CcusTOM
~ PARAMS

sliderValue : 6@

sjuauodwo) aapdadsiad Q

Tag Browser
o W- a5
~ [Tanks

» W TestTank Tag Memory

» W TestTankTag1 Memory
» % TestTank Tag2 Memory

52 Integer
33 Integer
78 Integer

g - X

4. Create a new large view so we have plenty of room to drop multiple of these tank views on the screen.

5. Drag and drop each of your three Tags into your new large view. You will be prompted for what type of component or view you want to

create. Choose your original view (i.e., Plant C / Tank3).

File Edit View Project Component Tools Help
BB« s |t oefrcowoas
Project Browser =L 0 | 100 200 300
Q- Filte Project Properties . i
~ g Tank Examples il
~ (4 Tanks 1
) Docked -
) Tanks =] Label
o, L DR | 2 | o oispay
Tag Browser g - X . | One-Shot Button
Q o W-8 6 9D 0 |1 Cylindrical Tank 7
~ @ Tanks ~ |81 Gauge
» % TestTank Tag Memorn 52 Integer] Simple Gauge
» % TestTankTag1 Memory 33 Integer - .
» W TestTank Tag2 Memory 78 Integer | | Frogress
b B Test | 1 | Thermometer
i Towers 21 sliger
} I Turbines]
} il VFD Motors _ | Plant C/Tank3
» I Writeable 1
1 Plant DiTanks |
» % Machine On Memory Boole.. '1 |
+ W NewTag Memory 60 Integer N
+ % Poll Time Expression Boole.. | « % Tanks x

6. The three Tank components and their values are now displayed on your view.

0 ‘Illl] ‘Il]ﬂ 300 ‘MII] | ,ﬁ | 600 | |?l]1| | 800 900

Tank Tank Tank

1n:||

znn‘

=] o o o= o O==") o o o o O
- 0 20 40 60 a0 100 0 20 40 60 a0 100 o 20 40 60 80 100
1 =! u! ul
-
] »
2 Tanks x

7. If you check the individual tank views, you will see a binding on the 'sliderValue' param. If you open the binding, you will see that each
embedded view is pointing to one of the Tags.

+/" Edit Binding: EmbeddedView_0.props.params.sliderValue — O *

Configure Tag Binding

O Direct _ Indirect | Expression

% Tag
I Tag Path | [default]Tanks/Test Tank Tag 1 I E]|
El Property
Options
J¥ Expression Enabled | | Overlay Opt-Out | | Bidirectional

f¥ Expression Structure
Add Transform +

£ Query

© Tag History
Binding Preview

Tag
33

& HTTP

i Remove Binding

Property Bindings in Perspective

Property bindings are important when designing projects in Perspective. Each Perspective component

has a number of properties that change the way a component looks and behaves, but it's through
property bindings that bring your Perspective sessions to life to accomplish useful things.

A property binding is the simplest type of binding. It's a way of linking one component property in a view

to another component's property in the same view. Not only can you link one property in a view to

another property in the same view, but you can also link a component to a property within a UDT, and

pass a property into an embedded view through a view parameter.

This page describes how to set up property bindings for properties in the same view, bind to a property

within a UDT, and how to use a view parameter to pass a property into an embedded view.

@ Using Property Bindings Across Views

You cannot have a binding refer to a property in another view instance even view instances
that may be embedded in a view. You can pass a property into an embedded view through a

view parameter.

Property to Property Binding

On thispage ...

® Property to Property Binding

® Pass a Property into an
Embedded View Using a View
Parameter
® Use a Property Binding
® Using a Tag Binding

@ INDUCTIVE
UNIVERSIT

Property Binding

Watch the Video

A property binding simply binds one component's property to another. When that property changes, the new value is pushed into the property that the
binding is set up on. In this example, we'll use a Tank, LED Display, and Slider components. We'll bind the 'value' properties of the Tank and LED
Display to the 'value' property of the Slider in the same view so whenever the value of the Slider changes, the Tank and LED Display will reflect the

same value.

. In the Designer, create a view.

1
2. From the Component Palette, drag Cylindrical Tank, LED Display, and Slider components into your Designer workspace.

3. Select the Tank. In the Property Editor, click on the Binding o) icon for the 'value' property.

100

200

ElHY

=
(=]

.-»

100

Tank

300 Perspective Property Editor

PROPS

value :
capacity :
liquidColor :
tankColor
liquidOpacity :

liquidWarningCelor :

tankWarningColor :
warningThreshold :
strokeWidth :
valueDisplay
enabled : tTue
style »
style .

classes :

\

4. This opens the Edit Binding window. Configure the following settings:

a. Select the Property binding type.

https://www.inductiveuniversity.com/videos/property-binding/8.0/8.1

B

b. Under Configure Property Binding, click the Insert Property icon to open the Property popup box. Expand the folders and
select the Slider 'value' property. Click OK.
c. Click OK to save the binding settings.

Edit Binding: CylindricalTank.props.value — O X
Binding Type Configure Property Binding
W Tag .JfSlider.props.value =
Options Q-
=] Property Enabl... Overlay Opt-Out Bidirectional = ¥ Cylindricalmank ~
fr Expression » [props
Add Transform + » il position
f* Expression Structure b meta
b [Label
£ Query b 5 LedDisplay
v 4 Slider
v '
© Tag History & props
& uTTe = min
B max
B orientation
B step
b i labels
B enabled
B handleColor -
Binding Preview
Property
i Remove Binding 0
n Cancel Apply

. Select the LED Display. In the Property Editor, click on the Binding == icon for the 'value' property and repeat Step 4.
. To see the labels on the Slider, select the Slider and set the show property to 'true’.

. Save your project. Put the Designer in Preview Mode # .
. Move the slider and you'll see both the tank level and LED display change to the value of the Slider.

'""Ll“* Q @ % O™ #® B <8

Tank

Level

m:l e n)
0 20 40 &0 80 100

Pass a Property into an Embedded View Using a View Parameter

The only way to a pass a property across views is by passing a view parameter into an embedded view. You have options on how to pass a property
into an embedded view, how you decide to set up passing a parameter depends on how you design your project. You can set up passing a property to
a embedded view using a parameter with strictly property bindings, or with a Tag binding. Tag bindings allow you to store values in a database in the
event you want to collect history but will force all sessions to see the same value.

Use a Property Binding

In this example, we'll use a Tank view containing the Tank, LED Display, and Slider that shows passing the 'value' properties from the Tank and the
LED Display to the 'value' property of the Slider. Now we will set the Slider to pass its value to a parameter on the embedded view. To demonstrate
this, you can use the same Tank view from the Property to Property Binding section above, or you can create another view using the same
components as in the example above, and assign the view a new name.

1. Using your original view from above, select the view in the Project Browser.

2. Create a view parameter under Params called 'sliderValue' and make it bidirectional by toggling the Arrow ** icon until the arrowhead is at
both ends.

Project Browser g - X 0 100 200 300 Perspective Property Editor g - X
Q All° Tank Q;
= ani
‘ ®Aar5 PROPS
I "_@ Bigview defaultSize
hd ETDDI @ = width :
¥ CylindricalTank &2 2 height :
L7 Label dropConfig
% LedDisplay €2 udts
v Slider dataTypes
[¥ Label.0 g loading
) Breakpoint mode
(D) Breakpoint-example AddF
P Coordinate View CUSTOM
@ EastView ;1 5 PARAMS
() Firstview ' LsulideIValue : -
() Flex_View_Test Add View P

3. In the Project Browser, create a new view (i.e., Tank3Page) that will contain the embedded view.
4. Drag a Embedded View from the Component Palette to the Designer workspace.
a. With the Embedded View selected, set the 'path’ propertﬁto your original view (i.e., BigView) from the dropdown list.

b. Inthe Property Editor, click the Add Object Member
c. In the Parameters list, select the sliderValue parameter.

0 100 l 200 300 Pergpective Property Editor [= L4
=F . L1 |

icon under props.params.

Q.

Tank
PROPS

path : BigView

params
? .

usa Parameters » | « sliderValue (inout)

100

usel Value Sync Params

sty Object Sync & Reset

200

C Array

POSITION
CusTOM
META

ane

5. Save your project.

6. From this new view, put the Designer in Preview Mode " Drag the slider to a value to change the value on the Tank and LED Display.
7. You can see from the Embedded View (i.e., Tank3Page), that your sliderValue reflects the same values as your slider.

Using a Tag Binding

Now, let's pass a property using a Tag binding. Using a Tag binding will allow you to maintain the value of the Slider when you relaunch a Client or
Session and store values in a database in the event you want to collect history.

1. In the Tag Browser, create a Memory Tag with a data type of Integer, and assign a name (i.e.,Test Tank Tag).

Tag Editor X

New Tag [

= = EH o+ :

-~

El Basic Properties

Name est Tank Tag

Tag Group Default =
Enabled true v
Evalue
Value Source Memory hd
[[]
Value

E Numeric Properties

Deadband 0.0001
Deadband Mode Absolute A
Scale Mode Off -
Engineering Units v

= Documentation Diagnostics

2. Select the Embedded View. Click on the Binding = icon next to the 'sliderValue' and bind it to the memory Tag (i.e., Test Tank Tag).

File Edit View Project Component Tools Help
—
ﬂm‘«»-};,\iiﬂﬂlﬂ rCc S O8N
Project Browser 8- X v i oo E W) 400 perspective Property Editor g _ X [
EI
Q- A a- o |2
~ g PlantC ~ Tank 3
~ [Tank3 7 (2l '%
> —— - <
root —| path : Plant C/Tank3 &
CylindricalTank 1 =
LedDisplay E params - 2
slider L slidervalue @ va H
Label 0 — 0% useDefaultViewwidth E
Label 0.0 useDefaultviewHeight : —
~ (i Tank3Page style -
~ root (=]
[| EmbeddedView S T = classes :
Tag Browser a - X — POSITION
Level CUSTOM
Q o |¥- A 906 @
= €] Y META
» % NewTag M L. Al =7
+_% Poll Time Expr -3]]®
L 0 20 40 60 80 0
¥ % Areal Area |
b % Area2 Area
b % Area3 Area [1 &4
+ % TankInstance Tank UDT 3
» il System]
< > @& Tank3 Tank3Page X

3. This opens the Edit Binding window. Configure the following settings:
a. Select the Tag binding type.

b. Under Configure Tag Binding, click the Tag ‘ icon to open the Property popup box. Expand the folders and select the 'Test
Tank Tag'. Click OK.

c. Click the Bidirectional checkbox. allowing the Tag to be updated by the embedded view.

d. Click OK to save the binding settings.

[Ellam
+/ Edit Binding: EmbeddedView.props.params.sliderValue - m] *

Binding Type Configure Tag Binding
® Tag © Direct _ Indirect _ Expression
Tag Path | [default]Test Tank Tag E
[El Property
Options ~ ' Tags ~
f¥ Expression Enabled Overlay Opt-Out » B Data Types
f¥ Expression Structure : ; :Znt;:r;ﬁrl’;:iors
= Quey Add Transform + » & Motors
» il Ramp
© Tag History [SgnsorTypes
> i Sine
& HTTP Binding Preview > Test
Tag W Towers
i Remove Binding 21 » i Turbines
» i VFD Motors
» @ Writeable
E Cancel » % Machine On
» % Poll Time
» W TestTank Tag |
b % Areal
b % Area2
b % Areas

[l

4. Now that all your bindings and Tag are configured, let's test out passing a parameter using a Tag. From the original view (Tanks), put the

Designer in Preview Mode and move the Slider to different values. Then, go to the embedded view and see if the value was passed.
Your embedded view should reflect the same values as in your original view.

Expression Bindings in Perspective

Binding Properties to the Outcome of an Expression

An expression binding is one of the most powerful kinds of property bindings. It uses a simple expression On th|S page
language to calculate a value. This expression can involve lots of dynamic data, such as other properties,

Tag values, results of Python scripts, queries, and so on. Any time information needs to be massaged,

manipulated, extracted, combined, split, and so on - think expressions!

® Binding Properties to the
Outcome of an Expression

Event Based and PO”mg ® Event Based and Polling
. ® Using Expression Bindings

How an expression updates depends on what is being done in the expression. Expression bindings will * Example 1

always update immediately when the window they are in is opened. When they update again depends on * Example 2

if they are driven by events or polling. Typically, expressions are driven by events. If the expression was
adding multiple values together, then when one of those values changed the expression would update,
regardless of whether those values came from other properties or Tags. However, the expression
function has some unique functions that can update at a set rate such as the now() function. When these

functions are used within the expression, the expression binding will update based on the specified

polling rate.

@ INDUCTIVE
UNIVERSIT

Expression Binding

Watch the Video

Using Expression Bindings

The expression language has lots of tools available that help calculate a specific value such as built in expression functions, multiple operators, and
the ability to reference Tags. While all of these can be manually typed into the expression, the expression binding window makes it easy to reference

these options.

To the right of the Expression Binding window, there are four buttons which can be used to reference specific objects or functions easily.

Icon Function

+_ Operators

z Functions
‘ Tags

B Properties

Example 1

Description

Places the operator into the expression at the cursor. Mostly used as a reference to what operators are available for use.

Places the function into the expression at the cursor. Can be used as a reference for what functions are available, as well as
the parameters the function is expecting.

Places a Tag reference into the expression at the cursor, pulling in that Tag's value into the expression at the time of
evaluation.

Places a property reference into the expression at the cursor, pulling in that property's value into the expression at the time
of evaluation.

In this first example we'll use an Expression binding to combine and display the value of two Tags.

AOWN P

. Create a new view and place two LED components on it.

. Select the first LED component and click on the Binding
. Select Expression the binding type.

& icon for the value property.

. In the Configure Expression Binding section, click on the Tag ‘icon.

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://legacy-docs.inductiveautomation.com/display/DOC81/now
https://www.inductiveuniversity.com/videos/expression-binding/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax

5. Scroll down to the Tag you want to use (RampO in the example) and click OK.

+/ Edit Binding: LedDisplay.praps.value - O ®
Binding Type Configure Expression Binding
*
1 Al T2
% Ta
? 3
[l Property ! E'

< > =

+ i@ Motors
2 Enabled Overlay Opt-Out ! Ranc.lnr.n
J% Expression Structure » i Realistic
» i ServerDiagnostics
= qQuery Add Transform + ~ @ Sim_Generic
- @ Ramp
© Tag History ® Enabled
B OpcltemPath
& HTTP B OpcServer
B Quality
P - B TagGroup
Binding Preview = Timestamp

Expression ® value

% Rampl
E Cancel App

iii Remove Binding
% Ramp2
% Ramp3
% Ramps

& on c

+
6. Next click the Operators &= icon. Select Mathematical, and then choose the Addition option.

Configure Expression Binding
1 {[default]Sim_Generic/Ramp/Ramp®} || *=
Mathematical PI |+ Addition I
v|| | Logical » | - Subtraction
< >
Bitwise o * Multiplication
Options /! Division
[Enabled Overlay Opt-Out A Power
| % Modulus
Add Transform + 1

7. Click the Tag ‘ icon again and select the second Tag. Click OK.

Now when this Expression is run, the value of this Tag will be added to the first Tag. Note that a preview of the Expression binding value is
shown on the lower left.

+/ Edit Binding: LedDisplay.props.value = O X

d g play.prop

Binding Type Configure Expression Binding

W Tag 1 {[default] Sim_Generic/Ramp/Ramp@}+{ [default]Sim_Generic/Ramp/Ramp3~ =

3

= Property || ®
< > El

¥ Expression Options

) [Enabled Overlay Opt-Out
¥ Expression Structure

Add Transform +

£ Query
© Tag History
& HTTP
Binding Preview
Expression
i Remove Binding 1134.146

n Cancel Apply

Example 2

Let's continue with the same view we set up in Example 1.

1. Select the second LED component and click on the Binding L icon for the value property.
2. Select Expression the binding type.

3. In the Configure Expression Binding section, click on the Functions Z icon. Scroll down to the Math functions and then select the abs
(number) function.

+/ Edit Binding: LedDisplay_0.props.value - o X
Binding Type Configure Expression Binding
1 Al *=
W Tag -'
=] Property . || Advanced >

< 2 Aggregates b

JFx Expression Options Alarming 4

) [Enabled Overlay Opt-Out Colors »
Jx Expression Structure |
Date and Time »

Add Transform +

= Query JSON 3
Logic »
- HTTP Strings » | acos(nurber) returns Double
Translation » | asin(number) returns Double
Binding Preview Type Casting » atan(number) returns Double
- Expression Users » | ceil(number) returns Double
@i Remove Binding cos (number) returns Double
exp(nunber) returns Double
E Cancel || Apply floor (number) returns Double |
4. Next click the Tag s icon and select the Memory Tag. Click OK.
Configure Expression Binding
1abs {I Al *=
[s]
e : » @ Realistic &
Options » W ServerDiagnostics
— » i Sim_Generic
L Enabled Overlay Opt-Out v Sine_
» il Tag Review
Add Transform + » i Tag Types
» i Tank
» Il Tanks_OPC
> Test
» i Towerl
» i Tower2
» % Auditing
o X » W EstimatedReturnTime
Binding Preview SN
Expression » % NamespaceArray
@ Error_Configuration » % Navigation
» % NewTag
E = : 7 » % NewTag2
ance PP » % NewTag1
A B Ml Toal [

[ox]

5. Next close the function with a closed parenthesis). Note that a preview of the Expression binding value is shown on the lower left. Click OK.

mm Projectsaved. (62 ms)

| Popup MainView MycChildview Exp-Bind-View X 4 b &

+/ Edit Binding: LedDisplay_0.props.value - m} x
Binding Type Configure Expression Binding
+
® Tag 1 abs| { [default]My_Memoxry_Tag}) Al =
z
=l Property o ®
< > El
f¥ Expression Options
i) [Enabled Overlay Opt-Out
J¥ Expression Structure
Add Transform +
£ Query
@ Tag History
& HTTP
Binding Preview
o Exprmi:L/
i Remove Binding 50.0
E Cancel Apply
. The value is now displayed in the LED component.
File Edit View Project Component Tools Help
B« 4 3 & @ (i 300208 8
Project Browser G- X 0 ! 100 ! 200 300 « || Perspective Property Editor d_ X @
Q- A7 a- g
e - 4
b @ Custom Example PROPS B
~ @ TestProject G2 value : o
~ (7 Exp-Bind-View =1 segmentFormat : 14 segmen = _é
~ root = _ nurberFormat : ¥, ##0]
LedDisplay 8 backgroundCelor : a 2
| [| reddispeyo |8 diodeonColor : # °
Tag Browser a0 diode0ffColor :
Qclw-a 0900 @ E locale : en-Us
» i Sim_Generic A style .
» i Sine - classes :
b i TagReview
» I TagTypes L1 POSITION
’ Tank = x4
+ i Tanks_OPC v
b W Test 3 width : 15
b i Towerl o
b i Tower2 height : 32
+ % Auditing OPC = CUSTOM
» % EstimatedReturnTime B -
» % My_Memory_Tag ! . b
» % NamespaceArrav META

100% 247 /1024 mb|)

Expression Structure Bindings in Perspective

What

Is an Expression Structure?

An Expression structure is an object type of property where several of the sub-items get their values
from expression bindings.

An Expression Structure bindings allow us to create a custom Expression binding where several
expressions give you several values. That is, the output is an object rather than a value. This binding
type is useful in configuring parameters for a script transform, or in cleanly creating a complex object
from a single binding. It enables you to create a data structure using a separate expression to populate
each entry in the structure.

Binding Interface

The Expression Structure binding is configured similarly to any object in Perspective, except that every va

lue property in the object is evaluated via an individual expression.

Binding Properties

Property Description
Name
Enabled Indicates whether the binding should fire.
Overlay Indicates whether the component should reflect a bad quality binding via a tag overlay.

Opt-Out

Wait On All | Indicates whether the binding should wait for every expression binding in the structure

to finish before completing. If false, each expression in the structure will resolve
individually and update their properties at that time. If true, all component properties will
receive their new values at the same time.

Example

1.

oA

Create a new memory Tag called NewTagl. Set the following:
Data Type: String
Value: It Works!

. Click OK to save the Tag.
. Create View called MyParentView.

a. Place a Carousel component and a Label component on the view.
b. Set the label text as "Parent View."

. Create another view called MyChildView.
. Place a Label component and an Icon component on the view.
. Now we need to add two view parameters MyChildView.

On thispage...

® What Is an Expression Structure?
® Binding Interface

® Binding Properties
® Example

@ INDUCTIVE
UNIVERSIT

Expression
Structure Binding

Watch the Video

https://www.inductiveuniversity.com/videos/expression-structure-binding/8.0/8.1

a. In the Property Editor under PARAMS, click Add View parameter and select the Value option.

Perspective Property Editor

Q.

g - X

PROPS

defaultSize
width
height
dropConfig
udts
dataTypes
loading
mode : non-blocking

E3 Add Property

CUSTOM
Add Custom Property
FARAMS
Add View Parameter...
Value
Object

Array

b. Change the word "key" to the parameter name we want, which is "iconPath."

c. Click Add View Parameter again.
d. Name the second view parameter "labelText."

7. Next we'll bind the components to the view parameters. On MyChildView, select the Label component.

a. Click the Binding = icon next to the text property.
b. Select the Property binding type.

c. Click the Property Editor icon.

d. Scroll down to the labelText view parameter. Click OK. Click OK again to save the binding.

e. Select the Icon component.
f. Click the Binding = icon next to the path property.

1) Edit Binding: Label.props.text - O X
Binding Type Configure Property Binding
% Tag view.params.labelText =
Options Q
= Property X
Enabl... Overlay Opt-Out Bidirectional » ® session
¥ Expression b W page
Add Transform + - @ view
J¥ Expression Structure [|
= Query W iconPath
|| & labelText
© Tag History m key
- HTTP Binding Preview > [l root
Property
i Remove Binding Label
Cancel App
OK

g. Select the Property binding type.

h. Click the Property Editor icon.
i. Scroll down to the iconPath view parameter. Click OK. Click OK again to save the binding.

8. Back on MyParentView, select the Carousel component and set the viewPath property to MyChildView.

o 100 200 300 400 Perspective Property Editor g - X

Q

PROPS -

views
Parent View)

100

o o o I viewPath : Mychi

viewParams
direction :

justify : f

alignItems :

200

activePane :
lazyload : tTue

Label autoplay
enabled : fal

[m transitionDelay :

+
© pauseldnHover :

pauseldnFocus :

pauseOnDotHover : false
behavior

ARG

transitionSpeed :
fade : false
mobileSwipeable : true
desktopDraggable @ true
o O O appearance
dots
- useDefaultViewWidth : fal

L4 useDefaultViewHeight : T

£ MyParentview X MycChildView slidesToShow : v

500

9. Next we need to add two view parameters. Still on the MyParentView, click the Binding &2
screen is displayed.

10. Choose Expression Structure as the binding type. Click Add Object Member... and select Value.

icon next to viewParams. The Edit Binding

Edit Binding: Carousel.props.views[0].viewParams

Binding Type Configure Expression Structure Binding
% Ta B 2dd ohject Member...
’
(= Property Object
Array

¥ Expression

f¥ Expression Structure

Options
£ Query Enabled overlay Opt-Out 3 Wait On Al
© Tag Histol
! L Add Transform +
& HTTP

11. Name this parameter iconPath.
12. Click the Expression fxicon, then enter "material/insert_emoticon" as the expression. Click OK.

[0 Edit Binding: Carousel.props.views[0].viewParams - O *
Binding Type Configure Expression Structure Binding
% Tag iconPath : "value” fr
+ s
= Property a 1 "material/router’| Al *=
b3
Jfx Expression Options [
, F Enabl Ove =
¥ Expression Structure
£ Query Add Transform -
© Tag History
& HTTP Binding Previ G >
Expression Structure
i Remove Binding B {iconPath™*ma 0K Cancel
Cancel Apply
13. Click the Expand icon and select Value to add another parameter.
14. Name this next parameter labelText then click the Expression fxicon.
15. For the value, click on the Tag icon then choose the tag. Click OK.
0 Edit Binding: Carousel.props.views[0] viewParams - O X
Binding Type Configure Expression Structure Binding
W Tag iconPath :
labelText :
[El Property Add Objec
].|{[default]_sim_Meu_Progrmmable_lNeuTagl] A *=
fx Expression Options b3
¥ Expression Structure Enabl... Over] E
- m Tags A

= Query Add Transform + ~ @ _Sim_New_Programmable_
» i _Controls_
B New Tag Import Folder
W Ramp
i Random
W ReadOnly
W Realistic
i Sine
W Writeable
% Booleant
% Events
¥ HOA
% Machine On
% New Derived Tal
» % Pressure3
» % Pressure Compare from P:i.“

© Tag History

& HTTP Binding Previe
Expression Structure < >

@i Remove Binding B {"iconPath™:"mal

OK Cancel

Cancel Apply

<

oK

16. Select the Wait On All option. This will ensure that all expressions provide a value before this binding will publish its initial value.
17. Click OK to save the binding. Now the label text we're using in MyChildView will be populated by this tag (NewTag1).

o | 100 | 200 |
=
& ParentVIew
1l o o
[=]
al
b It Works!
=1
=a C [m
Z]
[=]
E
=]
L1 4 = J
=
o]
4
£ MyParentview X MyChildView

Perspective Property Editor

Q|

~ PROPS
w views

]
viewPath : MyChil

~ viewParams
iconPath :mat

labelText : It Works!
direction : row «
justify : fle

start «
alignItems : flex-start -
activePane : 0
lazyload : true [
~ autoplay
enabled : false
transitionDelay : -

pauseOnHover : false

pauseOnFocus @ false

pauseOnDotHover : false
= behavior

transitionSpeed : 500
fade : false
mobileSwipeable : true [@
desktopDraggable : true [
~ appearance

b dots

b arrows
useDefaultViewWidth : false

Query Bindings in Perspective

The Query Binding allows you to pull data from the database using a named query. In Perspective, the
Query Binding requires the use of Named Queries. You can't type a query here from this interface, a
Named Query must already exist. You can also add transforms. For more information, see Transforms.

Edit Binding: Senser props.valus.text - o

X

Binding Type

W Tag

(= Property

f Expression

£+ Expression Structure
= query

© Tag History

& HTTP.

i Remove Binding

Configure Query Binding

Path Return Format

test o a ao v
Parameters
Type Name Data Type Value
Value newvalue! Inta £
Value newvalue2 string s

Query
SELECT a.displaypath
FROM alarm_event_data d
INNER JOIN alarm events a ON d.id = a.eventid
Options
Enabled || Overlay Opt-Out [Cache & Share [Designer Limit

Folling sec

Add Transform +

Binding Preview
Query

cancel || apply

Binding Properties

Property
Name

Path

Return
Format

Parameters

Query
Options
Enabled

Overlay
Opt-Out

Bypass
cache

Cache &
Share

Description

On thispage ...

® Binding Properties

INDUCTIVE
UNIVERSII

Query Binding

Watch the Video

Here you can enter in the path to the Named Query. Click on the Search Q icon to get a list of all available Named Queries.

The Return format specifies how the query results are returned. Options are auto, json, dataset, or scalar.

auto: Query results are returned in the format native to the database (typically dataset).

json: Query results are returned in json format.

dataset: Query results are returned in dataset format.

scalar: Returns the first element from the query result. This format is best when a single value is expected.

Here you can see a table of all defined Named Query parameters. You can pass in property or Tag values to the parameters by first

highlighting the parameter and then selecting either the Property icon or the Tag icon.

Note: The fields under the Value column are evaluated as expressions, so strings will require quotations marks.

In the query section, there is nothing to configure, but you can see what the Named Query you have selected looks like.

Allows the component to be active/in use /interactive on the screen.

If the target of the binding returns a non-good quality code, this setting indicates whether the component should reflect the quality

code with a component overlay.

This will cause the query to bypass/ignore any cached values from the Named Query and run every time it is called.

This feature was changed in Ignition version 8.1.12:

This option was removed in 8.1.12 and replaced with Cache & Share

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries
https://www.inductiveuniversity.com/videos/query-binding/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Parameters

The following feature is new in Ignition version 8.1.12
Click here to check out the other new features

When this setting is enabled, the query will utilize a polling engine that is shared across all running Perspective sessions. The polling
engine will run the query once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful
for consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling
this option will bypass the cache.

Designer This setting will force the results of the query to be limited to a few rows when run in the Designer.
Limit
Polling Here you can set the Polling Mode of the Named Query binding based on the Polling rate.

Related Topics ...

® Named Queries
® Transforms

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Queries

Tag History Bindings in Perspective

Tag History Binding

Tag History Bindings allow you to pull Tag History data that is stored in the database into a component On th|S page s
through a binding.
[edit Binding: Sensor.props.value text - [m] X
Binding Type Configure Tag History Binding ° Tag HiStOI’y Blndlng
Return Format ® Tag History Binding Example
W Tag - A .
O wide (CTall Calculations [) USIng Dynamlc Tag Paths
I Query ode Point Count
PointCount v 1ee fx

#+ Expression
Time Range start Date Ena Date

e datearithnetic(now(®), -1, /& | | now(e) fr
2 quy Select Tags
© Direct () Expression I N D l] C T I V’I
© Tag History Tag Path Alias Aggregation Mode A
[default}sensor 1/Reading (default) =
- 5 UNIVERSII
’
et Aegegaon ot vz - Tag History Binding
options
[Enabled Overlay Opt-Out Prevent Interpolation [Cache & Share
Value Format | DATASET v Wa‘tc h th e VI d e 0

Add Transform +

Crsnn v INDUCTIVE

— — Tag History

i Remove Binding Dataset[192 rows, 2 cols] U N I h E RS I 'I
Bl o | s

Tag History
Binding -
Expression

Watch the Video

Configuration Description
Property
Return Format Allows you to select the return format of the data. Possible options are:

Property Description
Wide Every column is a different tag, and each row is their values at different times.

Tall There are columns for Value, Quality, Timestamp, and Path, and each row is a new tag value at a specific time.

Calculations' Will perform a calculation on the returned data, and return the calculated values instead. For example, using the Avel
average of each tags value over the time range selected.

Query Mode How you want to query out the data. Possible options are:

Property Description
PointCount = Will return the number of records defined in the Point Count property.
Periodic Will return records separated by an amount of time specified in the Period property.

AsStored Will return the records as stored in the database. While querying data with this mode, multiple value changes at the s
rows, one row for each unique value.

https://www.inductiveuniversity.com/videos/tag-history-binding/8.0/8.1
https://www.inductiveuniversity.com/videos/tag-history-binding---expression/8.0/8.1

Time Range The time range to pull data values from. Possible options are:

Property Description

Realtime The start date will go back as far from the current time as the Most Recent property specified and the end date will be
evaluates. Options are MS, SEC, MIN, HOUR, DAY, WEEK, MONTH, or YEAR.

Polling: You can specify a Polling rate to determine how often to update the times. Click the Functionsfx icon to use

properties.
Time Range Most Recent
Realtime v |1 fo | |HOUR =
Polling
Polling sec
Historical You can specify the Start and End Date in an expression. Click the Functionsfx icon to use operators, expressions,
only changed if bound to something that changes.
Time Range Start Date End Date
Historical » | | dateArithmetic(now(@), -1, /A | | now(@) fr

Please note that intervals returned by Historical queries are inclusive of the End Date, including when the En
you may see one additional interval than expected that only contains future dates, which get interpolated to (

For example, if you want data from 10am - 11am in 1 minute windows, you'll need to set your query from 10¢
would create an interval to contain it and that window will often return 0 since there is typically no future valut
the results of two queries of adjoining times, such as 10am - 11am and 11am - 12pm, the first window of the

data to the last window of the first period.

An area to select the Tags to trend. Tag Paths can be defined directly or using an expression. See Using Dynamic Tag Paths belo

Select Tags
The following feature is new in Ignition version 8.1.13
Click here to check out the other new features
Users may now browse for and select tags from both Realtime and Historical Tag Providers.
Select Tags
© Direct () Expression
Tag Path Alias Aggregation Mode E
v @ Realtime Providers
b i Togs
i default
b i System
~ @ Historical Providers
b B SQLServer_SQLAUth
Default Aggregation Mode | MinMax v
Aggregation The aggregation mode that will be applied to each time slice, unless a more specific aggregation mode is defined on a Tag Path. Foi
Mode populated, see the How the Tag Historian System Works page.

Aggregation Description

Mode
(default) Use the mode set in the Default Aggregation Mode field.
Average The values are averaged together, weighted for the amount of time they cover within a time slice.

MinMax The minimum and maximum values will be returned for the window. In other words, two rows will be returned. If «

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://legacy-docs.inductiveautomation.com/display/DOC81/How+the+Tag+Historian+System+Works#HowtheTagHistorianSystemWorks-Processor

LastValue

only one row will be returned.

The value closest to the ending time of the time slice will be returned.

SimpleAverage @ The values are summed together and divided by the number of values.

Sum The values in the time slice are summed together.
Minimum The minimum value in the time slice.
Maximum The maximum value in the time slice.
DurationOn Returns the number of seconds that the value was recorded as non-zero.
DurationOff Returns the number of seconds that the value recorded as zero.
CountOn Returns the number of times the tag's value went from a zero value to non-zero.
CountOff Returns the number of times the tag's value changed from a non-zero value to zero.
Count Returns the number of times a value was recorded
Range Returns the range between the highest and lowest value for the period.
This feature was changed in Ignition version 8.1.17:
Range mode will return "0" if the historical tag value remains static over the given Time Range.
Variance Returns the variance of values. Similar in concept to standard deviation. Only good quality values are used wher
StdDev Returns the standard deviation of values, or how much spread is present in the data; low standard deviation sho
and high standard deviation shows that the data points are spread out over a large range of values. Only good q
PctGood Time-weighted percentage of good values over the date range.
PctBad Time-weighted percentage of bad values over the date range.
Default Aggregation mode to use as a default if the Select Tags are set to Default Aggregation mode.
Aggregation
Mode
Options Allows you to specify various options that will apply to the binding.
Option Description
Enabled = Enable these options.
Overlay Opt out of displaying the Tag quality overlay.
Opt-Out
Ignore Only data with "good" quality will be loaded from the data source.
Bad
Quality
Prevent Requests that values not be interpolated, if the row would normally require it. Also instructs the system to not write rest
Interpolat | interpolated values. In other words, if the raw data does not provide any new values for a certain window, that window \
ion
Cache &
Share))) .)
The following feature is new in Ignition version 8.1.12
Click here to check out the other new features
When this setting is enabled, the binding will utilize a polling engine that is shared across all running Perspective sessic
cache the value, and deliver the results to all registered consumers. The cache persists for a period of time that matche
off, the default cache duration is 250 milliseconds. This optimization is helpful for consolidating multiple identical polling
many Perspective sessions running at once. Disabling this option will bypass the cache.
Value Can be Dataset or Document.
Format

Tag History Binding Example

https://legacy-docs.inductiveautomation.com/display/DOC81/Quality+Codes+and+Overlays
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12

In this example, we'll use a Table component to show the records from some Tags that have Tag History enabled.

1. Drag a Table component onto a view. Select the Table component.

2. In the Property Editor, click on the Binding Lo icon next to the data property. The Edit Binding screen is displayed.

Perspective Property Editor o _ X
Q
PROPS =
data
minRowHeight : -

Add Binding W

mode : single
enableRowSelection : true
enableColumnSelection : false
selectedColumn : null
selectedRow : null
data

enableFiltering : false

3. Select Tag History as the binding type.
4. In the Time Range section, select and the last 1 minute of data.

5. Under the Select Tags section, click on the Tag icon. Navigate to the first Tag and click OK. Repeat for additional Tags. In our example,
we chose the Sine0 and Sine2 Tags.

1) Edit Binding: Table.props.date - m] x
Binding Type Configure Tag History Binding
Return Format
W Tag
Wide Tall Calculations
= Property Query Mode Point Count
PointCount v | 1ee S
fx Expression Time Range Most Recent
J¥ Expression Structure Realtime)2 A || MN h
Polling
£ query Polling fx |sec
@ Tag History Select Tags
Direct Expression
O Gan Tag Path Alias Aggregation Mode
[default]_Sim_New_Progr... _ [GEEN] ~ @ Tags =
~ @ _Sim_New Programmable_
Controls
» New Tag Import Folder
b Ramp
» i@ Random
» i ReadOnly
» I Realistic
- Sine
Default Aggregation Mede MinMax -
b % Sinel
- . » % Sine2
Binding Preview V% Sine3
_ o Tag History b % Sine4
@ Remove Binding Dataset[100 rows, 2 cols] » % Sines
b % Sine6
Cancel i > % Sine7
b % Sines
» % Sineg >
< >
0K

6. Notice the Binding Preview at the bottom of the screen. Click OK to save the Tag History binding.
7. Back in the view, the Table component now contains a column for the timestamp and one for each Tag. Notice how the timestamp does not
have a date format.

8.

9. You'll notice that once the Array Element is added, the other two columns (Sine0 and Sine2) disappeared. We'll add them back in Step 10.

t_stamp Sine0 Sine2
1,566,328,579,173 87.67 47.31
1,566,328,579,773 86.16 46.20
1,566,328,580,373 81.03 39.78
1,566,328,580,973 80.37 38.96
1,566,328,581,573 73.70 29.30
1,566,328,582,173 68.59 22.19
1,566,328,582,773 66.22 18.89
1,566,328,583,373 58.08 10.66
1,566,328,583,973 58 9.55
1,566,328,584,573 49.16 2.88
1,566,328,585,173 42.79 0.96
(1] 3 4

columns

a. Inthe field property, enter t_stamp (which is the column name).
b. For the render property, select date from the dropdown.

c. Select a dateFormat from the dropdown. In this example, we used the date time format.

In order to change the t-stamp values into a date format, in the Property Editor under columns, click Add Array Element...

0 100

t_stamp
08/20/2019 12:37:59

08/20/2019 12:37:59

100

08/20/2019 12:38:00
08/20/2019 12:38:00
08/20/2019 12:38:01

08/20/2019 12:38:02

200

08/20/2019 12:38:02
08/20/2019 12:38:03

08/20/2019 12:38:03

400

200

300 400

Perspective Property Editor

columns
@

justify :

align : center
resizable : true
sortable : t

dateFormat :

width :
strictWidth : false

= header
- 08/20/2019 12:38:04 footer
08/20/2019 12:38:05 - style 5 Y

Add Array Element
TOWS
cells
pager

10. Now, let's add the Sine0 and Sine2 columns back into our table by clicking on Add Array Elements... 2 times (refer to the yellow highlights in
the image above). There is no need to change any of the Sine0 or Sine2 column properties unless you want to change the default settings or
rearrange columns.

Notice that columns 1 and 2 (Sine0 and Sine2, respectively) are collapsed in this image. To see all the columns properties, expand the

columns.
a 100 200 300 400 Perspective Property Editor " _ X
t_stamp Sine0 Sine2
08/20/201912:5214 99.92 20.95 % -
08/20/201912:5215 99.79 31.35 Field : t _sta
S | 08/20/201912:5215 98.95 a7.79 editable :
render : date
08/20/2019 125216 98.57 40.65 Justify : autc
08/20/2019 125216 96.52 45,52 align : center
resizable : t1
= | L08/20/201912:5217 96.27 47.23
= sortable : tru
08/20/201912:52:18 92.92 19.96 dateFormat : WM/DD/YYYY HH =
08/20/2019 125218 89.89 48.86 width :
strictWidth :
_ | 08r20/2019125219 8854 1837 header
7 |o8/20/201912:5219 8378 4335 footer
tyl »
08/20/201912:5220 83.19 4273 o sue
1
®: : -
] - ;
D TOWS

Editor notes are only visible to logged in users
Tag History Binding - Expression

This is supplemental video. Not sure if we need to put a full example in here (complicated). It can possibly be lower priority for now.

Using Dynamic Tag Paths

Tag History bindings have the option to list out Tag paths, or to use an expression to build a Tag path. It is common to create a dynamic path or set of
paths as a component property, that you then reference in other places. You can use as many Tag paths as you want, but they must all follow this
format:

® key [array]
© [0] {object}

® aggregate value
" alias value
" path value

© [1]{object}
® aggregate value
= alias value
= path value

For an example, you can create a custom property on a chart and use it to fuel the historical data.

1. Create a custom property named Key on a chart component that is an Array type.
2. Copy and paste the JSON below into this Key property.

JSON for Key Array

[
{
"aggregate": "Average",
"alias": "tank_tenp",
"path": "[defaul t] Tank/ 03/ Tenper at ur e"
},
{
"aggregate": "Average",
"alias": "setpoint",
"path": "[defaul t] Tank/ 03/ Set poi nt"
}
|

3. Open the property binding on your chart and select the Tag History binding type.

4. Select the Expression radio button to create your own tag structure.
5. Click on the property selector button on the right and find your new custom property.
6. Click OK in the lower right.

HTTP

Bindings in Perspective

The HTTP Binding type allows you to use HTTP get/post protocols to interface with other API's.

Edit Binding: Sensor.props.value.text

& HTTP.

i Remove Binding

— On thi

Binding Type Configure HTTP Binding p g "

uRL Method
W Tag

"https: //postman-echo . con/get?foo1=bar1&foo2=bar2" || GET -
] Property Headers

Key Value + ® JSON Support
f Expression L § .

® HTTP Binding Configuration

f¥ Expression Structure
£ query

Bady
® Tag History

Authentication Type Authentication Value Conneet Timeout Socket Timeaut
None v 60 -5 =

5 sec
options
4 Enabled Overlay Opt-Out [Allow Cookies [Cache & Share

polling sec

INDUCTIVE
UNIVERSII

Add Transform +

[Binding Preview

as HTTP Binding
E Cancel Apply

Watch the Video

JSON Support

One perk of the HTTP binding is the ability to fetch JISON documents from a website or an API. Since the
Perspective property tree is also JSON-formatted, this allows you to dynamically create a property
structure from a JSON document directly.

HTTP Binding Configuration

Binding
Property

URL

Method

Headers

Description

An expression indicating what web address to reference on the binding. If entering a static URL, quotation marks must be used.

Any HTTP method. Used to send HTTP requests to the specified URL. Options as follows:

Method Definition
GET The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-URI.
HEAD The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response.
POST The POST method is used to request that the origin server accept the entity enclosed in the request as a new

subordinate of the resource identified by the Request-URI in the Request-Line.

PUT The PUT method requests that the enclosed entity be stored under the supplied Request-URI.
DELETE | The DELETE method requests that the origin server delete the resource identified by the Request-URI.
TRACE

The TRACE method is used to invoke a remote, application-layer loop- back of the request message.

CONNECT The CONNECT method starts two-way communications with the requested resource. It can be used to open a tunnel.

Used to pass key/value pairs in the header of our HTTP requests.

Field Definition
Key Allows dropdown selection from common header keys, or the ability to specify a custom one.
Value | The Value field is an expression.

https://www.inductiveuniversity.com/videos/http-binding/8.0/8.1

Body

Authenticat
ion Type

Authenticat
ion Value

Connect
Timeout

Socket
Timeout

Enabled

Overlay
Opt-Out

Allow
Cookies

Cache &
Share

Polling

An expression indicating what to send in the body of our HTTP requests.

Indicates what HTTP authentication type to use. Equivalent to specifying the Authaorization key in the header. Options are None,
Basic, Bearer, or Digest.

The Authentication Value field takes an expression that should indicate what authorization string or token should be used in
combination with the associated authentication type. For example, if the header should contain the string:

Aut hori zati on: Basi ¢ aWluaXRpb246cGFzc3dvenix

Then the Authentication Type should be Basic and the Authentication Value should be awduaXRpb246cGFzc3dvemQ=.

Indicates how long the Ignition Gateway should wait for a response to our connect request.

Indicates how long the Ignition Gateway should wait for a response to a given HTTP request.

Indicates whether the binding should be active.

Indicates whether the component should reflect a bad quality binding via a Tag overlay.

Indicates whether to allow the remote web server to store cookies.

The following feature is new in Ignition version 8.1.12
Click here to check out the other new features

When this setting is enabled, the binding will utilize a polling engine that is shared across all running Perspective sessions. The
polling engine will poll once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful
for consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling
this option will bypass the cache.

Controls how frequently HTTP requests should be issued, and therefore how often the binding should be updated.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12

MongoDB Bindings in Perspective

The MongoDB Cloud Connector module introduces a Perspective Binding type called MongoDB. The

MongoDB binding follows the same format as the Perspective Expression Structure binding by allowing

users to to bind JSON data to individual aspects of a Perspective project such as properties. In other O th

words, building a MongoDB binding query is almost identical to building an Expression Structure binding. n IS page

Users can set polling on a MongoDB binding, updating the displayed result at set intervals.

MongoDB bindings are read-only, and will not allow any writes to your bound MongoDB collection. If you ¢ MongoDB Binding Interface
need to write to a collection or document, use the MongoDB Cloud Connector's included system functions * Source and Query Type
instead. Selection

® Binding Options
® MongoDB Expression Functions
® Example

MongoDB Binding Interface

The image and table below detail various elements of the MongoDB binding user interface.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.mongodb

Edit Binding: Table.props.data — O

Binding Type Configure MongoDB Binding
Connector Collection Query Type
W Tag R
MongeDB Atlas - data - Find -
E Property Query
J& Expression filter
Add Object Member
f* Expression Structure project
Add Object Member
£ Query soTt
Add Object Member
© Tag History collation
Add Object Member
& HITP limit : 10 fx
skip : 0 fx
ﬁ MongoDB P
Options

Enabled | | Overlay Opt-Out [Cache & Share

Polling ix sec

Add Transform +

Binding Preview
- MongoDE
@ Remove Binding ® [{"_id""55532998e4b02cf715...

m Cancel Apply

Source and Query Type Selection

The three dropdown menus at the top of the MongoDB binding window allow you to specify where the binding's data is coming from and what you
want to do with the information.

® Connector

© The Connector dropdown will show available configured connections to your MongoDB databases.
® Collection

© The Collection dropdown will display a list of available collections from the specified connection's database.
® Query Type

© The Query Type dropdown will offer different actions, including Find, FindOne, or Aggregate. The Query Builder will also change

depending on what Query Type you select:
® Find contains filter, project, sort, collation, limit, and skip.

Query

filter

project

soTt

collation

limit : fx

skip : 0 ¥

" FindOne contains filter and project.

Query

filter

project

= Aggregate contains aggregate and collation.

Query

aggregate

collation

Binding Options

Option Description
Enabled | Indicates whether the binding should fire.

Overlay Indicates whether the component should reflect a bad quality binding via a Tag overlay.
Opt-Out

Cache & @ When this setting is enabled, the query will utilize a polling engine that is shared across all running Perspective sessions. The polling
Share engine will run the query once, cache the value, and deliver the results to all registered consumers. The cache persists for a period of
time that matches the configured poll rate. If polling is off, the default cache duration is 250 milliseconds. This optimization is helpful for

consolidating multiple identical polling tasks, particularly when you have many Perspective sessions running at once. Disabling this
option will bypass the cache.

Polling Controls how often the binding should update.

MongoDB Expression Functions

The MongoDB Cloud Connector module also adds three new expression functions to assist in building Perspective bindings expression structure. See
the MongoDB expression functions for more details.

Example

The following example pulls data from a MongoDB Atlas connection to display in a Perspective Table.

1. Set up a MongoDB connection, if you haven't already. The steps outlined on the MongoDB User Manual page can help guide you through
setting up a connection.
2. Click on the Binding &3 icon next to the data property.

FROPS

data

ized : true [

n
mode : single
enableRowSelection : true [
enableColumnSelection : false
selectedColumn : null
selectedRow : null
data

style 3

3. Select the MongoDB binding type.

https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB+-+Expression+Binding
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB#MongoDB-ConnectingtoMongoDB

~N oo

Binding Type

W Tag

[l Property

J¥ Expression

J¥ Expression Structure
= Query

© Tag History

& HTTP

ﬂ MongoDB

. Select the Connector, Collection, and Query Type you want to use. In this example, the Connector we are using is called MongoDB

At | as TEST, the Collection we are pulling data from is called pl anet s, and we are using a Fi nd Query Type.

Connector Collection Query Type

MongoDB Atlas TEST | || planets + || Find v

. You can use the Query Builder to customize your data how you want. In this example, we are pulling in all the data in the pl anet s collection.
. Toggle or set any options you want, such as Polling or Cache & Share.
. Once you have finished building your MongoDB binding, click OK.

Edit Binding: Table.props.data — O .

Configure MongoDB Binding

Connector Collection Query Type
% Tag
| MongeDB Atlas TEST | b H planets | - H Find -
=l Pro
perty Query
J¥ Expression « filter [0}
Add Object Member...
J¥ Expression Structure ~ project O
Add Object Member...
£ Query ¥ sort {0}
Add Object Member...
© TagHistory + collation [0}
Add Object Member...
& HTTe limit ;10 fv
skip @0 fx
‘ MongoDB P
Options o

Enabled | | Overlay Opt-Out [Cache & Share

| Polling | 7 sec

| Add Transform + ‘

Binding Preview

MongoDB
@ [{"_id"="621ff30d2a3e781873...

m| Cancel H Apply |

8. Our Perspective Table is now populated with data from our pl anet s collection:

i Remove Binding

id= name = orderFromSun > hasRings = mainAtmosphere = surfaceTemperatureC =
621ff30d2a3e781873fcb6sc Mercury 1 a {"min":-173,"max":427,"mean":67}
621ff30d2a3e781873fcb65d Uranus 7 H2HeCH4 {"min":null,"max":null,"mean":-197.2}
621ff30d2a3e781873fcb65e Mars 4 O CO2ArN {"min":-143,"max":35,"mean":-63}
621ff30d2a3e781873fcb65f Neptune 8 H2HeCH4 {"min":null,"max":null,"mean":-201}
621ff30d2a3e781873fchb660 Jupiter 5 H2HeCH4 {"min":null,"max":null,"mean":-145.15}
621ff30d2a3e781873fcb661 Earth 3 a NQO2Ar {"min":-89.2,"max":56.7,"mean": 14}
621ff30d2a3e781873fcb662 Venus 2 O CO2N {"min":null,"max":null,"mean":464}
621ff30d2a3e781873fcb663 Saturn 6 H2HeCH4 {"min":null,"max":null,"mean":-139.15}
4 »
1]

Note: You may need to add the column names from your target collection in order for users to be able to perform actions such as column
resizing or reordering. See the column row from the Properties section of the Perspective Table User Manual page for more details.

-

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Table#PerspectiveTable-Properties

Transforms

Transforms offer a chance to alter the value returned from a binding. For example, you can bind a
property to an integer value and use a transform to map the numerical value to a particular color, all from
the same interface. 2
On thispage ...
Transforms can be used as a way of splitting up complex expressions. You can make several simple
expressions and chain them together as several transforms to manipulate your original value.

When multiple transforms are applied to a single binding, they are executed in order from top to bottom. ° I'\:/Iap
® Format
® Script
® Expression
Binding Type Configure Tag Binding
& 12 Direct __ Indirect | Expression
Tag Path | [default]HMI/ambientTempvalue LY
[l Property

options

J+ Expression Enabled || Overlay Opt-Out | Bidirectional

J* Expression Structure Add Transform +
= Query

Mapping Transform
© Tag History @D Map

“This transform maps input values to output values. Inputs can be
specific string or number values, or numeric ranges with inerval
& HTTP @ Format C g g
notation. Outputs types allow mapping tostrings, colors, styles, etc

Input Output
@3 Script
[00,65) — "Acid"
Binding & Expression [6.5.75] — "Neutral"
Tag (75.14] — "Base"
i Remove Binding 65.82

The Map Transform allows you to set up a map of input values to output values. Inputs can be anything from specific values or strings, to numeric
ranges of values. Each input value can then be mapped to an output value, such as a string, integer, color, style, etc. A great example of this is
mapping values to colors, so that you can easily show state changes.

Format

The Format Transform applies a format string to the value returned from the binding, allowing you to format the output in any way. The format can be
something like a date format or a number format.

Script

The Script Transform will run a script that allows you to manipulate the value returned from the binding using any Python script you want.

Expression

The Expression Transform runs an expression on the original value so you can manipulate it without creating more complex logic. This is most useful
when you are indirectly binding to a Tag but still want to apply an expression to it, it can now be done in two distinct steps.

In This Section ...

Map Transform

The Map Transform allows you to set up a map of input values to output

values. Inputs can be anything from specific values or strings, to humeric .

ranges of values. Each input value can then be mapped to an output On thispage....
value, which can be a string, integer, color, style, etc. A great example of

this is mapping specific values to specific colors, so that you can easily

. . . | t T
bind visual properties to tag values. ot ype

® Output Type

The mapping table defaults to a value for both the input and output, but they can both be changed to one Examples

of several types. Select the Input Type and Output type for the mapping using the pull down arrows * Numeric Range to Integer Value
next to the Input/Output Type headers to make your selections. ® |nteger to String

® Expression to Color

Input Type ® Numeric Range to Expression

Input Type is The value coming into the transform (from the binding or previous transform)

* Numeric Range: A range of values that the incoming value will fall between. Use brackets [x,y] IN D'UC T I VI
to indicate values that are to be inclusive, or parenthesis for values that are exclusive (x,y), and
you can mix them as needed. You can also omit start or end values to indicate no end to the U NIV E RS Ir-[
range. See the examples below for clarification.

® Expression: Used in a similar manner to a Value Input Type. Use the Expression language to
create a Value.

® Value: Individual numeric values designed to exactly match the input value. @

Map Transform

Output Type
Watch the Video

Output Type is the outgoing value from the transform.

Value: An alphanumeric value.

Color: A color.

Expression: A value result calculated by an expression.

Document: A manually created JSON document (You can also copy an existing or custom

made property and paste it in).

® Style: A formatting style (best for simple edits of formatting style). To map to a named Style,
use the "Value" output type to call the name.

® Style Class: A style class to use. Once selected, a dropdown list shows the available style

classes.

. - N
Use the Add + icon to add rows to the Map table. The Delete |]I| icon will delete the selected row.
The up/down arrows will sort the order execution for the mapping. The first mapping (from top to bottom)
that matches will be the mapping that is assigned.

You can then double-click to set values for each cell except the Fallback cell. The Fallback allows you to
create a value to use in case non of your values, expressions, or ranges match to the input.

Examples

Numeric Range to Integer Value
Input Type: Numeric Range
Output Type: Value
You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value is 0, we

get an output value of 99, the Fallback value. This is because the first mapping uses an exclusive 0 (with a parenthesis) so it is testing for strictly
greater than 0, not "greater than or equal to."

Numeric Range to Number Mapping

(0, 25] 0
(25, 40] 1
[40, 50] 2

Fal | back 99

https://www.inductiveuniversity.com/videos/map-transform/8.0/8.1

Edit Binding: Tag_Direct.props.value - O ot

Binding Type Configure Property Binding
® Tag .fSlider_Map.props.value =
Options
[E Property 4 Enabled Overlay Opt-Out
J¥ Expression Configure Transform(s)
J& Expression Structure Map + 4+ 6
= Query . o+
Input Type: Numeric Range ~ Output Type: Value =
. (0, 25] 0 ~|
{© TagHisto
8 v (25, 40] 1 §
& HTTP [40, 50] 2
Fallback 99 v
Add Transform +
Binding Preview
Property Map
i Remove Binding 0 99
Cancel Apply

Numeric Range to String Mapping - Range Values Omitted

(,25] " Bel ow 25"
(25,) " Above 25"
Fal | back "I'nvalid Val ue"

Integer to String

This is linked to a status text display.
Input Type: Value
Output Type: Value

You can see in the Binding Preview at the bottom that the original value of the property binding is zero. Since the Map Transform input value is 0, we
get an output value of "OFF".

v/ Edit Binding: Label_4.props.text — O *

Binding Type Configure Property Binding
¥ Tag .JfSlider_Map_2.props.value =
Options
[Property Enabled Overlay Opt-Out
fx Expression Configure Transform(s)
fr Expression Structure Map + 4+ T
= Query Input Type: Value - Output Type: Value = +
0 "OFF" i
@ Tag Histo
? & 1 "IDLE" +
& HTTP 2 "SLOW" \
3 "FAST"
Fallback

Add Transform +

Binding Preview

Property Map
i Remove Binding 0 OFF

ﬁ Cancel Apply

Expression to Color
This is linked to the background color property of a text field.
Input Type: Expression
Output Type: Color
This input is passed through several expressions before selecting the Fallback value of black (#000000). You can see in the Binding Preview at the

bottom that the original value of the property binding is 15. For each expression past the first, a single bit of that integer is being tested. Since none of
bits 0, 1, or 2 are true, we get the fallback. For more information on the getBit() function, see the appendix.

https://legacy-docs.inductiveautomation.com/display/DOC81/getBit

'J Edit Binding: Label_4_0.props.style.backgroundColor - O >

Binding Type Configure Property Binding
® Tag this.custom.Fault_Code El
Options
(= Property Enabled Overlay Opt-Out
¥ Expression Configure Transform(s)
f¥ Expression Structure Map + + &
= Query Input Type: Expression ~ Output Type: Color = +
[
C 0 - K
getBit({this.custom Fault Mask}.0) R
- getEt i custom Fult Masi,) I © |
getBit{{this.custom.Fault_Mask},2) ~ @
Fallback I ©
Add Transform +
Binding Preview
Property Map
ﬁ]‘ Remove Binding 15 #000000

E Cancel Apply

Numeric Range to Expression
Input Type: Range
Output Type: Expression

This mapping maps different ranges of values to different parts of the current time. You can see in the Binding Preview at the bottom that the original
value of the property binding is 11 so we get an output value that pulls the minute out of the current time. That was 51 at the time this screenshot was
taken.

g" Edit Binding: Tag_Indirect_0.props.value

Configure Property Binding

‘ .fSlider_Map.props.value

Options
Enabled || Overlay Opt-Out [Bidirectional

Configure Transform(s)

Map

-»
-
Eh

Input Type: Numeric Range -

Output Type: Expression =

[0, 25]

dateExtract{now(),'min") a

(25, 40]

dateExtractnow(),'hour')

(40, 65]

- = 5 +

dateExtract{now(),'day’)

Fallback

dateExtract{now(),'vear') -

Add Transform +

Format Transform

The Format Transform applies a format string to the value returned from
the binding, allowing you to format the way the output is .
displayed. Typically this applies to a date or number format. On thispage....

Select Format Type:

® Examples
® Numeric Pattern
® Datetime Short, Short, Time
Zone Adjusted

® Datetime: A date will be formatted to appear a certain way.
® Numeric: A number will be formatted to appear a certain way.

Format (Numeric only)

® Pattern: Applies a number pattern (using 0 and #) and converts the results to string (good for
putting in leading O's on a display).

® Integer: Rounds input (float) to integer.

®* Number: Formats number based on Language setting (puts in comma or other number IN DUCTIVI
separator).

® Percent: Converts the input number into percent (0.123 would format to 12.3%). U NIV E RS III

® Currency: Uses the currency specified by the Language setting.

Format (Datetime only)

Format Transform
Pattern: Custom date format string (for example - M/D/YYYY h:m:s a).
Date: Date only will be shown.

Time: Time only will be shown. Watch the Video

L]
L]
L]
® Datetime: Date and Time will be shown.

Date (Datetime only)

Full: Example format - Monday, March 18, 2019.
Long: Example format - March 18, 2019.

Medium: Example format - Mar 18, 2019.
Short: Example format - 3/18/19.

L]
L]
L]
L]
Time (Datetime only)
Full: Example Format - 2:02:46 PM Pacific Standard Time.
Long: Example format - 2:02:46 PM PST.

L]
L]
® Medium: Example format - 2:02:46 PM.
® Short: Example format - 2:02 PM.
Locale

® auto: Default time zone of Client.
® ..(Language Selection):

Time Zone (Datetime only)

® auto: Default time zone of Client.
® ..(Language Selection):

See the Data Type Formatting Reference page for more information.

Examples

Numeric Pattern
In the image below, an expression on a Tag binding is retrieving the value from a Tag. As shown in the preview, the value on the Tag shows 45.970097
The Format transform is taking that Tag value, then applying a numeric pattern of #.00, which denotes that two digits must always be shown after the

decimal point. As a result, the preview shows a Format value of 45.97, since any digits beyond the first two decimal places are ignored by the
transform.

https://legacy-docs.inductiveautomation.com/display/DOC81/Data+Type+Formatting+Reference
https://www.inductiveuniversity.com/videos/format-transform/8.0/8.1

[73 Edit Binding: Label_0.props.text —

Binding Type

¥ Tag

El Property

S Expression

f¥ Expression Structure
£ Query

© Tag History

& HTTP

@ Remove Binding

Configure Tag Binding

Direct . Indirect | Expression
TagPath | [default]_sim_/5ine/Sined
Options

Enabled

1/ p

Overlay Opt-Out Fallback Delay | 2.5

Configure Transform(s)

Format

Select Format Type

Datetime Mumeric
Format Format Pattern
Pattern b #.00
Locale
auto A4

Add Transform +

Binding Preview

Tag
45970097

Fermat
45,97

Cancel

-
=[]

Apply

Datetime Short, Short, Time Zone Adjusted

The image below is taking a Unix timestamp value (including milliseconds) of 1551823366022, and turning it into a human readable date (set to
Japan's time zone) of 3/6/19, 7:02 AM.

</ Edit Binding: Label_1_1.props.text

B Property

Configure Property Binding

| /DateTimelnput.props.value

Options

3 Enabled [| Overlay Opt-Out [Bidirectional

Configure Transform(s)

Format

Select Format Type
O Datetime) Numeric

Format Date Time
DateTime ~ | short | |short |

Locale Time Zone

| auto - || Japan -

Add Transform +

Script Transform

Script Transforms are special functions that are applied only on an existing
binding. They take the result of abinding (or transform) as an input and produce a

single output. Thiswill alow you to manipulate a binding result using whatever .
python code you want. On thispage....

When a script transform is first created it generates a template script with a few assumed input
Arguments (see below). From this template you can write your own script and reference an incoming .
value as well as a few other parameters. It is assumed the custom script will end with a Return comment
that is a single output value, dataset, document, or other type of data.

Using Complex Properties in

Your Transform

® Example Scripts

® Dataset to Array of Objects

® Dataset to Array with
Renamed Columns

® Sparkline Chart

Arguments:

® self: A reference to the component this binding is configured on.

® value: The incoming value from the binding or the previous transform.
® quality: The quality code of the incoming value.

® timestamp: The timestamp of the incoming value as a java.util.Date

INDUCTIVE

Return: @
® Any single value of any data type. As with all other transforms, the type of data that is returned U NIV E RS I-I

will overwrite the data type of the property that is being bound.

Script Transform

Binding Type Configure Tag Binding

Direct (_ Indirect (_ Expression
W Tag &

o [N Watch the Video
151 Property Options
Enabled | | OverlayOpt-Out | | Bidirectional
f Expression
J Expression Structure Add Transform +
& query Select Transform x
Script Transform
Tag History @ Map
This transform will take the input value and call a scripting
function with the input value s arguments to the function.
& HTTP @ Format " ¢

@ script

@ Expression

= Cancel
fi Remove Binding

Cancel Apply

Using Complex Properties in Your Transform

Any time you reference a complex component property (like an array or object), it will contain a Qualified
Value(s). This means they have a quality code and timestamp attached to each piece of data. Using your
script to access it will result in a Qualified Value but you can access the actual value manually using the .
value() function. This means that fetching a complex property like an array must be looped through and
converted manually if you want a basic array. For ease, the output of any binding or transform will
automatically be stripped of quality and timestamp so you can use the value argument directly.

Example 1) Using the results of an array Property Binding in your script transform: You can reference the
property value directly by calling the value parameter that is passed in.

Example 2) Fetching an additional array Property inside your Script Transform: You must manually
convert the array property to a simple array.

Example Scripts

A lot of the components in Perspective expect arrays or JSON structured data in order to display data, but several binding types return single values
or datasets. In order to transform one into the other, you can add a Transform to the binding and fill in a script to change the data format. Here are a
few examples of code that can be added to a Script Transform.

Note: Don't forget to tab in correctly if you are copying scripts from this page. The Script Transform is a function (starts with "def") and every line of
the code below should be tabbed in one from the edge.

https://www.inductiveuniversity.com/videos/script-transform/8.0/8.1

These examples are not necessary with Tag History or Query binding types. For both of these, there is a dropdown setting at the bottom of the binding
page that allows you to select the return type of DOCUMENT.

Dataset to Array of Objects

This is a script to take a dataset and transform it into a json array. All header names will be included in the resulting structure. This type of array is
expected on many Perspective components like the Table component.

Dataset to Array of Objects

convert the incom ng val ue data

pyData = system dat aset.toPyDat aSet (val ue)

get the header nanes

header = pyDat a. get Col utmNanes()

create a blank list so we can append | ater
newLi st = []

step through the rows
for row in pyData:
create a new bl ank dictionary for each row of the data

newbDi ct = {}
use an index to step through each columm of the data
for i in range(len(row):

set nane/value pairs
newbDi ct[header[i]] =rowWi]

append the dictionary to |ist
newLi st. append(newbi ct)

return the results
return newli st

Dataset to Array with Renamed Columns

This is another script to take a dataset and transform it into a json array. In this example, you create the header names to be included in the resulting
structure. This type of array is expected on many perspective components like the XY chart, Dropdown, etc.

Dataset to Array of Named Objects

set the header nanmes. For the XY chart, these nust match the values in the series property.
header = ["Colum 1", "Colum 2"]

convert the incom ng val ue data

pyData = system dat aset .t oPyDat aSet (val ue)

create a blank list so we can append | ater
newLi st = []

step through the rows
for row in pyData:
create a new bl ank dictionary for each row of the data

newbDi ct = {}
use an index to step through each colum of the data
for i in range(len(row)):

set nane/value pairs
newDi ct[header[i]] =rowi]

append the dictionary to list
newLi st. append(newbi ct)

return the results
return newli st

Sparkline Chart

The data expected in a Sparkline chart is a bit different than other charts. Instead of having values paired with a timestamp, it just takes an array of
values to draw in order. This is a script to take a Tag History binding, apply the Script Transform, and output only the values in an array. Make sure
the Value Format dropdown is set to Dataset.

Default Aggregation
Binding Type

Options

% Tag Enabled Overlay Opt-Out Ignore Bad Quality Prevent Interpolatior| Value Format | DATASET v

[E] Property Configure Transform(s)

f¥ Expression

Script
J¥ Expression Structure 1 wun

2
2 Query 3 # convert the incoming value data

4 pyData = system.dataset.toPyDataSet(value)

: 5 # create a blank list so we can append later

© Tag History . newlist = []

7
& HTTP B # step through the Tows

g for row in pyData:

18 # append the dictionary to list

11 if row[1] is not None:

12 newList.append{row[1])

13

14 # wondiiwn dho wncd s

L4

Tag History to list of Data Points

convert the incom ng value data

pyData = system dat aset.toPyDat aSet (val ue)

create a blank list so we can append | ater
newLi st = []

step through the rows
for row in pyData:
append the dictionary to list
if rowf1] is not None:
newlLi st. append(rowf 1])

return the results
return newli st

Expression Transform

The Expression Transform runs an expression that allows you to manipulate the value of the binding
using an expression. An Expression transform uses the Ignition Expression binding language and has
built in links to several toolsets.

Those expression tools are as follows: On this pa.ge e

® Operators: Mathematical, Logical, Bitwise operators to adjust the incoming value.

® Functions: A library of expression functions to adjust the incoming value R)

* Browse Tags: A link to the Tag browser Example - Function
® Browse Properties: A link to Session Properties or other properties in the same View.

Example - Function

INDUCTIVE

Edit Binding: Label 0_0.0_0_0.propstert - b X l I N I i i E RS I II
Binding Type Configure Property Binding
> 2 sslider.props.value =
options
=1 Property [Enabled | Overlay Opt-Out .
p— conigure ranstormts Expression
fx Expression Structure Expression @ Tran SfO rl I |
& query 0/ Convert an intqar to Hexadecinal and p mES
2 switch(3
© TagHistory 3 len(toHex({value})) i
: : Watch the Vid
P . atch the Video
& HTTP na,
6 concat('000', toHex({value})),
7 concat('00', toHex({value})),
B concat('0’, toHex({value})),
9 toHex({value})
10)
< 5
Add Transform +
Binding Preview
Property Expression
T Remove Binding 10 0143
Cancel || Apply

Convert Into Hex

/1 Convert an integer to a Hexadecimal and put in leading 0's

swi t ch(
I en(toHex({val ue})), /1 determ ne | ength of
string
0,1,2,3, /1
possi bl e | engt hs
'n/a', /1 0
- results to display
concat (' 000", toHex({value})), /1 1 - results to display
concat (' 00", toHex({value})), /1 2 - results to display

concat (' 0', toHex({value})) , /1 3 - results to
di spl ay
t oHex({val ue}) /1 Fail over

)

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax
https://www.inductiveuniversity.com/videos/expression-transform/8.0/8.1

Binding Property Path Reference

Perspective component bindings can reference the value of other properties. These references take the form of a relative path that leads to the referenced

property.

Because of this, it can be helpful to understand how the paths work. This section details the various keywords and operators associated with these paths.
Only properties on components in the same view are eligible to be used in this way.

The format of the property path is like a file system path to get to the component combined with a dot-referenced object path to get to the property. The
section referencing the property must begin with the property scope (e.g., "props" or "position" or "meta"). For the following examples, suppose we are
designing a View with the following component hierarchy, and that each of these components has an "x", "y" property in "position”, as well as a property
called "complex" in "props" which is a map containing "foo", which is a number, and "bar" which is an array of numbers.

®* View

Operator
/Keyword

® root

" LabelA
= LabelB
Sub_Containerl

= ButtonA
" ButtonB
® Sub_Container2
= ButtonA
= ButtonB

Description

Slash Operator - When a path starts with this operator, then it defines an absolute path. That
is, a path that starts at the top of the view hierarchy and is not relative to where the binding is
being configured.

When not at the start of a path, the / operator moves further into a container, drilling further
down into the hierarchy.

Dot Operator - You may access properties deep within a component's property document
structure using the Dot Operator.

Assuming the component LabelA had a META property named "foo", then we could use the
example on the right to retrieve the value of foo.

The Dot Operator can also be used to move further into a complex component. Assuming
LabelA has object under META named "rotate", we can move into rotate with further use of
the Dot Operator.

Brackets - When referencing an array property, brackets allow you to specify an individual
index within the array.

Parent Container Operator - This operator acts as a shorthand reference to the parent
container. Because the operator always returns the immediate parent container, the operator
is relative to the component trying to utilize the operator.

When moving up in the hierarchy, multiple uses of this operator may be used in sequence to
climb up multiple containers.

Alternatively, you may simply add additional dots to move up levels. Each additional dot
moves up another level.

Example

/1 Absol ute path.

Sequential slashes allow
for novenent into a
cont ai ner

/root/Label A position.x
/ root/ Sub_Cont ai ner1
/ ButtonA. position.y

/root/Label A neta.foo
/root/Label A neta.rotate.
angl e

/root/ Label A. props. conpl ex.
bar[5]

// From ButtonA, we can use
this operator quickly nove
to a sibling conponent
../ ButtonB. position.x

Move Up Multiple Parent Containers

/1 Moving up multiple
parent containers
..1../Label A position.x

/1 Al so nobves up: each
addi tional dot is another

this

parent

view

page

session

Container Self Operator - When configuring a binding from a container, this operator acts as
a shorthand reference to the container. This is similar in concept to the this keyword, but still
allows for the user of the other operators.

Note: This operator only works when the path is on a binding configured on a container.

The this keyword allows you to easily reference the same component the binding has been
placed on.

This works on any object, including containers, views, and even the session.

Parent shortcut - References your immediate parent. This keyword is only valid when being
evaluated from the scope of a component. For example, LabelA could reference the root
container variables.

All of these shortcuts cannot be used with any other path separators, so a path like this
/MyChild.position.x is invalid, for that, you'd use "./"

View keyword - Refers to the view that a component is contained in. This is only valid when
being evaluated from the scope of a component.

Lastly, the view shortcut references the view itself. Views may have input and output
parameters, and to reference these parameters simply specify the category and name of the
parameter, as shown in the example.

Page keyword - refers to the page that the object is contained in. This is only valid when
being evaluated from the scope of a view.

Session keyword - Refers to the session object. This keyword is valid from any object type.
Useful in cases where a binding needs to reference session properties.

Note: Normally, bindings can not reference properties on components in other views.
However, views can use custom session properties as a means of sharing or synchronizing
a value.

parent contai ner
.../ Label A position.x

./ Label A. posi tion. x

t hi s. neta. nane

parent . props. conpl ex. foo or
parent. position.x

Vi ew. par ans. par aniNanme

Component Events and Actions

In Perspective, events and actions are some of the fundamental building blocks of project functionality.
Actions give you the ability to respond to specific user inputs (such as mouse, keyboard, and touch
inputs), as well as broad session events (like the beginning and end of the session) in many different
ways. Thus, actions are a response to events.

Example uses for events and actions include:

* Navigating to a new page when the user presses a button.

® Opening a popup containing details on a specific PLC when a user double-clicks on it in a
diagram.

® Logging the user out of the session when they press Ctrl + L on the keyboard.

® Scanning a barcode from a mobile device, and sending it to the Gateway.

In this section, we'll cover the basics on how to configure actions and events to suit your project's needs.

Configure Events and Actions

To configure an event and action on a component:

1. Select the component.
2. Right-click on the component, and select Configure Events.

Copy

Configure Events...

Configure Scripts...

3. Choose an event from the left-hand side.

Note: You can configure actions for as many events as you'd like, but you'll need to configure
the actions separately for each one.

4. Next choose one or more actions to associate with the event, by clicking the Add + icon. D
escriptions of the options for each component action are described in the sections on this page.

On thispage ...

Configure Events and Actions
Perspective Events

Action Types

Shared Action Options

Action Setting Reference

Accelerometer Action
Alter Logging Action
Alter Dock

Dock Action

Fullscreen Action

Login and Logout Actions
Authentication Challenge
Action

Navigation Action
Request Print Action
Popup Action

Refresh Action

Scan Barcode Action
Scan Ndef NFC Action
Script Action

Theme Action
Workstation Mode Action

v,

INDUCTIVE
UNIVERSII

Events and Actions

Watch the Video

https://www.inductiveuniversity.com/videos/events-and-actions/8.0/8.1

Event Configuration on Label
Events Configure [onClick] Actions
Organize Actions
~ [System Events T
B onStartup
B onshutdown Accelerometer
+ W Mouse Events Alter Logging
Alter Dock
B onContextMenu
B onDoubleClick Dock
B onMouseDown Fullscreen
B onMouseEnter L
ogin
B onMouseleave g
® onMouseMove Logout
= onMouseOut Auth Challenge
W onMouseOver o
B onMouseUp Navigation
v W Pointer Events Request Print
B onPointerCancel Popup
B onPointerDown
B onPointerEnter Refresh
B onPointerLeave Scan Barcode
B onPointerMove Scan Ndef NEC
B onPointerOut]
Script
Theme
Workstation Mode

5. Configure the actions as you want. Click OK.

Perspective Events

Perspective offers a wide range of possible events, but in this section we'll highlight a few common ones. You can find details on all configurable
events at Perspective Event Types Reference.

Event
Type

Compone
nt Event

System
Event

Mouse
Event

Keyboard
Event

Touch
Event

Wheel
Event

Example Event

Many components have their own events that are related directly to the functionality of the component. For a full list of components
with configurable component events, see Perspective Event Types Reference.

onStartup events occur when the View or component is loaded into the session. For example, if you configure an onStartup
event on a component, the event will occur when the view it is on is opened.

onShutdown events occur when the View or component is removed from the session. Typically this will occur when you navigate
away from the View containing the component, or if the session times out.

onClick events occur when the user clicks on any of their mouse's buttons, while the cursor is hovered over the component.
onContextMenu events occur when the user clicks the mouse button associated with a context menu (typically the right mouse
button, on a two-button mouse).

onMouseOver events occur when the mouse pointer enters the component's borders.

onKeyUp events occur when a key on the keyboard is released, while the component is focused.
onKeyPress events will be run repeatedly, while a key is held down and the component is focused.

onTouchStart Fired when the user has touched the surface of a touch capable device.

onWheel events occur when a user moves the scroll wheel while hovered over the component.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Event+Types+Reference
https://docs.inductiveautomation.com/display/DOC80/Perspective+Event+Types+Reference

Action Types

Each Event can have actions assigned to them, and each Action has some specific purpose. Each event can have any number of actions, and
different types of actions can do different things.

Event Configuration on Label — O *
Events Configure [onClick] Actions
Q- : : i :
Organize Actions Configure Script Action
~ @ System Events ~ T
W onStartup & 1def runAction{self, ewvent): A | E
B onShutdown e
~ @ Mouse Events t Method that will run whenever the s
| onclick :
B onContextMenu ATguments:
B onDoubleClick self: A IeferenFe to the compon
event: Events fired by the rele
B onMouseDown .
altkey (bool): True if the |,
B onMouseEnter g "
B onMouseleave
B onMouseMove Options
B onMouseOut Enabled
B onMouseOver - Defaul
revent Default
B onMouselp
~ @ Keyboard Events Stop Propagation
W onkeyDown @ Security Settings

E Cancel Apply

LB
If you want to delete an action, use the Delete IIII icon.

Each Action is called in order from top to bottom. To control this execution order, you can reorder the list of Actions using the Up Arrow f and Down

Arrow * icons next to the list. However, Actions are not executed synchronously: sequential actions do not wait for any prior Actions to finish
executing before running. Thus, if Action 1 is a long-running script, while Action 2 is quick to finish, it is possible that Action 2 will finish before Action 1.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Event+Types+Reference

Event Configuration on Label

Events

Q-

~ @ System Events
B onStartup
B onShutdown
~ @ Mouse Events
| - onclick |
onContextMenu
onDoubleClick
onMouseDown
onMouseEnter

|

|

|

|

B onMouseleave
B onMouseMove
B onMouseOut

B onMouseOver
B onMouselUp

~ @ Pointer Events

Configure [onClick] Actions

Organize Actions

+

Accelerometer
Alter Logging
Alter Dock
Dock
Fullscreen
Loegin

Logout

Auth Challenge
Mavigation

Request Print

| Popup

Refresh

Scan Barcode

— O >

[0 Learn More

Mo Action

or select an action to begin editing.

m Cancel Apply

Shared Action Options

The bottom of each action lists a set of options. The options listed in the following table are shared across different action types.

Enabled Specifies whether the action should be used or ignored.

Prevent Prevents the browser's default behavior from occurring. Useful when you want to prevent the browser's built-in right-click menu from
Default showing.

Stop Prevents events from higher up in the component hierarchy from triggering when the selected event triggers.

Propagation

Security Opens a panel where you can specify required security levels that must be present for the action to trigger.

Settings

Configure Script Action

1def runAction(self, event): - 5

Fired after the event has been deleted

Arguments:
self: A reference to the component that is invoking this functio
event: An object with the following attributes:
end {int | float): The end date of the deleted event.

Security Settings

Security Levels (including Roles) may be added by going to the
? Config > Security > Security Levels page of the Gateway Web Interface
+ [Erublic

b Authenticated

b SecurityZones

© The security levels of the user must match all of the required security levels

At least one of the security levels of the user must match any of the required security
levels

& Security Settings

Action Setting Reference

The following headings detail unique settings for each action type. Shared options for each action are listed under Shared Action Options.

Accelerometer Action

Retrieves accelerometer data from the device's accelerometer (a common feature on smartphones). This is a Native App Action, designed to help in
gathering data from a mobile device. Each action needs to be configured in two parts:

1. The action is run on a mobile device, indicating that a type of data should begin to be gathered.
2. As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding Session Event.

Note: This action is designed specifically for the Ignition Perspective App for Android and iOS devices. If it is run in a browser session, it will be
ignored.

Action Description
Setting

Continuous = Begins recording accelerometer data, which repeatedly updates the accelerometer object in the current session's Session Properties.
® Sample Rate indicates how often the accelerometer object should be updated.

® Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event. A session
object is already provided to that event script.

Batch Records accelerometer data at a specified interval for a specified rate, then sends the accumulated data to the Gateway, to be
handled by the Accelerometer Data Received Session Event.

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AccelerometerDataReceived

® Sample Rate indicates how often a reading should be made.
® Duration specifies for how long data should be logged.
® Context provides the opportunity to pass a custom object through to the Accelerometer Data Received Session Event.

Note: A session object is already provided to that event script.

Off Turns off accelerometer data recording.

Alter Logging Action

Perspective sessions log their session activity and errors to the logs of the browser they run in. Alter Logging allows us to change how verbose this
logging is. This is useful for session debugging.

Action Setting Description
Remote Logging Indicates whether the browser logs should also be sent to the Gateway to log in the Gateway logs.
Enabled

Note: For all messages to be visible, the Perpective.Client logger must be set to the same logging level as the level
indicated in this action.

Set Logging Level Dictates how verbose the session's logging should be. A logging level of all (or trace) shows all possible records, while a
level of off shows none. Options are:

all
trace
debug
info
warn
error
fatal
off

Alter Dock

The following feature is new in Ignition version 8.1.19
Click here to check out the other new features

Allows you to alter the configuration of a docked view. Any action settings left blank will remain unchanged.

Action Description
Setting
View The currently selected view. Changing this will change which view is mounted to this position.

Display This property allows you to show or hide the docked view. Options are:

Option Description

visible The docked view is always expanded/displayed.

onDema | The docked view is collapsed, but allows the user to display the view by clicking on the docked view's handle.
nd

auto Automatically shows or hides the docked view depending on how much space is available in the session: showing the
view if the page is wider than the width specified in the auto-breakpoint setting. (Works in conjunction with the Auto
Breakpoint property).

Resizabl | Determines whether the docked view may be resized or not.
e?

Modal? Determines if the view should be modal, meaning users will not be able to directly interact with other views while the modal view is
present. This property is only enabled when the Display property is set to onDemand.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

Content Determines how the docked view interacts with other views on the page.

Option Description

push Opening or closing the docked view causes the content in the center to resize: the center view will be 'pushed' out of the
way.
cover When opening the dock, it slides in front of the center view, obscuring part of the center view: the dock will ‘cover' part of

the center view.

auto Acts like the cover option when the viewport is smaller than the Auto Breakpoint value. Acts like the push option when
the viewport is larger than the Auto Breakpoint value.

Anchor Allows you to make a view always visible while scrolling. Only available on North docked view configurations.

Option Description

fixed The docked view will remain in a fixed position, relative to the page. Useful when a north-docked view should stay at the
top of a page. Select this option if a docked view is acting as a header that should always be present.

scrollable = The docked view will not stay in a fixed position as the user scrolls down in the page. Select this option if the north dock
should move along with the page as the user scroll down.

Size Determines the size, in pixels, of the view.

® |f the view is docked to the North or South edge, then size determines the height.
® |f the view is docked to the East or West edge, then size determines the width.

Auto Controls the minimum page width for Auto docked views to be visible. When the session is smaller than this width, these views will be
Breakpoi | hidden and able to be displayed on demand.
nt

This property is enabled when the Display property is set to auto.

Dock ID An optional arbitrary string that can be used to reference a docked view through other parts of Perspective such as in an action or as a
scripting call.

Handle Allows you to show or hide a handle for users to expand/collapse the view.

Option Description
Show Show handle at all times.
Hide Hide handle at all times.

AutoHide = Hide handle when page is not active.

Handle Path to an icon used to identify the view when the view is hidden.
Icon
View Allows specific parameter values to be passed to the docked view when navigating to the page.
Paramete
rs
Dock Action

Allows you to open or close a docked view. The view must be configured as docked in the Page Configuration section of the designer, and must be
configured with a dock ID.

Action Setting Description
Dock Action There are three types of dock actions:
® Open: Opens the docked view.
® Close: Closes the docked view.
® Toggle: Toggles the state of the docked view, so opens the view if it currently closed, or closes it when it is currently open.
Identifier The ID of the docked view. Dock ID values can be set when you configure a view as docked.

Parameters Parameters that can be passed into the docked view. The name of the parameters must match the name of the view
parameters that are already set up.

Fullscreen Action

Enters full screen mode. Requesting to enter full screen mode only works with events that originate from user interactions. Some browsers may not
support full screen requests.

Action Setting Description
Enter Enters full screen mode.
Exit Exits full screen mode.
Toggle Changes the Session's browser to whichever mode it is not currently in.
View Enters full screen mode on a targeted view.
Page Enters full screen mode on a targeted page.

Login and Logout Actions

Logs the current user in or out of the session. The only action property is the Enabled option which specifies whether the action should be used or
ignored.

Action Setting Description

Ask the IdP to re- Determines how re-authentication requests sent to the Identity Provider will be handled. Identity Providers can choose to
authenticate users ignore re-authentication requests, defaulting to their own behavior. Options are as follows:

® Project - Use the re-authentication setting located in the General category of Project Properties.
®* Enable - Prompt the user to provide their credentials, even if they're already logged into the session.
® Disable - When selected, the user will not have to provide their credentials if they're already logged in.

Authentication Challenge Action

The following feature is new in Ignition version 8.1.16
Click here to check out the other new features

The Authentication Challenge action will navigate the user to an IdP, allowing a different user to authenticate against an IdP without logging out the
currently logged in user. After the user successfully logs in, the IdP navigates them back to Perspective and triggers a session event onAuthChallenge
Completed with contextual information about this second user’s identity and their security levels. The session's authentication state will remain
unchanged — in other words, the second user will only be logged in as the user executing the session’s onAuthChallengeCompleted event handler
script. This provides the opportunity for workflows that include requiring a supervisor's "e-signature” before performing certain actions.

Note: The second user will not be logged into the |dP or remembered in any way by the IdP when the IdP is an internal Ignition type, since the
internal Ignition IdP is aware of “sessionless” authentication challenges. External IdP types (OIDC and SAML) are not aware of “sessionless”
authentication challenges since there is no such concept in the respective open standards. To work around this, a separate IdP tailored specifically
for the secondary users’ authentication challenges may be specified under the Identity Provider action setting. So long as this special IdP is only
used for these secondary user authentication challenges (and not used anywhere else), and so long as the Ask the IdP to re-authenticate users set
ting is enabled, secondary users should always be required to provide their credentials every time an authentication challenge is triggered.

Action Setting Description

Identity Provider Specifies the IdP to authenticate against. This may be different from the project's IdP. If set to None, the project default IdP is
used.

Ask the IdP to re- = Determines how re-authentication requests sent to the Identity Provider will be handled. Identity Providers can choose to
authenticate users = ignore re-authentication requests, defaulting to their own behavior. Options are as follows:

® Project - Use the re-authentication setting located in the General category of Project Properties.

® Enable - Prompt the user to provide their credentials, even if they're already logged into the session.
® Disable - When selected, the user will not have to provide their credentials if they're already logged in.

Timeout An integer representing the number of minutes the system will wait in between the authentication request and the
authentication response before timing out the request. If set to zero, the default of two minutes will be used as the timeout.

Payload An opaque payload that may contain any information the user wants to pass to the Authentication Challenge Completed

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties
https://docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-AuthenticationChallengeCompleted

session event.
Framing How the challenge should be presented to the user’s current page:
® Same Tab / Window - User is navigated away from the client and to the IdP in the same window/tab. Once
authentication is complete at the IdP, they are redirected back to the client.
®* New Tab / Window - A new tab is opened in the user’s browser, leaving the current client tab open while it waits for

the new tab to complete the authentication challenge at the IdP.
® Embedded Frame - The redirect to the IdP is embedded in an Iframe within the current client’s page.

Note: Mobile and workstation clients do not support “New Tab / Window” and will fall back to “Same Tab / Window”. Mobile
clients do not support “Embedded Frame” and will fall back to “Same Tab / Window".

Navigation Action

The Navigation action allows you to navigate to different views, pages, or URLs from an event. The Navigation action has several modes. Each mode
allows for a different type of navigation and different options. The following table lists the types of navigation:

Type Description

Page Navigates to a separate page.

Setting Description

Set Page A string denoting the page URL of the target page. See Page URLs.

Open in new tab = Specifies whether the newly opened page should replace the current page, or open in a new browser tab.
View Replaces the current main View with a new main View.

Setting Description

Select The path to the view that should be used.
View
Paramete . . . ™
rs A set oparameters to pass to the view. Add or remove parameters with the Add + icon and Delete [icon. In the Value
field for a given parameter, you can pass in a path to a property value using the Parameter El icon
Url Navigates to an external web address.
Setting Description
Enter Url The URL that the action should navigate to. Example: ht t ps: / /i nduct i veaut omat i on. coml

Open in new tab: = Specifies whether the newly opened page should replace the current page, or open in a new browser tab.

Brows

er
The following feature is new in Ignition version 8.1.5

Click here to check out the other new features

Navigates either forward or backward using browser history.

Setting Description
Navigate Specifies whether to go forward or backwards in browser history when the action is triggered.
Prevent Prevents the browser's default behavior from occurring. Useful when you want to prevent the browser's built-in right-
Default click menu from showing.
Stop Prevents events from higher up in the component hierarchy from triggering when the selected event triggers.
Propagation

Request Print Action

https://docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-PageURLs
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

The following feature is new in Ignition version 8.1.28
Click here to check out the other new features

Prints the contents of the page, view, or component. To print content using Perspective component methods instead, see Requesting Print.

Action Setting

Select Print Target

Document Title

Popup Action

Description

® Page: Print the contents of the page.
® View: Print the contents of the view.
® Component: Print the contents of the component.

The name of the save file.

Opens a view as a popup, or closes an existing popup.

Action Setting

Popup Action

Select View

Parameters

Identifier

Title

Show close
button

Draggable
Resizable
Modal

Background
dismissible

Position Exact

Position Relative

Description

® Open: Opens a view as a popup.
® Close: Closes an existing popup.
® Toggle: Opens a popup if it isn't open, and closes the popup if it is open.

The path to the view that should appear as a popup.

- N
A set of parameters to pass to the view. Add or remove parameters with the Add + icon and Delete [icon. In the Value
field for a given parameter, you can pass in a path to a property value using the Parameter icon.

A string that specifies a unique popup identity. If you want to close an open popup from a popup action, you'll need to supply
the identifier that was used to open it.

A string of text to display in the titlebar. If omitted, no titlebar is used.

A boolean indicating if a Close Icon should be displayed on the popup.

A boolean indicating if the popup should be able to be dragged to new positions.
A boolean indicating if the popup is allowed to be resized.
A boolean indicating if the popup should be modal, meaning it is the only view the user can interact with while open.

A boolean indicating if the popup can be dismissed by clicking outside of it. This setting is only applied if the modal option is
enabled. If omitted, defaults to false.

Exact Positioning controls where in the session the popup should appear, and how large it should be. If no specifications are
given, the popup will open centered at its default size.

® Top, Left, Bottom, and Right control how far the popup should be offset from each margin of the session.
® Width and Height specify how large the popup should appear.

Paosition
Exact Relative
Top Left
Bottom Right
Size
Width Height

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RequestingPrint

Relative Positioning enables the popup to be positioned based off of the mouse cursor position when used with a Mouse Event.
The Circle icon in the center represents the mouse location. The arrows icons represent the location the popup will appear in
relation to the user's mouse cursor. Click on an arrow to position the popup window.

Position
Exact ‘ Relative
K 4+ A
« 0+ I
™ 4 + |
Size
Width Height
Position
Exact Relative
K+ R
- ® -
W + |
Size
Width Height

Viewport Bound

The following feature is new in Ignition version 8.1.3
Click here to check out the other new features

If selected then Popups will be "shifted" on open to always open within the bounds of the viewport. If the Popup would have
been larger than the viewport then Popup will be resized to fit within the bounds. This setting also prevents a Popup from being
dragged even partially off-screen.

Refresh Action

Reloads the current browser tab.

Scan Barcode Action

Allows the user to scan a single barcode on their mobile device, which is then sent to the Gateway and handled by the Barcode Scanned Session
Event.

This is a Native App Action, designed to help in gathering data from a mobile device. Each action needs to be configured in two parts:

1. The action is run on a mobile device, indicating that a type of data should begin to be gathered.
2. As the data is gathered, or once it's finished being gathered, it is sent to the Gateway to be handled by the corresponding Session Event.

1 This action is designed specifically for the Ignition Perspective App for Android and iOS devices. If itis run in a browser session, it will be
ignored.

Action Setting Description

Barcode Type Indicates the format of the barcode to be scanned. Any can be used to catch all barcodes.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-BarcodeScanned

Barcode
Background Color The following feature is new in Ignition version 8.1.3
Click here to check out the other new features

This option enables the reading of barcodes with light or dark backgrounds, or previously white barcodes with black
backgrounds couldn't be read. Options are Light, Dark, or Auto.

Context Provides the opportunity to pass a custom object through to the Barcode Scanned Session Event.

Note: A session object is already provided to that event script.

Scan Ndef NFC Action

Allows the Perspective app to catch any scans by the phone using the NFC data exchange format (Ndef), which is then sent to the Gateway and
handled by the NFC Ndef Scanned Session Event. This suppresses any default behavior of the phone in catching the scan.

1 This action is designed specifically for the Ignition Perspective App for Android and iOS devices. If it is run in a browser session, it will be
ignored.

Action Property Description
Single Mode Listens for a single NDEF scan to send.
Continuous Mode Listens indefinitely for NDEF scans, which are sent to the gateway as they are received.

Off Mode Turns off listening for NDEF scans.

Script Action

Write a script that happens on the event specified. See Perspective Component Methods and system.perspective Functions for more details on how to
configure script actions.

Script actions contain a built-in "event" object, that further contains values pertaining to the underlying event. These values and descriptions are
displayed in the docstring.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts#PerspectiveSessionEventScripts-NFCNdefScanned
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective

Event Configuration on Label_0 = O x
Events Configure [onClick] Actions
O-
Organize Actions Configure Script Action
~ System Events .
- 1. Script + _
onStartup o 1def runAction(self, event): | =
B onShutdown wum
~ @ Mouse Events t Method that will run whenever the selected event fires.
I ‘
B onContextMent Arguments:
B onDoubleClick self: A reference to the component that is inveking this
B onMouseDown event: Events fired by tr_we relevant mouse/touch interacti
altkey (bool): True if the ‘alt’ key was held down wh
B onMouseEnter i
was fired.
¥ onMouseLeave button (int | float): The button number that was pres
B onMouseMove event was fired.
B onMouseOut buttons (int | float): The buttons being depressed wh
B onMouseOver was fired.
B onMouseUp clientX (int | float): The X coordinate in local CooXv
~ [Keyboard Events client¥ (int | float): The Y coordinate in lecal coom
B onKeyDown ctrlkey (bool): True if the 'ctrl’ key was held down
T T
B onKeyPress : 2
B onKeyUp .
~ @ Text Composition Events Options
B onCompositionEnd [Enabled
B onCompositionStart Prevent Default
_ B onCompositionUpdate Stop Propagation
¥ B Focus Events
7 = " a Security Settings
E Cancel Apply
Theme Action
Changes the theme for the session.
Action Setting Description
Select Theme Theme that will be used, for example dark, light, light-cool etc. Dropdown list of all available themes.

Workstation Mode Action

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

Note: This action will only take effect if called from a Session running in Workstation.

When called from a session running in Perspective Workstation, changes the mode of workstation from Windowed Mode to Kiosk Mode.

Action Setting Description

Windowed Enters Windowed Mode.

Kiosk Enters Kiosk Mode

Toggle Toggles the current mode between Windowed and Kiosk.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

Perspective Pipes

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

Pipes can be drawn within a coordinate container. These pipes can be used to visualize flow between

separate objects on a view.

a a @[|

0 ! [1o0 [200 [300 400

=

100]

200

oo/

anp|

Pipes are created by a dedicated drawing tool on the toolbar, as opposed to being dragged onto a
container like other components. Pipes are effectively drawn on the bottom of the z-order in a coordinate
container, hence any components added into the container will always be placed above the pipes.

Each pipe consists of an origin, its connections, connections of connections, and so on. Each pipe is

listed as a separate entry in the Project Browser, under "Pipes"”.

Project Browser ol
Q-
v @ Perspective

Ei Session Events

b s Styles
~ E& Views

«) View

-« [x] myView &

-_ A

A

~ BT Pipes

& Pump_0
& Pump_1

Terminology

On thispage....

® Terminology

Creating Pipes
® Moving Pipe Sets

Pipe Appearance Editor
® Pipe Properties
® Combining Pipes

Component Anchors

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface#PerspectiveDesignerInterface-PerspectiveToolbar

Origin

Pipe
Segment

Pipe Connection

Pi | An object containing all the pipe connections and pipe segments. In addition, a Pipe contains a
pe name, appearance, and appearance specific props.

Pi An XY coordinate within the pipe. Visualized as a circle.

O | The first Pipe Connection within a pipe. Note that origins differ visually from other Pipe
ri | Connections, in that they contain a dot at their center.

The segment formed by a Pipe Connection, and one of its immediate child connections. A
segment is a visual representation of relationship between other connections. Each connection
has an array of connection indices (starting at 0), and segments can be represented as a series
of indices. For example, [0,1,0] would represent the first pipe, second connection, then first sub
connection.

Consider the simple pipe below of three connections and two pipe segments. The top of Segment
[0,0] is the origin and the bottom of Segment [0,0] is the pipe connection where Segment [0,0,0]

t begins, turning the pipe flow from a vertical to horizontal direction. The end of Segment [0,0,0] is
the final connection.

®©3Q®WnND®T T

>3

Segment
o0 > ‘

A

Segment [0,0,0]

We can add two new connections, which could look like the following diagram. Because of the
connection locations, Segment [0,0,0,0] follows the existing naming structure, but Segment
[0,0,0,1] is given the number 1 since it was added later and is the second child.

Segment Segment
[0,0] ‘ ‘ ‘ ‘ ‘ [0,0,0,1]

Segment Segment
[0,0,0] [0,0,0,0]

Note that segment indices are represented in the Project Browser.

Example JSON

[
{
"name": "pipe",
"appear ance": "auto",
"flanges": true,
"l'inevariant": "solid",
"start": "none",
"end": "none",
B0 B
"stroke": "",
"wi dth": 10,
"origin": {
"x": 258,
"y": 168,
"connections": [
{
"x": 258,
"y": 236,
"connections": [
{
"x": 307,
"y": 236,
"connections": [
{
"x": 360,
"y": 236
I
{
"x": 307,
"y": 168
}
]
}
]
}
]
}
}
1

Creating Pipes

»‘
Click on the Pipe Drawing Tool toward the top of the Designer. While active, clicking anywhere inside a coordinate container will create a new
Pipe with an origin at the mouse location.

Note:

Pipes can only be drawn in a Coordinate Container. The Pipe Draw Tool and Pipe Move Tool will be disabled while other types of containers are
selected.

By default, a Coordinate Container's aspectRatio property does not have a value. As such, setting your container's aspectRatio to a value like 1:1
when creating Pipes is recommended. This helps Pipes remain anchored to components if the components change size in proportion with the
container.

R a @|vi¢ | & d

0 100
[nta |
e
<O
b
i

All connections, including the origin, can be repositioned by clicking and dragging.

Q @ @ | v [of 4 ai’ﬂgd

0 100 200
=
P
<O
LT
[}
=

New connections can be drawn by dragging the arrows around the connection. Letting go will create a new connection. By default, all segments are
drawn orthogonally. Holding the Alt/Option key will allow the segment to be drawn in fixed angles at 15 degree increments. Alternatively, holding Shift
while dragging allows the segment to be placed freely without snapping.

Q @ @ | v (o7 | &40 AW

0 100 200
[=ta]
]
<O>
g
[ke]
=

New connections can be added to existing segments. Doing so allows the segment to split off into a new segment.

SECENCNER TSN, N W
0 100 200
[ata
=

To delete a segment, click on a connection in the segment and press the Delete key, or by right-clicking and selecting "Delete".

Existing connections can be moved by dragging. All attached segments will move with the origin.

R aea v @0a
1] 100 200

{IHH

If Shift is held while repositioning a connection, then connecting segments will bend.

R @ | v &0
1] 100 200

{IHH

Moving Pipe Sets

Y
The Pipe Move Tool can be used to move an entire set of pipes, as well as resize the set.

La Q @ | v¥fyF A0 m W
0 100 200 30
[]
.+:.

]

<)
[]
=
[ane]
[ane]
%'}

Pipe Appearance Editor

While either the Pipe Draw Tool or Pipe Move Tool are selected, the top of the property editor will display some additional fields that can be used to
modify the appearance of the selected set of pipes. Additional fields are displayed depending on the selected Appearance of the pipe.

Perspective Property Editor o - X
Fipe Name
pipe_2

Style Width
Simple * | |10

Fill Color Stroke Color

FROPS

When multiple pipes are selected, only shared fields are displayed. For example, one pipe with an appearance of P&ID and another using simple
appearance are selected, only the Appearance and Width properties will be shown since those are the only fields available to both apperances.

Perspective Property Editor g - X
Editing 2 pipes
Style Width
P&ID b 10
PROPS

In addition, a coordinate container that has one or more sets of pipes will display a pipes property in the Property Editor. Each origin is represented as
an element in the pipes array. Each origin has X and Y coordinates, and an array of connections, which lead to other origins.

pipes
@

name :

appearance : autc
flanges : true (@
lipeVariant : =olid
start : none
end : none
fill .
stroke
width :
origin
X
Y
connections
]
b
y
connections
]
¥
y
connections
@

Pipe Properties

Property Description

Pipe Name | The name of the selected set of pipes, as they appear in the Project Browser.

Appearance Changes the look of the pipes. Note that different appearances have additional properties.

IC e [T

Simple Mimic P&ID

In addition to the appearance options, there is an auto value will will cause the set to use the appearance specified under sessi on. pr op
aut oAppear ance.

Width Determines the width of pipes in pixels within a single set.

Fill Color The fill color to use when appearance is set to either Simple or Mimic. This setting is ignored when appearance is set to P&ID.

Stroke The stoke color to use when appearance is set to either Simple or Mimic. This setting is ignored when appearance is set to P&ID.
Color
Display Determines if the pipe set should show flanges.
flanges on
pipe
(Mimic
Appearanc
e Only)
Line Allows a unique variation to be applied to the set.
Variation
(P&ID BN BN BN B
Appearanc B B .
e Only) I r
L L]
Solid Dashed Mid Arrow Wavy

Line Color ' The color to use for the pipe set.

(P&ID
Appearanc
e Only)

Start Determines what the start of a pipe set look like. Applies to the starting origin of a set.
(P&ID App
earance
Only)
End Determines what the end of a pipe set look like. Applies to all origins that don't lead into another origin.
(P&ID
Appearanc
e Only)
Visible
The following feature is new in Ignition version 8.1.13
Click here to check out the other new features

Determines whether the pipe set is visible or not. Default setting is True.

Combining Pipes

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

Dragging a pipe to another will combine the pipes. Combining pipes will cause the pipes to share the same appearance. However this combination
can be overridden by pressing the Undo button (or by pressing Ctrl-Z/Command-Z) once. This allows different pipes to overlap without actually
combining.

B P« Yo N Wi 1 Er @ @ @|»
1] 100 200 300 400

{IHH

20k

Additionally, a connection can be dragged onto it's immediate sibling or parent, which effectively removes the dragged connection.

Component Anchors

While using the Pipe Drawing Tool, other components in the container will display anchor points.

+

Symbol type components have custom anchors, positioned at appropriate locations.

1
A

i
+ + o —
=\ (B LI I ,
nE & W [B
: + + e
Valve Pump lngr:Jl! Mator
100% Al 100% Vessel 1008

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette

Dragging a segment near the anchor will cause the segment to snap to the anchor (unless the Shift key is currently being held). This can be useful
when leading segments into different components. Note that anchors are only used to guide the segment in the designer. The pipes are not
"connected" to the component, so moving the component later will not cause the pipe segment to move.

Perspective Project Properties

There are a number of properties you can set for your Perspective projects within the Designer. For
example, there are properties for setting security levels, configuring how the sessions receive updates,
and more. 2
On thispage...
To access the Project properties, in the Designer, click on Project tab on the menu bar. Then select Proj
ect Properties.

. ; : : ® Perspective General Properties
File Edit View Component Tools Hel ® Perspective Permissions
. Properties
4)
H & ‘ it Comm Off 4 * Perspective Tag Drop Properties
) 1 ® Perspective Inactivity Properties
Project Browser } Comm Read-Onl - B
! 1 O 1 ¥ ® Perspective Symbols Properties
Q- 4} Comm Read/Write fe * Create and Apply a Custom
H(State

&) Alarm Notificat 4 Project Properties
o%. Sequential Fung &
b [l Scripting _) ig

[£, Session Even >

Gateway Events

Preview Mode F5

& Styles
B Hz-Example-Style-Numbers fdock_page
M hz-Example-Style-Label_text /east_page
~ im Views fflex-view

Project properties span several functional areas each containing settings applicable to that area. Scroll down to the Perspective section.

/A Project Properties - o x
Project Perspective / General
General
Permissions Enable Update Notification Timeout : sec
Designer
Perspective
Permissions
Tag Drop
Inactivity Project Locale Browser v
Symbols Include regional variations
Vision
Design Hide From Launch Page And Native Apps
General Launch lcan &
Launching
Login Project Timezone Gateway Timezone .
Permissions Session Timeout
Timing Desktop 60 o sec
User Interface Mobile 600 = sec

Perspective General Properties

These general properties apply to the Perspective Sessions.

General

Property

Enable Update
Notification

Project Locale

Include regional
variations

Hide from
Launch Page
and Native Apps

Launch Icon

Project
Timezone

Identity Provider

Session
Timeout
Desktop

Session
Timeout Mobile

Session Closed
Message

Page Closed
Message

Logged Out
Message

Description

Enables notifications for sessions when the project is changed. When notification is enabled, this is the message that will be
displayed. The token {timeLeft} will be replaced with the seconds remaining until update. If false, update will be immediate.

Select a project locale.

Enables regional variations for the locale.

When selected, the project to be hidden from the Session Launcher and mobile app project listing.

The image specified here is used to represent the project on the launch page and the Ignition Perspective mobile app. This
needs to be a path to an image that has been uploaded to the Gateway. Use the browse button to choose or upload a new
image.

Timezone for this project. Dropdown list includes the Gateway timezone, Session timezone, or specific timezones around the
globe.
Identity Provider (IdP) for this project if a Perspective Project had an IdP set for it prior to the release 8.0.6.

Note: For new installations after 8.0.6, the Identity Provider property is now located in Project Properties > Project General >
Security Settings The property will also move to the new location under Project Properties > Project General > Security Settings
if you change set this property to none.

The time, in seconds, for that the Gateway will wait for desktop devices to respond.

The time, in seconds, for that the Gateway will wait for mobile devices to respond.

Message to be displayed if system.perspective.closeSession is invoked.

Message to be displayed if system.perspective.closePage is invoked.

The following feature is new in Ignition version 8.1.8
Click here to check out the other new features

Determines the message displayed when a user logs out of a session. Only applies when the project requires authentication.

Perspective Permissions Properties

The Perspective Permissions properties restrict project access to specific security levels and security zones.

Permissions

Property

(Security Levels Tree)

(First radio button)

(Second radio button)

Description
Interactive tree that shows the current authenticated roles and security zones.
If selected, then the security levels of the user must match all of the required security levels

If selected, then at least one of the security levels of the user must match any of the required security levels.

In the following example, a user must have the Administrator security level and Ridgefield East security zone to be able to access this project.

https://docs.inductiveautomation.com/display/DOC80/SVGs+and+Images+in+Vision#SVGsandImagesinVision-UsingImages
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.closeSession
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.closePage
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/display/DOC81/Managing+Users+and+Roles
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones

A Praject Properties

Project
General
Permissions
Designer
Perspective
General
Permissions
Tag Drop
Inactivity
Symbols
Vision
Design
General
Launching
Login
Permissions
Timing

User Interface

Perspective / Permissions

Q security Levels (including Roles) may be added by going to the Config > Security > Security Levels X
page of the Gateway Web Interface

Security Levels
- Public
- Authenticated
+ | |Roles
3 Administrator
b Driver
« | SecurityZones
Default
localhost
[Ridgefield East
Production West

O The security levels of the user must match all of the required security levels

A least one of the security levels of the user must match any of the required security levels

Perspective Tag Drop Properties

Tag Drop properties provide a way to link certain data types of Tags to commonly used components

INDUCTIVE

when dragging-and-dropping a Tag onto a view. This is done in Project Properties under Tag Drop in
three steps: select the data type, select the component to create, and select the bindings that are created -\ e f.,. UN IVE RS I 'I

on that component.

® Data Type Configuration: This setting determines which components show up in the popup list
when dragging a Tag into a view.
You can switch between the different Tag data types to see what sorts of components are Tag Drop
allowed to be dropped forﬁi:lch of those types. Add or remove new entries in the list using the A

dd + icon and Delete m icon. You can then double-click on the new blank cell and select a

Watch the Video

component from a dropdown.

® Component Bindings Configuration: This setting determines which bindings are created
when a component is dropped into a view.
Select a component, then set up or modify the bindings for the selected component (which is
typically just the Tag value bound to the value/text prop on a component). Add or remove new

binding entries using the Add + icon and Delete III] icon. Double-click the Tag Property and
Prop Path cells to fill in properties.

Note: The Component Binding Configuration table values are tied to the component currently selected
in the Component Type dropdown, they are not related to what is selected in the Data Type

Configuration table above.

Dropping tags onto existing components can now create bindings on those components if the data type of the tag matches a Tag Drop configuration in
the project. Tag Drop configuration is what determines if a binding is configured or not.

The Tag Drop interface enables the Bidirectional setting by default when adding Input Components.

https://www.inductiveuniversity.com/videos/tag-drop/8.0/8.1

|
/4 Project Properties

Perspective / Tag Drop

Project
General
Permissions Data Type Configuration
Designer Data Types Integer v
AT e 40 Components +
General Cylindrical Tank Al U
Permissions Gauge
Tag Drop Label .
LED Display
Inactivity Progress
Symbols Simple Gauge
Vision Slirter =
Design Component Bindings Configuration
General Component Type | Slider v
Launching e
Tag Property Prop Path Bidirectional
Login =
9 value props.value o
Permissions
Timing
User Interface
Tag Drop
Property Description

DataType Configuration

Data Types

Components

Component Bindings
Configuration

Component Type
Tag Property

Prop Path

Bidirectional

This section is to set up a list of components to show for each data type that can be dragged onto the view.

Dropdown list of the available datatypes in Ignition. Choose a datatype to see a list of components associated with
it.

List of components associated with selected data type.

This section is to set up bindings when a Tag is dropped.

Dropdown list of the available components in Perspective.
The name of a Tag's property to be used in a binding. "val ue" is most commonly used.

The property path on the component where the binding will be created. props.value or props.text are most
commonly used.

Check box to indicate if the binding should be bidirectional. The Bidirectional property is set by default when
adding Input Components.

Perspective Inactivity Properties

Perspective has Inactivity Timeout settings in Project Properties. You can set an Inactivity timer that either closes the Perspective session or logs the
user out if no activity is detected after a specified number of minutes. Activity is considered opening a new tab, clicking, typing. If Perspective is
running on a mobile device, activity is considered a swipe or tap. The Gateway is the "time keeper" for inactivity timer.

This inactivity feature pertains to perspective sessions only. When the Inactive Session Action occurs (regardless of whether "Logout” or "Close
Session" is selected), the user will still be logged into the Identity Provider.

Note: When enabling this inactivity feature, it is highly recommended that you also enable the "Always ask the 1dP to re-authenticate users by
default" setting under Project Properties, as this will require that any user attempting to log into a Perspective session will have to provide their

credentials first.

The following are the properties for the Inactivity Timeout:

Inactivity
Property
Enabled

Inactivity Timer

Grace Period

Grace Period
Message

Inactive Session
Action

Description
Whether the automatic inactivity detection option is enabled.

Time (in minutes) in which a session can be inactive before the user is logged out or the session is closed. The maximum
value is 2,147,483,647.

Grace period (in seconds) after the Inactivity Timer time has passed but before the user will be logged out or the session
closed.

Message to be displayed before a session becomes inactive. Use the placeholder {seconds} to indicate remaining time. (Optio
nal.)

Action that occurs when the session becomes inactive. Options are:

® Logout - Log the user out of the session. Note that the user will still be logged in with the
® Close Session - Close the session.

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties

& Project Properties — d *

Project Perspective / Inactivity
General
Permissions Automatic Inactivity Detection

Designer Enabled

Inactivity Timer

Perspective

s .
General 15 - minutes
Permissions Grace Peried

FY
Tag Drop 10 -~ seconds

Symbols Your session will be closed due to inactivity in {seconds} seconds
Vision

Design i : i
Inactive Session Action

O Logout

Close Session

General
Launching
Login
Permissions
Timing

User Interface

Perspective Symbols Properties

The following feature is new in Ignition version 8.1.26
Click here to check out the other new features

The Symbols section displays built-in states for symbol visual theme configurations and allows you to create your own customized states. Selecting a
state will bring up the Configure State settings, which display the state name and the Available and Applied Symbols lists. Selecting a visual theme
state under the main state name will access the Edit State Style settings, which allow further color and function customization. Additionally, there are
three icons on the right of the displayed States list to add and edit new states:

.

* Add icon: Creates a new state with full customization access. Color and function settings pre-populate with the built-in default state built-
in settings, but will have no preset applied symbols.

® Duplicate ." icon: Creates a new state based on a selected pre-existing state. Duplicated state names will automatically populate based on
the original state name. Duplicated states have full customization access regardless of the state they were created from.

=

o Delete State I icon: Deletes selected custom states. A popup message will require you to confirm your selection before deleting. Built-in
states can be edited, but not deleted.

When editing a built-in or custom state themes, you can use the Undo * icon to replace changes with the last saved settings or the Reset Theme

o

icon to return all settings back to their original configuration when the state was first created.

The following table lists the properties for the Symbols States:

Symbols

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

Configure State (Only State Name Selected)

Property

State
Name

Available
Symbols

Applied
Symbols

Description

The name of the state containing the light/dark visual state styles. Built-in state nhames cannot be changed.

Lists the symbols that are available to use the selected state, but do not have it as a currently applied option.

Lists the symbols that will show this state as an option to apply when configuring the symbol. Add or remove applied symbols by

-

selecting a symbol and using the Add or Remove Applied Symbol ! arrows.

Edit State Style (State Name > Visual State Selected)

Property

Primary
Color

Secondary
Color

Tertiary
Color

Stroke
Color

Enable
Animation

Enable
Flashing

Description

Sets the symbol fill color.

Sets the alternate symbol fill color. This color is used when Enabled Flashing is checked.

Sets the vessel fill color.

Sets the symbol outline color.

Enables symbol animation properties.

Enables symbol fill color to alternate between the set Primary and Secondary Colors.

8 Project Properties

Project
General
Permissions
Designer
Perspective
General
Permissions
Tag Drop
Inactivity
Symbols
Vision
Design
General
Launching
Login
Permissions
Timing

User Interface

Perspective / Symbols

b default + State Name
running (5]
stopped i

»

»

» faulted Available Symbols
» open

} failedToOpen

b closed

»

failedToClose

Applied Symbols
2Way Valve
Centrifugal Pump
Cylindrical Tank
Motor
Vacuum Pump

Sensor

X A Project Properties -
Project Perspective / Symbols
General
4 +-

Designer default o Frimary Color Secondary Color
Perspecti

o erspective light warm & #FAF4AFA B za1a1a1
General light-cool
Permissions dark Tertiary Color stroke Color
Tag Drop dark-warm M #327200 Wl #sesese

dark-cool
Inactivity b running Enable Animation Enable Flashing
Symbols » stopped
Vision b falted
» open

Design b failedToOpen
General » closed
Launching b failedToClose
Login
Permissions
Timing
User Interface

Create and Apply a Custom State

1. Open Project Properties.
2. Select Symbols.

3. Click the Add

icon. Rename your new state if desired

Cancel

. In this example, it will be left as new-state.

A Project Properties - O ®
Project Perspective / Symbols
General
Permessians States Configure State
Desigrer Stst Narme
N (] ruanneng
F = | b stopped g °

General b faulted

aulte Available Symbols Applied Symbols
Permessions b open et .

entrifugal Pump
tagbrop b faledTolpen
b closed 2 Way Vahe
Inactnaty b failedToClose Cylindrical Tank
Motor

Vision Vacuum Pump
Design Sensor
General -
Launchang =
Login
Permissions.
Tirning
User Interface

4. Use the Add Applied Symbol lnd arrow to select and apply your new state to desired symbols. This example will make this state applicable
to the Motor symbol.
5. Use the state dropdown to select the visual themes you want to edit. This example will edit the light visual state.

/A Project Properties - m} X
Project Perspective / Symbols
General
Permissions States Configure State
Designer b default + StateName
) b running 4]

Perspective — new-state (-]

b stopped i
General » faulted

aulte Available Symbols Applied Symbols

Permissions b open

) failedToOpen 2 Way Valve IMotor I
Tag Drop

» closed Centrifugal Pump
Inactivity } failedToClose Cylindrical Tank
symbols DEETE | vecwunPump
Vision Sensor
Design
General E
Launching L
Login
Permissions
Timing
User Interface

| IS S

6. Set your desired color, animation, and flashing configurations under Edit State Style.
7. Click OK.

/A Project Properties

Project
General
Permissions
Designer
Perspective
General
Permissions
Tag Drop

Inactivity

Vision
Design
General
Launching
Login
Permissions
Timing

User Interface

Perspective / Symbols

States

default
running

& %+

stopped
faulted

open
failedToOpen
closed
failedToClose
light
light-warm
light-cool
dark
dark-warm

13
»
13
»
»
»
»
13

dark-cool

Edit State Style -
Primary Color Secondary Color
Il :ooo0s0 | EEINENIS
Tertiary Color Stroke Color
I #327200 #FFCABA
Enable Animation Enable Flashing

. Access a view and place a Motor symbol.

. Select the Motor and change the state field from default to the custom state, in this case new-state. The new state configurations are

immediately applied and displayed in the view.

100 200 300 ~ Perspective Property Editor 8- X% 0 100 200 300 Perspective Property Editor g% ®
3 5
Q- £ Q- 3
b <
~ PROPS =|H ~ PROPS oll2
g g
appearance : auto - 2 appeazance 1 auto - :
. E] animationSpeed H
H state : new-state H
3 g
z orientati default -4
—
I +bo
— feet running
~ label
3 —
—— locatic faulted
— N
justif
» style LY b style A
Motor © yalve Motor - value
100% et - 168 100% text 1 100
location location
Justify justify
A b sty

Styles

Perspective components have Style properties that enable you to customize the look and feel of
components on the screen through various properties. These styles are based on Cascading Style
Sheets (CSS), a style sheet language used for describing the presentation of a document or webpage.

CSS is designed to enable the separation of presentation and content, including layout, colors, and fonts.

The Perspective module uses the popular standard HTML5/CSS3 technology for its user interface (Ul)
layer.

Using CSS, the Perspective Style options for components are both detailed and flexible. Styles are used
in multiple places, and components can accept style information from multiple sources. There are many
CSS settings available through the user interface, they are described in the Style Reference.

The following feature is new in Ignition version 8.1.4
Click here to check out the other new features

As of 8.1.4, CSS properties are also available through a properties dropdown menu. This menu provides

access to all available properties in the schema.

[0 2 Perspective Property Editor a - X

PROPS ol

text :ButT

textStyle » P
r—
classes

0%

primary : true Value alignitems
enabled : true Object alignself
image Array al

200

source : 1.
animationDelay

icon

. animationDirection
width :

height : animationDuration
g position : left animationFillMode
style (1) & animationPlayMode

align : center

backfaceVisibility

tify : center
ety backgroundAttachment
2 style .
= backgroundClip
classes
- backgroundColor
Fsar backgroundOrigin
= - v backgroundRepeat
v v . borderCollapse
® Bigview Tank3Page 81 x width : borderimageRepeat L
borderstyle ﬂ
borderstyleTop
boxDecorationBreak
more... »

A group of Style settings can be saved together and given a name as a Style Class.

Style Editor

On thispage ...

® Style Editor
® CSS Lengths
® Creating a Style

INDUCTIVE
UNIVERSII

Styles

Watch the Video

Wherever the style property and the Styles ‘{‘ icon appear in the Property Editor, you can click on the icon to display the style editor.

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4
https://www.inductiveuniversity.com/videos/styles/8.0/8.1

0 100 200 300

_ I

100

100

110

200

120

0 [|

s

Perspective Property Editor o - X

Q-

animate : false
reverseScale : false
|~ style s |

} classes

Add Property...

+ POSITION

| sjuauodwo) anradsiad @|

The following menus are available in the style editor:

Text

Background

Margin and Padding
Border

Shape

Misc

< Applied Styles

There are no style
attributes
currently applied

You can quickly make adjustments to the styles by clicking on them in the Applied Styles panel.

Text

Background

Margin and Padding
Border

Shape

Misc.

E Cancel

When you hover over a style listed in the panel, a Delete X icon is displayed. Click on it to delete the style.

¢ Applied Styles
Text
font-family : Roboto

font-size : 24px

x]

If you made new edits to an existing style attribute, you can hover over the style and an Undo -

previously saved setting.

icon is displayed. Click on it to revert to the

< Applied 5tyles

Text

font-family : Robotc

font-size : 32 -

You can minimize the Applied Styles panel by clicking on the Arrow - icon to the left of the name. Click the arrow again to reopen the panel.

pplieu:l Styles Text
Text Font family Size
color : #0000AC I Roboto v || 24px
font-family : Roboto
.] Color Weight
font-size : 24px
_ B #0000AC bold - Italic
font-weight : bold
Line height Letter spacing Word spacing

Expanding a category enables you to set the properties associated with it. Here is an example of the Style Editor with the Text menu expanded and a
few options selected:

color: #800080
font-family: times
font-size: 19px
font-weight: bold
text-align: center

< Applied 5tyles Text
Text Font family Size
color : #300020 times ¥ || 19px
font-family : times
)] Color Weight
font-size : 19px
B 200080 bold v Italic
font-weight : bold
text-align : center Line height Letter spacing Word spacing
Alignment
Text align
center A
Indent White space
-
Text Options
Transform Decoration
Tt | TT| tt 5| 5 5 Break-word
Shadow
Cancel

Note:
Applying individual style elements to a component will overwrite the settings for the same style elements being applied from a Style Class.

Some components can have multiple individual Style elements, with each one focusing on a different part of the component. When these styles have
a conflict, the more specific style wins out, and sets the style for that particular property.

CSS Lengths

Styles, by default, make use of pixels (px) when it comes to length. However all CSS lengths are available and can be used by specifying the unit. For
example, a font can be specified in points by appending the unit "pt". For example:

35pt

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units#lengths

Creating a Style

1. In a coordinate view, drag a Gauge component and a Label component.

2. Select the Gauge component and click the Styles ‘W icon in the properties for the component.

Perspective Property Editor o - X

PROPS =2

value
secondaryValue :
startAngle
endAngle

outerAxis

innerAxis
backgroundColor
animate : false
TeverseScale : false

style b |

classes

Ed Add Propert

The style editor is displayed. Each of the pull down menus has options. These options are described in the Style Reference.
3. Click on the Text menu then set the following style options:
® Font Family: Verdana
® Size: 16
* Weight: bold

As you select Style elements, they appear in Applied Styles column on the left.

< Applied Styles Text
Text Font family Size
font-size : 16
. Color Weight
font-weight : bold
Line height Letter spacing Word spacing

4. Click OK.

5. Next select the Label component and click the Styles '(‘ icon.
6. Expand the Text menu and set the following style options:

® Font family: Verdana

® Size: 18px

® Weight: bold

® Color: #8034CC

https://legacy-docs.inductiveautomation.com/display/DOC81/Style+Reference

< Applied 5tyles

Text

font-family : Verdana

color : #

.

font-size @ 18px

font-weight : bold
Background

background-color : #FFFF(cC

Margin and Padding

padding-bottom : &

[=:]

padding-left :

[=-]

padding-right :

(=]

padding-top :

Text

Font family Size

Verdana v || 18px

Color Weight

B :s034cC bold - Ttalic

Line height Letter spacing Word spacing

Alignment

Text align

Indent White space

Text Options

Transform Decoration
Tt TT| tt S 5 T Break-word
Shadow

Cancel

. Expand the Background menu and set the following style option:

® Background Color: #FFFFCC

. Expand the Padding menu and set the padding to 8 for all four sides.

. Click OK to save the changes. You will notice those properties now appear in the components Style, letting you know that those particular

elements have a style applied to them.

Perspective Property Editor

o

]

* PROPS

text :Pressure Gauge

alignVertical : top -

v style b
classes : =
backgroundColor : #FFFFCC
color : #3034CC I
fontFamily : Verdana
fontSize @ 18px
fontWeight :bold -
paddingBottom : &
paddinglLeft : &
paddingRight : &
paddingTop : &

Add Property...

Perspective Built-In Themes

Themes

Perspective comes with several themes, providing initial styling to all components. The active theme in a On th|S page
session is determined by a session property. Specifically, sessi on. pr ops. t hene found on the home
screen of the Perspective workspace. Changing the value of this property in a Perspective Session will
change the active theme for the session.
® Themes
® Initial Theme
® Theme Colors
® Using Theme Colors
® Built-in Theme Colors

Initial Theme
Ignition installations come with the following themes:

light

dark
light-warm
light-cool
dark-warm
dark-cool

Theme Colors

The built-in themes make heavy use of CSS variables for colors. For any of the default themes, colors are defined in the vari abl es. css file.
Defining your own variable is simple. Add a line with the following to the variables file:

--vari abl e-nanme: #FF0000O;

Caution:

Be aware that changes made to the built-in theme files will be replaced on Gateway start up (including restarts caused by a Gateway Restoration)
and moved to a backup folder on upgrade. As a result, it is highly recommended that you create a custom CSS file that can then be imported into the
entry point CSS files.

For more information, see the markdown README file located in the Gateway's installation directory: % nstal | Di r ect or y%
\ dat a\ nodul es\ com i nducti veaut omati on. per specti ve\t henes\ READMVE. nd

Using Theme Colors

Theme colors can be used on components by simply providing the variable name. For example, we can change the backgroundColor and color of a
button component by just stating the variable name for the appropriate styling properties on the component's style object.

align :

justify :

style »
classes !

Openfopup backgroundColor : i
color :

POSITION

If a component has a color property outside of a style object, such as the Ilcon component, the same rules apply; simply set the value of the color
property to the name of the variable.

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore
http://README.md

Q.
l PROPS
path : material/insert_emoticon
color : --seqg-2
style »
O ad Add Object Membe
+ A0 FPri BT

Style Classes

When using a Theme Color in a Style Class, the variable must be wrapped in the var () method, as shown below.

7] Edit Style [NewStyle] — O X

Style Classes

A style class is a re-usable collection of style properties which can be applied to components on any
view. A style class may include style rules which are applied dynamically based upon component
element state or media query rules.

Style Rules Animated
+
> Text =

Background

Background color

var(—-seg-4)

Background image

Background position

Advanced -

Cancel Apply

Built-in Theme Colors

The following color swatch represents the built-in color variables for each IA provided theme.

light light-cool light-warm dark dark-cool dark-warm

--neutral-10

--neutral-20

--neutral-30

--neutral-40

--neutral-50

--neutral-60

--neutral-70

--neutral-80

--neutral-90

--neutral-100

--seq-1

--seq-2

--seq-3

--seq-4

--seq-5

--seq-6

--div-1

--div-2

--div-3

--div-4

--div-5

--div-6

--div-7

--div-8

--div-9

--div-10

--div-11

--div-12

--div-13

--div-14

--div-15

--div-16

--qual-1

--qual-2

--qual-3

--qual-4

--qual-5

--qual-6

--qual-7

--qual-8

--qual-9

--qual-10

--callToAction

--callToActionHighlight

--callToAction--hover

--callToAction--active

--callToAction--disabled

--error
--info
--infoSecondary
--warning
--warningSecondary
--success

--indicator

--indicatorOff

Changing the Theme From a Session

A theme can be set by directly writing to sessi on. pr ops. t heme property. The property is writable from a
session, so you can easily utilize component bindings in such a way that users can change the theme
directly from the session. in this example, we will create a dropdown component, and configure a component binding that allows the
dropdown to change the theme in the current session.

1. Open a view in the Designer that contains a few components and drag in a Dropdown component.

0 100 200 300 400 500 600 -

E Select... v }

—0

+
45%
(=]
2 Number of Students
Grade 1:15

Grade 6: 24

<1

- IEEEE e
Grade 5: 20

g Grade 3:14
Grade 4:18

B Grade 1 15 [Grade 2 17

[Grade 3 14 18

400

[Grade 5 20 | |Grades 24

o
4 3

X Themes X

2. With the Dropdown component selected, click on the Binding <= icon to create a property binding on the value property
Perspective Property Editor ol — X
Q1
PROPS

D value :

w ; L:‘..: E e.‘ﬂe.-:

3. The Edit Binding window will open. The theme property is a session property. Click on the Property El icon and expand session > props,
and select theme. Click OK.
4. Check Bidirectional and click OK to save your property binding.

Edit Binding: Dropdown.props.value — O X
Binding Type Configure Property Binding
% Tag session.props.theme
Options
IEI Property — Q-
[Z Enabled | | Overlay Opt-Out -
o] ~ (&) session
* Expression ~ & props
Add Transform +
f¥ Expression Structure
B |ocale
£ Query B timeZoneld
b i auth
© TagHistory b i gateway
- . b device
& HTTP Binding Preview i bluetooth
. - Property } M geolocation
M Remove Binding light b i appBar
B securitylevels
i
B host
» [page
-) view
» M props

OK

5. With the Dropdown component still selected, locate the props.options property in the Property Editor.

Paste the following onto the "options" property of a dropdown component.

[
{
"value": "light",
"label": "light"
}
{
"val ue": "dark",
"| abel ": "dark"
}
]
Perspective Property Editor o - X E
=
- m
Q A
-
~ PROPS ~l 8
E.
D value : light P
o
+ options 3
-]
.]
value : t 3
N @
label :1ight -
= 1
value : dark
label : dark
multiselect : false

6. Save your project and open your view in a Session or enable Preview Mode in the Designer.
7. From the Dropdown component, select a desired theme (i.e., light).

light A

cark

The selected theme will now be applied for the entire Perspective Session.

Style Classes

A Style Class is a group of Style settings that are saved together. Style Classes can be applied to
multiple components to provide consistency in design. A Style Class enables you to define style
elements in one place, and then quickly apply that style to different components. Style Classes are
stored in the Styles folder in the Project Browser.

Within the Styles folder, Style Classes can be placed into folders in order to keep them organized. In the
following example, we created separate folders for banner styles and logo styles in the Designer. As
projects grow and increase in complexity, use folders to more easily manage your Style Classes.

Project Browser a - X

Q- Project Properties &

~

&) Alarm Notification Pipelines
&% Sequential Function Charts
v & scripting
~ @ Perspective
[& Session Events
& Styles
~ @ Banner_Styles
& Banner
@ Banner_Text
B Banner Title
~ @ Logo_Styles
Class_1_Logo_Style
W Button
B Center_Text
& Confirmation
@ Error
& Form
® Form_Error
& Menu
B Menu_Selected

This feature was changed in Ignition version 8.1.22:

The prefix i a_ is reserved for the base, predefined styling that is built into Perspective, and should not
be used when naming user-created Style Classes. Using the i a_ prefix for user-created Style Classes
may result in unintended behavior.

Creating a Style Class
In this example we'll create a 35 point Italic font, and center the text.

1. To create a Style Class, right-click on the Styles folder and select New Style.

Project Browser o - X

Q- A

s

b /&) Alarm Notification Pipelines
[.I. Sequential Function Charts
+ & scripting
+ @ Perspective

Ef, Session Events

Acme_ll New Style... |

Alpha_§

Bravo_! E

Charlie_Style_Class
Corporate

On thispage...

® Creating a Style Class

® Enabling the Advanced
Stylesheet

® Delete a Style Class

® Rename a Style Class

® Protect a Style Class

Multiple Style Classes

Animated Style Classes

® Animated Settings

Bindings on Style Classes
Element States on Style Classes

Media Query on Style Classes
® Media Query Settings

@ INDUCTIVE
“ws2- UNIVERSII

Style Classes

Watch the Video

https://www.inductiveuniversity.com/videos/style-classes/8.0/8.1

2. Enter a name for the new Style Class. Style Class names must be unique to the project. You will
see a green check icon if the name you enter is acceptable. In this example we'll name ours

"Header".
[New Style Class *
Name
| Headed |°

3. Click Create Style Class.

4. On the Edit Style screen, use the style editor to define the style. In this case we'll configure
values for the following properties under Text:
Size: 35pt
Italic: enabled
Text align: center

) Edit Style [Header] - [m] X

Style Classes

Astyle class is a re-usable collection of style properties which can be applied to components on anyview. A style class may
include style rules which are applied dynamically based upon component element state or media query rules.

Style Rules Animated

BaseSyle Y false

< Applied Styles Text

Text Font family Size

font-size :

font-style

Color Weight

text-align : center

Line height Letter spacing Word spacing

Alignment

Text align

center v

E Cancel Apply

5. Click OK to save the Style Class.

6. Once a Style Class has been created, it can then be applied to a component. In the
component's Style property, there will be a classes property with a dropdown list of all available
Style Classes that can be applied to the component.

PROPS

text : Area Overview
alignVertical : center

style »

T
=

classes : Header
Add Prope aHE.aEIEV
POSITION

Enabling the Advanced Stylesheet

This feature was changed in Ignition version 8.1.22:

Users with extensive background working with CSS are now able to fine tune styling by modifying the
Advanced Stylesheet resource. The stylesheet is an advanced feature and is not placed by default. To
enable the Advanced Stylesheet, right-click on the Styles folder and select Enable Advanced
Stylesheet.

https://legacy-docs.inductiveautomation.com/display/DOC81/Styles#Styles-StyleEditor

+ W) Perspective =1 |akarta

[& session Events Madrid
ik
Y Mew Style..
b i vie 5 Mew Folder
BaTransl B Enable Advanced stylesheet | [
Vo e hrr
Tag Broweser

+-Q O
Tag

= EXpOMt.

The stylesheet.css resource will now be available under Styles. The stylesheet allows users to insert
CSS as in any normal CSS file. Note the editor does not support auto-complete CSS syntax.

Common examples of how this resource can be used include overriding or extending Perspective Style
Classes or CSS classes used within a component's structure. CSS classes are not exposed in a
component's Property Editor, where as Style Classes are exposed. Perspective uses the prefix .psc- for
Style Classes before they are injected onto the page, so if you are trying to target a Style Class, you'll
need to add this prefix to the name of your style declaration. Then add the Style Class name (without the
prefix) to your Property Editor style field. Use the prefix .ia to edit CSS classes as shown. No further
steps are required to activate edits to CSS classes.

e Edt Vew Project Component Tools
CIEIRY ESRORTE
Projectronser a.x

Help

The rules defined in this resource are inserted into the Perspective project between the Theme files of
the Gateway and the Named Styles of the project. This means the resource is scoped to a project, unlike
Theming files being Gateway-scoped.

To disable this advanced feature, follow the Delete a Style Class process below.

Delete a Style Class

To delete a Style Class, right-click on the Style Class name in the Project Browser, then select Delete. When a Style Class is deleted, it is no longer
applied to any components it was previously applied to. The component returns to the default style settings with the exception of any inline styles.
Inline styles will remain applied to the component.

Project Browser a - X

Q- A
+ ® Perspective 2
[& Session Events
- @ Styles

Acme_Logo_Style
Alpha_5tyle_Class
Bravo_Style_Class
Charlie_5tyle_Class

| Feoporate |

HoverLabg [Rename F2
InAlarm _ |
MediaQue T Cut Ctrl+X
NewStylel [Copy Ctrl+C
- g Views .
b g Test
b gm TestPr ﬁ Delete Delete
" mm z_Cust @ Protect
Eod ol

Rename a Style Class

To rename a Style Class, right-click on the Style Class name in the Project Browser, then select Rename.

Note: Once a Style Class is renamed, any component that was using the Style Class will lose reference to the newly named style class, meaning
you'll need to reapply the newly named style class.

Protect a Style Class

You can lock a Style Class from inside Designer by opening the Project Browser, right-clicking on the Style Class, and selecting the Protect option to
protect it. Once it's protected, it cannot be changed except by someone that has the permission to unprotect it and modify it. For more information on
protecting project resources see Project Security in the Designer.

Project Browser a _ XX
Q- A
~ ® Perspective =
[& Session Events
- a Styles

Acme_Logo_Style
Alpha_Style_Class
Bravo_Style_Class

1 Chartie Stlo Class

Corporate @ ERename =,
HoverLabel
InAlarm '%a Cut Cirl+X
MediaQuery [l Copy Ctrl+C
MNewStyle-Font_4 Ig
- g Views
b g Test & Delete Delete
F mm TestProject B Protect

b

= Tvwctren D

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Security+in+the+Designer

Multiple Style Classes

Perspective allows you to select more than one Style Class for a component. Multiple Style Classes to a component in alphabetical order. Style
Classes further along in the alphabet will override earlier Style Classes.

In the example below, Bravo Style Class is blue, bold, italic, and 13px text with some borders. Charlie Style Class is red, bold, and 16px text.

When both styles are applied together, the color and text size in Charlie Style Class override Bravo. However, the italics and borders from Bravo
remain because Charlie does not have those properties set.

0 100 200 Perspective Property Editor O - X %
- ®
Alpha Style Class 7
E
PROPS a
Bravo Style Class <
L text :Bravo and Charlie = ||o
E
= . alignVertical : center
=1 Charlie Style Class d 2
style . F
==
Alpha and Brave Style Classes classes :Bravo_Sty = fri
I POSITION Acme_Logo_Style |
= . Alpha_style_Class
S| |Bravo and Charlie Style Classes ' Bravo_Style_Class
¥ .
Charlie_Style_Class
L width : c =VE
orporate
height : P
HoverLabel
- - MediaQuery -

You can also apply inline styles to components that have a Style Class. The inline style properties override any properties in the Style Class. For
example, if the Style Class has a properties of 22pt bold text with a color of blue, but there is an inline style property of 18pt bold text with a color of

orange, the component will receive the inline style properties. In this example, we applied the Alpha style to a label and the applied inline styles of a
bottom and right border.

sjusuodwio) anpadsiad

0 100 200 Perspective Property Editor g - X
“ | IAlpha Style Class ;
PROPS

Bravo Style Class

| text : Alpha Style Class
= . alignVertical : tc
=1 Charlie Style Class d

style h |
Alpha and Brave Style Classes classes : Alpha_Style Class
] bordezBottomstyle : dashed
borderRightStyle : dashed

S| Bravo and Charlie Style Classes POSITION

| X

Animated Style Classes

An animated style class transitions through two or more style configurations over some period of time.
For example, using an animated Style Class can be powerful way to visually show data changes (such
as an alarm state) on a component over time. When the Animated option is set to true on the Edit Style
screen, several settings appear for customizing the animation.

Style Classes

Astyle class is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upon component element state or media query rules

Style Rules b/
s >

Duration Direction Iterations

+

25 © alternate - © [infinite
Timing Delay FillMode
linear v 0s © both -

- » =

0% 100%

Animated Settings

The following properties appear when the Animated checkbox is set to True.

Name Description
Duration | Number of seconds for each animation stop.
Direction Options are normal, reverse, alternate, and alternate reverse.

Iterations’ Number of times you want the animation to run. Enter an integer, or check the infinite box to
have the animation run continually.

Timing Options are linear, ease, easeln, easeOut, stepStart, stepEnd, and exaggerate.
Delay Delay, in number of seconds.
FillMode = Options are none, forwards, backwards, or both.

0% to Animation stops. All of the animation and style settings can be set for each stop. Additional
100% stops can be added by right-clicking on the bar in between 0% and 100%.

Style Sets the styles for an animation stop. Full menu of style options is available for text,
Settings = background, margin and padding, border, shape and miscellaneous.

Applied | Displays the style names and settings as you add them to a component.
Styles

Bindings on Style Classes

In Perspective, you can dynamically change the Style Class on a component. Styles and Style Classes
can have binding options. For example, a component could use a Style Class when a Tag has one value,
and not use the class when the Tag has a different value.

Element States on Style Classes

Element States are used on Style Classes to change the style configuration on a component based on
the state of the component. It is an additional styling configuration you can make on a Style Class. For
example, you could have the border on a component change when it is disabled. Or you could have the
background change when the user hovers the mouse over the component. See the table below for
element states that are available. These states are based in CSS pseudo classes.

@ INDUCTIVE
UNIVERSI]

Animated Style
Classes

Watch the Video

INDUCTIVE
UNIVERSII

Dynamic Style
Classes

Watch the Video

INDUCTIVE
UNIVERSII

Element States

https://docs.inductiveautomation.com/display/DOC80/Style+Reference
https://www.inductiveuniversity.com/videos/animated-style-classes/8.0/8.1
https://www.inductiveuniversity.com/videos/dynamic-style-classes/8.0/8.1

Watch the Video

Name Description

Element State of the component. Options are as follows:

State
State

active
checked
disabled
empty
enabled

first-
child

fullscre
en

focus

hover
in-range

read-
only

read-
write

visited

Description
The component is being activated by the user. For example, clicking on it with a mouse.
The component is checked or toggled to an "on" state. Applies to checkboxes, radio buttons, etc.
Component is disabled that is it cannot be selected, clicked on, typed into, or accept focus.
Represents any element that has no children. Children can be either element nodes or text (including whitespace).
Component is enabled and can be selected, clicked on, typed into, or accept focus.
Changes the style for the first element among a group of sibling elements.
Automatically adjust the size, style, or layout of content when elements switch back and forth between full-screen and
traditional presentations.

The component receives focus. It is generally triggered when the user clicks or taps on an element or selects it with the
keyboard's "tab" key.

User hovers mouse over the component.
Element whose current value is within the range limits specified by the mi n and max attributes.

Component is read-only.

Component is available for read and write.

Component links that the user has already visited.

Editor notes are only visible to logged in users
Per dev, some of these element states will not work yet in Perspective. There's a ticket. Some may end up being dropped/deleted
and some may be implemented in the future.

default-choice, invalid, last child, link, only-child, out-of-range, required, valid

Animated | If checked, the Element State can be animated. The animate options are as follows:

Name
Duration
Direction

Iterations

Timing
Delay
FillMode

Style
Settings

Description
Number of seconds for each animation stop.
Options are normal, reverse, alternate, and alternate reverse.

Number of times you want the animation to run. Enter an integer, or check the infinite box to have the animation run
continually.

Options are linear, ease, easeln, easeOut, stepStart, stepEnd, and exaggerate,
Delay, in number of seconds.
Options are none, forwards, backwards, or both.

Sets a style animation stop. Full menu of style options is available for text, background, margin and padding, border,
shape and miscellaneous.

Media Query on Style Classes

https://www.inductiveuniversity.com/videos/element-states/8.0/8.1
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-min
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#attr-max
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

A Media Query can be applied to a Style Class in order to change the style of your Perspective
components based on the device your session is running on. That is, you can change the style of your IN DUCTIVI

Perspective components based on the device your session is running on. UNIVE RS IT

Media queries don't change anything about your layout, rather they react to those changes in the device
and then choose from the various style rules you defined.

For example, you could make changes to your styles based on the width of the session. Media queries in MEd 1a Query
Style Classes are a direct import of CSS rules. Depending on the particular media query, the selector will
apply at less than or equal to, or vice versa.

Watch the Video

[0 Edit Style [Media_Query_Style] - o X

Style Classes

Astyle class is a re-usable collection of style properties which can be applied to components on any view. A style class
may include style rules which are applied dynamically based upon component element state or media query rules.

Style Rules Media Query Animated
asesofe . S aom e
Miedia 11110 _
i max-width
+ orientation
min-aspect-ratio
4

max-aspect-ratio
hover

Misc

Cancel Apply
Media Query Settings
Name Description
min- Sets the minimum width in pixels. If the viewport is larger than the specified width (in pixels), this rule will be applied. If the viewport is
width smaller than the minimum width, this rule has no effect. For example, a setting of min-width 361 means this rule is active if the screen is
at least 361 pixels wide.

max- Sets the maximum width in pixels . If the viewport is smaller than the maximum width, it will automatically change the height of the
width element. If the viewport is larger than the maximum width, rule has no effect. For example, a setting of max-width 360 means this rule is

active if the screen is at most 360 pixels wide or smaller.

orientati = This rule will apply based on whether the browser window is in landscape mode (that is, its width is greater than its height) or portrait

on mode (its height is greater than its width). Options are portrait or landscape.

min- Sets a minimum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5.

aspect-

ratio

max- Sets a maximum width-to-height aspect ratio. Enter value as a ratio or width-to-height, for example 8/5. .

aspect-

ratio

hover Applies the style settings when the device supports hovering. Options are hover or none.

Style The style settings to apply during the media query. Full menu of style options is available for text, background, margin and padding,

Settings = border, shape and miscellaneous.

https://www.inductiveuniversity.com/videos/media-query/8.0/8.1
https://docs.inductiveautomation.com/display/DOC80/Style+Reference

How to Change Style on Hover

Element states provide an opportunity to change the styling on a component when a user simply hovers the mouse cursor over a component. In this
guide, we will create a Style Class with a hover Element State that changes the background color of a component using this Style Class.

1. Create a new style class, or edit an existing one. In this example, we will create a new style class called HoverLabel

2. Under Style Rules, click on the Add icon and select Element State.

Edit Style [HoverLabel] - O x

Style Classes

A style class is a re-usable collection of style properties which can be applied to components on any
view. A style class may include style rules which are applied dynamically based upon compenent
element state or media query rules.

Style Rules

>
Base Style

Element State

Media Query

4

Cancel Apply

3. On the Element State dropdown, scroll down and select hover.

4. Click on the Expand .' icon next to Background to see the Background settings.
5. In the background color field, enter a color code or click on the color wheel to select a background color. We chose #8AFFFF, a light blue.

Edit Style [HoverLabel]

Style Classes

A style class is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upen component element state or media query rules.

Style Rules Element State Animated

sase s .
Element State [10ve1] & < Applied Styles Text

Background Background
background-color : #8AFFFF Background color
| #earrr |

Background image

Background position

Advanced «

Margin and Padding
Border
Shape

Misc.

Cancel Apply

6. Click OK to finish configuring the Style Class.
7. Next, apply the the Style Class to a perspective component. In this example, we will use a Label component.

i 100 200 Perspective Property Editor
1 1
| Cool Label #1 I
PROPS
Cool Label #2 text : Cool Label #1
= alignvertical :center
=2
style .)
classes : Hove

8. Put the designer in preview mode, or launch a session. While hovering over the label, you will see that the background color of the
component will change while the mouse cursor is hovering over the component.

Cool Label #1

Cool Label #2

iF

How to Change Text Size Based on Width

Since media queries react to viewport changes, we can use them to change the text size of a style class. Imagine a scenario where text needed to be
larger on a smaller display, such as phone, to improve readability. That same text could likely be smaller on a desktop.

In this example, we will configure a media query that will change the text size for the Style Class when the screen is smaller.

1. Create a new Style Class. We called ours MediaQuery.

2. Under Style Rules, click on the Add + icon and select Media Query.

Edit Style [MediaQuery] - m} X
Style Classes
A style class is a re-usable collection of style properties which can be applied to compenents on any view. A style class may include style
rules which are applied dynamically based upon component element state or media query rules.
style Rules Animated
Media lied Styles Text
Element State |
Background
Media Query
Margin and Padding
Border
Shape
Misc.
There are no style
attributes
currently applied
Cancel Apply

3. With the Media Query selected, change Media Query to max-width and the pixel value to 500px. We also set the Text Font size to 24px.
4. Click OK to save the Style Class.

[0 Edit Style [MediaQuery]

Style Classes

A style class is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upon component element state or media query rules.

Style Rules Media Query Animated
Base Style + max-width ~|=| 500px | false
& < Applied Styles Text ~
Text Font family Size
font-size : 24 X -
Color Weight
hd Italic

Line height Letter spacing ~ Word spacing

Alignment

Text align

E Cancel Apply

5. Create a new component that contains text, or select an existing component within a container. In this example, we created a new Label

component and placed it on a view.
6. Assign the MediaQuery Style Class we just created to the Label component using the props.style.classes dropdown to browse Styles.

0o 300 400 t Perspective Property Editor
Q;
PROPS
text :Label

alignVertical : center

style .

classes :
A
POSITION

X 1274

y 154

7. Save the project.

8. Launch a Perspective Session, and navigate to view containing the label (you may have create a page for the view). You will see the font
size on the label change as you adjust the size of your session window.

e

C ® | © D localhosts0

/data/perspective/clie s | IV X =

Label

How to Create a Flashing Component

In some cases you may want to have a label or other display component flash, standing out from other components on the screen. This can easily be
accomplished by creating an animated style class, as they have a built-in mechanism to change styling over a duration, allowing us to create a

flash. However, you may might only want to have the component flash at certain times, such as in cases where an alarm is active on a tag, which can
be handled with a binding. In cases where we don't want the component to flash, we can simply remove the style class from a component.

Part 1 of this guide will show how to create the animated style class, while Part 2 will demonstrate using a binding and transform to switch between
different style classes on a component.

Part 1 - Creating an Animated Style Class

1. In the Project Browser, right-click Styles and select New Style.

Project Browser (i e ¢
Q- Project Properties .4

&%) Alarm Notification Pipeline

o5 Sequential Function Charts
b B scripting
~ @ Perspective

[& Session Events

b mm Views New Style...
b 22 Transact &
b & Vision 5
» B Named Queries
b Reports

3 Web Dev

. Enter a Style Class name, for this example we used "InAlarm", and click Create Style Class.
. On the Edit Style screen, check the Animated option in the upper right corner. For this example, we'll leave the default settings in the fields.
. Next click on 0% to set the style for the beginning of the animation.

. Click on the Expand ' icon next to Background to see the Background settings.
. In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop. We
chose #FF8AB8A, a light red.

o0 hAWN

Edit Style [InAlarm] — O %
Style Classes
A style class is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upon component element state or media query rules.
Style Rules Animated
Base Style + L true
Duration Direction Iterations
45 [+] alternate - @ @ infinite
Timing Delay FillMode
linear - 0s] both v
< Applied Styles Text =
Background DB““"""’
background-color : #FF8ASA Background color
| #resaee |
Background position
Advanced ~
E Cancel Apply

7. Next click on 100% to set the style for the end of the animation.

8. Click on the Expand " icon next to Background to see the Background settings.

9. In the Background color field, enter a color code or click on the color wheel to select a background color for the first animation stop. We
chose #FFFF47, a bright yellow.

[0 Edit Style [Animated] — O X
Style Classes
A style class is a re-usable collection of style properties which can be applied to components on any view. A style class may include style
rules which are applied dynamically based upon component element state or media query rules.
Style Rules Animated
Base Style + L true
Duration Direction Iterations
s [] alternate - © @ infinite
Timing Delay FillMode
linear v 0s Q both -
0% 100%
< Applied Styles Text -
Background DBackground
background-color @ #F Background color
#FFFF47
Background position
Advanced -
Margin and Padding
Border "
E Cancel Apply

10. Click OK to save the Style Class.

11. Next drag a Label component onto a view. Select the component.
12. In the Perspective Property Editor, click the Expand ’ icon under Style Classes. Select the InAlarm class.

[] 100 200 300 Perspective Property Editor

Q.
Label PROPS
text : Label
> alignVertical : top
. style »

classes : InAalarm D

posITION| | Basic
= Corporate
= X
g
¥
Newstyle
width o ;y le_cl
est e dss
heigl e
— CUSTOM
. Ad

13. The Label component will immediately display the animated Style Class, transitioning between the light red and yellow colors we selected.

14. The color change will be linear initially, which creates a pulsing sort of effect. You can edit the style class again, and change the Timing to
"exaggerated", which provides a more drastic switch between the two styles. Further more, selecting "exaggerated" will show the exact CSS
cubic-bezier function the animation is using, allowing you to type on values manually.

Style Rules
+
Duration Directio
25 () alternd
Timing Delay
| kubit-bezier[ﬂ.ﬁa. | - | 0s
0%

< Applied 5tyles

In addition, we can also reduce the overall duration of the animation, making the transition between the two colors occur more frequently.
Regardless, we now have an animated style class.

Part 2 - Dynamically Using the Style Class

In this part, we can use a binding to conditionally add or remove our animated style class. First, we need to identify what should cause the label to
flash. In this example, we'll use a simple tag value on a Memory Tag set to a Boolean value. However, you could use some other criteria, such as a
tag binding to the HasActive alarm property on a tag.

1. Identity the criteria that will cause our component to flash. In our case, we have a Memory Tag with a Boolean data type. When the value is
True on the tag, we will cause the label to flash.

Tag Browser O _ X

- Q o | default v i~

Tags UDT Definitions
Tag Value

b G Some_Memory Tag

. With our component selected, place a binding on the style.classes property.

alignVertical : center
style .

classes :

. Since we want a tag value to determine the flash, we'll select a Tag Binding, and set the path to our desired tag.

73 Edit Binding: Label,props.style.classes — [m} x
Binding Type Configure Tag Binding
% Tag Direct . Indirect . Expression
Tag Path | [default]Some_Memory_Tag %
= Prope
pery Options
fx Expression Enabled Overlay Opt-Out Fallback Delay | 2.5 = Bidirectional

Jf¥ Expression Structure Add Transform +

£ Query
© Tag History

& HTTP

Binding Preview
Tag

T Remove Binding true

Cancel Apply

. Next, click Add Transform. We'll configure a transform that will return a string to the property, and use this as a way to add or remove our
animated style class.

. Select a Map type transform, and click Add Transform > in the popup.

. Add one new row to the Map table by clicking the Add + button.

Under the Input Type column. Double click into the blank cell and type “true", without the quotation marks, then press Enter on your

keyboard to commit the new text.

~oo

Edit Binding: Label.props.style.classes - O X
Binding Type Configure Tag Binding
% Tag © Direct . Indirect __ Expression
Tag Path | [default]Some_Memory_Tag >
Ep
ropery Options
fr Expression 4 Enabled Overlay Opt-Out Fallback Delay | 2.5 :
Jx Expression Structure Configure Transform(s)
= Query Map + 4
© Tag History +
Input Type: Value = Output Type: Value =
I ©
& HTTP
Fallback L
4
[Binding Preview
Tag Map
i Remove Binding ez il
n Cancel Apply

8. Change the Output Type column to Style Class by clicking on the header over the Output Type column, and selecting Style Class.

Configure Transform(s)

=[

Map L B

Input Type: Value - Output Type: Valu +
put Typ put Typ Value N
.
Fallback Color t
Style 4
- Style Class %
Expression v
A . Document
7 Binding Preview

Tag Map

Note: For this example, we could use a Value type of output since the classes property simply needs a string value that matches the name
of our Style Class, but the Style Class output type is less error prone since you don't need to type the name of the Style Class.

9. Click the top cell under the Output Type column, and select the "inAlarm" Style Class from the popup. Output Type column, set the cell to
the first row to "inAlarm".

Configure Transform(s)

Map +t 4 0
Input Type: Value - Output Type: Style Class = +
nalarm L
4

10. Press OK to close the binding window.
11. Toggle the value on your tag. You'll notice that when the tag's value is "true", the animation will start playing. While the tag has a false value,

the style class will be removed, and no animation can be shown.

This example can be extended by adding an additional style class when the value of our binding is false. Furthermore, instead of setting just a single
style class, we can use the map transform to set multiple style classes on the component, allowing us to switch between multiple styles on demand.

Creating and Using Custom Perspective Themes

Theme Overview

Themes help customize the look of components in your Perspective Sessions, acting as a foundation On th|S page
from which you can customize components even further using Style Classes. Perspective has some
default themes already, which you can learn about on the Perspective Built-In Themes page.

By default, themes are stored as cascading style sheets (CSS) in % nstal | Directory% ® Theme Overview
\ dat a\ nodul es\ com i nduct i veaut omat i on. per specti ve\t henes. Default themes use CSS ® Creating a Custom Theme
variables for colors, which are defined in the vari abl es. css file of every theme's folder. ® Using Your Custom Theme

In some cases, the default themes may not meet your requirements. For these situations, you can create
a custom theme.

Creating a Custom Theme

1. Open a text editor, such as Notepad or Notepad++, as an administrator. Opening the text editor as a standard user may result in your
operating system blocking you from saving your file to the themes folder.
2. Save the text file as a .css file in the themes directory, and give it a name. In this example, we are naming the .css file "ny Thene".

<« v l data * modules > com.inductiveautomation.perspective » themes

Organize ~ New folde

Mame y . Type
o Quick access
. dark /4 Wi File folder

. da ile folder
. dark-warm 0 ile folder
. light ile folder
B Pictures . light-coo 0
e Driv . light-
n dark.
. dark-
l 0 m.CSE 9/28/2022 Cascading

Cascading Sty
B themes - -
Cascading

B light-

W Network

Fie name:

Save as type: | Cascade Style Sheets File (*.css)

~ Hide Folders

3. After you save the file, add the following line as the first line of the new .css file:

@nport "./light/index.css";

https://docs.inductiveautomation.com/display/DOC81/Perspective+Built-In+Themes

Program Files\Inductive Automation'|gnition‘\data\modules\com.inductiveautomation.perspectr

File Edit 5 h Enceding Language Sett \ o Run Plugins

&) Bo|s

my Theme.

This will import the properties of the | i ght . css file into your new .css file, acting as a base for your custom theme. You can change which .
css file you want to reference by changing the folder name to another existing folder (such as @ nport "./dark/i ndex/css";)

Note: Referencing and importing settings from existing themes is recommended over directly referencing .css files. Many of the required .
css files are nested deep within the various themes folders. Importing will allow you to skip over a few steps, reducing the chance of
problems arising.

4. Once you add the initial import line, you can start adding your own changes to your custom theme file. In this example, we are using the
default settings imported from the | i ght . css theme, with the only changes being the background color and text color for all button
components.

.ia_button--primary {
background- col or: #00FF0O;
col or: #000000;

Program Files\Inductive Automation\lgnition\data\modules\com.inductiveautomation.perspect
File Edit S h Encoding Language Sett

& o

my Theme:.

@import "./light/in

-ia_button--primar
HOOFFOO;

Note: If you need a reference for all available Perspective component CSS class names, you can reference the various .css files located at
% nst al | Di rect or y% dat a\ nodul es\ com i nducti veaut omati on. per specti ve\t henes\|i ght\ conmon.

5. After you make your desired theme changes, save the .css file.

Using Your Custom Theme

To use your custom theme, select it from the Session Properties in the Designer using the t heme property. You can select your custom theme from
the dropdown menu.

Perspective Property Editor a _ X
Q- Filter
 SESSION PROPS -
id : 8c5T3fcc-e5e8-4818-9763-a08beb®2%6ab
host :127.8.08.1
Fa/Los_Angeles
lastag (]
dark-warm
= auth
auth dark tTUE
b useq light-coo
b sec light-warm B
idp
. myTheme
ko idp
- gateway
address : http://localhost:B8888
ko timezone
connected : true .

Once you select your custom theme, your components will change their look according to your .css file.

There are some cases in which custom themes aren't enough to get your desired look. You can get around this by using Style Classes to fine-tune
your components.

Scripting in Perspective

This section is designed to familiarize you with some of the basics of Python scripting in Perspective.
Perspective scripting is particularly powerful, and can be used to control and fine-tune many aspects of
project design. On thlS page
For a more general view of scripting in Ignition, and an introduction to Python, see Scripting in our

Ignition Platform section.

® Perspective Scripting
H inti Fundamentals
Perspective Scripting Fundamentals Pl
® Perspective Data Types
® Object Traversal
® Scripting Transforms
® Extension Functions

Though Perspective uses the same basic platform (Jython) as other scripting environments in Ignition,
interfacing with some unique features in Perspective might make it feel like a new scripting experience.
Here are some key details that might be important to Perspective script writers.

Scopes

Perspective does not have a "Client" scope, because unlike Vision, Perspective does not have clients. All
Perspective scripting is run on the Gateway, although session-specific functions (like navigation) will only
affect a single session. Critically, this means that:

® Client-scoped scripting functions (system fil e, system gui, and syst em nav functions)
will not work in Perspective.
® Other scripting functions, like syst em uti | . get Logger (), will run in a Gateway context.

Perspective Data Types

Component properties in Perspective are structured as JSON. However, interacting with them does not require any kind of specialized knowledge.
Critically, every property in Perspective is one of three types:

Type Description Example

Value A value is a simple piece of data, usually a number or string. Assigning a value to a value

property is just like assigning a value to an ordinary Python variable. self.props.text = "M Text”

sel f.props.startAngle = 5

Object = An object is structured like a Python Dictionary, holding any number of elements. Each

element can be a value, object, or an array. mot or Cbj ect = {"not or Nunt':

1,"motor State": " Runni ng"}
sel f.custom nyQoj ect =
{"operationNuni: 15,"

not or Obj ect " : not or Moj ect }

Array An array is structured like a Python List. Unlike an object where each element in the data . e mm
type has an associated key, elements in an array only have a position, or offset. Elements in rowdbj ectl = {"city": .
an array can be values, objects, or other arrays. Fol sont, "country”:"Uni ted
St ates", "popul ation": 77271}
rowdbj ect2 = {"city":"

Hel sinki","country":"
Fi nl and", "popul ati on":
625591}

sel f. props.data =
[rownj ect 1, r owOhj ect 2]

Object Traversal

In scripting, we can use component properties and methods to access related components, and view and session info. See Perspective Component
Methods for details.

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries
https://legacy-docs.inductiveautomation.com/display/DOC81/Lists+and+Tuples
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-ObjectTraversal

Scripting Transforms

Any property binding can make use of a Script Transform to apply any python script to the output value of the binding. For more information, see Trans
forms and Script Transforms.

Extension Functions

Extension Functions can be found in the Script Configuration window in certain Perspective Components. They allow users to add extended
functionality to the component via scripting. These functions are generally more advanced and require better understanding of Python. Extension
Functions differ from Event Handlers in that they are not event driven and are called by their component for a specific purpose when appropriate.
Extension Functions are often called when the component first loads on a view or when it receives new input. For example, the Perspective Alarm
Status Table has an Extension Function named filterAlarm. This function is called by the Alarm Status Table for each event before it is displayed in
the table and it allows users to control what alarm events are displayed on the table or not.

From an object-oriented point of view, Extension Functions create a custom "subclass" of the base component type. Your subclass can then override
and implement parts of the functionality of the component itself, in Python. Following Python object-oriented methodology, each extension function's
first argument is called sel f. That is because these are methods that belong to the component's class itself, instance methods. The value of sel f will
always be the component itself. Notice that this is different than Event Handler scripts where you are also given an event object in your scope. When
you write an Extension Function, there is no event object so the component is given to you as the sel f object instead.

Each component Extension Function comes with its own documentation built-into the function's default implementation using a standard Python "docstr
ing". The built-in documentation will contain descriptions for the arguments the Extension Function takes in as well as its return value, if any. You will
find that you are unable to edit the function's signature or docstring. Changing the method's signature (arguments or function name) would prevent the
component from calling it correctly. Changing the docstring could be misleading or confusing as you would lose the documentation for how

your implementation of the function should work.

In This Section ...

Perspective Component Methods

A component method is a function that is defined on a component object. For example, this is how we
would call a component method defined on the component object self:

On thispage ...

out put = sel f.nyMet hod(parant, par an®)

Perspective has a variety of component methods that are defined on all components, and it also offers * Autocomplete

ou the ability to configure your own using custom methods. .
Y y gurey 9 Object Traversal

® Object Traversal Examples

Built-In Methods
AUtocompIEte ® Refreshing Bindings
® Requesting Focus
® Requesting or Removing Tooltips
® Requesting or Removing Context
Menus
® Requesting Print

The following feature is new in Ignition version 8.1.18
Click here to check out the other new features

A complete list of component methods (with their definitions) is available from the autocomplete popup.

Starting in 8.1.18, the autocomplete popup is enabled by default and will appear after typing "." Custom Methods

To disable this feature, right-click anywhere within the Script Editor window and deselect Automatic

Activation.
Autocompletion * | B@ Automatic Activation
Appearance » B Description Window

Parameter Assistance

e

Object Traversal

In most Perspective scripts, you are given a reference to a component object (often in the form of a self parameter). The object is given in component
scripts, but has several methods and properties associated with it to help traverse to the other objects in a Perspective View or get values from the
Session.

Object Traversal is limited to a single view. If a script needs to reference a component in a different view, or there is a possibility that the hierarchy of
the view will change, then Message Handling should be utilized instead.

Component/Container

Method Description Example
/Property
.children Returns all of the component's children.

sel f.children

. Functionally similar to ".children" above. .
getChildren sel f. get Chil dren()

0

.parent Calling this property will move up the component hierarchy, accessing the parent container of the

preceding object. Root containers will return the view, and views/sessions will return None. sel f. parent

.getParent Functionally similar to ".parent" above.
9 0 y p sel f. get Parent ()

.getChild Method that looks for a child component of a given name. Returns None if not found.

(string) self.getChild

String can either be the name of a child object, or a path to an object delimited by a forward slash, (' Label _0’)
allowing you to move through multiple items in the hierarchy in a single call. self.getChild

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

.getSibling
(string)

.view

.getView()

.page

.getPage()

.session

éetSession()

Returns a reference to an object in the same container that the source component is located in. Similar
to calling self.parent.getChild(‘component’).

Calling this from anywhere within a view will return the parent view of the object.

A method that will return the view, similar to ".view" above.

Returns a page object associated with the page the current component is on.

.close() can be called on the page object, and can accept a message string as a parameter.

A method that will return the page, similar to ".page" above.

Returns the current Perspective Session you are in. From this object you can get any of the existing
properties of the Session, including custom properties. See the Session Objects sub table for more
details.

A method that will return the session, similar to ".session" above.

Session Objects

.close()
or

.close
(message)

.getinfo()

.getPages()

When called will close the session.

Optionally accepts a string message which will be displayed after the session closes.

Returns a PyJsonObjectAdapter object, which is functionally similar to a Python Dictionary. The object
contain the same keys described on the system.perspective.getSessioninfo page.

Returns a list of page objects.

(' Cont ai ner
/ Label _0")

sel f.get Sibling
(' Label ")

sel f.view

sel f.getView)

page = sel f.
page
pagel D = page.

props. pagel d
pagePat h = page.
props. path

sel f. get Page()

session = self.
session

sesNane = session.
props. gat eway.
addr ess

sesProp = session.
custom

pr oper t yNane

sel f. get Sessi on()

session = self.
get Sessi on()
session. cl ose
("The session has
now cl osed")

sel f. sessi on.
getInfo()
["pagel ds"]

sel f. sessi on.
get Pages()

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.getSessionInfo

.getPage Returns the page associated with the given string ID parameter, if it exists. Page ID values can be L .
(ID) determined with the .getinfo() method. selt.session.
get Page

(" 2b2eb647")

getProjectin)) . N) sel f. sgssi on.
fo() The following feature is new in Ignition version 8.1.4 get Proj ect I nfo()

Click here to check out the other new features

Returns a dictionary of project meta data, including name, title, description, lastModified,
lastModifiedBy, views, and pageConfigs.

View Objects

Returns the root container of the View.

rootContain vi ew. r oot Cont ai ner

er

.id Returns a string that uniquely identifies the view instance. For example: viewid
Perspective/Views/path/to/view yields path/to/view@C

.session Returns the current Perspective Session you are in. From this object you can get any of the existing . .
properties of the Session, including custom properties. See the Session Objects sub table for more SESS! on = view
details. sesston

sesNane = session.
gat eway. addr ess
sesProp = session.
cust om

pr opert yName

Object Traversal Examples
If you want to get other component properties in a view while scripting, you can use the above methods and properties to move around the View.
These examples assume you have the following structure/components in a View:

®* View
© Button 1
Text Field 1
O Container 2
® Text Field 2
o Container 3
= Text Field 3
= Container 4
® Button 4
® Text Field 4

o]

Scripting Example: Get component properties from a Button script

this exanple code exists on the 'Button 1' in the above hierarchy.

get to the view that the button is in
view = sel f.view

get the text from'Text Field 1'
textl = self.getSibling(' Text Field 1').props.text

get the text from'Text Field 2
text2 = self.getSibling('Container 2').getChild(' Text Field 2').props.text

get the text from' Text Field 3

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

text3 = self.getSibling(' Container 3').getChild(' Text Field 3").props.text

get the text from'Text Field 4'. Either of these will work the sane.
text4 = self.getSibling('Container 3').getChild(' Container 4/ Text Field 4').props.text
text4 = self.getSibling(' Container 3").getChild(' Container 4').getChild(' Text Field 4').props.text

Scripting Example: Get component properties from a Button script

this exanple code exists on the 'Button 4' in the above hierarchy.

get to the view that the button is in
view = sel f.view

get the text from'Text Field 1'
textl = self.parent.parent.getSibling(' Text Field 1').props.text

get the text from'Text Field 2
text2 = self.parent.parent.getSibling('Container 2').getChild('Text Field 2').props.text

get the text from'Text Field 3
text3 = self.parent.getSibling('Text Field 3').props.text

get the text from' Text Field 4
text4 = self.getSibling(' Text Field 4').props.text

Built-In Methods

Perspective components contain several shared methods. This section details such methods. Some methods are only available to certain types of
components. In these cases, the description for the method will state any limitations.

Refreshing Bindings
The r ef r eshBi ndi ng function can be used to manually fire a binding, and is designed to be used on bindings that can poll (like query and Tag

history bindings). In these instances, using refreshBinding in lieu of polling can save Gateway resources. The refreshBinding() function takes a string
as a parameter, corresponding to the property that should be refreshed:

sel f.refreshBi ndi ng("props. data")

It is often useful to use refreshBinding() from a component message handler, since we can then refresh several applicable bindings via a single system
.perspective.sendMessage call.

Requesting Focus

The f ocus method can be called by a component to request focus in a view. This is useful if you wish to control where keyboard input is directed after
a particular action.

Due to the nature of focus, calling the f ocus method is only effective on components that can have focus. Input components such as the Text Field
and Numeric Entry Field components can gain focus, but Display components like Labels and Images can not gain focus.

sel f.focus()

Requesting or Removing Tooltips

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

The request Tool ti p and renpveTool ti p methods can be used to display and remove tooltips from a scripting event. This is useful if you wish to
allow users to request tooltips in a mobile session, where there is no onMouseEnt er event.

You may call these functions for any component with meta tooltips enabled. Requesting a tooltip will have no effect if tooltips are not enabled for the
component.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

sel f.request Tool tip()
sel f.removeTool tip()

enable and then call tooltip for 'Label 1' in the same view

self.getSibling('Label 1').nmeta.tooltip.enabled = True
sel f.getSibling('Label 1').requestTool tip()

Requesting or Removing Context Menus

The following feature is new in Ignition version 8.1.25
Click here to check out the other new features

The r equest Cont ext Menu and r enoveCont ext Menu methods can be used to show or hide the context menu from a scripting event. As with the r
equest Tool ti p andrenpveTool ti p methods, these methods are helpful to users in mobile sessions, to view or hide configured context menus.
Requesting or removing a context menu will have no effect if the component context menu is not configured.

sel f. request Cont ext Menu()
sel f. removeCont ext Menu()

Requesting Print

The following feature is new in Ignition version 8.1.28
Click here to check out the other new features

The r equest Pri nt method can be called by a component, view, or page to print the contents of the selected target. If no target is specified, the
component serves as the default target. Titles can also be assigned if saving the printed file. To request print using a Perspective component action
instead, see the Request Print Action section on the Component Events and Action page.

sel f.requestPrint()
sel f.requestPrint('conmponent', 'MWTitle")

Custom Methods

Perspective offers the option of configuring your own methods for a component. To configure a custom method:

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-RequestPrintAction

1. Right-click on the desired component in the Designer, and select Configure Scripts...

Ctrl+X
Ctrl+¢
Duplicate Ctrl+D
Delete Delete

Send to Back
Move Backward

Move Forward

L I B NN=N O)

Bring to Front

Configure Events...

Configure Scripts...

. Under Custom Methods, double click on +Add method...

. Enter a Name for your method, which will be used to call the method. We used myMethod in this example.

. Enter any number of Parameters your method will need, separated by commas. For this instance, we have two parameters: myParam1 and
myParam?2.

5. Add code to implement your method.

AWN

sel f. props.text = nyParaml
sel f.custom nmyProp = nyParan?

Note: A self object is provided in every custom method, but should not be provided as a parameter when calling the function.

Script Cenfiguration on Button - O X
Scripts Edit Custom Method
@ Custom Methods
T newveror IR
+ Add method.. myMethod]
W Message Handlers Parameters
+ add handler... myParam1,myParam2 Q
Script
1def myMethod{self, myParaml, myParam2): A B

Custom methed that can be invoked directly on this compenent.

ATQUMENTS
self: A reference to the component that is invoking this function.
myParaml:
myParamz:

2 # implement your method here
3 self.props.text = myParaml
4 self.custom.myProp = myParam2

ﬁ Cancel Apply

6. Click OK to commit your method.
7. To call this method, use:

sel f. nyMet hod(par ant, par an®)

For example:

sel f.nyMethod("Hi!","This is a test")

Related Topics ...

® Component Message Handlers

Component Message Handlers

In Perspective, Component Message Handlers are the preferred way to pass
parameters between components or Views. Doing thisinvolvesthe system. .
perspective.sendMessage function. There are typically two steps involved: On this page...

1. Creating a message handler on the component that will listen for a particular call.
2. Create a script that will call the message handler.

® Object Traversal
This page will demonstrate how to prepare both steps. The goal of this example is to create a script that : Message Types
will cause a button to change the text property of a Label. Message Handler Scope

® Message Handler Example

® Step 1 - Prepare Perspective
. Workspace
ObJeCt Traversal ® Step 2 - Create A Message
- . . .) . Handler

When writing a component based script, Object Traversal should be avoided where possible. Object * Step 3- Send A Message
Traversal is the process of declaring hard-coded component paths in a script similar to how the Vision .

Passing Parameters Example

module uses component paths in scripting. While component paths exists in Perspective, they are brittle: * Step 1 - Update the Button

changes to the hierarchy in the view (such as placing a component into a new container), or changing a

ot h ! . , : Script Action
component name will invalidate any paths defined before the change, since the component's relative * Step 2 - Update the Message
location has changed. Handler

Consider the following:

Pseudocode - Example Path

sel f.getSibling(' Text Field).props.text @ INDUCTIVI
UNIVERSII

The path described above only works if there is component named "Text Field" in the same container as
the component that is running this script. If the Text Field component is renamed at any point, this
reference to the component will fail. Additionally, if the Text Field is placed in a different container, then Message Hand |ers
the getSibling() call will no longer work. Components in other containers (in the same view) are available,
but are not siblings.
, : : . - Watch the Video
Additionally, Object Traversal can't be used to reference a property in a separate view: i.e., a script in
View A cannot reference something in View B.

We strongly suggest you utilize message handlers when a script is trying to interact with a component in

another View. @ IN DUC T I VI
Message Types UNIVERSII

When sending a message, the Message Type field represents which Message Handler should respond.

If a script sends a message with a type of "foo", then any handler listening for a Type of "foo" will

execute. This means multiple components in the same window can all have Message Handlers with the Com pO nent Paths
same Type: e.g., if a view has a "reset" button to clear out multiple input components, then each input

component can simply have a "reset" message type that clears the field, allowing a single message to .

trigger multiple handlers. Alternatively, if only a single handler should execute when sending the Watch the Video
message, simply give that one handler a unique Type.

Message Handler Scope

Message Handlers can be limited in scope, meaning the range of the sent message (or range of the listener) can be confined to a particular scope.
The available scopes are:

Scope Definition

View Messages can only be heard by listeners within the same View that are listening for view-scoped broadcasts.

Page Messages can only be heard by any listeners within the same Page that are listening for page-scoped broadcasts. This includes
listeners both within the same View and those in other Views contained within the same page (including Docked Views and Popup
Views).

Session | Messages will be heard by any listeners in any open tabs in your workspace that are listening for session-scoped messages.

For example, you can send a message that is scoped to just the View where the message originated, meaning only listeners in the same View will be
able to respond. This is useful if you sent a message from a popup view, and didn't want any other views to respond.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Perspective#ScriptinginPerspective-ObjectTraversal
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision#ScriptinginVision-AccessingaComponent
https://www.inductiveuniversity.com/videos/message-handlers/8.0/8.1
https://www.inductiveuniversity.com/videos/component-paths/8.0/8.1

There are two ways to limit the scope of a message:

1. The system.perspective.sendMessage function contains a scope parameter that will restrict the range on the message being sent.
2. The Message Handlers have a Listen Scopes setting that can filter out messages from certain scopes.

Message Handler Example

Step 1 - Prepare Perspective Workspace

. Open the Designer.

. Switch over to the Perspective Workspace by clicking on Perspective in the Project Browser.

. Right-click on the Views folder and select New View.

. Give the new View a name and click the Create View button. The name of the view will not matter for this example.
. Place a Button and a Label component on the View.

arwWNE

=
=
(=]
=
=
o
=

Project Browser g - X 0

Project Properties ,f

b (D Global
A E Project
b ﬁsmpﬁng
- @ Perspective
EL Session Events
m Shies
T i Views Label
v A My View
+ root
Buthon
1=

b QE Transaction Groups

100

‘ Button

200

Step 2 - Create A Message Handler

Message Handlers are effectively user-created scripting events. A user can define a Message Handler that listens for a particular message. The idea
being that some other component will broadcast a message, and if the type of the message matches what the Message Handler is listening for, the
Message Handler will execute a script.

Message Handlers are useful because they can respond to messages from multiple components: if something sends a message with the correct type,
then the Message Handler will execute. Additionally, message can be sent across separate views, pages, or throughout the entire session.

In our example, we want the Label's text property to change when something else in the view happens (in our case, our button is pressed), so it would
make sense to configure a Message Handler (listener) on the Label. This way, if we relocate the Label component in the view, the script will still work.

1. Right-click on the Label, and select Configure Scripts.
2. The Script Configuration window appears. Make sure the title bar on the window states that it's the Label component.

Script Configuration o

Scripts

& Custom Methods
+ Add method...

& Message Handlers
& Add handler...

3. On the left side of the Script Configuration window, you will see a tree. Double-click on the Add handler... item.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage

4. A new handler named "type-name-here" will appear. Under Message Type type ny- handl er . Note that we're using all lowercase
characters: message handlers are case-sensitive. The Message Type is effectively the name of the message handler. When sending a
message, we will specify this message handler's type, which will cause it to respond by executing the script.

5. In our example, let's change the text on the Label to "Hello!". Under the script area, type the following script:

Python - Set the Text

sel f.props.text = "Hello!"'

6. This example is fairly limited to this one view. Thus, let's limit the scope so that it will only respond to messages from the same view the Label
is on. Under the Listen Scopes, leave Page as the only selected scope.

/] Script Configuration on Label _ 0o X
Scripts Edit Message Handler
W Custom Methods
+ Add method, Message Type Listen Scopes
W Message Handlers my-handler [} Session [Page | View
I B my-handler
=+ Add handler... ~ Description [Learn More

This methed will be called when a message with the matching type cede arrives at this component.

~ Parameters

self (Component) A reference to this component

payload (dict) The data object sent along with the message
Script

1 def onMessageReceived(self, payload): AE

2 # implement your handler here

self.props.text = "Hello!"’

E Cancel Apply

7. Click the OK button. We just created a Message Handler. In the next step, we'll create a script that will call the Message Handler.

Step 3 - Send A Message
In this step, we place a script on the Button that will call our Message Handler.
. Right-click on the Button, and select Configure Events... The Event Configuration window appears.

We want our script to trigger when the button is pressed. On the left side of the window, in the Mouse Events folder, select onClick.

. The Organize Actions list will appear. Press the Add + icon. A popup list will appear.
. Select the Script action.
. Add the following code:

AW NBR

Python - Sending a Message

nmessageType = 'ny-handl er’
syst em per specti ve. sendMessage(nessageType)

Make sure the script lines are indented one time.

J Event Configuration on Button_0 - o X

Events Configure [onClick] Actions [Learn More
Organize Actions Configure Script Action
@ System Events el
u onstartup (T + |- porameters

= onshutdown i
@ Component Events self (Component)

B onActionPerformed

A reference to the cempenent that is inveking this
function

@ Mouse Events event {MouseEvent) Events fired by the relevant mouse/touch interaction.
onCentextMenu Script
onDoubleClick 1 def runAction(self, event): ~|E
onMouseDown 2 messageType = 'my-handler’

system.perspective. sendMessage (messageType)

onMouseLeave
onMouseMove
onMouseOut

[]

[]

L]

B onMouseEnter
[]

[]

[]

B onMouseQver

Options

B onMouseUp -

@ Pointer Events K4 Enzbled
B onPointerCancel Prevent Default
W onPointerDown Stop Propagation

B onPointerEnter

B onPointerLeave Y @ Security Settings

E Cancel App.

6. Click OK to apply the script.

The example is now running. From the Designer, enable Preview mode, and then click on the Button component. The text on the label should update.

Note: In this simple example, the major issue you may run into is the Message Type. Recall from #4 in Step 1 of the example, that Message Type is
case-sensitive, so make sure the script on the Button is correctly referencing the message type, and try again.

Passing Parameters Example

Let's make the previous example more complicated and pass some values with the message. The example above can be modified to determine the
timestamp. When passing parameters in a script, the most direct approach is to include any parameters along with the message. Message Handlers
have a built-in argument called a payload, which is used to transfer values to the handler. The payload is simply a Python Dictionary, so please see
the Dictionaries page for more information.

Alternatively, we could create a session property to hold the value, and have the label reference the session property. However this would require that
we either create a new property to hold the value or overwrite the value of another property. Thus, our next example will demonstrate how to utilize the
payload.

Avoid Storing Values in Tags
Since Tag values are shared by all Perspective sessions, you may not want to write the parameters in Tags. Doing so would result in each session

instance potentially trying to overwrite the same value.

Step 1 - Update the Button Script Action

1. Right-click on the Button component and select Configure events...
2. Replace the code with the following:

Python - Check the Time, Send a Message

nmessageType = 'ny-handl er’

Look up the current tine.
currentTime = system date. format (systemdate.now), 'HH nmss')

Create a payload to be passed with the nmessage
payload = {"tinme':currentTi ne}

Send the nessage, pass the payload, limt the scope to the view
syst em per specti ve. sendMessage(nessageType, payl oad, scope = 'view)

3. Make sure the code is indented one time.

https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries

Configure [onClick] Actions

Organize Actions Configure Script Action
=
& screenY (int | float): The ¥ coordinate in global (screen)
coordinates.
shiftkey (bool): True if the 'shift' key was held down when the
event was fired.
2 messageType = 'my-handler’
3
4 # Look up the current time
5 currentTime = system.date.format(system.date.now(), 'HH:mm:ss')
6
7 # (reate a payload to be passed with the message
8 payload = {'time':currentTime}
9
10 # Send the message, pass the payload, limit the scope to the view
11 system.perspective.sendMessage(messageType, payload, scope = 'view')
12

Note: On line 8, we're creating a dictionary, creating a key called "time", and storing the current time with the "time" key. When our handler
receives the payload, it can retrieve the value we passed by referencing the "time" key.

4. Once finished, click the OK button.

Step 2 - Update the Message Handler
Now that we're including a payload with the message, we need to modify our handler so that it will extract the time from the payload.

1. Right-click on the Label component, and select Configure scripts...
2. Replace the original code with the following:

Access the time by referencing the 'time' key
sel f.props.text = payload['tine']

3. Click OK.
4. To test it, enable Preview mode, and click the Button component. You will see the current time populate in the Label.

Related Topics ...

® Scripting
® Dictionaries

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting
https://legacy-docs.inductiveautomation.com/display/DOC81/Dictionaries

Perspective Property Change Scripts

With Perspective, individual component properties can have a property change script. When a change

script is set up on a property, it will run when the property changes its value. Multiple different properties

on the same component can each have different scripts configured. In Perspective, you can put a H

property change script on any component property. On thIS page e

A very common example of a property change script would be to take the dataset from a binding and
modify it into a new dataset using other information on screen. This can be accomplished with a Script

Transform instead. ® Add a Property Change Script

® Property Change Arguments
® Change Script Example

Note: Expression bindings are generally quicker and have less impact on session performance than a
script. Before creating a property change script, consider if the goal of the script can be accomplished
with an expression binding instead.

@ INDUCTIVE
UNIVERSIT

Property Change
Scripts
Watch the Video

Add a Property Change Script

1. To add a property change script to a property, right click on the property Property Editor and select Add Change Script...

Perspective Property Editor o - X
PROPS
value
Seﬁ.ctu}ns |
qu 0 Duplicate
ba 0 Copy
di @ Paste
4 5 Delete
la
st
Structure
POSIT Insert
¥ Value
y Options
W1 Add Change Script...
he B Persistent

2. The Edit Property Change Script screen is displayed.

https://www.inductiveuniversity.com/videos/property-change-scripts/8.0/8.1

Edit Property Change Script: Pump.propsvalue

This function will be called when the value of the property changes.

Arguments:

self: A reference to the component that is invoking this function.
previousValue: The previous wvalue, as a qualified value object.
currentValue: The new value, as a qualified value object.

origin: The origin of the property value. Possible origin walues include

1def valueChanged(self, previousValue, currentValue, origin): =

Browser, Binding, BindingWriteback, Script, Delegate, Session, Project

¥

Enabled

Cancel Apply

3. Type in the script that you want to run and click OK.

Property Change Arguments

Argument

self
previousVal
ue

currentValue

origin

missedEven

Descriptio

n

A reference to the component that has the property in question. If the property change script is on a session property, the session
object will be passed.

The previous value, as a QualifiedValue object. QualifiedValue objects have a value, quality, and timestamp. See also Scripting

Object Refe

rence.

The new value, as a QualifiedValue object. QualifiedValue objects have a value, quality, and timestamp. See also Scripting Object

Reference.

The origin of the property value, as a unicode string. The origin parameter will take on one of six types depending on how the
property value is being updated:

Name

Browser

Binding

Binding
Writeba
ck
Script

Delegate

Session

Project

Description

Used when the change comes
from the Browser interface.

Used when the change comes
from a binding (or transform)
generating a new value.

Used when the change comes
from a bidirectional binding
writing back to its source.

Used when the change comes
from a script.

Used when a change to a
property comes from something
intrinsic to the component's
design.

Used when the session itself
causes the property change.

Used when the default property
value is changed in the designer
and saved.

Example

The user changes the text property on a text field by typing a word into the field.

A Tag changes value, and a property with a binding to that tag is updated.

ComponentB's value property has a bidirectional binding to the value property on
ComponentA. If ComponentB's value changes, then a property change script on
ComponentA will have an origin of BindingWriteback.

A user presses a button, and a script on the button assigns a new value to a
custom property.

A complex component that automatically fills itself with data, like the alarm status
table component.

A change in user privileges causes access to be revoked, resulting in a change in
the auth session property.

A session property was set to a value of "A." The default value of that property
was then changed in the designer to "B" and saved. The value for that property
changes from "A" to "B" in the running sessions.

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue

ts The following feature is new in Ignition version 8.1.4
Click here to check out the other new features

A flag indicating that some events have been skipped due to event overflow.

Change Script Example

1. Place a Text Field component and Label component on a Perspective view.
2. Select the Text Field component then right click on the text property.
3. Click on Add Change Script.

o 100 200 300 400 500 Perspective Property Editor a o
. Q:
§:::::E:::::§ Script test
- PROPS
' East Ridgefield Overview
- text : o
= it ’f i ve placeha: IE_UDHS |
= Ypinann il S PR o g 0 Duplicate
7T A A enabled -
opy
ty L
Tank 1002 Tank 1012 TN paste
—— class
B Delete
= POSITION
=
X i
10% 123
iild.th : Structure
>
- height : Insert
g /1 SR Value 4
- CUSTOM .
Options
Click for Click for - AAACH g persistent
Details Details
META Add Change Script...

4. The Edit Property Change Script screen is displayed. Enter the following script, which will write the current value of the Text Field component
to the Label component.

sel f. get Si bling("Label").props.text = currentVal ue.val ue

(/] Edit Property Chang t: TextFie ops.te — O x
1def walueChanged(self, previousValue, currentValue, origin, missedEvents): | E
This function will be called when the value of the property changes.
Arguments:
self: A reference to the component that is invoking this function.
previousValue: The previous value, as a qualified value object.
currentValue: The new value, as a qualified walue object.
origin: The origin of the property value. Possible origin values include
Browser, Binding, BindingWriteback, Script, Delegate, Session, Project
missedEvents: A flag indicating that some events have been skipped due
to event overflow.
2 self.getSibling("Label").props.text = currentValue.value
< >
Enabled
Cancel Apply
. Click OK to commit the script. You'll see that the Property Editor now shows a Change Script icon next to the text property.

. Save your project.
. In a Perspective Session, enter some text into the Text Field component and hit Return. You'll see that the contents are repeated to the Label

component.

~N o u

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

Tank 1002

10%

Script tesy

Script test

Tank 1012

Perspective Session Event Scripts

Perspective offers a collection of Session Events designed to allow the Gateway to track and interact

with the Session at critical moments. Specifically, they are scripts that run in the Gateway when a

Session starts up, shuts down, or runs a Native App Action. O H
n thispage...

There are nine configurable Session events in Perspective:

® Startu
. Shutdgwn ® Configuring Session Events
® Page Startup (new in 8.1.0) * Sta_rtup and Shutdown Event
® Authentication Challenge Completed (new in 8.1.16) . gcnptSSt .
® Barcode age Startup
® Bluetooth ® Authentication Challenge
* NFC ® Native App Event Scripts
® Accelerometer : Elarctod(ih
® Message uetoo
® Keystrgke : Q'c:%elerometer
® Message
® Keystroke

Note: Although they are designed to handle Session Events, the scripts that you write will be run in a Ga
teway scope, not a Session scope.

Configuring Session Events

To start working on a Session event script:
1. In the Project Browser, double-click on the Session Events section:

File Edit View Component Tools Help

H[ﬂ#*i i Comm Off .

Project Browser 1} Comm Read-Only | o

Q © 1} Comm ReadWrite |
~ g VIEWS i
~ @ Custom_E|

~ (A Custor

Project Properties

Gateway Events

e o

Session Events

=
Cyliny =3
Buttg B Preview Mode |
1 L
2. The Session Events dialog will appear:
® Session Events - o X
— Session Startup Script
Script that runs in the Gateway when a Perspective session starts.
(& shutdown
[Page Startup. ~ Parameters [0 Learn More
(& Authentication Challenge session (Session) Areference to the newly created session
B Barcode
% Bluetooth seripe
1 def onStartup(session)]
@ NFC 2
& Accelerometer =
B2 Message
Keystroke
Bl -y || o

3. Configure a script by selecting one of the events on the left-hand side.

Startup and Shutdown Event Scripts

Startup and Shutdown events run, naturally, whenever a Session starts or ends. In each case, the Gateway will have access to the session object
associated with the section, complete with all Session properties.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions

When designing a startup or shutdown event script, custom Session properties can be used to pass any additional information to the Gateway, or, in
the case of a startup script, to pass information to the newly opening Session. You can configure custom Session properties from the Page

Configuration dialog, by clicking on the Settings icon in the Designer.

A shutdown event script will run specifically when a Session is ending. This happens specifically when any of the following events occur:

® The Session closes due to a timeout. Session timeout is configurable in the Perspective > General section of Project Properties in the

Designer

The user is no longer authorized to run the Session.

The redundancy system determines that the Gateway is inactive.
The licensing system no longer permits the user to run the Session.
The project is no longer runnable.

The project is deleted.

Note: Closing the browser tab with the Session will not immediately close the Session; the Session must first time out.

Startup and Shutdown Example
This example will record the Session start and end time to the database.

1. For this example, we need to set up a few queries that we can use to write our data to the database.
2. Make a new named query called Startup Query.
a. Set the Query Type to Update Query.

b. Set up a single Value type parameter with a name of SessionID and a datatype of string.
c. Add the query:

I NSERT | NTO sessions (session_id, start_tine)
VALUES (: Sessi onl D, CURRENT_TI MESTAMP)

3. Make a second new named query called Shutdown Query.
a. Set the Query Type to Update Query.

b. Set up a single Value type parameter with a name of SessionID and a datatype of string.
c. Add the query:

UPDATE sessi ons
SET end_time = CURRENT_TI MESTAWP
WHERE session_id = : SessionlD

4. Next, we need to add Session Events so that Perspective knows to run those queries on startup and shutdown.
5. Under the Project tab, select Session Events.

File Edit View MEGEw88 Component Tools Help

B |« | O3 commoff - 2
Project Browser | 4} Comm Read-Only | [0
Q O 1} Comm ReadMWrite i

* mm VIEWS a
~ a Customn_E _
» (7] Custorr [5, GatewayEvents
| | ~v-root NN
Cyliry
Buttg P Preview Mode

Project Properties

Session Events

1007

6. Onthe Session Events screen, click the Startup m icon.
7. Add the following script to the page:

This script will record the time when the Session is opened.

Create the paraneters

queryParans = {' sessionl D :session. props.id}

Run the query
system db. runNamedQuery(' My Project',

"Startup Query',

quer yPar ans)

@ Session Events

Session Events

[& startup

[l shutdown

Page Startup
Authentication Challenge
i Barcode

% Bluetooth

(@ NFC

&3 Accelerometer

B# Message

[E Keystroke

Session Startup Script
Script that runs in the Gateway when a Perspective session starts.

~ Parameters m Learn More

session (Session) A reference to the newly created session
Script

def onStartup(session): ~

(IR

script will record the time when the Session is opened.

.

Create the parameters

5

6 ueryParams = {'sessionID':session.props.id}
7

8 # Run the query

9

system‘db.runNamedQuery@'My Project’, 'Startup Query’, queryParams)l

Apply Cancel

8. Click Apply and then click the Shutdown [ﬂ icon.

) Session Fvents

Session Events

Session Shutdown Script

Startup
(& Shutdown

Page Startup

[Authentication Challenge
i Barcode

% Bluetooth

[@ NFC

&3 Accelerometer

B# Message

[E] Keystroke

Script that runs in the Gateway when a Perspective session ends.

~ Description [Learn More

Called when a session ends due to one of the following reasens:

« The session has timed out

« The user is no lenger authorized to run the session

« The redundancy systemn determines that the gateway is inactive

« The licensing system no longer permits the user to run the session
» The project is no longer runnable

» The project is deleted

~ Parameters

El

session (Session) A reference to the session that is ending.
Script

1 def onShutdown(session): ol

B ;

Cancel

9. Add the following script to the page:

This script will
the Session won't time out until

Create the paraneters.

record the time when the Session tinmes out.
the tinme out period is reached.

queryParans = {' sessionl D :session. props.id}

Run the query.
syst em db. runNanedQuery(' My Project',

' Shut down Query'

1

Note that after the Session is closed,

quer yPar ans)

10. Click OK.
11. Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

1. You should see a new entry in the database table with the time the time the Session was started as well as the session ID.
2. After the Session times out (such as after it is closed) you should see the original entry get updated to include the new shutdown time.

Page Startup

The following feature is new in Ignition version 8.1.0
Click here to check out the other new features

This script runs in the Gateway when a Perspective page starts in a new tab or window.

Note: Navigating to a page configuration in a tab that's already opened (such as using system.
perspective.navigate) will not trigger this event.

® Session Events

[Authentication Challenge
B4 Barcode

% Bluetooth

@ NFC

& Accelerometer

£ Message

Keystroke

- o x
Session Events Page Startup Script
Script that runs in the Gateway when a Perspective page starts.
[Startup
(2 shutdown
(5 Page Startup. ~ Parameters e

A reference to the newly created page. Note that only the pageld and

page (StaTtupbvent) . iributes will work during startup.

script

1 def onpagestartup(page) -

B ey || conee

Arguments

page

In addition to the arguments above, the Session is available from this event:

Description

A reference to the newly created page. Note that other page props will not return a

valid value on page startup.

Accessing properties under this argument requires that you include ". pr ops. " along

the path. Demonstrations are included below:

Property Description

pageld Identifier associated with the target
page.
path Represents the Page URL of the page,

for example: / or /myPage.

Example

Provides the
page id.
pagel d = page.
props. pagel d

Provides a
path to the page.
pagePat h = page.
props. path

INDUCTIVE
UNIVERSIT

Page Startup

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.navigate
https://www.inductiveuniversity.com/videos/page-startup/8.1

For exanple, we can access the session id with the follow ng:
sessionld = page. session.props.id

Authentication Challenge

The following feature is new in Ignition version 8.1.16
Click here to check out the other new features

This event is fired when an authentication challenge is completed by the user.

@ Session Events

Authentication Challenge Completed Script

Session Events
Script that runs in the Gateway when a user completes an authentication challenge.

Startup
[l shutdown
¥ Parameters Learn More
Page Startup .
(= Authentication Challenge Session (Session) A reference to the current session.
iy Barcode . The opague payload provided by the initial invocation of the auth
i payload (dict) hall paque pay P y
% Bluetooth thallenge.
[@ NFC result (Result) The result object.
&3 Accelerometer
Script
88 Message 1 def onfuthChallengeCompleted(session, payload, result): -~
Keystroke 2
=]
Argument Description
session An object that references the Project Session that triggered the authentication challenge. Use this to identify the specific Session
that triggered the authentication challenge.
payload The opaque payload provided by the initial Authentication Challenge Action or Scripting function invocation.
result A Result object that can be parsed by the following functions:

Function Description

isSuccess() | Returns true if the authentication challenge was a success. If true, optionally call getAsSuccess() to get the result
as a Result.Success object for further parsing. If false, optionally call getAsError() to get the result as a Result.
Error object for specific details pertaining to the error.

getAsSucc | Returns the result as a Result.Success object if the result is successful, otherwise throws an UnsupportedOperati
ess() onException if the result is an error. Check isSuccess() or isError() before calling this function to ensure you get
the correct result type.

Note: Itis not necessary to call getAsSuccess() . If isSuccess() returns true, the result type is Result.Success ,
so all of the properties and functions of a Result.Success object are available on the original result reference.

isError() Returns true if the authentication challenge resulted in an error. If true, optionally call getAsError() to get the result
as a Result.Error object for specific details pertaining to the error.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-AuthenticationChallengeAction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.authenticationChallenge

getAsError() Returns the result as a Result.Error object if the result is an error, otherwise throws an UnsupportedOperationEx
ception if the result is successful. Check isSuccess() or isError() before calling this function to ensure you get the
correct result type.

Note: Itis not necessary to call getAsError() . If isError() returns true, the result type is Result.Error , so all of
the properties and functions of a Result.Error object are available on the original result reference.

This object contains different properties depending on whether the authentication challenge result is a success or an error.

Object Description

Result. An object that represents a successful authentication challenge result. Call getContext() to return a WebAuthUserCo
Success | ntext object with the following properties:

Property Description
idp The name of the IdP which challenged the user.
securityZones A string array containing the names of the security zones associated with the challenged user.

user A WebAuthUser object that contains the following properties:

Property Description
id The unique identifier associated with the challenged user
userName | The challenged user’s username.
firstName The challenged user's first name, or null / None if not defined for this user.
lastName The challenged user’s last name, or null / None if not defined for this user.
email The challenged user’'s email address, or null / None if not defined for this user.

roles The challenged user’s roles as a string array.

securityLeve = A string array of security level paths representing all of the security levels associated with the
Is challenged user

Result. An object that represents an error authentication result. It can be parsed by the following functions:
Error

Function Description

isGeneric() = Returns true if the error is not related to a timeout or user cancellation. Optionally call getAsGeneric()
to get the Result.Error as a Result.Error.Generic object for specific details pertaining to the generic
error.

getAsGene = Returns the result as a Result.Error.Generic object if the error is generic, otherwise throws an Unsu
ric() pportedOperationException . Check isGeneric() before calling this function to ensure you get the
correct result type.

Note: Itis not necessary to call getAsGeneric() . If isGeneric() returns true, the result type is Resu
It.Error.Generic , so all of the properties and functions of a Result.Error.Generic object are
available on the original result reference.

isTimeout() = Returns true if the error is due to a timeout. Optionally call getAsTimeout() to get the Result.Error as
a Result.Error.Timeout object for specific details pertaining to the timeout error.

getAsTime | Returns the result as a Result.Error.Timeout object if the error is due to a timeout, otherwise throws
out() an UnsupportedOperationException . Check isTimeout() before calling this function to ensure
you get the correct result type.

Note: Itis not necessary to call getAsTimeout() . If isTimeout() returns true, the result type is Res
ult.Error.Timeout , so all of the properties and functions of a Result.Error.Timeout object are
available on the original result reference.

isCancelled = Returns true if the error is due to user cancellation. Optionally call getAsCancelled() to get the Resul
0 t.Error as a Result.Error.Cancelled object for specific details pertaining to the cancellation error.

getAsCanc = Returns the result as a Result.Error.Cancelled object if the error is due to user cancellation,
elled() otherwise throws an UnsupportedOperationException . Check isCancelled() before calling this
function to ensure you get the correct result type.

Note: Itis not necessary to call getAsCancelled() . If isCancelled() returns true, the result type is
Result.Error.Cancelled , so all of the properties and functions of a Result.Error.Cancelled object
are available on the original result reference.

This object contains different properties depending on the cause of the authentication error:

Object Description
Result. An object representing a generic error authentication result. Call getMessage() to return a diagnostic
Error. message pertaining to the error, or null if such a message does not exist.
Generic
Result. An object representing a timeout error authentication result. Call getTimeout() to return the integer
Error. timeout value (in minutes) that that was used to configure the timeout.
Timeout
Result. An object representing an error result due to user cancellation. This object has no functions or
Error. properties.
Cancelled

Authentication Challenge Example

This example script will determine whether to proceed with a specified action after a completed Authentication Challenge Action. In this case, the
action is permitted only if the second user's roles include 'supervisor', If the action is not permitted, or the authentication challenge result is an error, a
message box will pop up with relevant context.

if result.isSuccess():
Parse information about the successful result
success = True
context = result.getAsSuccess(). get Context ()
user = context. user
roles = user.roles

Determine if the e-signature is valid:

if '"supervisor' in roles:
If the user is a supervisor, proceed with the specified action:
proceedW t hSonmeAct i on()

el se:
If the user is not a supervisor, wite to a | ogger:
| ogger = systemutil.getLogger("Authentication Challenge")
logger.info("% is not authorized"% user.user Nane)

If the result is an error, wite to a | ogger:
el se:

success = Fal se

error = result.getAsError()

Change the content of the | ogger nessage based on the type of error:
if error.isGeneric():
message = error.get AsGeneric().get Message()
| ogger = systemutil.getLogger("Authentication Challenge")
| ogger. i nfo(message)

elif error.isTinmeout():
timeout = error.getAsTi neout (). getTi nmeout ()
| ogger = systemutil.getLogger("Authentication Challenge")
| ogger.info("Authentication challenge tinmed out after %d mnutes."%tineout)

https://docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-AuthenticationChallengeAction

elif error.isCancelled():
| ogger = systemutil.getLogger("Authentication Challenge")
| ogger.info("Authentication challenge cancelled.")

el se:
I ogger = systemutil.getLogger("Authentication Challenge")
| ogger.info("Unknown error occurred.")

Native App Event Scripts

When the Perspective App is running on a mobile device, it enables users to use tools available on the device, such as GPS location data, the
camera, or the accelerometer. The remaining Session events are designed specifically to handle the three Native App Actions.

Barcode

The scanned barcode action can make use of a mobile device's built in camera. @ IN DUC T I VI
UNIVERSI1]

Arguments Description

session An object that references the project Session that called the Barcode Scanned event. Use this to
identify the specific Session that scanned the barcode.
Barcode Scanned
data The data returned from the barcode scan. Access the underlying barcode data using:

Watch the Video

The val ue that was scanned
dat a. t ext

An integer representing a unix tinestanp of when the barcode was scanned
data.tinmestanp

This feature is new in Perspective Mobile App version 0.98
Click here to check out the other new features

Version 0.98 of the Perspective Mobile App added the following property:

The type of barcode that was scanned.
dat a. bar codeType

context The user defined context object that can be defined on the action.

Barcode Example
This example will scan a barcode, and write its value to a Tag.

1. For this example, drag a Button component and a Label component onto a view.
2. Create a new memory Tag with a data type of String. Set the value to "Please scan a barcode."”

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-NewPerspectiveMobileAppFeatures
https://www.inductiveuniversity.com/videos/barcode-scanned/8.0/8.1

Tag Editor x

New Tag 5

= =R 4

=]

= Basic Properties -
Name NewTag 5
Tag Group Default =
Enabled true Sl
E Value
Value Source
Data Type

Value

= Numeric Properties

Deadband 0.0001
Deadband Mode Absolute bt
Scale Mode off -
Engineering Units -

Documentation ~ Diagnostics

3. Bind the text of the label to the new Tag.

o
1
X

5% o Joo B [#00 |~ || Perspective Property Editor

text : Please scan a barcode

ecsons mrute 3 alignvertical : top ~

a-

ROPS

o/ EditBinding: Label_0.props.text - [u] X
Binding Type Configure Tag Binding
N Tag © Direct _ Indirect ' Expression
Tag Path [[defaulgNew Tag 5 | S
S cbroperty Options

o 2 Enabled Overlay Opt-Out Bidirectional

J¥ Expression Structure Add Transform +
= Query
‘O Tag History

- HTTP
. Binding Preview
stom Example X

Tag
i Remove Binding Please scana barcode.

4. Next right-click on the Button component and choose Configure Events.
5. On the Event Configuration screen, select Mouse Events > onClick.

6. Click the Add icon and select Scan Barcode action.
= s [T T ———
Q- a8

TesC=bmbampe
= Custom xample {]

- root
e | Pleasescanabarcode
[— Event Configuration on Button - o X
LsbeL0
Lobel)))
> i Test Events. Configure [onClick] Actions
i Testproect
@ aview a
@ Headertarge Organize Actions Configure Scan Barcode Action
@ Hesderhtaster ~ @ system events | e
1. Scan Barcode |3
 eadeimal # oo savode e .
© Neruview = oo s =
& poouwic - + Ay
~ @ Component vents
TooBromser - ocmpetormed 4 Barcode sackground color
a 6 De ato v
, ecReurnTime OFC context
> & NamespaceArray O7C | [=
» & Navgaton = el a
> % NewTag b
> ® NewTagz orc -
2 B onvouseteave |+
D L - ootions N
VN S [o [RERRIE

7. Click OK. Next we need to set up a session event so that Perspective knows how to interpret
the scanned barcode data.
8. Under the Project tab, select Session Events.

File Edit View Component Tools Help

o R | - A ‘ i Comm Off r
Project Browser | 1 Comm Read-Only I

Q- © 1} Comm ReadMWrite ™
~ g VIEWS 1 E
~ @ Custom_E|
I- hd @ Custon
ST |
Cyliry
Butte P Preview Mode F5

F

Project Properties

Gateway Events

Session Events

1007

i
9. On the Session Events screen, select the Barcode '™ jcon.
10. Add the following script to the page:

systemtag. witeAsync(['[default]New Tag 5'], [data.text])

Note: We used the Tag created for this example, New Tag 5. You can enter your own Tag
name if different.

® Session Events

Session Events Barcode Data Handling Script

Script that runs in the Gateway when a native application has received data from a scanned

[startwp barcode.

[shutdown

Fage Startup ~ Parameters A Learn More

[Authentication Challenge

) session (Session) ‘The Perspective session.

4 Barcode

3 Bluetooth data (list) ‘The data returned from the barcode scan.

@ Nee comert(dict) z\:nu:er;‘c:eﬁnedmmm object associated with the barcode

& Accelerometer

53 Message Script.

[E) Keystroke 1 ef onBarcodeDataReceived(session, data, context): |
2 system.tag.writeasync(['[default]iew Tag 5'], [data.text])

11. Click OK and save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

1. Click the Scan Barcode button.

ED0D0E P a2

Please scan a barcode.

2. If this is the first time scanning a barcode, you'll get a message requesting permission for
Perspective to take pictures and record.

G Allow Ignition
Perspective to take
pictures and record
video?

|:i Don't ask again

DENY ALLOW

3. Click Allow.
4. You can now use the camera on the mobile device to scan the barcode.

1l s I -

L > Scan a QR Code

Point Camera at QR Code

5. Ignition scans the barcode. Once it recognizes the barcode, the script will run and the text is
written to the Tag. The label then shows the new Tag value.

EDOE B s O RERT

Perspective is great!

Bluetooth

The Bluetooth event is only used when a Session is running in a native application and it has received bluetooth advertising data. This Session event
script sends Bluetooth advertising data to Perspective. It supports iBeacon and Eddystone formats.

® Eddystone will work on iOS and Android
® iBeacon on iOS requires user to specify the specific region (iBeacon UUID) located on Session props bluetooth.config.iBeaconRegion.

Note: Bluetooth "Advertising Data" is the name of the communication data according to the Bluetooth spec. There is no connection to advertising as
an industry.

O Session Events

Session Events

Startup

[l shutdown

Page Startup

[Authentication Challenge
Il Barcode

% Bluetooth

@ NFC

&3 Accelerometer

87 Message

[E) Keystroke

Bluetooth Data Handling Script

Script that runs in the Gateway when a native application receives bluetooth advertising data.

T Parameters [Learn More
session (Session) The Perspective session.
data (list) List of buffered advertising data.

Script

1 def onBluetoothReceived(session, data):

Arguments Description

session An object that references the Project Session
data List of buffered advertising data. The data comes in as a data object, which has various parts. The following is example output.
{
"val ues":

aAkLHAPi bd"

{
"rssi":-48,
"timestanp": 1570147485167,
"manuf act urerData": {
"conpanyl d": 6,
"dat aBase64Encoded": " AQkgAl _edccdnHO MrecMCi M -
}
.
{
"rssi":-48,
“timestanmp": 1570147486012,
"serviceUU Ds": [
" EEAA"
1.
"serviceData": {
"uui d": " FEAA",
" dat aBase64Encoded": " AOyqqqqqqqqqqqqqAAAAAAAA"
}
"eddyst oneUl D": {
"t xPower": - 20,
"nanmespacel D': " AAAAAAAAAAAAAAAAAAAA" |
"instancel D': *000000000000"
}
.
{
"rssi":-54,

“timestanmp": 1570147485919,
"manuf act urerData": {
"conpanyl d": 76,

"dat aBase64Encoded": " AhV88i sf § VLY4VnXXf YqpTy AAAAAL8="
I

"i Beacon": {
"uui d": " 7CF22B1F- 4235- 4B63- 8567- 5D77D8AA94F2" ,
"major":0,
"mnor":0,
"t xPower": - 65

}

"rssi":-54,
"tinmestanp": 1570147485987,
"manuf act urerData": {
"conpanyl d": 65535,
"dat aBase64Encoded" : " vqwSNFZ4Ej QSNBI OEj RWeJ ASAAAAAQNA"
e
"Al t Beacon": {
"manuf acturerl d": 65535,
"uui d":"12345678- 1234- 1234- 1234- 123456789012",
"i nstance":"00000000",
"t xPower": - 20,
"manuf act ur er Reserved": " 00"

}

Accelerometer

The Accelerometer event is only used when data is coming in from a batched Accelerometer Action. @ IN DUC T I VI
UNIVERSI1

Arguments Description

session An object that references the Project Session that called the Accelerometer Data

Received event. Use this to identify the specific Session that triggered the batching of

accelerometer data. Accelerometer Data
data The data returned from the batched accelerometer. The data comes in as a data Recelved

object, which has various parts. Access the various parts like:
Watch the Video
| ogger = systemutil .l ogger('accel eroneter')
for row in data.val ues. dat a:
logger.info(" X' + str(row'x']))
logger.info('Y:" + str(rom'y']))
logger.info('Z:' + str(rom'z']))

context The user defined context object that can be defined on the action.
Accelerometer Example
This example will write accelerometer data to the Gateway logs.
. For this example, put a Button component onto a view.

. Next right-click on the Button component and choose Configure Events.
. On the Event Configuration screen, select Mouse Events > onClick.

A WNBR

. Click the Add + icon and select Accelerometer action.
a. Select Batch mode.
b. Seta Sample Rate of 400.
c. Seta Duration of 2000.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions#ComponentEventsandActions-NativeAppActions
https://www.inductiveuniversity.com/videos/accelerometer-data-received/8.0/8.1

Event Configuration on Button

- o x
Events Configure [onClick] Actions
Q- . : :
Organize Actions Configure Accelerometer Action
- B System Events 3
= +
u onstartup . Mede
il
= onShutdown Continuous oft
~ @ Component Events +
m onActionPerformed 4 Settings
~ B Mouse Events sample Rate (ms)
B onContextMenu By
m onDoubleclick Context
m onMouseDown P
W onMouseEnter e o
m onMouseLeave 8 Acd Object Mermber
m onMouseMove
m onMouseOut
Options
[Enabled

. Click OK. Next we need to set up a Session Event so that Perspective knows how to interpret
the accelerometer data.

6. Under the Project tab, select Session Events.
File Edit View Component Tools Help
= B | - ‘ % Comm Off F

Project Browser | 1k Comm Read-Only

Q- © 4} Comm ReadWrite ™
v g VIEWS 1
~ @ Custom_E|
I- hd @ Custon

ST |

Cyliry

Buttc P Preview Mode F5

Fa

Project Properties

Gateway Events

Session Events I

1007

N
7. On the Session Events screen, click the Accelerometer Q icon.

® Session Events

- o x
e Accelerometer Data Handling Script
cript that runs in the Gateway when a native application has received batched data from an
Script th: he G. he i h d batched data f
(2 startup accelerometer.
(@ shutdown
Page start
3 Page startup ~ Parameters [0 Learn More
(& Authentication Challenge
0 Barcode session (Session) The Perspective project session.
ata an The data returned from device accelerometer.
3 Bluetooth g v he d dfrom !
@ e ot (dict) The user-defined context associated with the accelerometer
action event.
63 Message script
Keystroke 1 def onAccelerometerDataReceived(session, data, context ~
a8 k de
2

8. Add the following script to the page:

This script will take the accel erometer data and print it to the
Gateway | ogs.

Create the | ogger.

| ogger = systemutil .l ogger('accel eroneter')

Loop through the list of batched events and pull
z values to print to the Gateway | ogs.
for row in data.val ues. dat a:

logger.info(' X' + str(rowf'x"]) + "', Y:'
', Zt + str(row'z']))

out the x, y, and
+ str(row'y']) +

9. Click OK.
10. Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

1. Click the Accelerometer button.

2. After clicking the button, the script will record accelerometer data for the next two seconds, so
try moving the phone around.

3. After the two seconds, you should see the logged information appear in the Gateway logs.

NFC
The NFC event is used when the NFC Action is used and the mobile device scans an NFC Tag. IN DUC T I VI

UNIVERSII

Arguments Description

session An object that references the Project Session that called the NFC Ndef Scanned
event. Use this to identify the specific Session that scanned the NFC Tag.

NFC Ndef Scanned

data The data returned from the NFC Tag scan. The data object is a list which can contain
multiple records from a single NFC Tag. Access the underlying NFC data using:

Watch the Video

| ogger = systemutil .l ogger (' NFC)
for row in data:
| ogger.info(' Type:' + str(row'type']))
| ogger.info(' Type Nane Format:' + str(row
['"typeNanmeFormat']))
| ogger.info('Payload:' + str(row'payload']))
logger.info('String:' + str(row'string']))
| ogger.info('Bytes:' + str(row'bytes']))

context The user defined context object associated with the NFC scan event.
NFC Example
This example will write the NFC Tag data to the Gateway logs.

. For this example, put a Button component onto a view.
. Next right-click on the Button component and choose Configure Events.
On the Event Configuration screen, select Mouse Events > onClick.

. Click the Add + icon and select Scan Ndef NFC action.
. Select Single mode, then click OK.

ar WNP

Events Configure [onClick] Actions
Organize Actions Configure Scan Ndef NFC Action
W System Events 2
s 1.ScanNceiNFC R
u onstartup . Moae
m onshutdown o m
gle | Continuous) oft
® onActionperformed Context
W Mouse Events ® gl
m onContextMenu

m onDoubleClick

= onMouseDown options

= onMouseEnter Enabled
= onMouseLeave
= onMouseMove
= onMouseout
= onMouseOver
= onMouseUp

q 5

6. Next we need to set up a Session Event so that Perspective knows how to interpret the NFC
data. Under the Project tab, select Session Events.

https://www.inductiveuniversity.com/videos/nfc-ndef-scanned/8.0/8.1

File Edit View [gn[{asl Component Tools Help

H |« -+ | i Comm Off .
Project Browser 1 Comm Read-Only I 0:
Q. © 1} Comm Read/Write i

 EE VIEWs
~ @ Custom_E|
+ (4 Custon

Cyliry

Project Properties

Gateway Events

Session Events I

(=]
=
Buttc P Preview Mode
1 L
7. On the Session Events screen, click the NFC @ icon.
® s - o X
[y — NFC Ndef Data Handling Script
Script that runs in the Gateway when a native application has received data from an NFC scan.
(3 startup
(& shutdown
Page Startup ~ Parameters [0 Learn More
(& Authentication Challenge session (Session) The Perspective session.
4t Barcode data (list) ‘The data returned from the nfc scan.
Bluetooth ‘The user-defined context object associated with the nfc
context (dict)

& Accelerometer

Script
& Message 1 def onNdefDataReceived(session, data, context): a
Keystroke 2 session. custon.device.nfc = data]

8. Add the following script to the page:

This script will take the NFC data and print it to the Gateway
| ogs.

Create the | ogger.
| ogger = systemutil .l ogger(' NFC)

Loop through the list of records stored in the NFC Tag and pull
out the type, type nanme fornat, payload, string data, and raw byte
data fromeach record and print it to the Gateway | ogs.
for row in data:

| ogger.info(' Type:' + str(row'type']) + ', Type Nanme
Format:' + str(row 'typeNaneFormat']) + ', Payload:' + str(row
['payload']) + ', String:' + str(row'string']) + ', Bytes:' + str
(row'bytes']))

9. Click OK.
10. Save your project.

Test the Example

To test the example, open the Perspective App on your mobile device and load the project.

1. Click the NFC button.

2. After clicking the button, the script will pass the next NFC Tag scanned to the script to be
handled.

3. After scanning an NFC Tag, you should see the logged information appear in the Gateway logs.

Message

The Message Handler scripts will run whenever the Session receives a message from system.util.sendMessage or system.util.sendRequest. Note that

these types of message handlers are different than component-based message handlers, which are accessed with system.perspective.sendMessage.
Session Message Handlers can not be called by system.perspective.sendMessage.

@ An efficient way to use this message handler in cases with user driven operations is by incorporating system.perspective.getSessioninfo to
lookup all sessions and then filter the sessions to target specific users.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequest
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://docs.inductiveautomation.com/display/DOC81/system.perspective.getSessionInfo

@ Session Events

Session Message Handlers
Session Events 9
Message handler scripts that run whenever the session receives a message

(= Startup

(=l shutdown
+ Parameters [0 Learn More

Page Startup
icati) . The perspective session that is
Authentication Challenge ey (e persp

i Barcode handling this message
A dictionary that holds the objects

% Bluetooth)

passed to this message handler.
@ NFC payload (dict) Retrieve them with a subscript, e.g.
¢ myObject =

&3 Accelerometer
payload['argumentMName']

[E) Keystroke ? Script
1 def handleMessage(session, paylead): -~
2
a
+ G o ;

Arguments Description
session The Perspective Session that is handling this message.

payload A dictionary that holds the objects passed to this message handler.
Retrieve them with a subscript, e.g., myQbj ect = payl oad[' ar gunent Nane']

Message Example

This example shows how to set up a message handler script to send a simple log message to the Gateway. We will use a button component to run
the system.util.sendMessage command.
. Under the Project tab, select Session Events.

On the Session Events screen, click the Message icon.
. Click the Add+ icon.

. Enter myMessage in the Message Handler Settings Name field.
. Click OK.

AW N e

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage

0 Session Events — O X

e — Session Message Handlers

Message handler scripts that run whenever the session receives a message

[startup
[l shutdown
Script
Page Startup Tl =
[Authentication Challenge
BE Barcode Message Handler Settings =
Bluetooth A
(@] nFe ImyMessage‘ I |°

-
&3 Accelerometer

58 Message
& true
Keystroke
“ =

6. We will first define the define the message and assign the sessionld to our current Perspective session. Then, we will use Logger functions to
return a logger object to log message with level info. Add the following script to the page to complete these functions:

def handl eMessage(sessi on, payl oad):
message = payl oad[' nessage']
sessionld = session.props.id

| ogger = systemutil.getLogger("nyLogger")
| ogger . i nfo("Your session "+str(sessionld)+" received the message: "+str(nessage))

@ Session Events - m] X
Session Message Handlers
Session Events 9
Message handler scripts that run whenever the session receives a message
(& Startup
. T
myMessage - Parameters Learn More
[Page Startup m
[Authentication Challenge session (Session) The perspective session thatis handling this message
B2 Barcode oyload (dicyy A dictionary that holds the objects passed to this message handler. Retrieve them witha
% Bluetooth payl subscript, e.g. myObject = payload['argumentName']
@ NFC .
. Seript

& Accelerometer
& 1 Hef handleMessage(session, payload): -
£8 Message 2 message = payload['message’]

3 sessionld = session.props.id
[E Keystroke > 4

5 logger = system.util.getlogger("myLogger”)

6 logger. info("Your session "+str(sessionld)+" received the message: "+str(message))

+ @ % "
. Click OK.

. Add a Button component onto a view.
. Right-click on the Button component and choose Configure Events.
. On the Event Configuration screen, select Component Events > onActionPerformed.

O wwwo=~N

11. Click the Add + icon and select Script action.
12. For this example, we will use system.util.sendMessage, which means we need to add our project name, the message handler we created,
the payload message we want to send, and limit the scope to Session. Add the following script to the page:

def runAction(self, event):
systemutil.sendMessage("sanpl equi ckstart", "nyMessage", {"message":"Hello World"}, "S")

Events

v W Syste
= onStarup
" anshy

B_anBointasfu

0 Event Configuration on Button

Configure [onActionPerformed] Actions

This event is fired when the ‘action’ of the component accurs.

Organize Actions

T

+ @ Component Events]
t

- @ Mouse Events [}
B onClick
 gnContextMeny
® onDoubleClick

B onMouseleave

B oAMouseOu

= anMouseOver
" on ¢
~ @ Pointer Events
® onPointerCancel

= gnPointarDown
W onPointerEnter
B onPointerLeave
® onPointeriove

Configure Script Action

~ Parameters

self {Component) A reference to the component that is imvoking this function
evers (object) An emgty event chject
Seript
def runaction(self, event): i
system.util. sendMessagef[samplequickstart™, “myMessage”, {“message”:“Hello World™}, "s")]
Optins
3 Enabled

D Security Settings

0 Learn More

m Cancel Apply

13. Click OK.
14. Save your project.

Test the Example

To test the example, launch your Perspective Session and click the button component we created.

1. After clicking the button, the script will send the "Hello World!" message to your session id.
2. Access your Gateway Status > Diagnostics > Logs page to confirm the message was received.

Ignition

Config

SYSTEMS.

Overview

Performance
Alarm Pipelines]
Filter
Gateway Scripts

Modules

Redundancy

Reports Logger

M Status > Diagnostics > Logs

394 items 1 ofa > »

S View 100 v Min.level AL v a a B n E

Time

LiveValues ~ 0

Message

SFCs 1 myLogger

15Feb2023 07:28:03

Your session a0b4e313-bae4-457a-ada5-bccee793e8a received the message: Hello World Q ‘

Voice Alarming

I ClientSession

Tags
I InternalDatabase

Keystroke

15Feb2023 07:28:00

15Feb2023 07:27:08

The following feature is new in Ignition version 8.1.10
Click here to check out the other new features

Keystroke scripts will run when the session detects a KeyboardEvent matching either a single key or a regex pattern. A single key match can be made
on either a key press (keyDown) or on a key release (keyUp). A regex match is always made on a key release. Key Event scripts can be triggered by

WebSocket disconnected from session. Q

Creating auto-backup of internal database "config.idb"...

keyboards and any other device that is capable of generating a KeyboardEvent, such as an HID barcode scanner.

Keystroke detection is only active inside of a Perspective session and is not active inside of the Designer.

Note: The device being used to trigger key event scripts must be able to generate a KeyboardEvent. HID barcode scanners will generate
KeyboardEvents because they mimic a user typing keys on a physical keyboard. Scanners and other input devices that do not

create KeyboardEvents will not trigger this logic.

Arguments

page

Description

An object that contains information about the current page.

props Properties of the "page" object.

session = An object that contains information about the current session.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

event An object that contains information from the Key Event.

altkey | Returns a boolean that is true if the Alt (Option or ? on OS X) key was active when the key event was generated.
code Returns a string with the code value of the physical key represented by the event.
ctrlkey = Returns a boolean that is true if the Ctrl key was active when the key event was generated.

isCom | Returns a boolean that is true if the event is fired after "compositionstart" and before "compositionend".
posing

key Returns a string representing the key value of the key represented by the event.
location = Returns a number representing the location of the key on the keyboard or other input device.

metaK | Returns a boolean that is true if the Meta key (on Mac keyboards, the ? Command key; on Windows keyboards, the
ey Windows key) was active when the key event was generated.

repeat = Returns a boolean that is true if the key is being held down such that it is automatically repeating.
shiftkey = Returns a boolean that is true if the Shift key was active when the key event was generated.

matches Returns a list where the first entry of the list is the exact text which registered as a match for the regex, and all
subsequent entries in the list are the content which fell into capture groups.

Single Key

For single key matches, the match can be a physical key typed or the code generated by the key. Modifiers are additional keys that can be held down
during a KeyboardEvent and are detectable in the event data. These include Alt, Control, Shift, and Command/Meta.

Configure Keystroke >

Key Event
M Enabled
Event Mode

O keyDown keyUp regex match

Key

O Key: Fi v
Code:

Maodifiers

Alt Control Shift Command/Meta

Advanced

Capture Phase Prevent Default Stop Propagation

In addition, the resulting Key Event that is used for match detection has the following advanced features:

® Capture Phase - Allows execution during event capturing, which will let the resulting script execute before other interface events that may
be in place. By default, events execute during an event bubbling phase which is dictated by the position of the event binding in the Document
Object Model (DOM). In the case of Key Events, these are bound to the docunent layer of the DOM and will execute after other interface
events if this option is unchecked.

* Prevent Default - Prevents any default browser functionality that would be associated with the event binding. This can be toggled on if there
is any functionality that should not be run when a keyDown/keyUp event has been fired at the docunent level when a key match is
made.

https://developer.mozilla.org/en-US/docs/Web/API/Element/compositionstart_event
https://developer.mozilla.org/en-US/docs/Web/API/Element/compositionend_event

® Stop Propagation - Prevents the event from propagating beyond the point in the DOM where it is bound (the docunent level). This can
be useful if combined with the Capture Phase option as it will prevent any interface keyDown/keyUp events from running that are bound
deeper in the DOM than the documnent level.

Regex Match

For a regular expression (regex) pattern match, a match will be based on a supplied regex pattern and a series of keys stored in a match buffer. This
buffer will always be the most recently typed characters and should be the length of a "correct match" to the supplied regex pattern.

Regex Example
This example will update a custom Session property when a regex pattern match is found.

. For this example, place a Label component onto a view.

. Add a custom Session property called scanner | nput .

. Bind the text value of the Label to the custom Session property.
. Under the Project tab, select Session Events.

. On the Session Events screen, select Key Events.

abswNE

®) Session Events - [m} *

Session Events et

Scripts that execute in the Session on a specific keystroke.

[startup

[Shutdown

= Page Starwp ~ Parameters [Learn Mare
(& Authentication Challenge An object that contains info about the

age (Page
o Barcode page (Fage) current page.

An cbject that contains info from the

% Bluetooth event (KeyEvent) Key Event

[E) NFC .

& Accelerometer Script

58 Message 1 def onKeyEvent(page, event): ~

2
’

6. Click on the Add + icon and select regex match.

Configure Keystroke .t

Key Event
a Enabled
Event Mode
keyDown keyUp o regex match
Regex

Pattern: [0-91{12}@$% (]

Match: 13 = Characters

-

7. Enter the regex pattern you want the Session to watch for. In the above example, a match occurs for any sequence of 12 numeric characters
followed by an "@"

8. Enter the length of the match buffer. The match buffer should equal the minimum number of characters required for a pattern match.

9. Add the following script:

page. sessi on. cust om scanner | nput = "Match found"
10. Click OK.
11. Save your project.

Test the Example

To test the example, launch a Perspective session and open the view containing your Label. Type a string of characters matching the regex pattern
you configured above. You should see the Label's text change:

Waiting for a match

Security in Perspective

Security in Perspective is managed through Identity Providers (IdP). IdPs offers a way for users to log in

to Ignition using credentials stored outside of Ignition. This level of security is set up through the

Gateway. Setting up Security is covered in the Security section of the User Manual. O H
n thispage...

Once you have an IdP set up as well as Security Levels , Security Level Rules , and User Grants there

are additional ways to control security for the following:

® Perspective Sessions ® Perspective Sessions Security

® Perspective Views ® Perspective Views Security

® Event actions on Perspective components ° (E:VGT“ ACI'OtnS on Perspective
omponents

® Using Component Bindings to

Check Authorization

® Using isAuthorized in an
Expression

® Using Session Props to
Check Roles

® Deleted Security Level
Indicators

Perspective Sessions Security

For each Project, you can set the security for an associated Perspective Session. When you select the s IN DUC T I VI
ecurity levels, you are granting any user with that security level access to the Perspective Session for

that Project. UNIVERS I'I

1. In the Designer, select the Project Properties on the Project menu. Select Project > General.

2. In the Identity Provider field, use the dropdown to select the IdP you want to use or to select the
default user source.

Requiring
8 P Pepass - o ox Authentication
Project 2 Project / General
General = .
Watch the Video
Designer Default Provider default v |2
Vision Client Poll Rate 250 (-5
Design Database Settings
General Default Database | MSSQL v|2
Launching Security Settings
Login wdentity Provider | Okta 2018 ~|=
Permissions User Source &)
Timing default
User nterface Required Client Roles °
Perspective Auditing Settings
General Enable Auditing
~ Audit Profile
oK Apply Cancel

3. Scroll down to select Perspective > Permissions.

4. Expand the tree to view the security levels you want to be able to access this project in a
Perspective Session.

5. Click the check box next to each of the security levels you want to grant access.

https://legacy-docs.inductiveautomation.com/display/DOC81/Identity+Provider+Authentication+Strategy
https://legacy-docs.inductiveautomation.com/display/DOC81/Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Levels
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Level+Rules
https://legacy-docs.inductiveautomation.com/display/DOC81/User+Grants
https://www.inductiveuniversity.com/videos/requiring-authentication/8.0/8.1

Permissions

TagDrop

Project Perspective / Permissions

General

Permissions ~ [JPublic

Designer ~ [Authenticated

9 v Roles

Design Driver
~ [_SecurityZones

General localhost

Launching Default

Login

Permissions

Timing

User Interface

Perspective

General

“The security levels of the user must match all of the required security levels

Atleast one of the security levels of the user must match any of the required security

levels

ok Apply

6. Click OK to save all of the Project Properties changes.

Perspective Views Security

You can set the security for an individual View in Perspective. When you select the security levels, you
are granting any user with that access to the Perspective Session for that Project.

Note: Note that you must have the IdP selected in Project Properties > Project General.

1. In the Project Browser, right-click on the view and select Configure View Permissions...

Cancel

Project Browser a - X 0
Q A
A FifthView -
+ root Close & Commit
Lal Close & Revert
C
LE:I Configure View Permissions...
Ral Configure Events...
Re|
& Flex Rename F2
» 4 Seco o Cut
) TabT
Co
~ £ Thira = b
| [@ copyPath
Tag Browser
| [] Paste
s . A
Qo|v = & Delete
— Tag & Protect
» B Tags

2. On the Edit Permissions screen, click the check box next to the Roles that will be able to access

this View.

3. Next, click the check box next to the Security Zones that will be able to access this View.
4. Finally, choose one of the radio buttons at the bottom of the screen to indicate whether the user
much match all of the required security levels you've checked or if matching at least one is

enough.

In the example below, a user must have either the Administrator security level, Plantl security

level, or be in Ridg

efield East to access this View.

INDUCTIVE
UNIVERSII

View Security

Watch the Video

https://www.inductiveuniversity.com/videos/view-security/8.0/8.1

Edit Permissions for view [FirstView] - [m] X

View Permissions

View permissions determine whether or not a user has access to load the view.

Public
Authenticated
Roles
[l Adminsaaor |
ST

TRETOper
Line20per
SecurityZones
Default
Production West
Customn
CustomSub

The security levels of the user must match all of the required security levels
EIM least one of the security levels of the user must match any of the required security levels

Cancel Apply

5. Click OK to save the permissions for this View.

Event Actions on Perspective Components

All Perspective components can have event scripts. These are scripts that run on an action, such as IN DUC T I VI
when the user clicks with the mouse on a component. For more information about event scripts see, Pers
pective scripting. Security can be configured on events. In the following example, set security for the U NIV E RS I'I

action of clicking on a Button component in the Perspective View.

Note: Note that you must have the IdP selected in Project Properties > Project General.

Script Action
Security

Watch the Video

1. To add security to an event on a component, right-click on the component then choose Configure Events...

Update

Cut

Copy

Duplicate

Delete

Send to Back
Move Backward
Move Forward

Bring to Front

Configure Events...

Configure Scripts...

2. The Events Configuration screen is displayed. Many different types of events can be set for a component. For this example, choose Mouse
Events > onClick.

https://www.inductiveuniversity.com/videos/script-action-security/8.0/8.1

3. Under Organize Actions, click the Add + icon, then select Script from the list.

Eﬂ Event Configuration on lcon
Events Configure [onClick] Actions
Q- : :
Organize Actions

v @ System Events ~ +

B onStartup

B onShutdown Accelerometer
~ @ Mouse Events Alter Legging
[T oncice | -

B onContextMenu _

B onCoubleClick Legin

B onMouseDown Logout

B onMouseEnter Navigation

B onMouseleave

B onMouseMove FamR

B onMouseOut Refresh

W onMouseOver Scan Barcode

B onMouselUp . Nt
v @ Keyboard Events s

B onKeyDown Script

B onkeyPress Theme

B onKeyUp

4. Click the Security Settings e icon near the bottom of the screen.

5. Click the check box next to the security levels you want to grant access. In the example, we checked Administrator and LinelOper for the
security Roles. Then, we chose the requirement option that at least one of the security levels for the user must match for access. This means
anyone with Administrator or Line1Oper security levels will have permission to run the script associated with the onClick event on this button.

Configure [onClick] Actions

Organize Actions Configure Script Action
T +
o 1def runAction(self, event): Al| B
t Method that will run whenever the selected event fires.
Arguments:

self: A reference to the component that is invoking this function.
event: Events fired by the relevant mouse/touch interaction.
altkey (bool): True if the 'alt' key was held down when the event

was fired.
button (int | float): The button number that was pressed when the

Security Settings

Ad Public
- Authenticated

ke

- Plant1

» L4 Line10per

Line20per
SecurityZones
Custom

The security levels of the user must match all of the required security levels

At least one of the security levels of the user must match any of the required security levels

@ Security Settings

Cancel Apply

6. Click the Security Settings e icon to close the window, then click OK.

Using Component Bindings to Check Authorization

Component bindings can also be used to determine if a user should have access to a certain component. For example, if a component has an
"Enabled" property that you want to toggle based off of security levels, then can simply apply one of these approaches.

Using isAuthorized in an Expression
The simplest method involves configuring an expression binding that uses the isAuthorized function.

i sAut hori zed(fal se, "Authenti cated/ Rol es/ Your Rol eGoesHer e")

In the image below, an isAuthorized function expression binding is configured on a Button's enabled property, which causes the property to change to
"false" if a user doesn't have the specified security level. This has the additional benefit of preventing the onActionPerformed scripting event from

triggering in cases where a user doesn't the security level.

https://legacy-docs.inductiveautomation.com/display/DOC81/isAuthorized

-I:||_|:| nIDEDUDvaI-I-'i

Edit Binding: Button.props.enabled — O x
Binding Type Configure Expression Binding
W Tag 1 isAuthorized(false, "Authenticated/Roles/Buttoniccess") Al *=
2
= Property |
< » =
" fx Expression Options
. _ Enabled | | Overlay Opt-Out
f¥ Expression Structure
£ Query | Add Transform + |
g ®© Tag History
& HTTP
Binding Preview
Expression
| i Remowve Binding | false

4@% ml Cancel | Apply F

Using Session Props to Check Roles

Alternatively, a script transform can be used to examine the sessi on. props. aut h. user . r ol es property to determine if the current user has the
desired role. In this case, we can configure a property binding to the roles session property, and use the following line in a script transform:

return "Admi nistrator" in str(val ue)

") Edit Binding: Label.custom.key — O >

Binding Type Configure Property Binding
W Tag session.props.auth.user.roles E
Options
=l Property 3 Enabled | | Overlay Opt-Out

J¥ Expression Configure Transform(s)

f¥ Expression Structure Script + 3 G
= Query 1def transform{self, wvalue, quality, timestamp): A| B
© Tag History Transform the incoming value and return a result.

& HTTP Arguments:

self: A reference to the component this binding is configur
value: The incoming value from the binding or the previous
quality: The quality code of the incoming value.

timestamp: The timestamp of the incoming value as a java.ut

2 return "Administrator" in str(wvalue)

Add Transform +

& Binding Preview

Property Script
m Remove Binding [Administrator] true

m Cancel Apply

Deleted Security Level Indicators

The following feature is new in Ignition version 8.1.25
Click here to check out the other new features

Since security levels are set through the Gateway, it may not be immediately obvious that a security level has been deleted. This can be checked
quickly in the Designer by accessing the Project Properties and navigating to Perspective > Permissions. In the example image below, the Plantl
role has been deleted. This is indicated by the security level, and any child levels, appearing grayed-out with a red warning underline. Hovering over

the security level displays a tooltip informing the user the security level no longer exists on the Gateway. A warning indicator A icon will also appear
in the upper right-hand corner with the number of selected security levels that no longer exist. If you follow the security levels tree up to the parent
levels, you'll notice affected levels now include a dotted underline.

All warning indications are removed when deleted security levels are unchecked and new settings are saved. Additionally, the deleted security level
will no longer be visible.

These security level indications are visible on the Event Configuration, Edit Permissions, and Tag Editor windows when applicable.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties#TagSecurityProperties-UsingSecurityLevels

/3 Project Properties

Project
General
Permissions
Designer
Perspective
General

Permissions

Tag Drop
Inactivity
Vision
Design
General
Launching
Login
Permissions
Timing

User Interface

Perspective / Permissions

Q Security Levels (including Roles) may be added by going to the
Config > Security > Security Levels page of the Gateway Web Interface

Security Levels

v Public

v Authenticated

v Roles

» 2 Administrator

AAAAAAAAA

4 SecurityZo i i
Security Level 'Plant1' no longer exists on the Gateway

O The security levels of the user must match all of the required security levels

14

At least one of the security levels of the user must match any of the required security

levels

OK Apply

Cancel

A Vision-Oriented Guide to Perspective

An Intro to Perspective

Perspective is a flexible and versatile approach to HMI/SCADA design. Whereas Vision clients run on On th|S page
any platform that supports Java, Perspective Sessions run anywhere that supports a web browser.

Additionally, sessions can run in the Ignition Perspective App or Perspective Workstation. This opens the

door for a new level of support for mobile devices and tablets. Perspective's features follow a responsive

design paradigm. This added dynamic and flexibility means you'll need put a little more planning into your ® An Intro to Perspective
projects. ® Perspective Design
Considerations
The purpose of this guide is to describe the core functionality of Perspective in ways that make sense for ® Designing Your Main Views
Vision users. ® Docked Views and Pages
® JSON Component Properties
The largest difference between Vision and Perspective is the way they do layout and project design. ® Bindings and Transforms
Perspective is primarily designed to allow you to create mobile responsive interfaces. Perspective is an ® Components
Ignition module, using the same platform as the Vision module. It has access to all of the same systems ® Comparison of Perspective and
like Tags, database connections, reports, and security (though security got a few updates in Ignition 8 Vision Functionality
to0). ® New Features in Perspective

As we developed Perspective, we took the familiar aspects of using the Ignition Designer and provided more tools and flexibility. You will find many
similarities between how you design a Vision project and a Perspective project. Anyone familiar with Vision can start designing quickly. For example,
you are still working with containers, components, properties, bindings, Python scripting, Tags, and databases. While it is visually different from Vision,
you will find the interfaces in Perspective familiar, but updated.

In order to take full advantage of the new systems in Perspective, there are a few things that you need to think about in a different way from your past
Vision projects. But first, there are a few terms that we need to define in Perspective. We will be using them a lot to talk about the differences, so
please familiarize yourself with them before continuing. A more complete set of terms is provided below.

® View: Think of this as a Vision Template and Window all rolled into one. You can put components in it, you can pass parameters into it, and
you can nest them inside each other. Each view has a Layout type.

® Layout: There are several types of containers in Perspective. Each has its own set of position attributes for the components inside it, which is
similar to the Vision Relative vs Anchored constraints. There is more than just X, Y, width, and height now.

® Page: This is a new concept for Perspective. Instead of having a Vision Client with multiple windows open at the same time, you open a
single Page at a time and navigate by switching pages. Each page has its own main View and any docked Views you want.

® Session: A session is the Perspective equivalent to a Vision Client, except it runs in the browser instead of using Java. You can have
multiple browser tabs open using the same session.

® Style Classes: Style Classes are style configurations, such as text color and size, and margins. Styling on components in Perspective
utilizes CSS, and Style Classes are user defined configurations that allow you to quickly add several styling rules to a component. Style
Classes exhibit inheritance, so making changes to a Style Class configuration will propagate those changes down to any components using
the Style Class.

Perspective Design Considerations

With Perspective, it's more important than ever to have a plan before you start designing. Here is a short list of the things you want to think about
before starting to build you visualization system. Note that this assumes you already have your Tags, database, and other Gateway items taken care
of.

Make a flowchart of your project. How will users navigate, and what is the tree structure for your pages and popups?
Make a visual outline of each page. What docked windows do you want? What will you navigation look like?

Get an idea of what windows you want, and how you want them to look.

Does your project need to be mobile responsive? Plan the look for both a large and small version of each window.

Once you have an idea of what your session will look like, you can start designing.

Designing Your Main Views
Deciding on headers, tab strips, navigation trees or other methods of navigation is just a start in Perspective.

If you want to keep things simple, you can use a coordinate container. This will feel extremely similar to a Vision window since all the components
have an X, Y, width, and height. Just drag your components onto the View and use the handles to stretch them to the size you want. These views will
behave similar to a Vision window with all components anchored only to the top and left. You can change the Mode property in the root container to
"Percent" to make the components behave similar to the Relative layout mode in Vision. Many will use this with a single docked view for navigation.
This will create a project very similar to the Vision Single Tier Nav project template.

Views can be nested inside each other to create more complex structures. If you want a more structured layout, you can use the flex container with
other views inside it. A flex container creates a row or column structure out of your components. For example, you could use use a flex container with
a header at the top, and a coordinate container filling the rest of the view. This is another simple structure that creates a similar structure to a Vision
window with an anchored header and relative layout components in the main space.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Workstation
#
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Coordinate+Container
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Flex+Container

If you want to make your project mobile responsive, there are other types of containers that you can use. The breakpoint container allows you to
show two completely different views based on the width of the session.

Docked Views and Pages

A session, much like a client, is made up of more than one view, and you will often see multiple views at
the same time. In Vision, you have multiple windows open, and certain windows are designed to be IN DUC T I VI
docked or floating. In Perspective you have Pages instead. A Page contains a set of views that open and UNIVE RS IT

close together. Most commonly, a page will have a main View and a docked view.

Navigation in Perspective means moving from one page to another, not opening and closing multiple

windows. This allows you to use the forward and back buttons on your browser as a part of your . .
navigation strategy. Docked Views in

Perspective

There is a shared space that all pages inherit from, so you can set up docked views there, and any page
that is open will automatically have those docked views open as well.

There are many settings for your docked views. You can set these views to be expandable, auto hide Waitch the Video
depending on session width, and a number of other options.

JSON Component Properties

Perspective components have a slightly different type of property. In Vision, we used a flat property structure where everything was a basic data type
like integer or string, except for datasets. If you wanted a dynamic number of properties, you had to create a dataset, then use scripting to pull the
values out. In Perspective, all of the properties on a component or container are JSON objects.

This means the properties have different types. They can be a Value (int, float, string, etc), an Array (a numbered set of sub-properties), or an Object
(a complex set of sub-properties with key:value pairs). For arrays and objects, the sub members can be any of the three types.

Datasets can now be stored on components as an array of objects, where each object is a row, and each object has several values that make up the
columns.

Bindings and Transforms

There are more options for bindings that were not possible in Vision, and this is only partly due to the new property structure. For example, there is an
HTTP binding that allows you to directly connect to a web service and download or upload data.

On top of that, any binding can have transforms on it. A transform is an expression, map, or script that takes in the value of the binding and changes
the output. If you chain together multiple transforms, the output of the previous transform is in input of the next. Think of number-to-color translations.
Instead of creating a custom property with an expression on it and then binding a color to that custom property, you can do it all in one binding. Just
create an expression binding, then add a map transform to change the output value to a color.

Components
Because of all the differences between Perspective and Vision, the two modules necessarily have a different set of components. There is no plan to
ever have a one-to-one parity between components, and not all of the Vision components will make their way into Perspective components. Some

components are new to perspective like the Menu tree and the Link components. The Link component was not feasible in Vision, but with Perspective
Sessions living in a browser it makes sense to have that component.

Comparison of Perspective and Vision Functionality

Here is a quick comparison of summary of basic Perspective concepts, and how they are similar to / differ from their Vision analogs.

Perspective Similar Perspective Description
Concept Vision
Concept
Session Client A Perspective Session is a running instance of an application, much like a Vision client. Whereas Vision clients run

as independent Java programs on a user's machine, a Perspective session runs natively in a web browser (or the Ig
nition Perspective App).

Notably, a session can run across multiple pages in the same web browser. This is similar to how sessions function
elsewhere on the Internet: log into your favorite shopping website and then open several new tabs, each one knows
about your current shopping cart.

Page Desktop A page in Perspective equates to a single page in a web browser. Pages are the main navigational unit in a
(A.K.A session, and consist of one or more views. Each page is associated with a URL, which means the Forward and
multi- Back buttons in a web browser can be used to navigate to pages that have already been visited. Multiple pages can
monitor be open as part of the same Session, similar to how multiple desktops in a Vision Client may be open

clients) simultaneously.

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Breakpoint+Container
https://www.inductiveuniversity.com/videos/docked-views-in-perspective/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components

View

Container

Component

Property

Session
Property

Events and
Actions

Styles

Window
and Templ
ate

Container
+ Layout
Constraints

Component

Property

Client Tag

Componen
t Scripting

Componen
t Style
Properties
/Customiz
er

Views can be docked to specific edges of the page, or be used as a "Main View". Each page consists of at least a
main view, but multiple views can be configured on a page. A page has specific regions where you can place
instances of your views.

A View is the primary unit of design for Perspective. Perspective Views fill the roles of both Windows and Templates
in Vision. Thus, you could think of a view as a window that can be nested inside other windows, or as a template
that can be maximized or docked. Views have a root container, much like windows in Vision.

Nesting one view inside another requires the Embedded View component. Parameters may be defined on the view,
and then passed into the embedded view

There are also components that may dynamically create view instances (like the Flex Repeater component). In this
way, views act like templates just as they do in the Vision module. Parameters can be passed into a view from an
external source.

Containers are objects that contain components. You can nest one container inside of another.

In Perspective, the way that components reposition and resize is managed on the container, and every component
contains only simple information about its size and position, which is interpreted based on the container's
specifications. There are several container types, and each type is defined by the layout type it uses.

Components, like in Vision, are displays, buttons, charts, labels, and other objects that display information to the
user viewing the session. Components are the elements displayed in the Component Palette in the Designer.

Properties serve as a place to change how a component looks or behaves, or store specific pieces of information.

In Perspective, the property tree of a component is a JSON object, and as a result, there are only three configurable
data types: value, object, and array. Rather than characterize the expected format of the property's data (e.g.,
integer, boolean, or string), these data types control the structure of the property tree. No further configuration of
data types is required.

Every session has a configurable collection of properties that can be managed from the designer. They can be
referenced from any view in the project, both from property/expression bindings and from scripting.

Event and Actions are configured similarly to the Component Scripting section in Vision. However, Perspective
offers additional configurable events along with possible responses to these events (Actions).

Styles in Perspective use CSS, and are configurable from the properties on each component. However, Perspective
also offers the ability to configure style classes, which allow you to reuse configured styles across many different
components. Styles can also be configured to change based on more advanced properties, like whether a mouse is
hovering over the component, or how wide the viewport of the viewing device is.

New Features in Perspective

In addition to an entirely new set of components, Perspective offers a variety of new features in the realm of Project design.

Perspective
Term

Transform

Component
Messaging

Description

A transform lies between a binding and the property it modifies, and provides an opportunity to change the value or format of the
binding's output. For example, if a tag binding yields 0 for Normal and 1 for Faulted, we could use a transform to map 0 to Green

and 1 to Red.

Perspective offers the ability to communicate between components, using a similar style of messaging that one might use to
communicate between clients in Vision. You can send messages from any component using the system.perspective.
sendMessage function, and you can configure message handlers on any component. This is useful for controlling the behavior of
one component from another in a different view.

https://legacy-docs.inductiveautomation.com/display/DOC80/Perspective+-+Container+Palette
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.sendMessage

Perspective Co-Branding

The following feature is new in Ignition version 8.1.20
Click here to check out the other new features

Perspective Co-Branding is a Gateway setting that allows users to customize the look their Perspective
Sessions with logos, pictures, and colors. Various aspects of Perspective can be customized, such as
the login screen, the desktop icon, and more. The table below lists various properties and elements that
can be modified. These settings will not affect the internal contents or styles of the Perspective Session:

Property

Custom
Branding

Backgroun
d Color

Text Color

Button
Color

Button
Text Color
Logo

Favicon

App Icon

Preview

Description

Choose to toggle custom branding on or off. Default is off.

Choose what the background color will be.

Choose what the text color will be.

Choose what color buttons will appear as.
Choose what color button text will appear as.
Graphic logo used on the Perspective Session login and loading screen. Supports .jpg

or .png formats. Suggested logo size is 160x160 pixels.

Favicons will appear on your desktop browser tab after Session refresh. Supports .png
format. Suggested logo size is 180x180 pixels.

The iOS app icon is used when saving the page to the home screen. Supports .png
format. Suggested logo size is 180x180 pixels.

Note that the icon used on Android devices when creating a project shortcut is set by
"Launch Icon" project property.

Shows a preview of the login and loading screens with custom branding applied.

Note: Perspective Co-Branding is currently only available for Standard and Cloud Edition.

App Bar Customization

In addition to the login, loading, and terminal screens, you can also personalize the bottom-docked App Bar by:

Choosing to toggle the App Bar off or on.
Changing the icon for the About button.
Changing the view that displays the about modal.
Changing the title of the about modal.

On thispage ...

® App Bar Customization
® Best Practices (Favicons and
App Icons)
® Favicons
® App lcons
® Best Practices (Design)
® Examples
® Example 1 (Login and
Terminal Screens)
® Example 2 (App Bar)

The table below lists the customizable elements of the App Bar, as well as with what they look like by default. For more information about individual
Session properties that affect the App Bar, click here.

Name

Show

About Icon

About View

Default

False

J

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Perspective+App#IgnitionPerspectiveApp-CreateProjectShortcuts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveGeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Session+Properties#SessionProperties-SessionPropertiesTable

Ignition‘./

by inductive automation

Ignition by Inductive Automation

Ignition by Inductive Automation® is the world’s first unlimited
industrial application platform because it empowers you to connect all
your data, design any kind of industrial application with ease, and
instantly web-deploy an unlimited number of clients to anyone,
anywhere. Ignition puts your plant floor in the palm of your hand with
beautiful, mobile-responsive industrial applications that can run
natively an any device with a web browser, so you can view your
processes remotely and control them with the touch of your finger.

Modules m

About Title

About Ignition

Best Practices (Favicons and App lcons)

There are some considerations to take when selecting or designing a logo to use as a favicon or app icon. While these considerations are not
mandatory, they may give some insight into optimal logo design.

Here are a few tips that applies to both favicons and app icons:
® Use a higher resolution of the final icon you have selected, if possible.

© Since your image resolution may be downscaled, using a higher resolution picture will help retain image quality.
® |f bandwidth or some other bottlenecking factor is an issue, using smaller favicons may help reduce data load.

Favicons
Favicons are generally used in browser tab icons, desktop icons, and Android icons. The bullet(s) below contain tips on designing favicons:

® (Chrome on Android specific) If your favicon is too small, then the favicon will not be used when saving to the home screen.
® For typical uses in desktop environments, either 16x16px or 32x32px are recommended.

© Modern browsers downsize images, so larger images will also work.
® For multi-platform environments, either 180x180px or 192x192px are recommended.

© Many Android devices will not use favicons smaller than a certain size.

App Icons

App icons are used by Apple devices and may follow some different rules than favicons. For Apple's official documentation detailing best practices
and creating an app icon for iOS and other Apple devices, click here.

One caveat to keep in mind is that while the favicon and logo fields will accept and render icons with transparent designs without issue, attempting to
use an icon with transparency as an app icon will result in the icon appearing all black.

https://developer.apple.com/design/human-interface-guidelines/foundations/app-icons/

Best Practices (Design)

While not exactly white labeling, the co-branding feature allows you to customize the look of your projects. Listed below are a few basic tips for
designing your Perspective login, loading, and terminal screens. These tips are not mandatory, as styles, personalization, and customization
preferences differ from person to person and organization to organization. Additionally, these tips may extend to apply during general Perspective
Session design.

® Use text colors that can be easily seen against their backgrounds.
* Keeping designs simple will help minimize cognitive load.
® Use logos and icons that are easily identifiable.

Examples

Example 1 (Login and Terminal Screens)

The settings below will modify the look of the Perspective login, loading, and terminal screens:

Perspective Brand Customization |

Custom Branding Enable Co-Branding
Background Color [N
Text Color []
Button Color]
Button Text Color | |
m or drag files here
Logo .
ialogo.jpg [
Graphic logo used on the Perspective session login and loading screens.
[Supported format: jpg or png. Suggested logo size: 160x160 pixels. More info [4.)
or drag files here
Favicon
Favicons will appear on your desktop browser tab after session refresh.
[Supported format: png. Suggested logo size: 180x180 pixels. More info [4.)
m or drag files here
App Icon
The i0S app icon is used when saving the page to the home screen.
(Supported format: png. Suggested logo size: 180x180 pixels. More info [.)
Property Value

Custom Branding = True

Background Color = #1383C3
Text Color #FFFFFF
Button Color #1383C3

Button Text Color = #FFFFFF

Logo Inductive Automation Logo

The following is the rendered output:

O;

test
You must log in to continue.

CONTINUE TO LOG IN

Log In

Powered by Ignifion‘./

Logged Out

You are now logged out of your Perspective session. If you are on a shared device, it is
recommended to log out of all other sessions before walking away.

Powered by Igni’rion‘./

Example 2 (App Bar)

The settings below will modify the look of the Perspective Session's App Bar:

appBar

togglePosition

: right

-

about

show : true

: s - ry]
1con materlal/Clea |_‘|*"|d‘_a B
path : appBarAboutView
title : I am a new title!
Property Value

show True

icon material/clean_hands

path appBarAboutView

title I am a new title!

The following is the rendered output affected by the icon property:

The following is the rendered output affected by the path and title properties:

I am a new title!

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

: |FD|SDFT'I e

7 N NI LA

	Perspective
	Perspective Designer Interface
	Perspective Sessions
	Ignition Perspective App
	Session Properties
	Perspective Session Proxy Considerations

	Perspective Design Tips
	Pages in Perspective
	Views in Perspective
	Docked Views
	Embedded Views
	Popup Views
	Self-Hiding Navigation Drawer

	Working with Perspective Components
	Perspective Component Properties
	Images and Icons in Perspective
	Localization in Perspective
	Bindings in Perspective
	Tag Bindings in Perspective
	Drop Configuration

	Property Bindings in Perspective
	Expression Bindings in Perspective
	Expression Structure Bindings in Perspective
	Query Bindings in Perspective
	Tag History Bindings in Perspective
	HTTP Bindings in Perspective
	MongoDB Bindings in Perspective
	Transforms
	Map Transform
	Format Transform
	Script Transform
	Expression Transform

	Binding Property Path Reference

	Component Events and Actions
	Perspective Pipes

	Perspective Project Properties
	Styles
	Perspective Built-In Themes
	Changing the Theme From a Session

	Style Classes
	How to Change Style on Hover
	How to Change Text Size Based on Width
	How to Create a Flashing Component

	Creating and Using Custom Perspective Themes

	Scripting in Perspective
	Perspective Component Methods
	Component Message Handlers
	Perspective Property Change Scripts
	Perspective Session Event Scripts

	Security in Perspective
	A Vision-Oriented Guide to Perspective
	Perspective Co-Branding

