
1.  Symbol Factory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
2.  Web Dev  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.1  httpPost Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
3.  Cloud Connector Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1  MongoDB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16



1.  
2.  

3.  

Symbol Factory

The Symbol Factory module is included with the Vision module or the 
Perspective module. Symbol Factory provides nearly 4,000 industrial high 
quality Scalable Vector Graphics (SVG) and symbols for your 
projects. Vector based graphics can be resized with no pixelation or 
distortion. You can add these images to your project with a simple drag 
and drop.

In Vision, the images can also be edited or even animated. In Perspective, if 
you need animated symbols, try the  .Perspective - Symbols Palette

Symbol Factory images are also great for mobile responsive design, or any implementation where users 
view your HMI and SCADA on screens of various sizes. 

On this page ...

Using the Symbol Factory

Using the Symbol Factory

Launch the Designer and open your project.
Choose   under the   menu or the project navigation tree. If you can't find these, the Symbol Factory module probably Symbol Factory Tools
isn't installed. The Symbol Factory browser opens as a pop-up window that stays on top of the Designer. 

 
In the Vision module, there is also an icon (valve icon in the upper left) for quick access to the Symbol Factory images at the top of the 
Component Palette.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Animation
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette


3.  

4.  

5.  

6.  
7.  

Browse the different categories to explore what symbols are available, or search to find a specific symbol. 

Note: When searching Symbol Factory, it is recommended to select the Enhanced radio button in the Symbols List. The enhanced symbols 
are more detailed. They also have groupings that enable you to more easily  them when used in Vision.animate

Find a symbol that you'd like to use and drag it onto an open Vision window or Perspective view. 

In Perspective, you can resize the image and change the style settings. See .Images and Icons in Perspective
In Vision, the symbol will become a group of shapes. See  .Images and SVGs in Vision

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Animation
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+Icons+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision


7.  

Related Topics ...

Images and Icons in Perspective.
Images and SVGs in Vision.
Perspective - Symbols Palette

https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+Icons+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Symbols+Palette


Web Dev

The WebDev module enables you to directly program against the web server inside the Ignition 
Gateway and systems running Vision Clients. Webpages can be built by hand using a combination of 
Python programming and static web resources such as images, CSS files, JavaScript files, and HTML 
files. Likewise, this module allows you to build RESTful web service APIs that allow external systems to 
interact with the Ignition server. This module follows the normal installation process.

The WebDev Welcome tab allows you to create your program using any of the four types of resources: 
Python, File, Text and Mounted Folder. Each one of the resource types is a template to help you get 
started creating your own program.  Once you select a resource type, enter a name, and press 'create', 
and the specific resource template will open.  Each resource type will help you get started.  The WebDev 
Welcome tab will show you any recently modified resources along with the date it was modified and who 
modified it. You can double click on a recently modified query to easily open and update it.

The WebDev Welcome tab provides a quick way to create a new resource and update existing ones. 

On this page ...

Resources
Mounted Folder
Python Resources

Return Value
Parameters

URL
Right Click Menu
Security Settings

Enabled
Require HTTPS
Require Authentication

https://docs.inductiveautomation.com/display/DOC81/WebDev+Module


Disclaimer
The WebDev module requires specialized web-programming knowledge. The Inductive Automation support team is unable to provide detailed advice 
about creating a particular site. Furthermore, they are unable to provide troubleshooting beyond the basic functionality of the module.

Resources

Each type of resource may specify its  . It is important to specify the correct content type for the contents of the resource. When the content type
WebDev module is installed, a new kind of project resource heading will appear in the Designer's project browser called "Web Dev". Right-clicking on 
this heading will allow the creation of several new types of project resources:

WebDev resources are stored as readable  and  files on the Gateway's file system. .json .py

Python Resource - Python resources are dynamic web resources. Each time a user browses to the URL associated with a Python resource, 
the script will run and generate a response in the form of a Python dictionary. See  for more details on formatting this response.Return Value
File  - A file resource is a static resource, usually a binary resource such as an image. Resource

Note: You will need to re-import a file resource if it has been changed since adding it to WebDev.

Text  - A text resource is a static resource much like a file resource, except that its contents may be directly edited from within the Resource
Ignition Designer. These are useful for static HTML, CSS, and JavaScript files.

Mounted Folder

Mounted Folders are a way to expose a folder from the Gateway's hard drive as a resource endpoint. For example, if the Ignition server had some 
directories that looked like the following:

Pseudocode - Example Directories

/opt/public/a.jpg
/opt/public/info.html

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418276#WebDev-ReturnValue


You can create a Mounted Folder named "assets", and point it to  , and then you can access those assets via:/opt/public/

Pseudocode - URL to Mounted Folder

http://host:port/system/webdev/projectname/assets/a.jpg

Regarding Filenames
Be mindful of the filenames in the mounted folder, as URL encoding will need to be used to access the file. For example, if a file named "My file.pdf" 
was placed in the mounted folder above, the file name would likely need to encoded:

http://host:port/system/webdev/projectname/assets/My%20file.pdf

In addition, it is recommend to avoid using the following characters within filenames in mounted folders as they can result in errors:

' (apostrophes) 
, (commas)
/
?
#
%
&

Project Resources Folders

If a Mounted Folder is placed in a Project Browser folder, then the endpoint must also include the folder name. For example, if the Mounted Folder 
named "products" is located in the "images" folder:

The files would be accessible via:

Pseudocode - URL for Mounted Folder with Project Resource Folder

http://host:port/system/webdev/projectname/images/products/a.jpg

Python Resources

Python resources are the heart of the functionality of the WebDev module. These resources are completely dynamic, and can handle all parts of the 
HTTP protocol, formulating any type of response.



Each time an incoming HTTP request arrives at a URL where a Python resource is mounted, the corresponding Python script will be run. Each 
Python resource can have a script for each HTTP method. In practice, most Python resources will probably only implement one or two of these, 
usually doGet or doPost at a minimum. The available methods are as follows:

doGet
doPost
doPut
doDelete
doHead
doOptions
doTrace
doPatch

Return Value

Return values for each do* functions can generate a response, which should always be a dictionary. In the dictionary, the keys in the table below are 
recognized. The keys are listed here in the order they are evaluated. For example, if you have both file and bytes, only file will take effect. The 
exception is the contentType key, which may be included with any of the other keys to override the default content type.

HTTP 
Response

Description

html HTML source as a string. The value should be a string, which should be the source of an HTML document. Content type is assumed 
to be text/html. 

json The value is assumed to either be a string (which should be valid json) or to be a Python object, which will then be encoded into a 
json string. Content type will be application/json.

file The value should be a string, which should be the path to a file on the server's filesystem. If no contentType is specified, then the 
system will attempt to probe the content type from the operating system using java.nio.Files.probeContentType. If the file key is 
present, but the value points to a file that doesn't exist, an HTTP 404 will be returned.

bytes  The value should be a byte array. The default content type is application/octet-stream, but you probably want to specify your own.

response If none of the other keys are present, the system will look for the key response which will be stringified and then returned with the 
content type text/plain.

contentTy
pe

The mime type of the response. Needed only if ambiguous.

If your implementation of the do* function returns a dictionary with none of the above keys, an HTTP 500 error will be returned. However, if you return 
None, no HTTP 500 error will be returned. In this case, it is assumed that you used the request['servletResponse'] parameter to directly formulate your 
HTTP response.



This feature was changed in Ignition version :8.1.8

As of 8.1.8, the default encoding for , , and  types was changed to UTF-8. Formerly they used ISO-8859-1.html json response

Parameters

Each do* method receives the same two parameters (also called arguments): 'request' and 'session'. 

Request Parameter

The request parameter is a dictionary with information about the incoming web request.

Key Type Description

cont
ext

object A reference to the Gateway's context object. This provides direct access to the Ignition GatewayContext. More information about 
this object may be found in the Ignition   and associated JavaDocs.SDK Programmer's Guide

data plain 
text or 
raw 
byte 
array

The data on the request. If the content type is application/json, it will be a Python structure (list or dictionary). If not, it will either 
be plain text or a raw byte array.

If the incoming request body was not text, it will be available as a byte array.

post
Data

string This parameter is only present for the doPost method, and its value is different based upon the value of the incoming HTTP 
request's Content-Type header. If the content type is 'application/json', then the request['postData'] will be a Python dictionary 
structure which is the result of parsing the JSON document that was posted. If the content type starts with 'text/', then the value 
of request['postData'] will be the text which was posted, as a string.

head
ers

diction
ary

A dictionary of header : value pairs. If multiple values were returned for the same header, values will be in a tuple. The HTTP req
 will be in a dictionary under request['headers']. For example, you could read the User-Agent string with requestuest headers

['headers']['User-Agent'].

para
ms

diction
ary

This will be contained in a dictionary accessible via request['params']. 
Any URL parameters such as the following:

Pseudocode - Request Parameter

/system/webdev/project/foo?param1=value&param2=other_value

For the given example, request['params'] = {'param1':'value', 'param2':'other_value'}.

rema
inin
gPath

string request['remainingPath'] will be "/bar". Remaining path will be "None" if nothing is found after the resource name. This provides 
the remaining text after a file resource. If you have a resource called 'foo', and a request is made to:

Pseudocode - Remaining Path

/system/webdev/project/foo/bar

remo
teAd
dr

string Returns the IP address of the client. Gives the remote IP address of the entity that made the web request. 

Note: This is from the perspective of the web server, and so may not be what you expect due to the effects of things like NAT-
ing routers.

remo
teHo
st

string Returns the fully qualified name of the client. Gives the remote host of the entity that made the web request. 

Note: This is from the perspective of the web server, and so may not be what you expect due to the effects of things like NAT-
ing routers.

sche
me

string The scheme is available via request['scheme']. The value will be 'http' or 'https'.

https://legacy-docs.inductiveautomation.com/display/SE/Ignition+SDK+Programmers+Guide
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields


serv
letR
eque
st

object The underlying Java HttpServletRequest object. This parameter and the following servletResponse parameter give you direct 
access to the underlying Java servlet   and   objects. This provides direct access to the Ignition GatewayContext. request response
More information about this object may be found in the   and associated JavaDocs.Ignition SDK developer guide

serv
letR
espo
nse

object The underlying Java HttpServletResponse object.

Session Parameter

The session parameter is a Python dictionary which may be used to hold information which persists across multiple different calls to your Web Dev 
Python Resource, or across multiple Python Resources. Session management is handled automatically, and this dictionary is created for each new 
client session. (The client must have cookies enabled for sessions to work). You may place any key-value pairs in the session dictionary you'd like, 
just make sure that the values are things that can be serialized.  serializable.All normal Python types (scalar, dictionary, lists, and tuples) are

If authentication is required, will have a 'user' attribute containing information about the authenticated user, and a 'retryAttempts' attribute with the 
number of attempts made.

URL

Each resource will be directly accessible over HTTP and mounted beneath the /system/webdev path.

For example, if you created a Text Resource directly beneath the "Web Dev", it would be mounted at:

Pseudocode - Project Resource

http://host:port/system/webdev/project/resource_name

Notice that the project name and resource name are part of the path. If your resource is nested inside a folder, it will be part of the path too. For 
example:

Pseudocode - Folder Resource

http://host:port/system/webdev/project/folder_name/resource_name

Web Dev resources may have periods in their name. This means that if you upload an image file, you may include its extension directly in its name so 
that its path is more natural.  For example, you might name an image resource "my_image.png" so that its URL is:

Pseudocode - Image Resource

http://host:port/system/webdev/project/my_image.png

Requests to the root of your project will attempt to load a resource named "index.html". If no such resource exists, a 404 response code will be 
returned instead.

Pseudocode - Request to Root Project

http://host:port/system/project

Right Click Menu 

The Webdev Right Click menu is similar to other applications edit menus in that it provides basic copy/paste functionality. Options are described in the 
following table.

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html
https://legacy-docs.inductiveautomation.com/display/SE


 

Option Description

Rename To rename a resource, select this option then enter a new name.

Cut Cuts the selected resource onto the clipboard.

Copy Copies the selected resource onto the clipboard. It can then be pasted within the Web Dev make a duplicate.

Copy 
Path

Copies the path of the selected resource onto the clipboard. For example, "newfile.html".

Paste Pastes the the selected resource from the clipboard into the selected context.

Delete Deletes the current selection. This can also be done using the delete key.

Protect Locks the individual project   from inside the resource .Designer

Copy 
Mounted 
Path

This copies the partial mounted path for the resource into your clipboard. This allows you to easily paste the path into your browser for 
testing. For example,"/system/webdev/MyProject/newfile.html". You need to add the path to your gateway to the beginning of this string. 
A full url would look like: " "http://10.10.10.150:8088/system/webdev/MyProject/newfile.html

Security Settings

There are several security settings for Python Resources. All of the settings can be set individually on each resource.

Enabled

If Enabled is checked, then the HTTP Method is enabled. 

Require HTTPS

If this is checked, then the resource will only be accessible via an SSL connection. If a non-secure HTTP transport is used, the browser will be sent a 
redirect to the the Gateway's SSL port. The Gateway must have SSL enabled, of course.



Require Authentication

If this is checked, the resource will require authentication before it executes. This uses HTTP BASIC auth, and so should really be combined with 
the Require HTTPS option so that the credentials are encrypted. The username/password combination sent through the HTTP BASIC authentication 
headers will then be passed through the chosen User Source. If roles are specified, the user must have at least one of the roles. Specify multiple 
acceptable roles using a comma separated list. If the credentials are missing, an HTTP 401 will be returned with the WWW-Authenticate header. If the 
credentials are present but incorrect, an HTTP 403 will be returned.

If the credentials succeed, the Python resource will execute. In addition, the authenticated user object returned by the User Source will be accessible 
inside the session object as session['user']. Since the user is stored in session, if the client has cookies enabled, then further requests against the 
same session will use the stored user object and will not require additional authentication.

Related Topics ...

Web Services, SUDS, and REST
HTTP Methods
Installing or Upgrading a Module
Managing Users and Roles

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Web+Services%2C+SUDS%2C+and+REST
https://legacy-docs.inductiveautomation.com/display/DOC81/HTTP+Methods
https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+or+Upgrading+a+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Managing+Users+and+Roles


1.  

2.  
3.  

4.  
5.  

httpPost Example

httpPost Example

This example demonstrates how to allow Ignition to receive data from an external source. It uses a 
button to send JSON data through an httpPost command and a Python Resource in the Web Dev 

to receive the post and do something with the data. This button example is for testing purposes module 
only, the common use-case for posting data is to use another program to post data.

Open the Designer and right-click on the Web Dev object in the Project Browser. Select New 
Python Resource. 

Name the Python resource  .postjson
Select the doPost HTTP method from the dropdown in the upper left. 

Select the Enabled option.
Copy this code into the doPost function. 

On this page ...

httpPost Example

https://legacy-docs.inductiveautomation.com/display/DOC81/WebDev+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/WebDev+Module


5.  

6.  

7.  

"postjson" Python Resource (Web Dev Section)

# take in some JSON data and print it
# expecting 'names' and 'values' that are of the same length

# get the incoming parameters
data = request['postData']
names = data['names']
values = data['values']
# this will print to the wrapper.log file
print names, values

# format the string into HTML
formattedString = "<html><body>"
# loop through and add names and values
for i in range(len(names)):
        formattedString += "%s: %s, " %(names[i], values[i])
# remove the last ', ' and add closing html
formattedString = formattedString[:-2]+"</body></html>"
# this will print to the wrapper.log file
print formattedString

# return the value string
return {'html': formattedString}

Create a button on a window to test the above code. Copy the code below into your button. 
Make sure to change the  variable to the name of your project. If you used any ProjectName
name other than "postjson" for step 1, change the  variable as well.doPostName

Call Web Service (Button component on a window)

# post data to the web service in a json format
# this allows you to use the 'postData' object in the Python Resource

# create url to post to
projectName = "MyProject"
doPostName = "postjson"
url = "http://localhost:8088/main/system/webdev/%s/%s" %
(projectName, doPostName)
# create the dictionary of parameters to pass in
params = {}
params['names'] = ['String','Integer']
params['values'] = ['Hello World', 42]
# encode dictionary to JSON
jsonParams = system.util.jsonEncode(params)

# post to Ignition
postReturn = system.net.httpPost(url,'application/json',jsonParams)
# print return value
print postReturn

Now test your button. Make sure to open the console to see the print out, or the wrapper.log file 
to see any errors caused by the doPost function.



Cloud Connector Modules

Cloud Connector modules offer extended functionality to  and standard . Ignition Cloud Edition Ignition
Similar to regular Ignition modules such as  or , Cloud Connector modules can be Perspective SQL Bridge
installed to new or configured instances of Ignition, and will integrate seamlessly with other Cloud Edition 
modules and existing .Ignition modules

Cloud Connectors

Cloud Connectors come bundled with Ignition Cloud Edition and are by design, intended for use in cloud 
environments. However, standard Ignition can still utilize the features of Cloud Connectors. Each Cloud 
Connector has a primary purpose, such as connecting to NoSQL databases using the MongoDB 
connector.

On this page ...

Cloud Connectors

Cloud 
Connector 
Module

Description

MongoDB Configure connections from Ignition to MongoDB databases. Update, insert, delete, and take aggregates of documents or list 
collections and connector information using included  . Pull information from databases to display on Perspective system functions
components using  . MongoDB Perspective bindings

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Cloud+Edition
https://legacy-docs.inductiveautomation.com/display/DOC81/Introducing+Ignition
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Modules
https://legacy-docs.inductiveautomation.com/display/DOC81/system.mongodb
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB+Bindings+in+Perspective


MongoDB

 is a non-relational, NoSQL database. Unlike relational SQL databases like Microsoft SQL MongoDB
Server, MongoDB uses a JSON-like structure called collections instead of tables, with each JSON "row" 
referred to as a document. This in turn leads to lighter queries, helping optimize the performance of your 
Gateway and database connection.

Aside from a local installation, MongoDB can also be hosted in the cloud using the cloud service 
MongoDB Atlas. There are specific features which may draw users toward MongoDB Atlas, such as not 
needing to maintain a server or configure any clusters.

See the  for more information on MongoDB and MongoDB Atlas.official MongoDB documentation

Module Information

The MongoDB Cloud Connector module comes with , but can also be used with a Ignition Cloud Edition
standard version of Ignition. Features of the MongoDB Cloud Connector include:

Connectivity to MongoDB through the Gateway webpage interface.
System functions to interact with connected MongoDB documents using a Python scripting API 
and expression language functions.
A  that reads information from MongoDB documents to display on a Perspective Binding
component.

On this page ...

Module Information
Gateway Interface

Status Page
Config Page

Connecting to MongoDB
Get the Connection URL
Interpreting the Connection 
URL
Get the Database Name
Connect Ignition to MongoDB

MongoDB Perspective Bindings
MongoDB System Functions

Gateway Interface

After installing the MongoDB Cloud Connector, there will be new options available on the Gateway webpage's  and  pages.Status Config

Status Page

The Gateway webpage's Status page will show information about your MongoDB connections. See the  page for more Connections - MongoDB
information.

Config Page

The Gateway webpage's Config page will allow you to make connections from Ignition to MongoDB databases. To set up a MongoDB connection, 
navigate to the Gateway webpage's  >   >  .Config section Connectors MongoDB

The table below outlines the properties available when creating or editing a MongoDB connection:

Property Description

Name The name of your MongoDB connection.

Description A description of your MongoDB connection.

Connection 
Scheme

Prefix that identifies the connection format. Default is . mongodb

Note: If you are creating a connection to MongoDB Atlas, you will need to change the Connection Scheme to .mongodb+srv

https://www.mongodb.com/docs/
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Cloud+Edition
https://legacy-docs.inductiveautomation.com/display/DOC81/system.mongodb
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Status
https://legacy-docs.inductiveautomation.com/display/DOC81/Config
https://legacy-docs.inductiveautomation.com/display/DOC81/Connections+-+MongoDB


1.  

2.  

Connection 
Hosts

Host or list of hosts to connect to, comma separated. If no port is specified, the default port of 27017 is used.

Database The name of the database to connect to.

Username The username to use when connecting.

Change 
Password?

Check this box to change the existing password. This property will not be available for new connections.

Password The password to use when connecting.

Password Re-type password for verification.

Connection 
Properties

Any extra connection properties you need to specify, such as enabling or disabling TLS.

If you are using mongodb+srv as the Connection Scheme to connect to MongoDB Atlas, TLS will be enabled by default.
If you are using   as the Connection Scheme to connect to MongoDB, TLS will be disabled by default.mongodb

Note: 

If you are using a trusted certificate, Ignition will automatically use the certificate without needing any configuration.

If you are using a custom or self-signed certificate, you will need to specify the location of the certificate, as well as any other 
identifying information such as the password.

Enabled Enable or disable the database connection. Default is true.

Connecting to MongoDB

With the MongoDB Cloud Connector installed, you will be able to connect to a MongoDB database. The steps below outline how to connect to 
MongoDB. In this example, we will be connecting to MongoDB Atlas.

Get the Connection URL

Go to your MongoDB Atlas Dashboard and click in the  section.  Database Deployment

On the Database Deployments window, click .Connect



3.  

4.  

1.  

2.  

You will be prompted to choose a connection method. Click .Connect your application

Choose  for the driver, and select the latest version. Your connection URL will appear, giving you the information you need to connect Java
Ignition to your MongoDB database.

Interpreting the Connection URL

The connection URL will have all the information necessary to set up a basic connection. Note that you will still need to specify extra connection 
properties such as Transport Layer Security (TLS) or certificates should you need them.

Your connection URL will look something like the example below, with specific sections of the connection URL corresponding with specific Gateway 
fields from the MongoDB connection setup process.

mongodb+srv://<username>:<password>@<clustername.example.mongodb.net>/?retryWrites=true&w=majority

Gateway Field Connection URL Value

Connection Scheme mongodb+srv (or mongodb if not using MongoDB Atlas)

Connection Hosts <clustername.example.mongodb.net>

Username <username>

Password <password>

Connection Properties retryWrites=true&w=majority (You can also add extra connection properties here)

Get the Database Name

On the MongoDB Atlas Dashboard, navigate to  >   >  >  .Deployment Database Your Cluster Name Browse Collections



1.  

2.  

1.  

2.  

Your dashboard will list any existing databases within your cluster. Choose which database to connect to from this list. In this example, we 
will be using the  database.sample_guides

Connect Ignition to MongoDB

Navigate to >  >  on the Gateway, and click Config Connectors MongoDB Create new MongoDB Connector.

Fill out the Gateway fields with the appropriate information from your connection URL and the database name, then click Create New 
.MongoDB Connector



2.  

3.  Your MongoDB connection is now created. It may take a few seconds for your connection to update to a "Valid" status.

MongoDB Perspective Bindings

Users can pull data from a MongoDB database to populate . MongoDB Perspective bindings are read-only, so users will not Perspective components
be able to write to collections from the binding itself. See the  for more details.MongoDB Bindings in Perspective page

MongoDB System Functions

While the MongoDB Perspective binding itself has no write capabilities, the included MongoDB System Functions allow users to read, update, delete, 
and take aggregates of collection documents. See the  page for a list of available system functions.MongoDB System Function

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/system.mongodb

	Symbol Factory
	Web Dev
	httpPost Example

	Cloud Connector Modules
	MongoDB


