
1. Ignition Platform . 4
1.1 Gateway . 6

1.1.1 Home . 13
1.1.2 Status . 16

1.1.2.1 Systems . 20
1.1.2.2 Connections . 35

1.1.2.2.1 Connections - EAM Agents . 36
1.1.2.2.2 Connections - Databases . 38
1.1.2.2.3 Connections - Designers . 41
1.1.2.2.4 Connections - Devices . 44
1.1.2.2.5 Connections - Gateway Network . 48
1.1.2.2.6 Connections - Store & Forward . 63
1.1.2.2.7 Connections - MongoDB . 66
1.1.2.2.8 Connections - OPC Connections . 68
1.1.2.2.9 Connections - SECS/GEM Equipment . 73
1.1.2.2.10 Connections - Perspective Sessions . 76
1.1.2.2.11 Connections - Vision Clients . 81

1.1.2.3 Diagnostics - Execution . 84
1.1.2.4 Diagnostics - Logs . 85

1.1.2.4.1 Wrapper Logs . 89
1.1.2.5 Diagnostics - Running Scripts . 90
1.1.2.6 Diagnostics - Threads . 91
1.1.2.7 Diagnostics - Metrics Dashboard . 94

1.1.3 Config . 102
1.1.3.1 Gateway Settings . 107
1.1.3.2 Email Settings . 112
1.1.3.3 Web Server Settings . 119

1.1.3.3.1 Secure Communication (SSL / TLS) . 125
1.1.4 Gateway Backup and Restore . 132
1.1.5 Ignition Exchange . 136
1.1.6 Gateway Command-line Utility - gwcmd . 143

1.2 Licensing and Activation . 147
1.2.1 Emergency Activation . 159
1.2.2 Transfer a License Key Between Two Gateways . 161

1.3 Projects . 168
1.3.1 Project Inheritance . 172
1.3.2 Project Templates . 180
1.3.3 Project Settings . 187
1.3.4 Project Export and Import . 192

1.4 Ignition Redundancy . 197
1.4.1 Setting Up Redundancy . 203
1.4.2 Database Considerations . 209
1.4.3 Redundant Licensing . 211

1.5 Gateway Network . 213
1.5.1 Gateway Network Certificates and SSL . 226

1.6 Database Connections . 228
1.6.1 Installing Databases . 232

1.6.1.1 Installing IBM DB2 . 234
1.6.1.2 Installing MySQL . 236
1.6.1.3 Installing Microsoft SQL Server Express . 245
1.6.1.4 Installing PostgreSQL . 247

1.6.2 Connecting to Databases . 248
1.6.2.1 Connecting to IBM DB2 . 250
1.6.2.2 Connecting to MariaDB . 253
1.6.2.3 Connecting to Microsoft Azure SQL . 255
1.6.2.4 Connecting to Microsoft SQL Server . 258
1.6.2.5 Connecting to MySQL . 270
1.6.2.6 Connecting to Oracle Express . 273
1.6.2.7 Connecting to PostgreSQL . 277
1.6.2.8 Connecting to SQLite . 279
1.6.2.9 JDBC Drivers and Translators . 283

1.6.2.9.1 JDBC Driver and Database Translator Settings . 287
1.6.3 Store and Forward . 297

1.6.3.1 Using Store and Forward . 299
1.6.3.2 Configuring Store and Forward . 302
1.6.3.3 Controlling Quarantine Data . 304

1.7 Security . 309
1.7.1 Gateway General Security Settings . 310
1.7.2 Classic Authentication Strategy . 313

1.7.2.1 Managing Users and Roles . 318
1.7.2.2 Internal Authentication . 323
1.7.2.3 Database Authentication . 325
1.7.2.4 Active Directory Authentication . 330
1.7.2.5 AD Internal Hybrid . 335
1.7.2.6 AD Database Hybrid . 339
1.7.2.7 Fallback Cache Authentication . 344
1.7.2.8 Verify a User on a User Source . 346

1.7.3 Identity Provider Authentication Strategy . 348
1.7.3.1 Configuring Identity Providers . 352

1.7.3.1.1 User Attribute Mapping . 362
1.7.3.1.2 OpenID Connect 1.0 Example . 374
1.7.3.1.3 SAML Example . 382

1.7.3.2 User Grants . 389
1.7.3.3 Test Login and Logout . 391
1.7.3.4 Security Levels . 395
1.7.3.5 Security Level Rules . 401
1.7.3.6 Troubleshooting Identity Providers . 406
1.7.3.7 Referencing User Information . 409

1.7.4 Service Security . 414
1.7.5 Security Zones . 417
1.7.6 Project Security in the Designer . 420
1.7.7 Security Certificates . 423
1.7.8 OAuth 2.0 Clients . 424

1.8 Designer . 435
1.8.1 General Designer Interface . 446
1.8.2 Designer Tools . 456

1.8.2.1 Image Management Tool . 460
1.8.2.2 Script Console . 463
1.8.2.3 Database Query Browser . 469
1.8.2.4 Output Console . 474
1.8.2.5 Keyboard Layouts . 476

1.8.3 Project Properties . 480
1.8.4 Find and Replace . 488
1.8.5 Windows, Linux, and Mac Keyboard Shortcuts . 495
1.8.6 Saving Projects . 498
1.8.7 Designer Diagnostics . 501

1.9 Tags . 508
1.9.1 Tag Browser . 511
1.9.2 Types of Tags . 521

1.9.2.1 System Tags . 527
1.9.3 Creating Tags . 538
1.9.4 User Defined Types - UDTs . 550

1.9.4.1 UDT Parameters . 566
1.9.4.2 UDT Multi-Instance Wizard . 574
1.9.4.3 UDT Inheritance . 578
1.9.4.4 UDT Nesting . 587

1.9.5 Tag Groups . 591
1.9.5.1 Direct Tag Group Example . 598
1.9.5.2 Driven Tag Group Examples . 600
1.9.5.3 Leased Tag Group Example . 610

1.9.6 Tag Providers . 612
1.9.7 Tag Event Scripts . 617
1.9.8 Tag Properties . 621

1.9.8.1 Tag Alarm Properties . 636
1.9.8.2 Tag Scaling Properties . 644
1.9.8.3 Tag Security Properties . 647

1.9.9 Tag Data Types . 651
1.9.10 Tag Paths . 659
1.9.11 Quality Codes and Overlays . 662
1.9.12 Exporting and Importing Tags . 670
1.9.13 Tag Editor . 679
1.9.14 Tag Report Tool . 681
1.9.15 Tag Diagnostics . 692

1.10 Alarming . 700
1.10.1 Alarm Journal . 707
1.10.2 Configuring Alarms . 716

1.10.2.1 Dynamic Alarm Attributes . 725
1.10.2.2 Alarms in UDTs . 730
1.10.2.3 Alarm Associated Data . 734

1.10.3 Gateway General Alarm Properties . 738
1.10.4 Alarming Schedules . 739

1.11 Localization and Languages . 742
1.11.1 Creating Translation Lists . 746
1.11.2 Switching the Current Language . 757
1.11.3 Localization Best Practices . 758
1.11.4 Translating Built-in Terms . 764

1.12 Expression Language and Syntax . 768
1.13 SQL in Ignition . 776

1.13.1 Writing SQL Queries . 783
1.13.1.1 SQL Select Statements . 788
1.13.1.2 SQL Where Clauses . 791
1.13.1.3 SQL Table Joins . 796
1.13.1.4 SQL Common Functions . 802
1.13.1.5 SQL Stored Procedures . 807

1.13.2 Query Builder . 811
1.13.3 Named Queries . 818

1.13.3.1 Named Query Workspace . 822
1.13.3.2 Named Query Parameters . 829

1.13.3.3 Named Query Caching . 832
1.13.3.4 Named Query Conversions . 834
1.13.3.5 Using Named Queries - Example . 838

1.13.4 Queries in Scripting . 842
1.13.5 Common SQL Tasks . 845

1.13.5.1 Filter Rows in a Table . 847
1.13.5.2 Inserting Data into a Database . 850
1.13.5.3 Updating the Database through the Power Table . 853
1.13.5.4 Refreshing a SQL Query . 857
1.13.5.5 Editing Multi-Selected Rows from a Table . 859
1.13.5.6 Storing Files in a Database . 861
1.13.5.7 Simple Database Editor . 864

1.13.6 Basic SQL Troubleshooting . 873
1.13.6.1 Slow Queries . 876
1.13.6.2 SQL Query Volume Optimization . 878

1.14 Scripting . 882
1.14.1 Python Scripting . 884

1.14.1.1 Variables, Data Types, and Objects . 887
1.14.1.1.1 Numeric Types . 894
1.14.1.1.2 Strings . 896
1.14.1.1.3 Lists and Tuples . 904
1.14.1.1.4 Dictionaries . 909
1.14.1.1.5 Datasets . 912
1.14.1.1.6 Dates . 917

1.14.1.2 Conditions and Loops . 922
1.14.1.3 Error Handling . 927
1.14.1.4 Built-In Functions . 932
1.14.1.5 Libraries . 936
1.14.1.6 User Defined Functions . 939

1.14.2 Scripting in Ignition . 942
1.14.2.1 Getting Started with Scripting in Ignition . 950
1.14.2.2 Gateway Event Scripts . 955
1.14.2.3 Project Library . 965
1.14.2.4 Web Services, SUDS, and REST . 970

1.14.2.4.1 HTTP Methods . 971
1.14.2.4.2 SUDS - Library Overview . 976

1.14.3 JSON Format . 981
1.14.4 Basic Python Troubleshooting . 985

1.14.4.1 Reading Error Messages . 989
1.14.4.2 Troubleshooting - Nothing Happened . 993
1.14.4.3 Troubleshooting Workflow . 995
1.14.4.4 Scripting Vs. SQL Vs. Expressions . 1001

1.14.5 Scripting Examples . 1006
1.14.5.1 Location Based Vision Startup Scripts . 1007
1.14.5.2 Reading and Writing to Tags . 1010
1.14.5.3 Exporting and Importing a CSV . 1013
1.14.5.4 Adding a Delay to a Script . 1019
1.14.5.5 Export Tag Historian to CSV . 1024
1.14.5.6 Parsing XML with the Etree Library . 1027

1.15 Audit Log and Profiles . 1032
1.15.1 Alarm Notification Auditing . 1040
1.15.2 Audit Log Display . 1041
1.15.3 Auditing Actions Reference . 1044

1.16 Docker Image . 1049

Ignition Platform

Overview

The platform refers to the core installation of . It provides all the basic functionalities such Ignition Ignition
as connecting to devices and databases, licensing, launching clients and sessions, and managing all Ignit

 modules.ion

From that, additional modules or projects can be built to suit any customer's needs. Being cross- platform
means that a piece of software like can be installed on multiple types of operating system such Ignition
as Windows, Linux, and OSX. With its architecture, the enables you to build a modular Ignition platform
customized system using modules as the building blocks. Modules are discussed in detail in the Ignition

 section of the User Manual. Modules

The following are key elements to the Ignition Platform. Follow the links for more detailed information on each area.

Feature Description

Gateway The is a , and when it is running, you access it from a web browser. In your web browser, type Ignition Gateway web server http://localh
 to display the homepage. The is the hub for accessing all the functions of the .ost:8088 Gateway Gateway Webpage Gateway server

Database
Connectio
ns

Connecting Ignition with an SQL database dramatically increases functionality. With a database, you can implement logging of data for
historical analysis, tap into your data to discover trends and performance, create charts and reports, store Tag data, and store alarm
logs.

Security Security options in Ignition provide many ways to safeguard your data and applications. You control not only who accesses your
systems, but when and where they can access them.

Designer In your user interface design work is done. You create user interfaces with or Ignition Designer, Vision components Perspective compo
. Tags associated with can instantly data to tables, charts, graphs, and graphs.nents components bind

Tags Tags are points of data and may have static values or dynamic values that come from an address, an expression, or a query.OPC SQL
Tags offer a great amount of power in system design and configuration.

Alarming Alarming enables you to easily create alarms, store alarm history, and design and manage your alarm notifications.

Localizati
on and
Languages

With Localization you can translate text into multiple languages in a project for display on client screens. The localization feature allows
users located in different countries to set their default language so client screens can be displayed in their native language.

Expressio
n
Language
and
Syntax

The language is used to define dynamic values for nd Tags. s often involve expression component properties a expression Expression
one or more other values that are used to calculate a final value. In most cases, expressions only return a value.

SQL in
Ignition

Ignition's ability to connect to databases greatly increases the functionality available to you. You can use databases to store history,
create easy to search lists and configurations, and retrieve data from or other systems.ERP

Scripting Most of the time when we talk about "scripting" in we are talking about scripting, or writing code in the language. Ignition Python Python
 is a general purpose programming language that was developed in the early 90s and has gained significant popularity in the Python

2000s. We like it because it is extremely readable, elegant, powerful, and easy to learn. As an added bonus, it gracefully interacts with
, giving programmers an extremely powerful tool when paired with , which is written in .Java Ignition Java

Modular Architecture and Software Stack

Ignition has a architecture. are software applications that are built and integrated into the to offer additional platform modular Modules platform
functionality. The modules are similar to applications for a smartphone in how they are seamlessly integrated and provide additional capabilities.

Most of the main features of are actually provided by different modules such as the , , and modules. Ignition Perspective Vision BridgeSQL

The software is shown in the illustration below. You can see that the HMI/SCADA/MES module layers are built on the . Ignition stack Ignition platform
Here are the different software layers in 's architecture:Ignition modular

 Layer Operating System (OS)
Provides basic computing resources such as the file system and access to the . network
Platform Layer
Provides all the basic functionalities such as connecting to devices and databases, licensing, launching clients, and managing all modIgnition
ules over the web.
HMI/SCADA Module Layer
Provides the core modules that enable real-time and historical data access, trends, and control.

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Modules
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Modules
http://localhost:8088/
http://localhost:8088/
https://docs.inductiveautomation.com/display/DOC80/Working+with+Vision+Components
https://docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components
https://docs.inductiveautomation.com/display/DOC80/Working+with+Perspective+Components
https://docs.inductiveautomation.com/display/DOC80/Perspective+Module
https://docs.inductiveautomation.com/display/DOC80/Vision+Module
https://docs.inductiveautomation.com/display/DOC80/SQL+Bridge+Module

Third-Party Module Layer
Additional modules provided by Strategic Partners and other developers to further extend 's capabilities.Ignition
User Created Application Layer
The resulting project created for your organization. Developed internally, or by a . third-party

In This Section ...

Gateway

The is the primary software service that drives everything in . It is a single Ignition Gateway Ignition
application that runs as a web server and is accessed through a web browser. Its capabilities include

to data and PLCs, executing modules, and communicating with clients. You can customize connecting
the Homepage to fit your needs using the Gateway settings. From the Gateway, you activate Ignition,
transfer licenses, backup and restore the Ignition Gateway, and set up redundancy. You can even set up
a Gateway Network that allows two or more Gateways to connect to one another and share data.

Accessing the Gateway

The is accessed through a web browser (via the Gateway Web Interface). The web browser, Gateway
running on any machine, must have access to the host that is running the .network Gateway

By default, installs by using the port. For example, if the host's IP address is , Ignition 8088 10.0.28.30
you access the via the URL: . When is installed on the Gateway http://10.0.28.30:8088 Ignition
computer that you are logged into, you can access it by typing to display http://localhost:8088
the Gateway Homepage. Any other computer on the same network can access the Gateway by using the
IP Address or Host Name of the computer where Ignition is installed: i.e., ,http://192.#.#.#:8088
and it will launch the Gateway and bring up the Gateway Homepage.

On this page ...

Accessing the Gateway
Gateway Web Interface
(Gateway Webpage)

Home
Status
Config

Designer Launcher
Starting and Stopping the
Gateway
Gateway Command-line Utility
Gateway Architecture

Gateway Web Interface (Gateway Webpage)

The Gateway Webpage performs a cadre of functions and is the hub for accessing all the functions of the
Gateway server. It drives everything in Ignition! The Gateway Webpage is where you set up your
licensing and activation and configure your Gateway settings, databases, devices, projects, modules,
security, and alarming. When the Gateway server is running, you can connect to a device, connect to a
database, launch the Designer, and launch a Vision client or Perspective session. You can also check
the status of your system, network, agents, sessions, tasks, reports, and alarms.

The Gateway Webpage has three tabs on the left side of the page that lead you to the key sections of the
server: , , and The top of the page shows you the path of where you are on the Home Status .Config
Gateway Webpage. You can perform a host of Gateway functions from configuring your system and
modules, checking the status of all your Gateway connections, to launching clients and sessions, and
many tasks in between. You can even redirect the Gateway Homepage to display another URL.

The Gateway
Webpage

Watch the Video

Home

The first time you go to the , it shows you several steps to help you get Gateway Homepage
started. Once you're up and running, the tab lets you open Vision clients, Perspective sessions, Home
and download the Designer Launcher. There are some resource links to help you get started with Ignition
quickly: , where you can learn about Ignition modules, and Inductive University Production Documentation
the Appendix which contains a complete reference for , and .components expressions scripting functions

When you're first introduced to Ignition, the Homepage is the landing page. It's where you'll find the Desig
, , and . ner Launcher Vision Client Launcher Perspective Session Launcher

The locates all Gateways that are available on your local network. Once you Designer Launcher
open the Designer, you can access existing projects or create new projects on the Gateway.
The opens Vision Clients from any Ignition Gateway. It browses all Vision Client Launcher
Gateways for Vision projects that are available on your local network and remote locations.
Once your Vision projects are added to the Vision Client Launcher, they will be displayed and all
you have to do is click the link to launch a Vision Client.
The opens a session directly in your browser or you can Perspective Sessions Launcher
download the native application.

Customizing the
Gateway Homepage

Watch the Video

http://10.0.28.30:8088/
http://localhost:8088/
http://192.#.#.#:8088.
https://www.inductiveuniversity.com/videos/the-gateway-webpage/8.0/8.1
https://www.inductiveuniversity.com/courses/whats-new-in-ignition-8/8.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Modules
https://legacy-docs.inductiveautomation.com/display/DOC81/Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions#PerspectiveSessions-LaunchingaSessionfromtheGatewayWebpage
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions#PerspectiveSessions-LaunchingaSessionfromtheDesigner
https://www.inductiveuniversity.com/videos/customizing-the-gateway-homepage/8.0/8.1

Status

The Status page provides in-depth information about the status of the different parts of the Ignition system. The list of options on the left menu in the
Status page changes based on what modules are installed. You can select any of the available options to get more detailed information.

https://docs.inductiveautomation.com/display/DOC80/Status

Config

If you are not already logged into your Gateway, tab presents you with a login screen. Enter the and for the admi Config username password Ignition
nistrator. This was the first account created during installation. From the Config page, you can set up all connections, projects, and perform all the Gate

 and operations. The list of options on the left menu changes based on what modules are installed. You can select any of the available way platform
options to get more detailed information. This page also provides some links to common actions to help get you get started.

Designer Launcher

The locates all the Gateways that are available on your local network. Once the Designer is open, you can access existing projects Designer Launcher
or create new projects on the Gateway. The on the top right side of the page and the button opens the Designer Launcher button Download
Designer Launcher Download page. Here you can find all the Designer Launchers for each operating system: Windows, Mac and Linux. Ignition
automatically detects your operating system so all you have to do is download the launcher and follow the steps to install the Designer Launcher. To
learn about what the can do, go to the section of this manual. Designer Designer

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://docs.inductiveautomation.com/display/DOC80/Designer

Starting and Stopping the Gateway

After installation, the Gateway starts automatically. The Gateway runs as a service, so you can use your operating system's normal mechanisms to
start or stop the service. You can also start or stop the Gateway from command line.

Windows

Ignition's installation directory contains and , which can start or stop the service. Example:start-ignition.bat stop-ignition.bat

C:\Program Files\Inductive Automation\Ignition> start-ignition.bat

However, you can also use Windows native service commands to control the running state of the Gateway:

net start ignition

net stop ignition

Linux

You can control the service using the script. It can be called with the and parameters to perform the relevant operations.ignition.sh start stop

For example:

/usr/local/bin/ignition/ignition.sh start

Additionally, you can use native terminal commands to start or stop the service:

service Ignition-Gateway start

service Ignition-Gateway stop

Mac X OS

You can access the service from the install directory using the "ignition.sh" script. On a typical Mac install using the dmg installer, the full command
(without a custom location specified) is the following:

/usr/local/ignition/ignition.sh start

Gateway Command-line Utility

The (GCU) is a lightweight standalone application that provides information about the Gateway. It performs Gateway Command-line Utility - gwcmd
high-level tasks that aren't available inside the Gateway webpage such as stopping and restarting the Gateway server, and setting ports used
between the Gateway and clients. It shows the status of the Tomcat web server and the Ignition Gateway application. You can reset the Gateway
password, and even launch the web browser to the Gateway webpage.

For more information, refer to the page on the . Gateway Command-line Utility - gwcmd

Gateway Architecture

The Gateway’s architecture contains many parts, each one letting you perform a specific task. The Gateway parts are as follows:

System Management
Project and Module Management
Security and Auditing Settings
Database Connectivity
Alarming and Modification Settings
Tags Provider Settings
OPC Connectivity
Enterprise Administration Settings
Projects

The following image shows the different parts of the Gateway and how projects work within the Gateway. Note the parts that are outside the Ignition
Gateway box, non-Ignition OPC servers, databases, devices, etc., are all separate from Ignition but can be connected.

Home

The Home tab provides you with all of the tools you need to get started designing projects and launching
Perspective Sessions and Vision Clients. There are four launchers on the Homepage that will quickly get
you started:

The allows you to create or modify a project. Download the launcher and Designer Launcher
create a shortcut so it's always on your desktop when you need it.
The browses all Gateways for Vision projects that are available on your Vision Client Launcher
local network. Once your projects are added to the Vision Client Launcher, they will be
displayed and available to open in a Vision Client. Simply download the launcher and create a
shortcut on your desktop so it's always at your fingertips when you want to launch a Vision
Client.
The allows you to easily launch a session directly in your Perspective Session Launcher
browser. Simply click the link and Ignition will display all your Perspective projects.

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The Perspective Workstation is a single application that acts as both a launcher, and desktop
“wrapper” for Perspective Sessions.

While the top navigation bar is present no matter what tab you are in, the Get Designer button in the
upper right corner does not require that a user login to the Gateway. This allows a user to launch the
Designer right away, only logging in once the Designer has fully launched. See the Designer section for
more information on launching and using the Designer.

On this page ...

Customizing the
Gateway Homepage

Watch the Video

On the Homepage, we also provide quick links to several resources: Inductive University, Product Documentation, and the Appendix which contains a
complete reference for components, expressions, and scripting functions in Ignition.

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions#PerspectiveSessions-LaunchingaPerspectiveSession
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Workstation
https://www.inductiveuniversity.com/videos/customizing-the-gateway-homepage/8.0/8.1
https://www.inductiveuniversity.com/library/
https://legacy-docs.inductiveautomation.com/display/DOC81/Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions

Related Topics ...

Status
Config
Inductive University

https://www.inductiveuniversity.com/library/

Status

Your Gateway at a Glance

The Status tab provides both an 'at a glance' overview of all of the systems in your Gateway, while also
giving you the ability to drill down into specific systems and get a more in depth view of what is currently
happening in your system. The Systems and Connections sections that are displayed on the left side of
the Status page are based on what modules are currently installed. Some 3rd party modules could
potentially add sections that are not discussed in this manual.

When first opening the Status tab, you will be taken to the Overview page. This page provides an
overview of all Ignition systems, while also acting as a launchpad to all other sections in the Status tab.
The pages in the Status tab are built around the idea of quickly drawing attention to problem areas by
highlighting them. As you can see, this Gateway has a faulted database. The pages in the Status tab
also allow you to 'drill down' into sections to see more information. Most objects can be clicked on, like
the faulted database. Clicking either of these will take you to the appropriate section, allowing you to
quickly find out what is wrong with a particular system.

On this page ...

Your Gateway at a Glance
Systems
Connections
Diagnostics

Search
Diagnostic Bundle Export

Gateway Status
Page
Troubleshooting

Watch the Video

The Status section of the Gateway Webpage provides detailed information relating to the following parts:

Systems

Overview Provides a top-down view of many of the components of your Gateway. This view is also useful for determining what step might
be next when setting up your Ignition Gateway for the first time. You can view the status of your database connections, device
connections, OPC connections, the number of open Clients and the number of open Designers.

The page displays the number of Perspective Sessions currently running.Status > Overview

Performance Displays the performance status for the Ignition system such as CPU, Memory and Threads.

Alarm
Pipelines

Shows the status details about the . You can see the status of an alarm and where the alarm is in the alarm notification pipelines
pipeline.

Gateway
Scripts

Shows status details about all the running in Gateway. You can see information such as their execution Gateway event scripts
status, whether the scripts are running or not, and so on.

Modules A list of , their status, as well information about their version and current license state.installed modules

Redundancy Lists information about the current state of in Ignition. This information is only helpful when connected to another Redundancy
redundant Ignition server.

Reports Displays information about the current and scheduled reports on the Gateway if you are using the .Reporting module

SFCs Displays information about (SFC) instances.Sequential Function Chart

Tags Lists information and statistics about all configured Tag Providers as well as a view into the Tag subscription model, scan classes,
and what tags it is currently subscribed to.

Transaction
Groups

Displays information about the current .Transaction Groups

https://www.inductiveuniversity.com/videos/gateway-status-page-troubleshooting/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+or+Upgrading+a+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups

Connections

EAM Agents Displays a list of information from configured EAM agents.

Databases Displays a list of configured databases, and if they have a valid connection or not. Shows active queries, long running queries, the
number of queries a second that are running, as well as a trend showing the percentage of queries that completed in that time.

Designers Displays information on currently running Designer sessions along with some information about each session.

Devices Displays a list of currently configured OPC UA devices and which are connected and which have a faulty connection. It also
shows how many Tags Ignition is requesting from the device along with how often it is requesting them. This information is used
to determine if the device is overloaded with too many requests too quickly, or if the device is being under utilized.

Gateway
Network

Shows an overview of the status of all Gateways within the Gateway Network. It also provides some metrics for each Gateway,
giving an idea of the rate of data transfer between two Gateways, as well as a list of connection events.

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

The "Live Diagram" tab will take you to the . This tool is a visual representation of your Gateway Gateway Network Diagram
Network and contains relevant information from the local Gateway's perspective.

Store &
Forward

Displays a list of engines, including status, as well as the number of records currently in each Store and Store and Forward
Forward system.

MongoDB Displays metrics from a list of created connections.MongoDB

OPC
Connections

Displays a list of all current and their status.OPC connections

Perspective
Sessions

Shows a list of current Perspective sessions and details about each session.

Vision Clients Shows a list of current Vision Clients and details about each client.

Diagnostics

Execution Displays a status of all tasks that your Gateway runs on a schedule, such as duration and execution time of an alarm journal
update or the average time it takes a Gateway to execute a Tag Group.

Logs Displays errors caused by Gateway events like database or device connections, authentication profiles, alarm journals, and
pipelines. Logs include a wealth of information about the running state of the Gateway.

Metrics
Dashboard

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

Displays user-configurable dashboards featuring gauges, counters, meters, and other metrics visualizations. Available metrics
include information about performance, tags, alarming, projects, and databases.

Running
Scripts

Shows all actively running Gateway scripts, as well as providing a way to terminate any running script. In addition, Vision client
and Designer consoles have a Running Scripts tab, which also lists running scripts and provides a way to terminate them.

Threads Shows what each thread is doing in the Gateway, including their state and CPU usages.

Search

The Status tab also displays a search bar at the bottom left of each page. This search bar allows you to type in a word or phrase, and it will list all
appropriate pages in both the Status and Config tabs to easily find all pages related to a specific system.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

Diagnostic Bundle Export

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

The Status tab's Overview page contains an option to generate and download different sets of diagnostic information at once. This information
includes:

Gateway Information
Thread dump
Wrapper log file(s)
System log IDB
Metrics IDB
Memory dump

Note: The memory dump will only be generated if the parameter is set to true, -Dignition.diagnostic-bundle.enable-memory-dump
and available disk space is twice the max heap size. For more information on adding system properties, see the greater than or equal to Gateway

 page. Configuration File Reference

The following feature is new in Ignition version 8.1.27
 to check out the other new featuresClick here

Jetty server dump

Exporting the Diagnostics Bundle with an increased number of wrapper logs and/or larger-sized wrapper logs may impact Gateway
performance or cause the Gateway to restart.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27

Related Topics ...

Config
Home

In This Section ...

Systems

The Systems section of the Status tab displays information regarding the internal Gateway systems. This
includes systems such as the currently running Transaction Groups as well as active Alarm Pipelines.
These sections are not necessarily concerned with any connections to external systems. On this page ...

Overview Section
Architecture
Environment
Systems
Connections

Performance
Alarm Pipelines
Gateway Scripts
Modules
Redundancy

Force Re-Sync
Request Failover

Reports
SFCs
Voice Alarming
Tags
EAM Tasks
Transaction Groups

Gateway Status
Page
Troubleshooting

Watch the Video

Overview Section

The Overview page is the first page that you see when navigating to the Status tab. It provides a visual synopsis of everything in the Gateway, as well
as some basic information about the server Ignition is installed on. There are four sections on the page: , , , and Architecture Environment Systems C

.onnections

https://www.inductiveuniversity.com/video/gateway-status-page-troubleshooting/8.0/8.1

Architecture

The Architecture segment provides a top down view of your Gateway. You can see your Ignition version and resource usage, as well as similar
information with a redundant Gateway, if one is connected. You also get an overview of the Gateway Network including how many active connections
there are, and what is the amount of data being transferred between them.

Environment

The Environment segment provides some basic information about your server such as the Operating System (OS), Java version, available disk space,
and IP address of detected network interface cards (NIC)..

Systems

The Systems segment summarizes each of Ignition's systems. Here, you can see how many modules you have installed as well as how many Tags
are configured in your Gateway, along with a handful of other information. Click on any of the links in blue to find out more information about a

particular system.

Connections

The Connections segment shows all of the systems that Ignition is connected to. If any of these have issues, they will be outlined in red. Clicked on
the connection to be taken to the relevant page within the Status tab.

Performance

The Performance page displays information on the resource usage of the Gateway. This page enables you to quickly assess your Gateway's overall
health and determine if the Gateway is being taxed too heavily for the server it's running on. You can see the current CPU usage, the current memory
usage (in megabytes) out of the total allocated for the Gateway, and how CPU threads are performing. In the CPU Trend and Memory Trend sections
there are sliders you can move to set the time range anywhere with in the previous 24 hours. The lower portion of the page shows the current system
response time as well as a log of any recent slow response events.

Alarm Pipelines

The Alarm Pipelines page lists the currently configured alarm pipelines in the Gateway. Each pipeline displays the number of alarm items currently
running through it. Click on the Details button to the right to open up a new page that will show the alarm pipeline status and logs. There will also be a
set of tabs at the top of the page. One for the Pipeline Status that is already open, the other for Pipeline Logs. This will act as a miniature log viewer
log viewer that will only show logs that pertain to this particular pipeline.

Gateway Scripts

The Gateway Scripts page displays a list of all currently configured Gateway scripts. These are scripts that are configured in the Gateway Event
 section of the project. The tabs at the top of the page will swap between the different types of Gateway Event Scripts: Timer, Tag Change, Scripts

Message Handler, Startup, and Shutdown. They provide useful information such as the name of the project that it is running in as well as the last time
it ran, the duration and status (if it was successful or not).

With this page you can quickly verify that your scripts are running properly. If a script has an error, click on the error for more details about what went
wrong with the script. All of the logs for that section are also contained in the log viewer at the bottom of the page, to make it easy to see a list of all of
the logged errors for that set of Gateway Event Scripts.

Modules

The Modules page shows a list of the currently installed modules, their current version, and if they are running properly with a license. The top of the
page shows a quick count of the running and licensed modules, so you can easily tell if anything is not working. It is then easy to scroll down through
the list to see which modules are having issues.

Redundancy

The Redundancy section displays information regarding the redundant system, if one is configured. It easily shows the Role of the Gateway you are
viewing, the status of the connected Gateway, and their IP addresses. The trends on this page give a snapshot of the last few minutes of
communication between the two Gateways. The first trend shows the data that is being sent and received between the two Gateways, the second
shows the state updates that have recently occurred. The bottom of the page contains a log of the last system events, to easily track major events
between the Gateways.

Force Re-Sync

The button forces Force Re-Sync a full synchronization of the redundant configuration state. The backup node will be forced to restart.

Request Failover

The button switches the active node in a redundant pair.Request Failover

The following feature is new in Ignition version 8.1.17
 to check out the other new featuresClick here

Failover to the other redundant node is now allowed if the nodes have different platform versions, which will allow attached clients to remain
connected to at least one node during a redundant pair upgrade.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17

Reports

The Reports page shows information on any Reports that have at least one scheduled action set up. The top of the page gives a quick count of
reports that are executing an action, have executed an action, or are going to execute an action. Below you can also find a list of Reports in those
states as well, to quickly see what project they are located in, or what their last execution time was. As with most other pages, there is also a log of all
events related to reports at the bottom of the page.

SFCs

The (SFCs) section displays a list of all of the currently configured SFCs along with a count of the currently running charts Sequential Function Charts
at the top of the page. Click the button next to any SFC for details about that particular Chart. Details

https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts

On the Details for an individual SFC, there are two tabs: Chart Instances and Chart Logs. It contains a list of all currently running Chart instances, and
allows you to swap tabs to look at any logged events for that particular chart.

Voice Alarming

The Voice Alarming page provides details about the currently configured on the Gateway. This status can be used to quickly Voice Notification Profiles
see which Notification Profiles are not working. Clicking the details button enables you to see the current calls with that Voice Notification profile and
the current queue of calls waiting to be completed.

https://legacy-docs.inductiveautomation.com/display/DOC81/Voice+Notification+Profile

Tags

The Tags page contains a lot of information about the Gateway's configured Tags and Tag Providers.
The first page will show a list of all realtime and historical Tag Providers that make it easy to see if any of
them are having issues. Clicking on an errored provider will show an error message that may help fix the
problem. Clicking on the button to the left will open up a page with more information about the Details
Tags in that particular provider.

The details of the Tag Provider will show a list of all currently configured Tags in that Tag Provider, and
show some basic information about them. You can browse through the Tag structure to get more
information about each Tag. When clicking the Details button for an individual Tag, you will be brought to
a Tag Diagnostics screen that will provide more detailed information about that particular Tag, such as if

Tag Diagnostics

Watch the Video

https://www.inductiveuniversity.com/videos/tag-diagnostics/8.0/8.1

it has a script written in its Tag event scripts and what its last value was, among other information.

The Groups Tab allows you to see the Tag Groups configured. It also shows the number of executions
for each Tag Group, the last time the Group was executed and the average duration in milliseconds.
Provider Logs display any events that relate to that particular provider.

EAM Tasks

The EAM Tasks section will only show up once the is configured. This page shows information regarding the currently running and EAM module
scheduled tasks, as well as tasks that were recently executed and whether they were successful or not. From here you can pause a scheduled task,
or see the error that caused a previous execution to fail.

https://legacy-docs.inductiveautomation.com/display/DOC81/Enterprise+Administration+Module

Transaction Groups

The Transaction Groups page makes it easy to get a quick count of the currently running as well as the currently errored groups. Transaction Groups
Below the counts is a list of Projects that contain Transaction Groups and some basic information like how many are running and how many database
queries is it generating. Clicking the details button to the right for one of the Projects brings up more information about that Project's Groups. There
are some counts on the number of Groups in various states, as well as a list of the groups. Any Groups that have problems can be clicked on to see
what the error is to get a better idea of why the Group is unable to run.

https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups

Related Topics ...

Connections
Diagnostics - Logs

Connections

Status of Gateway Connections

The Connections section of the Status tab on the Gateway Webpage contains information regarding the
status of Gateway connections to external systems. The list of systems displayed under the Connections
section is based on what modules are installed. It can include EAM Agents, Databases, Devices, Store
and Forward, the Gateway Network including other Gateways within the Gateway Network. The
Connections section allows you to drill down and open up more specific information to easily find
problems with anything connected to the Gateway, and even find crucial information about a faulty
connection.

On the left side of the Status section of the Gateway Webpage, you'll see a list of all your connections.
Click on any system to open a detailed page to see all the available options, and to get more detailed
information. Some third party modules could potentially add sections that are not discussed in this

 manual.

On this page ...

Status of Gateway Connections
Log Activity

Log Activity

Most of the systems in the Connection section have a Log Activity area somewhere within the details of the connection. This Log Activity area
functions much like the section of the Status page in that you see a list of all log messages depending on the logging level you Logs in the Diagnostics
are looking at as well as the filters you have set up. However, what makes the Log Activity areas in each Connections page unique is that they are
filtered to only show loggers for that particular system. This helps you narrow down any potential problems by showing you only the information that
pertains to the section you are looking at.

Related Topics ...

Diagnostics - Logs

In This Section ...

Connections - EAM Agents

EAM Agents

The EAM Agents page shows a list of all the currently configured Agents, including information on the
connection status. Agents can be organized into groups allowing you to group agents by location or
agent function. If no groups exist, all Agents will be in the Default Group.

On this page ...

EAM Agents
EAM Agents Page

EAM Agents Page

The EAM Agents page contains some useful information about all of your Agent connections.

Attribute Description

EAM Agent Connections

EAM
Agents

Number of connected agents out of the number of configured agents.

Default Group and all groups

Gateway Name of the Agent.

Edition Identifies a Standard vs Edge Gateway. Edge edition shows "edge," and if it's a Standard Gateway, this field is left blank.

Status Current status of the Agent connection.

Last Comm Date and time recorded for the last communication with the Agent.

Last Event Name of the event last recorded with the Agent.

Event Date Date and time recorded for the last occurring event with the Agent.

Log Activity Shows any EAM Agent activity along with the Time the log was created and a brief message. You can find more of these same type
of messages in the Gateway Logger which is found in the section under , and the Wrapper Logger file Status Diagnostics > Logs
under .Program Files > Inductive Automation> Ignition > logs > wrapper.log

Related Topics ...

Enterprise Administration
Creating a Controller
Adding an Agent

https://legacy-docs.inductiveautomation.com/display/DOC81/Enterprise+Administration
https://legacy-docs.inductiveautomation.com/display/DOC81/Creating+a+Controller
https://legacy-docs.inductiveautomation.com/display/DOC81/Adding+an+Agent

Connections - Databases

The Databases page shows a list of configured databases, and if they
have a valid connection or not. Clicking on the Details button to the right of
a connection will either show the full error if the connection is faulted, or it
will bring you to a Details page for that database connection. On the
Details page, you can easily see any active queries, long running queries,
the number of queries a second that are running, as well as a trend
showing the percentage of queries that completed in that time.

On this page ...

Databases Page
Database Connection Details

Databases Page

The main database page contains some useful information about all of your database connections.

Attributes Description

Valid Connections Number of valid connections.

Total Throughput Number of queries and their status.

Name Name of the query.

Driver Name of the driver.

Status Current status of the database connection.

Database Connection Details

The page for an individual connection provides more in depth information for that particular database connection.Details

Attribute Description

Database Stats - Stats about the database connection

Connections Number of database connections out of configured databases.

Queries / Sec Number of queries running per second along with a trend showing the percentage of queries that completed in that time.

Active Queries - A list of currently active queries

Query Currently running queries.

Started When the query was started.

Actions The ability to cancel a query.

Longest Recent Queries - A list of the longest running queries.

Query Displays the actual query.

Duration Amount of time the query ran.

Started When the query started running.

Related Topics ...

Database Connections

Connections - Designers

Designers

The Designers page displays information on currently running designer sessions. All the open designers
are displayed on the page along with some basic information about each session, such as what user is
logged into each designer session and the project they are currently working on. Clicking on the bDetails
utton to the right of a designer session will display more information about that particular designer. On
the Details page, you can see session information, as well as what designer locks the session currently
has set. Locks are when a designer is working on a particular , the system places a page or set of pages
lock on those resources (i.e., window, pipelines, etc.,) to prevent other designers from working on the
same resource. There is also a log at the bottom of the page displaying any errors pertaining to that
designer session.

On this page ...

Designers
Designers Page
Designer Details

Designers Page

The main Designers page has a list of all currently running designer sessions, and some basic information about all of them.

Attribute Description

Designer Stats

Active Designers Number of active Designer connections.

Requests / Sec Number of requests running per second along with a trend showing the percentage of requests that completed in that time.

Designer Sessions

Filter Search criteria to filter for specific designer sessions.

View The number of designer sessions to preview.

Id Designer session id number.

User Name of the user logged into the Designer.

Project Name of project the user is currently working on.

Uptime Amount of time the user is logged into the designer session.

Status If the Designer is actively connected or not.

Address The IP Address and name of the computer running the designer.

Memory Current memory usage for the session.

Designer Details

The Designer Details page shows more in depth information about that particular designer session, with the most important being the list of Designer
Locks. The locks are project resources that the designer session is using. Because that designer session is using those project resources, no other
designers will be able to access those resources, to prevent two designers from working on the same thing.

Attribute Description

Session Details

User Name of the user logged into the Designer.

Project Name of project the user is currently working on.

Address The IP Address and name of the computer running the designer.

Uptime Amount of time the user is logged into the designer session.

Memory Current memory usage for the session.

Timezone Local time of the user.

Log Activity

Min Level Dropdown menu with options Info, Debug, and Trace.

Live Values Toggle switch to turn live values on or off.

Logger Name of the logger that describes the context of the message.

Time Time of log.

Message Message for the log.

Related Topics ...

Designer

Connections - Devices

Devices

The Devices page lists the currently configured OPC UA devices, and lets you know which are
connected and which have a faulty connection. From here, you can drill into a device connection to see
how many Tags Ignition is requesting from the device, along with how often it is requesting them. This
information can be used to determine if we are overloading the device with too many requests too
quickly, or if we can request more from our device.

On this page ...

Devices
Devices Page
Device Details

Device Statistics

Devices Page

The main Devices page lists out all OPC UA devices, as well as how many currently have a valid connection. Note: this will only show the devices
connected through an Ignition device connection. For information about devices connected through other OPC Servers, see those programs.

Attribute Description

Connected Devices Number of devices connected out of configured devices.

Name Name of the device.

Driver Name of the device driver.

Status Current device status.

Device Details

Clicking the button to the right will display a diagnostics page for that device which provides metrics for the device configuration. The page Details
contains an Aggregate Statistics table and lists additional statistics to help determine if the device is overloaded with requests. There are values for
each subscription (such as those created by Tag Groups or Transaction Groups using OPC items) from the specified device, as well as aggregate
statistics which pull from all subscriptions to get an average for the device.

Device Statistics

The table below summarizes the statistics available on the Device Details page.

Attribute Description

Request
Count

Tracks the number of requests that are coming in from the device, A is a group of tags/items that the driver has grouped request
together to be read at the same time. Each driver forms these groups based on the protocol being used and occasionally
configuration settings in the driver.

Throughput
(Mean)

Represents the average amount of requests that come through per second since the device was last started.

If the device connection is edited and saved, this will cause the device connection to reinitialize and this value will be reset.

Throughput
(1 min)

Represents the average amount of requests that come through per second for the last minute.

Mean
Response
Time

The average time it takes for Ignition to get a response from the device. This number is an average based of the graph on the right of
the page.

Monitored
Item Count

Represents the total number of items that are subscribed to.

Note that this count includes device diagnostic tags. However, other statistics on the device status page do account for diagnostic not
tags.

Mean
Queue
Duration The following feature is new in Ignition version 8.1.6

 to check out the other new featuresClick here

Represents the average amount of time a request has spent in the request queue. Not available under aggregate statistics.

Actual
Sampling
Interval The following feature is new in Ignition version 8.1.6

 to check out the other new featuresClick here

Represents the actual rate the driver is sampling the device at. Used to determine Overload. Not available under aggregate statistics.

In the image below, we see there are a total of 1068 items being monitored, which are optimized into 38 different requests.

Of those requests, five are being sampled at a 250ms rate. At this same rate, requests sit in a request queue for an average of 4.24ms before being
processed. Thus the actual sampling interval for this sampling rate is 254.24ms.

Overload

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

Note that the metrics above have corresponding available, allowing other areas of Ignition to access these valuesdiagnostics tags

The overload metric was introduced in 8.1.6, replacing the prior Load Factor metric. See the for more 8.0 Connections - Devices page
information.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA+Drivers
https://legacy-docs.inductiveautomation.com/display/DOC80/Connections+-+Devices

Overload represents how well the device is able to keep up with the requests at the sample rate. It is calculated using the formula:

100 * (Mean Queue Duration / Sampling Interval) = Overload

If overload exceeds 100% then the requests are sampling at a slower than ideal rate.

Based on the image above, overload for our 250ms sample group is determined by:

100 * (4.24 / 250) = 1.696

Our value of 1.696 can then be rounded up to 2%. In this case, it doesn't seem as if the device is having much trouble keeping up with our requests.

Connections - Gateway Network

The Gateway Network Status page is designed to give a quick overview of the status of all Gateways
within the Gateway Network. If a Gateway connection is faulted, the status message in red can be
selected to see the error that pertains to why it is faulted. Any Gateway connections with a status of
'Connected' can be drilled into by clicking the Details button to the right. On the Details page, metrics for
the selected Gateway connection are displayed, giving an idea of the rate of data transfer between the
two Gateways, as well as a list of recent connection events.

This page gives a general overview of the Connections - Gateway Network webpage. See the Gateway
 page for more in-depth information.Network Connection Details

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

The Gateway Network Status page also has a tab which visualizes data about your Gateway Network.
See the page for more information.Gateway Network Diagram

On this page ...

Gateway Network Page

Gateway Network Page

The main Gateway Network page displays a list of all current Gateway Network connections both incoming and outgoing, as well a list of all Remote
Gateways that the Local Gateway can see both from its Gateway Network connections and through proxy connections. Each list has some basic
information along with the ability to see more details on a specific Gateway Network connection or a Remote Gateway.

Attribute Description

Gateway Network Connections

Remote Gateway Name of the Remote Gateway connection.

Direction The direction of the Gateway Network connection. Can either be Incoming or Outgoing.

Redundancy Role The redundancy role of the Gateway. Can either be Independent, Backup, or Master.

Last Comm The time of the last communication with the Gateway.

Ping Time Reaction time of Gateway connection. How fast you get a response after you've sent out a request.

Status Current state of the Gateway Network Connection.

Fault Count Number of times the connection has faulted since the Gateway has been started.

Remote Gateways

Gateway Name Name of the Remote Gateway.

Outgoing Msg/Sec The number of outgoing messages per second.

Incoming Msg/Sec The number of incoming messages per second.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

Pending Number of messages pending in a queue that are waiting to be dispatched to the Gateway Network connection.

Connected Through How the Gateway is connected to the Remote Gateway.

Status Current state of the Remote Gateway Connection.

Related Topics ...

Gateway Status
Diagnostics - Logs

In This Section ...

Gateway Network Connection Details

Gateway Network Connection Details

Ignition's Gateway Network system shares information across Gateways using threads to send and
receive information. For example, if you have a Remote Tag Provider configured between Gateway A
and Gateway B, messages containing live tag information will be sent between these two Gateways
using threads to send and receive live tag data. Similarly, a Remote Historical Tag Provider will send
/receive messages with historical tag data between Gateway A and Gateway B using this same set of
threads. Each Ignition sub system that uses the Gateway Network will utilize these threads in some way.

Ignition's Network also has a queue associated with each subsystem. These queues Gateway Ignition
allow for to have a way to prioritize which sub system should have access to a send or receive Ignition
thread. Prioritization here is especially important because if all send threads are in use, messages cannot
be sent between two Gateways. The Gateway Network page includes additional information that will help
better monitor Gateway interactions.

On this page ...

Gateway Network Connection
Details

Active Outgoing and Incoming
Tasks List
Gateway Network Statistics
Outgoing Queues
Temporary Queue Actions
Outgoing and Incoming Tasks
Statistics

The image above shows the basic Gateway Network Connection Status page where we can see there is an outgoing Gateway Network connection
from Gateway A to Gateway B. Pressing the Details button will bring up detailed information about this connection as below:

Attribute Description

Status Current state of the Gateway Network Connection.

Average Outgoing Bytes Average bytes of data going from the Local Gateway to the Remote Gateway per second.

Average Incoming Bytes Average bytes of data going from the Remote Gateway to the Local Gateway per second.

Ping Time Reaction time of Gateway connection. How fast you get a response after you've sent out a request.

Active Number of messages being actively processed by the Gateway network connection.

Send Threads A thread that is used by the Gateway Network to upload messages from one Gateway to another.

Receive Threads A thread that is used by the Gateway Network to download messages from one Gateway to another.

Local Id Id of the local .Gateway

Remote Id Id of the remote .Gateway

Remote Gateway Name of the on the network.Gateway Gateway

Network Address Physical address used to communicate with all devices on the network.Gateway

Redundant Role The redundancy role of the Gateway. Can either be Independent, Backup, or Master.

Direction The direction of the Gateway Network connection. Can either be Incoming or Outgoing.

Session Id Gateway connection session Id number. Connected Gateways use the same session Id on both Gateways.

Last Comm The time of the last communication with the Gateway.

Fault Count Number of times the connection has faulted since the Gateway has been started.

Connection Events Displays a list of recent connection events.

Active Outgoing and Incoming Tasks List

Attribute Description

Task Name Name of the task that is using a thread.

Source Queue The Ignition sub system queue that dispatched this task.

Duration Secs This is how long in seconds it takes for a task to be performed.

Gateway Network Statistics

In addition to showing live thread and task information, users can also keep track of Gateway Network Statistics. By clicking on the Details button
below, the Gateway Network Statistics Page appears for Gateway B:

Outgoing Queues

The Gateway Network Statistics page has three sections associated with it. First, the Outgoing Queues section. The Outgoing Queues section shows
tasks that are both in a pending and active state. A pending task is a task that has not yet been dispatched to the Gateway Network thread pool. An
active task is a task that is being processed by the Gateway Network thread pool and should show up under the Gateway Network Connection Status
page as either an outgoing or incoming task.

Attribute Description

Name Name of the queue.

Priority Level of priority for a queue.

Inserts/Sec Rate of task inserts per second for a queue

Pending Number of pending tasks in a queue that have not yet been dispatched to a Send/Receive thread.

Active Number of messages being actively processed by the Gateway Network connection.

Avg Pending Secs Average number of seconds that a task has been pending in a queue.

Total Total number of tasks executed from this queue.

Actions Set of actions associated with a queue. Users can both Pause and Clear a queue.

Temporary Queue Actions

The Gateway Network Statistics page has controls for pausing and clearing a queue. To a queue means no new tasks will be allowed to be pause
inserted into the paused queue. To a queue means that all pending tasks will be purged. clear These actions are designed to help the user deal with a
possibly overloaded Gateway Network connection due to a specific sub system flooding the queue with more tasks than the connection can handle.
Note that neither of these actions will have any effect on active tasks, as they have already been dispatched to the Gateway Network connection and
cannot be cancelled.

Outgoing and Incoming Tasks Statistics

The Outgoing and Incoming Task Statistics section shows individual tasks that have been processed by the Gateway Network Connection.

Outgoing and Incoming Tasks Attributes Description

Name Name of a task.

Description Description for a task.

Queue Queue invoking a task (For Outgoing Tasks only)

Invocation/Sec Rate at which a task is invoked per second.

Avg Duration Secs Average duration in seconds of the time it takes for this task to execute.

Total Number of times the task has been executed in total.

Note: If you are looking for connection details for Ignition version 8.0.14 and earlier, refer to page in version 8.0 of Connections - Gateway Network
the Ignition User Manual.

https://legacy-docs.inductiveautomation.com/display/DOC80/Connections+-+Gateway+Network

Gateway Network Diagram

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Gateway Network Diagram Overview

The is a visual representation of your Gateway Network. You can access Gateway Network Diagram
the tab by going to your Gateway webpage's Status tab > Connections > Gateway Live Diagram
Network > Live Diagram.

On this page ...

Gateway Network Diagram
Overview

Gateway Network Diagram
User Interface

Gateway Network Diagram
Details

Live Diagram Icons
Connection Details
Gateway Nodes
Redundancy Representation
Proxy Connections

Gateway Network Diagram User Interface

To navigate the Diagram, you can use your mouse's left-click to pan around and your mouse's scroll wheel to zoom in or out. Additionally, you can
drag and rearrange different nodes as you like. There are also different buttons on the Diagram interface that may be helpful:

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

Icon Element Description

Filter box Filter by Gateway name. You can use comma-delimited
Gateway names so that multiple Gateways show through the
filter.

Take
screen
capture

Takes a screenshot of the currently displayed Gateway
Network Diagram.

Use
dagre
layout

Display the Gateway Network Diagram in a dagre, or top-
down layout from the Perspective of the local Gateway.

Use
circular
layout

Display the Gateway Network Diagram in a circular layout,
with the center being the local Gateway.

Zoom in Zoom into the Gateway Network Diagram.

Zoom out Zoom out of the Gateway Network Diagram.

Reset
zoom and
center

Resets the camera panning and zoom and centers the
Gateway Network Diagram.

Open in
new tab

Opens the Gateway Network Diagram in a new, separate tab.

Refresh
chart

Refreshes the Gateway Network Diagram so that the most
recent Gateway Network configuration is shown.

Gateway Network Diagram Details

Live Diagram Icons

The following table shows each Gateway Network Diagram icon and its description.

Icon Description

The local node from which you are viewing the Gateway Network Diagram. This icon's orange color also indicates that the node is
running Standard Edition.

The Gateway node that the local Gateway is connected to. This icon's orange color also indicates that the connected node is running
Standard Edition.

The local node from which you are viewing the Gateway Network Diagram. This icon's green color also indicates that the node is running
Edge Edition.

The Gateway node that the local Gateway is connected to. This icon's green color also indicates that the connected node is running
Edge Edition.

The local node from which you are viewing the Gateway Network Diagram. The icon's multicolor also indicates that the node is running
Maker Edition.

The Gateway node that the local Gateway is connected to. The icon's multicolor also indicates that the connected node is running Maker
Edition.

The local node from which you are viewing the Gateway Network Diagram. The icon's blue color also indicates that the node is running
Cloud Edition

The Gateway node that the local Gateway is connected to. The icon's blue color also indicates that the connected node is running Cloud
Edition.

Connection Details

You can find out more information about each node and connection by clicking on them in the diagram. For example, clicking on the connection itself
will display information such as:

Connection Status
Direction (Outgoing versus Incoming)
Origin Gateway and Target Gateway
Ping time in milliseconds
Rates (Outgoing and Incoming bytes per second)
Whether the connection is using SSL
How many times the connection has faulted

If the connection is in another state besides , the Diagram will update accordingly:Running

Gateway Nodes

On the other hand, clicking on the Gateway node itself will display information such as:

Gateway Name
Network Address
Version
Edition

Note: If a Gateway in your Gateway Network is running Ignition version 8.1.24 or below, the Version and Edition fields will be .N/A

Redundancy Representation

If two Gateways are part of a redundant pair, the diagram will show each Gateway node with an orange circle around it. In addition to the Gateway
Name, Network Address, Version, and Edition, the Gateway Node will also display the in the redundant pair:Gateway's role

Proxy Connections

The Gateway Network Diagram will also display proxy connections differently. Instead of a green arrow indicating status and direction, the connection
will be grey with no direction indicator. Clicking on a proxy connection will give the following information:

The status of the server
Whether or not the two Gateways are using a Proxy connection
Which Gateway the proxy is routed through
The proxy connection's target Gateway

Connections - Store & Forward

Store & Forward

The page displays a list of the Store and Forward engines, including their status, as Store and Forward
well as the number of records currently in each Store and Forward system. If the database connection
becomes faulted, the database records wait in the Store and Forward system until the database
connection is restored.

On this page ...

Store & Forward
Store & Forward Page
Store & Forward Details

Store & Forward Page

The main Store and Forward page lists out all store and forward engines. Typically, each database connection gets its own store and forward engine,
so there should be one engine for each database connection. In addition to displaying some basic stats for each engine, you can also find some totals
for all store and forward systems, to get an idea of how much data is being pushed through the system to databases and if any records are being
dropped.

Attributes Description

Store and Forward Connections

Aggregate
Throughput

Aggregate number of records inserted into a database from any Store and Forward engine per second.

Total
Quarantine

Number of quarantined items for all Store and Forward engines.

Total
Dropped

Number of records dropped from the Store and Forward engines. A record is considered dropped if it can not be added to one of the
buffers, (i.e., when a buffer is full and the Store and Forward engine can no longer accept new records).

Store and Forward Engines

Name Name of the Store and Forward engine.

Store
Throughput

Number of records that go through the Store and Forward Engine per second.

Forward
Throughput

Number of records to be forwarded on to the database per second.

Quarantined Is data that has erred-out multiple times during attempts to forward it, or data that could not be stored because of some configuration
issues.

Activity Current state of the Store and Forward engine.

Actions By clicking Details, shows additional information about Store and Forward engines.

Store & Forward Details

Clicking the button brings up a new window that will show even more details about the records in the selected Store and Forward Engine. Details
Here, we can see a count of the number of records in the memory buffer and local cache, as well as the number of quarantined records. The
quarantined items at the bottom of the Details page will have some buttons that allow you to . The quarantined control the data that is in the quarantine
item can be retried, where it will be thrown back through the Store and Forward system to see if it will go through properly, assuming the original
reason why it was quarantined has been fixed. It can also be deleted so that it is no longer taking up space in the Store and Forward system, or
exported to your local machine where you can save it to try again later. You can then import the file back from the same page when you resolved the
issue that caused the data to be quarantined in the first place.

Attribute Description

Memory
Buffer

Number of records entering the Memory Buffer per second. The progress bar shows the percent of the buffer being utilized, along
with the current and max number of records.

Local
Cache

Number of records entering the Local Cache per second. An "Idle" state means the engine is able to successfully store all records
into the database before the or values have been reached. The progress bar shows the percent of the buffer Write Size Write Time
being utilized, along with the current and max number of records.

Note: On Edge Gateways, the meter for the local cache represents the rows stored within the Edge Historian database. This value
will update when pruning is triggered by Edge's one week storage policy or when storing 10 million data points.

Database
Storage

Displays the number of records pushed from either buffer to the database per second.

Quarantine
d Items

Shows a list of quarantine items and allows you to choose the quarantined file and import it.

ID Identification number of the quarantine item.

Count Number of occurrences for the quarantined item.

Description Description of where the quarantine item origninated from.

Reason Explanation why the record was placed into quarantine.

Actions Provides and opportunity to retry, delete, or export the items from quarantine.

Related Topics ...

Using Store and Forward
Controlling Quarantine Data

Connections - MongoDB

MongoDB

The MongoDB page shows a list of configured MongoDB connections. To view this page, go to your Gate
 > > > . You can filter by name to search for a specific way webpage Status Connections MongoDB

MongoDB connection, and change how many connections are displayed on this page.

Note:

The MongoDB option will only show up if the MongoDB Cloud Connector Module is installed.

On this page ...

MongoDB
MongoDB Page

MongoDB Page

The main MongoDB page contains useful information about your configured MongoDB connections.

Attribute Description

Name Name of the MongoDB connection,

Status Current status of the MongoDB connection.

Connections Current number of connections between Ignition and the specified MongoDB database.

Throughput Number of requests per second.

Connections - OPC Connections

OPC Connections

The OPC Connections page displays all currently configured OPC (both UA and DA) connections.

On this page ...

OPC Connections
OPC Connections Page
Nodes

OPC Connections Page

Here on the main OPC Connections page, we can see a list of all current OPC connections, as well as their status. If any are faulted, you can click the
red faulted status to get an error message popup with a full description of the error.

Attribute Description

Connected Servers Displays the list of OPC servers out of configured servers, and their status.

Name OPC server name.

Filter Search criteria to filter for specific server names.

Type OPC server type - UA or DA

Uptime Total time OPC server is connected.

Status Current status of OPC server.

Diagnostics Displays diagnostic information for any connected OPC UA server.

Server - Shows server diagnostics.
Client - Shows client connection subscription diagnostics.

If you are using an OPC UA connection, you should be using the . If you are OPC UA Module
using the DA connection, you should be using the .OPC COM Module

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+COM+Module

Server

Click the button to get information on the server. Server By default, diagnostics are set to off since they can generate a considerable amount of
network overhead and impact performance. To turn on diagnostics, click . Not all OPC UA servers support diagnostics. Enable Diagnostics

Clients

By clicking on the button, it brings up the subscription information for that particular It will list out all of the subscriptions to that witClient server. server
h the rates, as well as the number of items within that subscription.publishing

Attribute Description

Filter Search criteria to filter for specific subscriptions.

Refresh Refreshes subscription data.

Name Displays the subscription name.

Rate The rate defined in the Tag Group, used as the requested sampling interval for monitored Items belonging to the
corresponding subscription.

Request Publishing
Interval

The rate a subscription will report accumulated change notifications at. The interval is derived from Rate, unless explicitly
defined.

Revised Publishing
Interval

The server's revised rate for accumulated change notifications.

Tag Count The number of Tags currently subscribed to that Tag Group.

Nodes

Clicking the Nodes button for one of the subscriptions will bring up the list of subscribed OPC items.

Attribute Description

Filter Search criteria to filter for a specific node.

Refresh Refreshes node data.

Node ID The item path.OPC

Requested
Sampling Interval

The rate the underlying tag/node will be polled at.

Revised Sampling
Interval

The revised rate at which the underlying tag/node will be polled at.

Requested Queue
Size

Determines how many data points can be stored and transferred to the client once the sampling rate elapses when the
sampling rate is slower that the publishing rate.

Status Code Status of the node.

Related Topics ...

OPC UA
OPC UA Client Connection Settings

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA+Client+Connection+Settings

Connections - SECS/GEM Equipment

SECS/GEM Equipment

The SECSGEM Equipment page displays a list of all equipment connections, their status, as well as the
number of sent requests and received messages. If any piece of equipment becomes faulted, it will show
a status of "Not Connected." If you click the button, it opens a new page with some Connection Details
Stats. Note: the SECSGEM Module is not standard and will be missing for most installs of Ignition. The
SECSGEM Equipment Connection will only be displayed in the Status section of the Gateway webpage
under Connections when the module is installed.

On this page ...

SECS/GEM Equipment
SECS/GEM Equipment Page
SECS/GEM Equipment Details

SECS/GEM Equipment Page

The main SECS/GEM Equipment page lists out all equipment connections and displays the number of messages sent between them and Ignition.

Attribute Description

Connections The total number of active SECS/GEM Equipment connections.

Aggregate Throughput The messages per second the system is sending and receiving from all devices at that time.

Name The name of the equipment connection in the list.

Sent Messages The number of messages sent to the equipment.

Received Messages The number of messages received from the equipment.

Status The status of the equipment.

SECS/GEM Equipment Details

Clicking the button to the right of a piece of equipment will take you to a page that shows more detailed information for that particular piece of Details
equipment.

Attribute Description

Sent Messages

Throughput The messages per second the system is currently sending.

Average The average messages sent per second from when the equipment was first enabled.

Total The total messages sent.

Received Messages

Throughput The messages per second the system is currently receiving.

Average The average messages received per second from when the equipment was first enabled.

Total The total messages received.

Related Topics ...

SECS/GEM

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58599354

Connections - Perspective Sessions

Perspective Sessions

Much like the Designers page, the Perspective Sessions page shows a ton of information regarding
currently open Sessions. All the open Perspective Sessions are displayed on the page along with some
basic information about each session, such as what user is logged into each session and the project they
are currently working on, and their IP address. Each session has a Details button that allows you
navigate all the elements of a session: pages, view instances, and components.

On this page ...

Perspective Sessions
Perspective Sessions Page
Perspective Session Details
View Instances
Components

Perspective Sessions Page

The main Perspective Sessions page displays a list of all currently running Designer and Client Sessions to show how many are open, and the name
of the users that are currently using them. By clicking on the button to the right of a session will display even more information about that Details
particular session, including any Log Activity pertaining to errors recorded while the session was active.

Attributes Description

Sessions Details

Total
Sessions

The number of currently active Designer and Perspective Sessions.

Device Type of device running the Session.

User The user logged into the Session.

Project The name of the project open in the Session.

Uptime The total uptime of the Session.

Last Comm. Date and time recorded for the last communication with the Session.

Address The IP Address and computer name where the Session is launched.

Session
Scope

Indicates what browser opened the Session, and the Perspective icon indicates the Designer is open.

Actions

The following feature is new in Ignition version 8.1.23
 to check out the other new featuresClick here

More > Terminate: Allows users to terminate the session. Note the Terminate option is not available for any Designer Perspective
sessions and is only visible for other session scopes if the user has Config-level permissions.

Details: Accesses a new Perspective Sessions page that displays performance stats, pages information, session details, and log
activity.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.23

Perspective Session Details

The Performance Page within the session displays more in depth information such as the Page Id and how many views are on each Page. Hit the Deta
 button to get more detailed information about each page in the sesson.ils

Attributes Description

Performance

Total Views The number of currently active pages.

Total Bytes Sent Displays total number of bytes sent out.

Pages

Id Page Id

Views Displays total number of views on a page.

Actions Displays the details of the view instances in the session.

Log Activity

Min level Dropdown menu with options Info, Debug, and Trace.

Live Values Toggle switch to turn live values on or off.

Merge to Logs Merge the settings of the current view with the main Diagnostics Log Viewer.

Logger Name of the logger that describes the context of the message.

Time Time of log.

Message Message for the log.

 (Log Properties)
Displys log properties of the logged event.

View Instances

The View Instances page shows the number of View Instances on a Page and the number of Components in each view instance. Press the butDetails
ton next to each View Instance to get even more information about the type of components used in each view.

Attributes Description

Sessions Details

InstanceID Displays View Instances for eac view.

Components Total number of components used in the specified view.

Actions By clicking on the Details button shows mor information for each view instance.

Components

The Components page lists all the components used in a View Instance of Page along with the following information about each component.

Attributes Description

Name Name of the component.

AddressPath Address of the component.

Bindings Displays the number of bindings for each component.

Children Displays the number of children for each component.

Properties Displays the number of properties for each component.

PropertyChangeScripts Displays the number of property change scripts for each component

Actions Displays the number of actions for each component.

Related Topics ...

Launching a Perspective Session

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions#PerspectiveSessions-LaunchingaPerspectiveSession

Connections - Vision Clients

Vision Clients

Much like the Designers page, the Vision Clients page shows information regarding currently opened
Clients. The Clients are listed and show some basic information such as the address of the Client. From
here, the Client session can be terminated by selecting the button and hitting , or select More Terminate
the option to see more details about the Client session such as the number of Tags that the Details
session is currently subscribed to, as well as a log of errors that may have happened with that Client.

On this page ...

Vision Clients
Vision Clients Page
Client Session Details

Vision Clients Page

The main Vision Clients page displays a list of all currently running Clients which show how many clients are open and what users are currently using
them.

Attributes Description

Clients Stats and Details

Active
Clients

The number of currently active Clients.

Requests
/sec

The number of requests per second coming from all Clients.

Id The Client Id.

User The user logged in on the Client session.

Project The name of the project open in the Client session.

Uptime The total uptime of the Client session.

Activity Denotes whether the Client session is currently connected and Active, or Dormant. A Dormant status means the Gateway hasn’t
received any activity from the Vision Client, but the Client hasn’t been logged out yet. Dormant statuses can also be caused by a
user opening multiple Clients without closing or logging out of previously opened ones.

Note: Dormant Clients should automatically clear after a period of time, but they can also be terminated manually or resolved by
logging out of the Vision Client, either by the user or through a Client Event Timer script. You can utilize system.util.

 and for the Client Event Timer script.getInactivitySeconds() system.security.logout()

Address The IP Address and computer name where the Client is launched.

Memory The Client's current memory usage.

Actions The option to terminate the Client session, or see more details about the session.

https://docs.inductiveautomation.com/display/DOC81/system.util.getInactivitySeconds
https://docs.inductiveautomation.com/display/DOC81/system.util.getInactivitySeconds
https://docs.inductiveautomation.com/display/DOC81/system.security.logout

Client Session Details

Clicking on the button for a Client session will take you to a page that displays more in depth information for that particular Client session. It Details
also gives a logger at the bottom where errors coming from that particular Client can be seen.

Attributes Description

Client Performance and Details

Memory The Client's current memory use.

Subscriptions The number of Tags the Client is currently subscribed to.

User The user logged in on the Client session

Project The name of the project open in the Client session.

Address The IP Address and computer name where the Client is launched.

Uptime The total uptime of the Client session.

Last Comm The last time the Gateway communicated with the Client.

Client JVM Version The Java version that the Client is currently running on.

Related Topics ...

Vision Client Launcher

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher

Diagnostics - Execution

The Execution page reports the status of all tasks that your Gateway runs on
a schedule. Here you can find helpful information such as the duration and
execution time of an alarm journal update or the average time it takes your Ga

teway to execute a Tag Group.

Attributes Description

Throughput Number of executions that come through per second.

Total Executions Total number of times the task executed.

Delay Amount of time waiting to execute the task.

Avg. Duration Average time to run the task.

Last Duration Amount of time to run the last task.

Related Topics ...

Diagnostics - Logs

Diagnostics - Logs

One of the most important troubleshooting tools of the is the Logs page. This console Gateway Webpage
shows errors caused by events including things like Database or Device connections, Gateway
Authentication profiles, Alarm Journals and Pipelines, and anything else that is scoped. You Gateway
can find logs in the Status tab of the under .Gateway Webpage Diagnostics > Logs

The Logs also provide a wealth of information about the running state of the . To learn Gateway Gateway
more, refer to the section on . Troubleshooting the Gateway The Logs page is where the ConsolGateway
e is located that allows you to see a live flow of log events in the system.

On this page ...

Changing Logging Levels
Downloading the Logs
Printing to the Logs
Mapped Diagnostic Context Keys

Attributes Description

Logger Name of the logger that describes the context of the message.

Time Time of log.

Message Message for the log.

Filter
Search criteria to filter for specific tasks or events. Click the icon to set a filter date and time range. Options are Calendar
Last Month, Last Week, Last 24 Hours, or Custom.

Min Level Dropdown menu with options: All, Trace, Debug, Info, Warn and Error.

Live Values Toggle switch to turn live values on or off.

https://docs.inductiveautomation.com/display/DOC80/Gateway+Settings#GatewaySettings-TroubleshootingtheGateway

1.
2.

Changing Logging Levels

The logs can be filtered by using a search term or by date.

To change logging levels, go to the Gateway's page and click on the icon.Status > Diagnostics > Logs Settings
On the Log Configuration popup that will open, search for the logger name in the Filter box, and select the desired logging level from the
dropdown to the right of the logger name

Downloading the Logs

Gateway logs can also be exported using the icon the right.Download Logs

Printing to the Logs

You can print to Gateway logs by using the function. Below is a simple example, you can look in the for more options.system.util.getLogger() appendix

logger = system.util.getLogger("My Logger Name")
logger.warn("My Warning Message")

Mapped Diagnostic Context Keys

Mapped Diagnostic Context Keys (MDC Keys) allow you to specify a specific context, such as a particular project, and then set a logging level for it.
This will set all loggers that pertain to the specified project to the logging level. This is useful to help diagnose an issue with a specific system within

the Gateway. To use MDC Keys, click the icon on the Logs page and navigate to the Context tab. Here, you can choose specific Key-Settings
Value pairs that match a particular system. Selecting the Key text field will bring up a list of possible keys in your system. Once a Key has been
selected, selecting the Value text field will bring up a list of possible values that relate to the selected Key.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger

Filter by Mapped Diagnostic Context Key

The Logs can also be filtered to show only logs that pertain to an MDC Key. This can be useful when altering the logging level of one or more MDC

Keys. To set an MDC filter on the logs, simply click the icon on the Logs page to open a window where Add Mapped Diagnostic Context Filter
MDC Key filters can be set. The filter can be specified for all values in a Key by not specifying a Value.

Merging to Logs

Many of the other pages in the Status tab also contain a logger that will just show logs that are relevant for that particular section. These log views all
contain a button on the right side called . This button allows the current filter to be applied to the main logs page, allowing you to still Merge to Logs
see only the logs for that section but use all of the tools available.

Related Topics ...

Diagnostics - Execution
Diagnostics - Running Scripts
Diagnostics - Threads

In This Section ...

Wrapper Logs

Wrapper logs are a set of plain text log files located inside the installation directory on the computer
where Ignition Gateway is installed. The exact path may vary depending on the installation directory, but
the typical path to the location of the wrapper logs is C:\Program Files\Inductive Automation\Ignition\logs\
on a Windows operating system and /usr/local/bin/ignition on Linux installations.

Wrapper Log Location

There are typically six wrapper log files. The file containing the most recent information is the one called
wrapper.log. Older information is contained in the wrapper.log.1, wrapper.log.2, wrapper.log.3, etc., the
higher the number, the older the information. A very recent installation of Ignition may have fewer than
six wrapper log files.

Some operating system settings may cause the file extensions to be hidden. In that case, check your
operating system’s documentation on how to show file extensions, or simply look for the files with the
name starting with "wrapper".

On this page ...

Wrapper Log Location
Wrapper Log Content

Wrapper Log Content

Wrapper logs are similar to Gateway logs in that they contain information about the operation of the Ignition Gateway and its sub-systems, as well as
the errors generated by Gateway scoped resources. However, there are some important differences between the Gateway log and the wrapper logs:

The information in the wrapper logs persists across Gateway restarts, while Gateway logs are cleared by Gateway restart
The wrapper logs contain information about issues during the Gateway startup, including any issues that may have prevented the Gateway
from starting. The most recent wrapper log file is the first place to look for the cause if the Gateway has failed to start, or if the Gateway
stopped or restarted unexpectedly.
The wrapper logs (but not the Gateway log) contain the output of any print statements in Gateway-scoped scripts.
Unlike the Gateway log, the wrapper log files can only be obtained from their directory on the computer where Ignition Gateway is installed.
There is no way to view them via the Gateway’s Web interface.

Diagnostics - Running Scripts

The Running Scripts page shows all actively running Gateway scripts, as well as providing a way to terminate any running script. In addition, the
Vision client and Designer consoles have a Running Scripts tab, which also lists running scripts and provides a way to terminate them.

Attributes Description

Thread Id Thread Id number.

Description Name and description of the script.

Execution Start Time script started running.

Elapsed Time Amount of time the script has been running.

Actions Lists actions that can be performed against the running script, such as canceling it.

The following feature is new in Ignition version 8.1.29
 to check out the other new featuresClick here

Note: Users who have Status webpage access but not Config webpage access can view Running Scripts without the ability to terminate them.

Related Topics ...

Diagnostics - Execution
Diagnostics - Logs
Diagnostics - Running Threads

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.29

Diagnostics - Threads

The Threads page displays a snapshot of information about Gateway’s execution threads. This
information may be important when troubleshooting certain types of issues. If you are working with
Support, you may be asked for a thread dump.

Their state and CPU usages are displayed to easily find problem threads, as well as a chart of what
systems are using the threads and the ability to filter the threads based on a keyword. Each thread can
be expanded to give details on what it is currently doing, and that individual thread process can be
copied to the clipboard.

On this page ...

Thread Performance by System
Individual Threads

Thread Performance by System

The upper section of the Diagnostics - Threads page depicts graphical representation of the current threads including percentage of total CPU used,
overall scope, and average CPU usage per system.

Click the icon to see the display.Expand

Click the icon to reset the information.Reset

Individual Threads

The lower portion of the Diagnostics - Threads page displays statistics for individual threads.

To download a thread dump, click the icon on the right of the page. In order to be useful, a thread dump must be taken at the time Download
the issue is observed. Unlike logs, which maintain a record of past messages, a thread dump is a time-specific snapshot and will not contain a record
of past states. To see more information on thread dumps, including other methods of obtaining them such as or the command line, system functions
click .here

Attributes Description

Thread Name Name of the thread.

Filter Search criteria to filter for specific threads.

CPU(%) Percentage of CPU usage.

State Current state / status of the system.

System Search criteria to filter for specific tasks or events.

Actions View thread details.

Live Values Toggle switch to turn live values on or off.

Click the icon to display additional details for a single thread. You can click the icon to copy that thread to the Show Clipboard
clipboard.

https://docs.inductiveautomation.com/display/DOC81/System+Functions
https://support.inductiveautomation.com/hc/en-us/articles/4584702794509-How-To-Take-a-Thread-Dump

Related Topics ...

Diagnostics - Execution
Diagnostics - Logs
Diagnostics - Running Scripts

Diagnostics - Metrics Dashboard

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

The Metrics Dashboard allows users to visualize a variety of metrics on their own customizable
dashboards. Users may browse and search for any registered metric and add it to a dashboard,
expanding the diagnostic capabilities available on the Status page. With the addition of this dashboard,
developers can contribute diagnostics to the Status page without any additional UI design.

On this page ...

User Interface
Types of Metrics

Gauge
X/Y
Meter
Histogram
Timer

Available Metrics
Examples

Adding Metrics to a Dashboard

User Interface

Attributes Description

Add Metric Select from a list of available metrics to drag and drop onto the dashboard grid.

Grid Size Control the number of rows and columns on the grid.

Reset Clear all metrics tiles from the current dashboard.

Dashboard Dropdown Switch between saved dashboards.

Save Dashboard Dropdown Save changes, rename a saved dashboard, or delete the current dashboard.

Types of Metrics

Gauge

Gauges can be any kind of instant-read measurement, such as the number of megabytes of memory consumed, the count of faulted database
connections, or the length of a pending task queue. Gauges are used to display a dynamic number.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

Property Description

value A numeric value.

X/Y

An X/Y metric is a pair of gauges that can be interpreted as a ratio. This is an instant-read gauge on a value that has a maximum, such as heap size
or a fixed-size thread pool.

Property Description

value A numeric value.

max The maximum value.

Meter

A meter measures the rate at which something occurs, such as the number of messages sent per second. Users can select the units as well as which
of the moving average rates to display.

Property Description

count The number of events seen.

meanRate The mean rate, overall.

oneMinuteRate The one-minute moving average rate.

fiveMinuteRate The five-minute moving average rate.

fifteenMinuteRate The fifteen-minute moving average rate.

Histogram

A histogram measures the statistical distribution of values in a stream of data. Hovering over a quantile reveals the value at that quantile.

Property Description

count The number of values or events seen.

min The minimum value (in milliseconds).

max The maximum value (in milliseconds).

mean The mean value (in milliseconds).

stdDev The standard deviation (in milliseconds).

median The median value (in milliseconds).

Timer

A timer is used to understand both the frequency of and duration of events. It is a combination of a meter (rate of occurrence) and a histogram
(distribution of duration). A timer combines the functions and properties of both a meter and a histogram.

Available Metrics

The table below includes all metrics currently available to view on the Metrics Dashboard. New metrics may be made available with the development
of new systems, modules, and features.

Metric Description

authToke
nRecords

The following feature is new in Ignition version 8.1.37
 to check out the other new featuresClick here

There are authTokenRecords for both the Client and Designer.

Metric Description Size Type

changeEventDistribution
OperationAccumulator Metric Description Size Type

batchProcessDura
tion

The amount of time that the ChangeEventDistributionOperationAccumulator takes to
process a batch.

4x2 Timer

changeEventDistri
butions Metric Description Size Type

batchSize Number of ChangeEvent Distributions in the
ChangeEventDistributionOperationAccumulator
batch.

1x1 Gauge

dispatchedT
hroughput

The throughput of ChangeEvent Distributions
dispatched to the Execution task for batch
processing.

2x2 Meter

queuedThro
ughput

The throughput of ChangeEvent Distributions added
to the batch.

2x2 Meter

changeEventListe
nersMutations Metric Description Size Type

batchSize Number of ChangeEvent Listener Mutations in the 1x1 Gauge

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37

batch.

dispatchedT
hroughput

The throughput of ChangeEvent Listener Mutations
dispatched to the Execution task for batch processing.

2x2 Meter

queuedThro
ughput

The throughput of ChangeEvent Listener Mutations
added to the batch.

2x2 Meter

changeEventListeners.
count

The number of ChangeEvent Listeners registered with the system. 1x1 Gauge

changeEventPersistence
OperationAccumulator Metric Description Size Type

batchProcessDura
tion

The amount of time that the ChangeEventPersistenceOperationAccumulator takes to
process a batch.

4x2 Timer

batchSize The number of ChangeEvent Contexts in the
ChangeEventPersistenceOperationAccumulator batch.

1x1 Gauge

dispatchedThroug
hput

The throughput of ChangeEvent Contexts dispatched to the Execution task for batch
processing.

2x2 Meter

queuedThroughput The throughput of ChangeEvent Contexts added to the batch. 2x2 Meter

synchronizerDurati
on

The amount of time that the File Synchronizer takes to synchronize files with memory. 4x2 Timer

maintenance
Metric Description Size Type

cleaner.duration The amount of time that the Cleaner takes. 2x4 Timer

pruner.duration The amount of time that the Pruner takes. 2x4 Timer

reaper.duration The amount of time that the Reaper takes. 2x4 Timer

records.count The number of AuthTokenRecords in the system. 1x1 Gauge

touchEventAccumulator Using the metrics below, you can identify that a system is processing the incoming volume of touch events efficiently if
the dispatchedThroughput keeps up with the queuedThroughput minus the collisionThroughput.

Metric Description Size Type

batchProcessDuration The amount of time that the TouchEventAccumulator takes to process a batch. 4x2 Timer

batchSize The number of touch events in the TouchEventAccumulator batch. 1x1 Gauge

collisionThroughput The throughput of touch events added to the batch resulting in a collision. 2x2 Meter

dispatchedThroughp
ut

The throughput of touch events dispatched to the Execution task for batch
processing.

2x2 Meter

queuedThroughput The throughput of touch events added to the batch. 2x2 Meter

ClockDrif
tDetector Metric Description Size Type

driftGauge The most recent clock drift, in milliseconds. 1x1 Gauge

driftTimer A timer that tracks the distribution of the duration of clock drifts. 4x2 Timer

databases
Metric Description Size Type

connection-
{dbName}

Each connected database will have the following associated metrics:

Metric Description Size Type

active-
connections

Count of active connections. 1x1 Gauge

queries Measures the rate and distribution of query execution. 4x2 Timer

rows Measures how many rows the queries being executed against the given database connection
are returning

2x2 Meter

throughput Throughput of queries per second. 1x1 Gauge

queries Measures the rate and distribution of query execution on all database connections. 4x2 Timer

gateway-
network

The following feature is new in Ignition version 8.1.37
 to check out the other new featuresClick here

Metric Description Size Type

activeMs
gCountAll

Total count of all active messages currently being sent over the Gateway Network. 1x1 Gauge

Incoming
BytesSec
All

Accumulation of the number of bytes received per second across all Gateways. 1x1 Gauge

Incoming
MsgsPer

Accumulation of messages received per second across all Gateways. 1x1 Gauge

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37

SecAll

Outgoing
BytesSec
All

Accumulation of the number of bytes sent per second to all Gateways. 1x1 Gauge

Outgoing
MsgsPer
SecAll

Accumulation of messages sent per second to all Gateways. 1x1 Gauge

pendingA
cksExpired

Indicates how many pending acknowledgements were purged during the last cleanup execution. This metric is relevant for outgoing
 connections.

Note: Some messages create a pending acknowledgement object. When the message is uploaded to another Gateway and that
Gateway acknowledges receiving the message, the pending acknowledgement object is cleared. If no acknowledgement is
received, these objects can become orphaned. Orphaned pending message acknowledgements are regularly purged.

1x1 Gauge

pendingM
essagesE
xpired

Records how many messages were purged during the last cleanup execution, giving an estimate of potentially lost messages. This
metric is relevant for incoming connections. Messages that were dispatched, but not downloaded by the other Gateway are regularly
purged.

1x1 Gauge

Pending
MsgCoun
tAll

Total count of all messages waiting to be sent over the Gateway Network 1x1 Gauge

proxyMsg
sPerSec

The number of messages per second that are forwarded through this Gateway. Only applies when this Gateway is configured as a
proxy Gateway.

2x2 Meter

services incomingServiceCalls

Metric Description Size Type

Get Service State Number of calls per second. This metric is queried by other Gateways to see if a specific service is
available.

2x2 Meter

Enumerate
Services

Measures the rate and distribution of enumerate service calls. 2x2 Meter

ignition
Metric Description Size Type

designer.requests Measures the rate and distribution of designer requests. 4x2 Timer

performance
Metric Description Size Type

committed-non-heap Committed non-heap memory. 1x1 Gauge

cpu CPU usage as percent utilized. 1x1 Gauge

disk Disk used out of total space available. 1x1 X/Y

heap Heap memory used out of total memory available. 1x1 X/Y

heap-max Maximum heap memory. 1x1 Gauge

heap-used Current heap memory used. 1x1 Gauge

non-heap Current non-heap memory used. 1x1 Gauge

non-heap-pct Non-heap memory used out of total non-heap memory available. 1x1 X/Y

uptime Total uptime. 1x1 Gauge

perspecti
ve Metric Description Size Type

bindings Perspective Binding count. 1x1 Gauge

components Perspective Components count. 1x1 Gauge

expressions Measures the rate and distribution of expressions. 4x2 Timer

fetches Measures the rate and distribution of fetches. 4x2 Timer

pages Perspective pages count. 1x1 Gauge

property-changes Measures the rate of property changes. 2x2 Meter

scripts Measures the rate and distribution of script executions. 4x2 Timer

session-{sessionName} Each connected Perspective session will have the following associated metrics:

Metric Description Size Type

expressions Measures the rate and distribution of expressions. 4x2 Timer

fetches Measures the rate and distribution of fetches. 4x2 Timer

messages-received Count of messages received. 2x2 Counter

messages-sent Count of messages sent. 2x2 Counter

property-changes Measures the rate of property changes. 2x2 Meter

queue-length Current length of queue. 1x1 Gauge

1.
2.

queue-tasks Measures the rate and distribution of queued tasks. 4x2 Timer

reconnects Count of reconnects, 2x2 Counter

scripts Measures the rate and distribution of script executions. 4x2 Timer

uptime Total uptime for the Perspective session. 1x1 Gauge

sessions Count of active sessions. 1x1 Gauge

views Count of views. 1x1 Gauge

projects
Metric Description Size Type

(projectName).resources Count of resources per project. 1x1 Gauge

count Count of projects. 1x1 Gauge

disk-sync Measures the frequency and duration of projects directory synchronization. 4x2 Timer

saves Measures the rate and distribution of project saves. 4x2 Timer

redundan
cy Metric Description Size Type

config.updateThroughput Rate of updates. 2x2 Meter

alarmpipelinemanager
Metric Description Size Type

taskSendThroughput Rate of tasks sent. 2x2 Meter

taskRecvThroughput Rate of tasks received. 2x2 Meter

queueSize Current queue size. 1x1 Gauge

sync.queue_max Maximum queue size. 1x1 Gauge

scripts
Metric Description Size Type

gateway
Metric Description Size Type

compile Measures the rate and distribution of script compiles. 4x2 Timer

execute Measures the rate and distribution of script executions. 4x2 Timer

project-(projectName)
Metric Description Size Type

compile Measures the rate and distribution of script compiles. 4x2 Timer

execute Measures the rate and distribution of script executions. 4x2 Timer

vision.
requests

Measures the rate and distribution of Vision requests.

Examples

Adding Metrics to a Dashboard

Click Add Metric.
Select a metric from the list and click .Add

3.

4.

Hover over the grid to position the metric.

Click to snap the metric to the dashboard. To reposition your metric, you can drag and drop it anywhere else on the grid.

Config

Gateway Configuration

The Config tab provides access to configuration options for . This is where most of the Gateway settings
settings that affect the whole Gateway are set up. We can add database and device connections, users
and roles, adjust alarm settings, set up security, and create a schedule for a Gateway backup to be taken
automatically at specific times.

The list of Config options on the left menu change based on what modules are installed on your
Gateway. Third-party modules have settings that are not discussed on this page.

Once you have the up and running, you start by configuring some or all of the general services Gateway
in . You make the configuration changes from the section of the . The Ignition Config Gateway Webpage
different broad categories of what you can configure are as follows:

 System (Overview, Backup/Restore, Licensing, , Projects, Redundancy and Modules Gateway
Settings)

 Networking (Web Server, Network and Email Settings)Gateway
 Security (Auditing, Users, Roles, Service Security, Identity Providers, OAuth2 Clients, Security

 and Zones)Levels, Security
 Databases (Connections, Drivers, and)Store and Forward

 Alarming (General, Journal, Notification, On-Call Rosters, and Schedules)
 Tags (History and Realtime)

OPC Client (OPC Connections and OPC Quick Client)
OPC UA (Device Connections, Security, and Server Settings)

 AdministrationEnterprise (Event Thresholds, Controller Settings, Agent Management,
License Management, and Agent Tasks)
Sequential Function Charts (Settings)

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Perspective (Branding Customization)

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

Connectors (MongoDB)

Note: Depending on what modules you have installed, some categories may be missing.

On this page ...

Gateway Configuration
System
Networking
Security
Databases
Alarming
Tags
OPC Client
OPC UA
Enterprise Administration
Sequential Function Charts
Perspective
Connectors

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-System
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-Networking
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-Security
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-Databases
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-Alarming
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-Tags
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-OPCClient
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-OPCUA
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-EnterpriseAdministration
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418471#Config-SequentialFunctionCharts
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28

System

The System section is a sort of catch all section that can do a lot of different things. The first window is the Overview page, which is what will first
show up when navigating to the Configure tab. The Overview page only has links to other sections of the Config tab, but it is useful if you aren't
exactly sure where the setting you are looking for is located, because the Overview page lists the most common configuration changes.

Page Description

Backup
/Restore

The page is where you can manually take a backup, and restore a previous backup.Backup/Restore

Ignition
Exchange

On the Ignition Exchange page you can access the Ignition Exchange to browse for resources. You can also import an Ignition
Exchange Package that you've downloaded.

Licensing The page allows you to control any and all licenses currently activated on the Gateway. It will show all the modules that the Licensing
license is currently good for, and have some options for activating a new or additional license.

Modules The page displays all currently installed modules and if they are active or not. This is where you can install a new module or Modules
upgrade an existing module.

Projects The page can easily manage all of the projects currently configured in the Gateway, with settings that change the Name and Projects
Title, or the default database and authentication profile of the project.

Redunda
ncy

The page is where all of Ignition's redundancy settings are configured. This is where the master and backup nodes are Redundancy
configured as well as the network settings to make sure the two nodes can properly communicate.

Gateway
Settings

The page is where settings are located for the system name, homepage redirect URL, launch settings, scheduled Gateway Settings
backups, error reporting and other miscellaneous.

https://legacy-docs.inductiveautomation.com/display/DOC81/Modules+Overview
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Settings#GatewaySettings-GatewayPropertyReference

Networking

The Networking section deals with setup and management of the .Gateway Network

Page Description

Web
Server

The Web Server page is for configuring the http and https ports, setting up the SSL / TLS certificate, redirecting traffic through a known
address, and whether or not all http traffic should be forcefully redirecting to https. If you are allowing users to access your Gateway from
outside your network (through the internet), you will need to configure the Public HTTP Address settings.

You can find out more about SSL in .Secure Communication (SSL / TLS)

Gatew
ay
Network

The Gateway Network allows you to connect multiple Gateways together over a wide area network. The Gateway's connection settings
can also be changed to only allow certain connections. The set the basic rules for the system. Gateway Settings

Email
Settings

The section allows you to create an SMTP server connection in the Gateway that can be used by several different Email Settings
resources such as Alarm Notification and Report Schedules.

Security

Ignition provides several options to safeguard data and applications in Ignition which fall into the following categories, and are set up in the Security
Config section.

Page Description

General

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The page is new for 8.1.0. It Gateway General Security Settings determines security permissions for the Gateway and Designer. For
more information, see .Security

Auditing Here you can set up an to record details about specific events that occurred. Audit Profile

Users
and
Roles

This is where you set up . Security policies are defined in terms of the roles set up in the system. users and roles

Service
Security

A security policy can be defined for each Security Zone and is set up in . The Security Policy has four sections: Alarm Service Security
Notification, , History Provider Access, and Access. They work together to define how the local gives access to Alarm Status Tag Gateway
incoming connections.Gateway

Identity
Provid
ers

Identify Providers (IdP) provide a way for users to log in to Ignition using credentials stored outside of Ignition. An IdP creates, maintains,
and manages identity (login) information while providing authentication services to Ignition. This provides a secure login that allows Ignition
 to use SSL and two-factor authentication (2FA).

OAuth
2
Clients The following feature is new in Ignition version 8.1.24

 to check out the other new featuresClick here

Set up here.OAuth 2.0 Clients

Securit
y
Levels

Security Levels define a hierarchy for access inside a Perspective Session or Vision Client using IdP authentication. This authorization
system provides a way to map roles from an () to roles.Identity Provider IdP Ignition

Securit
y
Zones

A Security Zone is a list of Gateways, Computers, or IP addresses that are defined and grouped together. This group now becomes a
zone on the , which can have additional policies and restrictions placed on it. Security Zones provide this functionality to NetworkGateway
the Network, limiting locations instead of people to be read-only for specific actions. This allows for greater control over the type Gateway
of information that is passing over the , improving and helping to keep different areas of the business separate, while still network security
allowing them to interconnect.

Databases

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/Service+Security
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://docs.inductiveautomation.com/display/DOC80/Gateway+Network

The Databases section is where s are set up. Databases are used in historical data logging, reporting, storing alarm logs, and database connection
Tag storage.

Page Description

Conne
ctions

Many of the advanced features of , such as the and Tags Historian require a connection to an external Ignition Transaction Groups databa
 and most databases require special permissions for each computer that wants to connect. takes care of all of this. You create se, Ignition

a connection to your once, and every system in will use that central connection. From here, you can create new database Ignition databa
 and edit existing connections.se connections

Drivers JDBC drivers used in database connections are imported and configured in of the Database section. Drivers

Store
and
Forward

The system provides a reliable way for to store data to the . The Store-and-Forward system settings Store-and-Forward Ignition database
offer a good deal of flexibility in tuning. Different types of situations and goals will likely require different configurations.

Alarming

The Alarming section provides general settings to provide up-to-date status of alarms, store history, build the logic for how, alarm configuration alarm
why, and when notifications are delivered, manage notifications for user groups, and send Email, or Voice notifications. With all alarm alarm SMS,
these features and functions in Alarming, you can easily create alarms, and design and manage your notifications any way you choose.alarm

Page Description

General This General setting provides of some basic alarm configuration settings.

Journal Alarm Journals are configured in the Alarming section to store basic historical information in a database about alarms that occurred, such
as their source and timestamp, associated data on the , and the values of the 's properties at the time the event occurred.alarm alarm

Notifica
tion

Notification Profiles are configured in the Alarming section to allow for , , or notifications to be sent out when an alarm Email SMS Voice
event occurs.

On-
Call
Rosters

The is where you create user groups to be notified when an occurs. When an is triggered, it is sent to a On-Call Roster alarm alarm
designated where it evaluates the users schedules, and only notifies those users that have an active schedule. Users that On-Call Roster
are off-schedule will not be notified.

Sched
ules

Defines the times of users on-call availability and unavailability by configuring .Schedules

Tags

The Tags section is where both as well as are configured. Note that this is not where individual Tags Realtime Tag Providers Historical Tag Providers
are set up.

Page Description

History Configure the settings for each of the configured Historical Tag Providers, or create new remote or split providers.

Realtime Configure the settings for each of the configured Realtime Tag Providers, or create new standard or remote providers.

OPC Client

The OPC Client section is where connections from Ignition's internal OPC UA server to other OPC servers are located.

Page Description

OPC Connections Configure to Ignition's built in OPC Server.OPC Connections

OPC Quick Client The OPC Quick Client allows for quick and simple testing of any OPC Connections connected to the OPC . server

OPC UA

The OPC UA Server is where Ignition's internal OPC UA server is configured.

Page Description

https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Profile+Types
https://legacy-docs.inductiveautomation.com/display/DOC81/Email+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/SMS+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/Voice+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/On-Call+Rosters
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-DatasourceHistoryProviders
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA+Client+Connection+Settings

Device Connections This is where all to our internal OPC UA server are configured.device connections

Security Upload and trust client and server .OPC UA certificates

Server Settings Configure Ignition's internal 's settings.OPC UA Server

Enterprise Administration

The section controls the majority of . Setting the Gateway to be a Controller or Agent as well as creating Enterprise Administration EAM functions
Agent Tasks and managing the various Agents from the Controller Gateway can all be done in this section.

Sequential Function Charts

A is a series of scripts that are defined in a single location and then called in sequential order. Sequential Function Chart (SFC)

Page Description

Settings This is where the are configured.SFC Settings

Perspective

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Perspective co-branding customization allows you to add your own flair on your Perspective apps by incorporating custom colors and logos.

Page Description

Branding Customization This is where are configured.Co-Branding settings

Connectors

Cloud Connectors are geared towards Ignition Cloud Edition and cloud infrastructure, although the connectors can also be used on a standard Ignition
Gateway.

Page Description

MongoDB This is where are configured.MongoDB Connections

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA#OPCUA-ConnectingtoaDevice
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA+Security
https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition%27s+OPC+UA+Server
https://legacy-docs.inductiveautomation.com/display/DOC81/Enterprise+Administration+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Enterprise+Administration
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/display/DOC81/SFC+Designer+Interface#SFCDesignerInterface-GatewaySettings
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20
https://docs.inductiveautomation.com/display/DOC81/Perspective+Co-Branding
https://legacy-docs.inductiveautomation.com/display/DOC81/MongoDB#MongoDB-ConfigPage

Gateway Settings

Gateway Settings Property Reference

After you launch the Gateway , you can define the high-level settings that apply to the entire Gateway by
 going to the Config > Gateway Settings on the Gateway Webpage. From this page, you can use the

default values or define a new setting. The Gateway is at the heart of the Ignition software. It runs as a
web server and you can access it through a web browser. Once running, you can get various status
information about the Gateway and access important functions.

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The Gateway Settings Properties were updated significantly for release 8.1.0. Many security related
 .settings have been moved to Gateway General Security Settings

On this page ...

Gateway Settings Property
Reference

Local Client Fallback Settings
Scheduled Backups
Automatic Thread Dump
Settings
Error Reporting
Multicast Settings

The following tables describe all the properties on the Gateway Setttings.

Gateway Settings

System Name Is a unique name for this Ignition installation. It is used to distinguish this server from others on the network when working with
multiple Ignition installations.

Caution: It is not recommended to change the Gateway's System Name after initial Gateway setup. Renaming your Gateway
may break critical dependencies, affect data collection, and halt production. To see a list of features dependent on the Gateway
name, click here.

Homepage
Redirect URL

The URL this gateway will redirect to when is visited. Can either be a relative path (e.g., /web/home), or fully http://ip:port/
qualified (e.g.,).https://inductiveautomation.com

Gateway
Scripting Project

The is a Project in which Gateway-scoped scripts with no project affiliation can access user script Gateway Scripting Project
libraries.

Enable Tag
Reference
Tracker Store The following feature is new in Ignition version 8.1.34

 to check out the other new featuresClick here

Enables the storing of Tag Reference entries to a database on the local Gateway for analysis in a Designer for third party
modules. Default is true.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/System+Name+Usage+Reference
http://ipport/
https://inductiveautomation.com/
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-GatewayScriptingProject
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

Launch Settings

Designer
Memory

The maximum amount of memory that the Designer has access to.

Disable
Direct3D

Disables the Direct3D rendering pipeline launched clients. Direct3D can cause performance problems with XOR painting. (affects
clients on Windows only)

Disable
DirectDraw

Disables the DirectDraw system for launched clients. Can be useful for some video cards that don't support DirectDraw well.
(affects clients on Windows only)

Use
Condensed
Font The following feature is new in Ignition version 8.1.4

 to check out the other new featuresClick here

Designers and Vision Clients will use a condensed version of the "Dialog" font for better compatibility with pre-8.0 Vision project
design. (affects clients on Windows and Linux only). Defaults to false.

Local Client Fallback Settings

Ignition provides a Local Vision Client Fallback mechanism that lets you use a Gateway running on the local machine. If the Gateway is lost, the
Client can automatically retarget to a project that you specify in the local in the local Gateway.

Local Vision Client Fallback

Enable Local
Fallback

Enables a client to fall back to a project in a local Gateway if communication is lost to the central Gateway. Note that port 6501
must be open on the local machine.

Seconds Before
Failover

The number of seconds to wait before switching to the local Gateway project after communication loss.

Fallback Project The local project to use during fallback.

Scheduled Backups

The Scheduled Backup Settings control the Gateway's scheduled backup system. This system is capable of automatically making a Gateway backup
and storing it to the specified location, which can be a network path. When you enable this system, you must specify a destination folder. This can be

 a local folder, for example C:\backups or /var/backups , or a network path such as \\fileserver\backups .

The scheduled backup system works on a schedule that is specified using UNIX Crontab syntax. See the page for Crontab Formatting Reference
more details.

Scheduled Backup Settings

Enable
Scheduled
Backups

Enables the scheduled backup system which automatically makes backups at a scheduled time.

Backup
Folder

A path to a folder in which to put the scheduled backups.

Backup
Schedule

A UNIX 'crontab' format scheduling string representing when to make the backups.

Retention
Count

The number of backups to keep in the backup folder.

Filename
Pattern

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

The filename pattern used for creating scheduled and manually downloaded Gateway backups. Default pattern is ${gatewayName
. There are a few possible placeholder pattern values:}_Ignition-backup-${edition}${timestamp}.gwbk

Filename Pattern Description

${os} The operating system the Gateway is installed on.

${version} The Ignition Gateway version.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4
https://legacy-docs.inductiveautomation.com/display/DOC81/Local+Client+Fallback
https://legacy-docs.inductiveautomation.com/display/DOC81/Crontab+Formatting+Reference
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

${gatewayName} The System Name of your Gateway.

${edition} The Ignition version you are using. Standard Ignition versions will be blank.

${timestamp} The current date and time at which the backup initializes.

Automatic Thread Dump Settings

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

When enabled, Ignition will conduct automatic thread dumps at the specified interval when above the target CPU Usage Threshold. If the threshold is
met or exceeded, a timestamped thread dump will be saved to the logs folder. When the number of thread dumps in the logs folder exceeds the
Retention Count, old files will be automatically removed. The default sample rate (60 seconds) can be overridden by adding an to additional parameter
the Ignition configuration file.

Automatic Thread Dump Settings

Enable Automatic Thread Dumps Enables automated thread dump generation when CPU utilization exceeds the threshold below.

Thread Dump Capture Interval Number of seconds between thread dumps when utilization threshold+duration is met.

CPU Usage Threshold CPU Usage Threshold (%) that when exceeded for a given duration (below) will trigger a thread dump capture.

CPU Usage Exceedance Duration Duration (seconds) during CPU Usage Threshold exceedance to delay a thread dump capture.

Retention Count The number of thread dumps to keep in the logs folder.

Error Reporting

When an error occurs in the Client or Designer, the users can click a link on the Details tab to report the error via email.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-AutomaticThreadDumpSampleRate

These settings define how the errors are reported.

Error Reporting

SMTP Server When not blank, user-reported errors are emailed using this SMTP server.

To Address The email address(es) that will receive the error notification. Separate multiple email addresses with a semicolon (;)

From Address The email address that the error notification is from.

SMTP Username A username for the SMTP server, if required.

Change Password? Check this box to change the existing password.

Password A password for the SMTP server, if required.

Password Re-type password for verification.

Multicast Settings

These properties allow the Gateway to broadcast information about itself via multicast UDP packets. This allows the Gateway to be discoverable by
any components that are also listening to the same multicast address. For example, native client launchers listen on a multicast address to provide a
list of available Gateways on the network. Verify that the send ports and receive ports are open on the Gateway machine in order to be able to
broadcast multicast message.

Multicast Settings

Enable Multicast Allows this Gateway to be discoverable on your local network.

Multicast IP Address Gateway messages are broadcast on this address.

Send Port This port must be open on this machine to send multicast messages.

Receive Port This port must be open on any machine that will receive multicast messages.

Message Interval The interval in milliseconds at which multicast messages will be sent.

Related Topics ...

Config
Status
Gateway Security
Gateway Command-line Utility - gwcmd

https://legacy-docs.inductiveautomation.com/display/DOC81/Security#Security-GatewaySecurity

Email Settings

Email Profiles

In Ignition, there are several places that you might want to send an email from. Instead of setting up a
new email server connection at each one, you can add Email Profiles in the Gateway Config section and
reference them in other places. For example, you can use a pre-configured connection in any of these
places:

Alarm Notification - While the alarm notification system allows you to set up an Email
Notification Profile that is separate from the Email Profile, you can instead choose to use the
settings configured in the Email Profile.
Report Schedules - When Scheduling an Email Action in a report, the Action requires a
configured Email Profile before the report can be emailed out.
system.net.sendEmail() - Instead of manually entering in values for the Email Profile inside each
of your scripts, this function can instead use the settings from an existing Email Profile.

Once your Email Profile is set up, you only need to reference the name of the connection and Ignition will
take care of the rest.

Setting Up an Email Profile

The Email Settings page allows you to select either basic authentication or OAuth 2.0 and configure an
Email Profile from there. These Email Profiles can be used by several different resources in the Gateway.
This means that instead of setting up an Email Profile within each resource (i.e., Alarm Notification
Profile, Reports, etc.), you can configure them once here, and have those resources all use the same
SMTP server. You can find the Email Settings in the Config section of the under the Networking Gateway
heading. Here, you can create a new Email Profile, or manage your existing profiles.

On this page ...

Email Profiles
Setting Up an Email Profile
Classic SMTP Profile Settings

OAuth2 SMTP
OAuth2 SMTP Profile Settings
Manage Token Example
Test OAuth2 Email Profile
Example

Classic SMTP Profile Settings

Below is a list of properties available on a classic SMTP server connection.

Property
Name

Property Description

Main

Name The name of the SMTP profile.

Description A description of the SMTP profile.

SMTP Server Settings

https://legacy-docs.inductiveautomation.com/display/DOC81/Email+Notification+Profile#EmailNotificationProfile-EmailSettings
https://legacy-docs.inductiveautomation.com/display/DOC81/Scheduling+Actions#SchedulingActions-EmailAction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.net.sendEmail

Hostname Hostname of the SMTP server to send email through.

Port Port SMTP service is running on. Default is 25.

Use SSL
/TLS

Connect using dedicated SSL/TLS. Default is false.

Use
STARTTLS

Enable use of the STARTTLS command, allowing the connection to be upgraded to an SSL or TLS connection if supported by the
server. This is not necessary for connections that are already SSL/TLS. Default is false.

Username The username the Gateway will use when authenticating against the mailserver. This is only required if the SMTP server expects
authentication.

Password The password the Gateway will use when authenticating against the mailserver. This is only required if the SMTP server expects
authentication.

Password Retype password for verification.

Advanced Properties

SMTP
Timeout

Timeout (in milliseconds) to use when connecting to, reading from, and writing to the SMTP server. Default is 10,000.

Debug
Mode
Enabled

Enable email session debugging. Information is printed to standard output (wrapper.log). Default is false.

SSL
Protocols

A comma separated list of protocols that will be allowed if connecting via SSL/TLS. Default is TLSv1.2.

OAuth2 SMTP

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

Besides setting up classic SMTP Email Profiles, you can also set up OAuth2 SMTP Profiles. To set up an OAuth2 SMTP Profile, go to the Email
Settings properties of the Gateway's section.Config

OAuth2 SMTP Profile Settings

Below is a list of properties available on an OAuth2 SMTP server connection.

Property Name Property Description

Main

Name The name of the SMTP profile.

Description A description of the SMTP profile.

SMTP Server Settings

Hostname Hostname of the SMTP server to send email through.

Port Port SMTP service is running on. Default is 25.

Use SSL/TLS Connect using dedicated SSL/TLS. Default is false.

Use STARTTLS Enable use of the STARTTLS command, allowing the connection to be upgraded to an SSL or TLS connection if
supported by the server. This is not necessary for connections that are already SSL/TLS. Default is false.

OAuth2 Settings

Username The username that the Gateway will use along with the access token which together make up the credential in the
SMTP protocol's XOAUTH2 SASL authentication mechanism.

OAuth2 Client The name of the OAuth2 Client which will be used by this Email Profile to obtain access tokens.

Interactive If enabled, user interaction is required to obtain access and refresh tokens (3-legged OAuth 2.0 flow). If disabled, user
interaction is not required to obtain access tokens - the Gateway will obtain access tokens using its own client
credentials (2-legged OAuth 2.0 flow). Default is false.

Scope The OAuth 2.0 scope values representing the access token's set of permissions requested by the Gateway.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Advanced

SMTP Timeout Timeout (in milliseconds) to use when connecting to, reading from, and writing to the SMTP server. Default is 10,000.

Debug Mode Enabled Enable email session debugging. Information is printed to standard output (wrapper.log). Default is false.

SSL/TLS Protocols A comma separated list of protocols that will be allowed if connecting via SSL/TLS. Default is TLSv1.2.

Advanced OAuth2 Settings

Access Token Timeout Amount of time in seconds to wait for a valid access token before giving up on sending an email. Values less than or
equal to zero will cause the profile to expect a valid access token to be available immediately and will fail fast if one is
not available at the time an email needs to be sent. Default is 120.

Default Access Token
Expiration

The amount of time in seconds before an access token expires by default. This value only applies for access tokens
which do not have an explicit expiration from the authorization server. Values less than or equal to zero means access
tokens do not expire by default. Default is 0.

Refresh Before
Expiration

The amount of time in seconds before an access token expires when a new token should be requested. Values less
than or equal to zero results in new access token requests exactly when the last access token expires. Default is 300.

Additional Authorization
Request Parameters

Add any additional parameters which should be encoded on the (interactive only).OAuth 2.0 authorization request

Additional Authorization
Code Access Token
Request Parameters

Add any additional parameters which should be encoded on the granted using an OAuth 2.0 access token request
authorization code (interactive only).

Additional Client
Credentials Access
Token Request
Parameters

Add any additional parameters which should be encoded on the granted using client OAuth 2.0 access token request
credentials (non-interactive only).

Additional Refresh
Token Access Token
Request Parameters

Add an additional parameters which should be encoded on the granted using a refresh OAuth 2.0 access token request
token (interactive only).

Note: When using OAuth2 Email Profiles, you must set up predefined OAuth2 Clients for authorization. An OAuth2 Client may be used for multiple
OAuth2 Email Profiles. See the for more information.OAuth 2.0 Client page

Once you set up OAuth2 SMTP Email Profile, you will have options to manage your token, delete the SMTP Profile, or test it by composing and
sending a test email.

Manage Token Example

This page will allow you to view the current state of the access token managed by the OAuth2 SMTP Email Profile. If the Email Profile has any issues
obtaining or refreshing tokens, details about the issue(s) will be shown here. There will be actions you may take to correct the issue(s), such as
granting a new access token, or manually refreshing an access token. In some cases, you may need to adjust your Email Profile configuration settings
to fix a problem, depending on the error shown.

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.1
https://www.rfc-editor.org/rfc/rfc6749#section-4.1.3
https://www.rfc-editor.org/rfc/rfc6749#section-4.4.2
https://www.rfc-editor.org/rfc/rfc6749#section-6

1.

2.

3.

4.

Note: The "Refresh Token" button will only be available if the OAuth2 SMTP Email Profile is not interactive OR if it is interactive and a refresh token
is available. Additionally, the "Grant New Token" option will only be available when the Email Profile is interactive.

This option will allow you to grant the Client a new access token, or refresh the current token and it's expiration time.

Set up your OAuth2 SMTP Email Profile if you haven't already. In this example, we will be using the OAuth2 Email Profile in the screenshot
above.
Click on "More", and then on "manage token".

If you are using an interactive-based token, your access token will show as invalid the first time you click on "manage token". To fix this, click
on "Grant New Token".

Since we are using a Google Email Profile, we are redirected to a Google permission prompt. Click "Allow" to continue.

4.

5. After the authorization server grants the initial access token, you will be redirected back to the Gateway, After a few seconds, the Gateway
will refresh, showing a valid access token.

1.

2.

3.

Test OAuth2 Email Profile Example

This option will allow you to send a test email using the OAuth2 Email Profile and OAuth2 Client you set up.

Navigate to your OAuth2 Email Profile. Click on "More", and then "test".

This will bring you to a page where you can compose your test email.

Fill out the form. The "From" field should be populated with the email address that will be sending the email, and the "To" field should be the
test email's recipient. Click on "Send Test Email" when you are done.

3.

4. If the email sent successfully, you should receive a notification below the "Send Test Email" button.

Web Server Settings

The Web Server page is for configuring the HTTP and HTTPS ports, enabling SSL/TLS, redirecting traffic
through a known address, and specifying whether or not all traffic should be forcefully redirecting HTTP
to HTTPS.

If you are allowing users to access your Gateway from outside your network (through the Internet), you
 will need to configure the Public HTTP Address settings.

On this page ...

SSL/TLS Settings
HTTP and HTTPS Settings
Public HTTP Address settings

Cipher Support

SSL/TLS Settings

On the Web Server screen you can view details of an SSL certificate details, export keys, remove the installed SSL certificate, and transition to a CA
signed certificate.

From the Gateway Webpage, click on . From the Web Server page, click on the button. See Config > Networking > Web Server View Details Adding
 process for more information on enabling SSL/TLS and installing security certificates.a Signed Security Certificate

https://docs.inductiveautomation.com/pages/viewpage.action?pageId=58611186#SecureCommunication(SSL/TLS)-AddingaSignedSecurityCertificates
https://docs.inductiveautomation.com/pages/viewpage.action?pageId=58611186#SecureCommunication(SSL/TLS)-AddingaSignedSecurityCertificates

On the Certificate Details page, you can also generate a Certificate Signing Request (CSR) by clicking the Generate CSR button in the upper right.

For more information, see Secure Communication (SSL / TLS) .

HTTP and HTTPS Settings

HTTP Settings

HTTP
Port

The port Ignition will listen for incoming HTTP traffic, for example: 8088.

Use
Proxy
Forwa
rded
Heade
rs

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

When enabled, the Gateway inspects each incoming HTTP request in search for headers that indicate it has been forwarded by one or
more proxies. If these headers are present, then the request is updated so that the proxy is not seen as the other end point of the
connection from which the request originated.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

Enabling this setting when users can directly connect to the Gateway is a security risk. This setting is intended to be used in Caution:
scenarios where untrusted users will not be able to bypass a trusted proxy that is responsible for setting the appropriate headers.

For more information, see . Use Proxy Forwarded Headers Explained

Resol
ve
Client
Hostn
ames

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

When enabled, Ignition's web server will attempt to resolve the remote HTTP client's hostname by performing a reverse DNS lookup using
the remote HTTP client's IP address where appropriate. Enabling this setting could have a performance impact as the Gateway may
attempt an expensive hostname lookup when handling requests. When disabled, Ignition's web server will not attempt to resolve
hostnames and any queries for the remote HTTP client's hostname will result in their IP address instead.

When enabling this setting, it is highly recommended that reverse DNS is configured to prevent host lookup failures. This includes
configuring valid mappings from user IP addresses to their hostnames, and from user hostnames back to their IP addresses. If reverse
DNS isn't configured, then DNS queries could block certain requests until the queries time out (default of 10 seconds).

HTTPS Settings

HTTP
S Port

The port Ignition will listen for incoming HTTPS traffic, for example: 8043.

Force
Secur
e
Redire
ct

When enabled, and if SSL / TLS is enabled, all http traffic will be redirected to its https counterpart.
(Default: disabled)

Includ
ed
Cipher
Suites

Whitelist of included cipher suites for clients connecting to Ignition using SSL/TLS.

Exclud
ed
Cipher
Suites

Blacklist of excluded cipher suites for clients connecting to Ignition using SSL/TLS. Takes precedence over allowed cipher suites.

Note: The and settings only apply to the port specified in the field. If you need to Excluded Included Cipher Suites HTTPS Port
Whitelist or Blacklist cipher suites for port 8060, refer the to information on the Gateway Network > HTTPS Settings Gateway

page. Configuration File Reference

HTTP and HTTPS Connectors Restart

Certain actions will cause the HTTP port and/or the HTTPS port to restart. Refer to the following table for details.

Configuration Change HTTP Port
Restarted?

HTTPS
Port
Restarted?

HTTPS Port Yes Yes

HTTPS Port Yes Yes

Force Secure Redirect No Yes

User Included Cipher Suites No Yes

User Excluded Cipher Suites No Yes

SSL/TLS Setup No Yes

Use Proxy Forwarded Headers Explained

While enabled, the Gateway's web server will look for request headers mentioned on this page: ForwardRequestCustomizer. Depending on what
headers come in, the web server will alter its view of the remote client's connection on the incoming http request. The following is a list of which parts
of the request that can be altered, although it's not exhaustive:

The remote HTTP client's IP address

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference#GatewayConfigurationFileReference-HTTPSSettings
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference
https://docs.inductiveautomation.com/display/DOC81/Gateway+Configuration+File+Reference
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html

The remote HTTP client's port
The scheme used by the remote HTTP client when connected to the Gateway through one or more proxies (i.e., http/https)
Whether or not the connection is considered secure
The host/IP and port that the remote HTTP client used to connect to the Gateway through one or more proxies.

While this setting is enabled, if the Gateway does not see any of the mentioned headers, then the request will not be altered, effectively acting as if the
setting is disabled.

The diagram below represents a request originating from a browser, and demonstrates how this setting can impact the request.

Public HTTP Address settings

If you are allowing users to access your Gateway from outside your network (through the Internet), you will need to configure the Public HTTP Address
settings.

Public HTTP Address

Auto Detect
HTTP Address

To specify an explicit HTTP address that Vision Clients and Perspective Sessions will use, turn this off. Most users will leave
autodetect on.
(Default: enabled)

Public Address The public facing address that Vision Clients and Perspective Sessions must use to connect. If Force Secure Redirect is
enabled, redirected connections will use this address, for example: .yourcompany.com

Public HTTP
Port

The public facing HTTP port that Vision Clients and Perspective Sessions must use to connect, for example: 80

Public HTTPS
Port

The public facing HTTPS port that Vision Clients and Perspective Sessions must use to connect. If Force Secure Redirect is
enabled, redirected connections will use this port, for example: 443

Cipher Support

http://yourcompany.com/

Listed below are the supported cipher suites for both 8043 and 8060 TLS ports.

Cipher suites enabled by default:

TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
TLS_EMPTY_RENEGOTIATION_INFO_SCSV

Cipher suites disabled by default:

TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384

In This Section ...

1.
2.
3.

1.
2.
3.

Secure Communication (SSL / TLS)
Inductive Automation recommends enforcing secure communication in Ignition using digital certificates.
The Ignition Gateway web server can provide modern end-to-end security using Transport Level Security
(TLS) technologies. This protects externally-originated connections such as: Perspective sessions, Vision
clients, Designers, and Ignition web configuration. Users should be familiar with the browser padlock icon
(secure session) from online banking, shopping, or medical portals. TLS assures users of the distant end
identity and offers protection from attackers and eavesdroppers through strong encryption. This
configuration is different from Gateway-originated outbound communication such as database and device
(OPC UA) connections, alarming, and web services (REST) calls, which are secured separately and
have configuration that depends on distant nodes.

Ignition versions 8.0.4 and later default to TLS versions 1.2 and 1.3 with a valid certificate. Older versions
of Ignition should be upgraded to offer protection against known vulnerabilities. If you are looking for

the and the additional security settings, check out Ignition Security Hardening Guide Let's Encrypt Guide
for recommendations.

Enabling Force Secure Redirect

Normally, Clients, Sessions, Designers, and Web browsers that communicate with the Gateway will do
so over an HTTP. However, you can force these communications to be redirected to the more secure
HTTPS.

Go to the section of the .Config Gateway Webpage
Choose from the menu on the left.Networking> Web Server
Select the checkbox for and click the button at the bottom of the Force Secure Redirect, Save
page.

When enabled, all requests between the host Gateway and any Clients, Sessions, Designers, or web
browsers will be redirected to the HTTPS port (by default, port 8043), and thus encrypted. However, you
will likely want to install a security certificate signed by a certificate authority.

Note that although the Gateway Network may share the same port as HTTP traffic, Force Secure
Redirect settings will not apply.

On this page ...

Enabling Force Secure Redirect
Adding a CA Signed Security
Certificate

Get a Certificate Signing
Request
Demonstrate Proof of
Ownership over your Domain
Install Security Certificates

What is a Self-Signed Certificate
How to Install a Self-Signed
Certificate

Requiring SSL

Watch the Video

Adding a CA Signed Security Certificate

We are not able to ship a real certificate with Ignition because security certificates have to be obtained individually from a Certificate Authority
(CA). Ignition supports certificates from both your organization's internal CA, as well as commercial CAs (Verisign, GoDaddy, Comodo, etc.). In either
case, the procedure for how to install a certificate is listed below.

Note: After you have added a certificate, the KeyStore will automatically refresh every 15 minutes. You can disable this in the file ignition.conf
by altering the entry (Set to 0 to not refresh).ignition.ssl.refresh

Get a Certificate Signing Request

Since SSL/TLS requires the installation of a security certificate, filling out the form below will generate a certificate signing request (CSR) to provide to
a certificate authority.

Go to the tab of the Gateway Webpage and choose Config Networking > Web Server.
You'll see a warning message indicating that SSL/TLS is not enabled.
Click on . Setup SSL/TLS

https://inductiveautomation.com/resources/article/ignition-security-hardening-guide
https://www.inductiveautomation.com/resources/article/lets-encrypt-guide-for-ignition
https://inductiveuniversity.com/video/requiring-ssl/8.1

3.

4.
5.

Click on the The Create Certificate screen is displayed. I don't have all the items above button.
Fill in the required fields on the screen, then click the button. This can be brought to a Certificate Generate Certificate Signing Request
Authority.

Basic Details

Field Definition

Common
Name

Full DNS name (required). This is typically what you type in your browser URL bar in order to navigate to this Gateway, for
 example: yourdomain.com

Organization
Name

Name of company (required). For example: Inductive Automation.

Organization
Department

Department or section (required). For example: Engineering

Email Email address . For example: .your@email.com

Country Typically an ISO 3166 2 character code (required). For example: US

State /
Province

State, province or region, for example: California

Locality
(City)

Name of city. For example: Folsom

Street Street number and street name. F 90 Parkshore Dror example:

Postal Code Postal Code Example: 95630

Key Type The algorithm of the key pair which will be generated for the self signed certificate. Options are RSA or EC.
Recommended: RSA

Key Size The strength of the generated Key. Recommended: 2048 bits

Expires in The number of days the generated Certificate will be valid. This number will only apply to a self-signed certificate. The
certificate authority will determine a final expiration date as needed for the CA signed certificate

Subject Alternative Names

Field Definition

IP Addresses The IP addresses of all the servers you plan on installing the certificate. Click the button for each additional IP Add
address.

This feature was changed in Ignition version :8.1.17
In versions 8.1.17 and newer, click the button for each additional IP address.Add IP Address

DNS Names DNS names which map to the list of IP addresses above. Click the button for each additional DNS name.Add

This feature was changed in Ignition version :8.1.17
In versions 8.1.17 and newer, click the button for each additional DNS name.Add DNS Name

Demonstrate Proof of Ownership over your Domain

After providing a CSR to your CA and before your CA issues a new domain-validated (DV) certificate , your CA will require you to demonstrate proof of
control over the domain(s) used to access the Ignition Gateway Web Server. These domains should be set as the subject common name and/or
subject alternative names in your CSR. Your CA will require you to perform additional actions and to provide additional information if you are seeking

mailto:your@email.com
https://en.wikipedia.org/wiki/Domain-validated_certificate

1.
2.
3.
4.

1.
2.
3.

4.

an organization validation (OV) class certificate or an extended-validation (EV) certificate . See the Wikipedia article on Public Key Certificates and
consult your CA for more details.

Methods for determining control over a domain varies based on the CA. Typical methods include:

Responding to email sent to the email contact in the domain's whois details
Responding to email sent to a well-known administrative contact in the domain, e.g. (admin@, postmaster@, etc.)
Publishing a DNS TXT record
Publishing a nonce provided by an automated certificate issuing system

The first three methods are performed out-of-band as far as Ignition is concerned. Let’s drill a little bit deeper into the fourth method. Typically, the CA
will provide a randomly generated cryptographic string of data which may only be used once. This value is called a “nonce ”. The CA expects you to
configure your web server to serve the nonce as a special HTTP resource referenced using a well-known path. Once you configure your web server to
serve this resource, you give your CA permission to make an HTTP request with a URL containing the domain you are trying to validate as the
hostname component of the URL (which should resolve to an IP address of the host running your web server), an agreed-upon port (usually standard
HTTP port 80 or HTTPS port 443, though sometimes this is configurable), and the well-known path as the path component of the URL.

There exists software purpose-built to stand-up a temporary web server for the purpose of exposing the special nonce value to the CA. The idea is
that this web server is only listening for HTTP requests until you confirm that the CA has issued an HTTP request to the server and has validated the
nonce value as correct, then the web server is shut down. In some cases, using such software is not possible if the Ignition Gateway is already
listening on whatever port is required by the validation method. In these cases, shutting down the Ignition Gateway for the purpose of starting up one
of these other tools would cause potentially unacceptable downtime.

To work around the downtime issue mentioned in the previous paragraph, Ignition supports two open standard specifications which accomplish the
fourth validation method mentioned above. The first is the ACME Protocol’s “HTTP Challenge”, detailed in section 8.3 of RFC 8555 (ACME is the
protocol used by Let’s Encrypt). Ignition’s web server will map HTTP requests with a path pattern of /.well-known/acme-challenge/<challenge-

 nonce> to files located at $GATEWAY_HOME/.well-known/acme-challenge/<challenge-nonce> (where $GATEWAY_HOME is the path to the
home directory of your Ignition Gateway installation). No Gateway restart is required to start serving new files recently added to the above directory to

 the web. The challenge-nonce placeholder is the nonce value provided by the ACME server which should be base64-url-encoded.

The second method is defined as the “Agreed-Upon Change to Website v2” process and procedure of validation of domain authorization or control, det
ailed in section 3.2.2.4.18 of version 1.81 of the CA / Browser Forum’s Baseline Requirements for the Issuance and Management of Publicly-Trusted

 Certificates . Ignition’s web server will map HTTP requests with a path pattern of /.well-known/pki-validation/<challenge-file> to files located at $GA
 TEWAY_HOME/.well-known/pki-validation/<challenge-file> . Again, no Gateway restart is required to start serving new files recently added to the

 above directory to the web. The challenge-file placeholder in this case is arbitrary–check with your CA for more detailed instructions as to what the
value should be.

For both methods above, it is best practice to stop exposing the challenge value to the web by deleting the file on the Gateway filesystem as soon as
the CA is done verifying your control over the domain.

These standard challenge mechanisms can be used to automate certificate renewal–in fact, that’s what the ACME Protocol and Let’s Encrypt is all
about. To learn more about how to use Ignition with ACME and Let’s Encrypt, see the Let's Encrypt Guide for Ignition .

Install Security Certificates

Once you have an SSL certificate, it needs to be added to Ignition.

Go to the tab of the Gateway Webpage and choose Config Networking > Web Server.
You'll see a warning message indicating that SSL/TLS is not enabled. Click on the link. Click here
The Setup SSL/TLS screen is displayed. Review the following list:

Private Key
Certificate Signed By A Certificate Authority (CA)
Any Intermediate CA Certificates (Provided by your CA)
Root CA Certificate (Provided by your CA)

If you have the items, click on the button. If you don't have all the items, click on the I have all the items above I don't have all the items
, and follow the previous procedure, .above button Get a Certificate Signing Request

https://en.wikipedia.org/wiki/Extended_Validation_Certificate
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://datatracker.ietf.org/doc/html/rfc8555#section-8.3
https://letsencrypt.org/
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.1.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.1.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.1.pdf
https://www.inductiveautomation.com/resources/article/lets-encrypt-guide-for-ignition

4.

5.

6.
7.

The Certificate Wizard is displayed. The first step is to import your private key in one of the following three ways.
Drag and Drop your certificate from your computer onto the screen.
Click anywhere on the grey box to browse for the private key.
Click button to type in the private key informationManually enter data

If the private key is encrypted, click the to enable a password for this certificate and enter the password in the field. Click .checkbox Continue
The next step is to import the server certificate. This is the The DER or PEM encoded X.509 SSL Certificate that Ignition will use for SSL /

 TLS. Drag and drop the certificate file, browse for it, or manually enter the data.

7.

8.

9.

10.
11.

12.

The next step is to import the certificate chain. This gives you the Intermediate CA Certificate. Drag and drop the certificate file or bundle,
browse for it, or manually enter the data.

 You'll see a message that the Intermediate CA Certificate was successfully uploaded.
 Finally, import the root CA certificate: Drag and drop the certificate file, browse for it, or manually enter the data. You'll see a message that
the Root CA Certificate was successfully uploaded.
Click the button. Continue
You'll see a confirmation message that the certificate is installed and SSL/TLS is enabled.

If you have a redundant installation, you'll need to repeat this procedure on your backup server.

What is a Self-Signed Certificate

SSL/TLS can still be setup without a CA signed certificate by installing a self-signed certificate. This gives you the encryption benefits of SSL, but not
the identity validation, and it isn't a "real" certificate. When a self-signed certificate is used to enable SSL/TLS, a web browser will display warnings to
users that they shouldn't trust the website. Users will then have to choose to proceed to the "unsafe" connection through Advanced options.

1.
2.
3.
4.
5.

6.
7.

8.

9.

How to Install a Self-Signed Certificate

Go to Config section of the Gateway Webpage.
Choose Networking >> Web Server from the menu on the left.
Under SSL/TLS click on Setup SSL/TLS.
Select “I don’t have all the items above”.
Under the Basic Details section, fill in all of the required fields (*). This includes the Common Name, Organization Name, Organization
Department, and Country.

Under Subject Alternative Names , enter in the IP Address along with any DNS associated with your gateway server.
Select and click on Show Advanced Properties Install Self-Signed Certificate.

This will take you to a page that displays the privacy warning that all connections will now see.

The Common Name is typically what you input into your browser URL bar in order to navigate to this gateway. If you do not have a
dedicated domain for your gateway, use the IP address.

9. SSL/TLS is now enabled on your Gateway. The URL for your gateway now uses HTTPS and port 8043, which is the default port for SSL.

Related Topics ...

Security
Security in Perspective
Security in Vision

https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Vision

Gateway Backup and Restore

Gateway Backups vs Project Exports

There are two main types of backups available in Ignition: Gateway backups and Project exports. Gatewa
y backups are all inclusive while Project exports are simply a backup of an individual project. This page
discusses making Gateway backups and restoring from a Gateway backup. To learn more about project
backups and restoring projects, refer to the Project Export and Import page.

Gateway Backup and Restore

Creating Gateway backups and restoring from a Gateway backup are super easy in Ignition. Gateway
backups are all inclusive, and typically takes less than a minute to run. It includes everything you find in
the Ignition Gateway Webpage. Everything gets backed up - all your projects, Gateway settings,
authentication profiles, Tags, database connections, OPC and device connections, alarm pipelines,
scripts, sequential function charts, reports, and Image Management Library (i.e., png, jpg, and jpeg files).
The only data that is not included in a Gateway backup is data stored in other programs such as SQL
databases, PLC programs, other files you manually added to the install directory, and any additional files
you may be using. This information needs to be backed up separately.

Perspective custom assets such as fonts, icons, and themes are included in a Gateway backup. In
addition, any custom assets in a backup file will be restored when performing a Gateway restore.

Note: The made available in 8.1.34 is not included in Gateway backups. To save Tag Reference Store
the recorded tag reference data, access the data\diagnostics\tags folder within the Data directory of

 your Ignition installation.

You have the option of creating a Gateway backup and restoring a backup from the Gateway Webpage
or . We recommend using Gateway Webpage since it's much Gateway Command-line Utility - gwcmd
easier.

Scheduled Gateway Backups

In addition to manually taking a gateway backup, an Ignition Gateway can be configured to manually
collect gateway backups on a schedule. See the for more details.Gateway Settings page

Contents of a Gateway Backup

A Gateway backup represents a number of resources and configurations to apply during restoration.
Restoring from a Gateway backup replaces the following resources on the target Gateway:

Database connections
JDBC drivers
Gateway settings
Web server settings
Gateway network settings
Email settings
Auditing settings
User Sources
IdP configurations
Security Levels
Security Zones
Alarming settings
Alarm Journal profiles
Alarm notification settings
On-call rosters
Alarm schedules
SECS/GEM equipment configurations and module settings
Tag history providers
All Tag providers, and the Tags, UDT definitions, and Tag groups within
Device connections
OPC UA client connections
OPC UA Settings
BACnet local device configurations
EAM settings
SFC settings
All projects, and their resources within

Notably, when restoring a Gateway backup on an existing Gateway, the following items are changed not
or replaced by the backup:

On this page ...

Gateway Backups vs Project
Exports
Gateway Backup and Restore

Scheduled Gateway Backups
Contents of a Gateway Backup
Manually Collecting a Gateway
Backup

Gateway Restore

Project Backup vs.
Ignition Gateway
Backup

Watch the Video

Making Ignition
Gateway Backups

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Tag+Diagnostics#TagDiagnostics-CollectingDataBackups
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Settings#GatewaySettings-ScheduledBackups
https://www.inductiveuniversity.com/video/project-backup-vs-ignition-gateway-backup/8.1
https://inductiveuniversity.com/video/making-ignition-gateway-backups/8.1

1.
2.

3.

1.
2.

Modules
License information/grants
Redundancy settings

Manually Collecting a Gateway Backup

The easiest way to create a backup of the is using the . Gateway Gateway Webpage

Go to the tab of the Config Gateway Webpage, and click on . System > Backup/Restore
The System Backup/Restore page will be displayed. Make sure the tab is selected, then click Backup Download Backup.

By default, this downloads a file extension to your local file system in your folder. .gwbk Downloads

Note: The Gateway Backup default filename will look like whereGatewayName_Ignition-backup-YYYYMMDD-HHMM.gwbk YYYYMMDD-
 is the timestamp of when it was created.HHMM

Command-line Utility

In Windows and Linux, you can use the command-line utility to create a backup. To run the Command-line Utility, open a shell and enter the Gateway
command below.

Note: If you want to add a timestamp, you need to enter the date and time in the filename. Refer to the page for a complete list Command-line Utility
of 'gwcmd' options.

gwcmd -b C:\Backups\Ignition\IgnitionBackup.gwbk

Gateway Restore

Restoring a backup is just as easy as backing it up and can also be done from the Gateway Gateway
Webpage.

When you perform a Gateway Restore, of the server's current configuration will be Caution: ALL
permanently lost. Restoring a Gateway backup overwrites all of the existing settings including your
projects. There is no merge option for a Gateway backup. We recommend you always make a backup
of the existing server immediately before performing a Gateway Restore.

Restoring Ignition
Gateway Backups

Watch the Video

Go to the tab and click on .Config System > Backup/Restore
The System Backup/Restore screen will be displayed. Click on the tab. Read carefully through the restoration settings, and check Restore
the ones you wish to enable.

https://www.inductiveuniversity.com/video/restoring-ignition-gateway-backups/8.1

2.

3.

4.
5.

Restore Disabled Checkbox
If you check the box, the imported resources will be disabled upon restoration.Restore Disabled

Click , then navigate to your Gateway backup file (*). By default, all your backup files are saved in your Choose File .gwbk Gateway
Downloads folder unless you select another folder location to choose an exisiting Gateway Backup file () to restore. *.gwbk
Choose your backup file (, and click . Ignition).gwbk Open
Click at the bottom of the System Backup/Restore screen. The stops while restoring the backup file. When restoring is Restore Gateway
complete, the restarts itself to apply the restored settings. The is refreshed and your projects are loaded and Gateway Gateway Webpage
your whole Gateway is restored in less than a minute.

The following table describes different Gateway restoration settings.

Gateway Restore

Restore
Disabled

Checkbox for toggling if the Gateway Backup file's contents such as projects, database connections, OPC connections, Tag
Providers, etc will be disabled upon restore.

Disable
Temp
Project
Backup

Checkbox for toggling if the projects directory will have a temporary backup created during the restore process.

Override
Gateway
Name

Checkbox for toggling if the name of the Gateway should be overridden before the Gateway is restored.

Caution: It is not recommended to change the Gateway's System Name after initial Gateway setup. Renaming your Gateway may
break critical dependencies, affect data collection, and halt production. To see a list of features dependent on the Gateway name, c
lick here.

New
Gateway
Name

The name of the new Gateway. Requires "Override Gateway Name" to be enabled.

Command-line Utility

In Windows and Linux, you can use the command-line utility to restore a backup. To run the Command-line Utility, open a shell and enter the Gateway
command below. Refer to the page for a complete list of options.Command-line Utility 'gwcmd'

gwcmd -s C:\Backups\Ignition\IgnitionBackup.gwbk

https://docs.inductiveautomation.com/display/DOC81/System+Name+Usage+Reference
https://docs.inductiveautomation.com/display/DOC81/System+Name+Usage+Reference

Related Topics ...

Exporting and Importing Tags

Ignition Exchange

In the Ignition Exchange you can access resources, templates, and tools that you can use in your own
Ignition projects. The Ignition Exchange offers a wide variety of ways to store and access these
resources. Ignition assets designed by others in various industries can be shared through the
Exchange. This collection encompasses anything that can be built inside of Ignition including screens,
graphics, templates, views, reports, alarm pipelines, scripting functions, database backups, projects, full
systems, and Ignition demos.

As an individual, you can upload, browse, or download your own tools. If you’d like to keep these tools
private, you can store them for your own use, or you can make the resource public, so anyone can
access and use it.

Organizations or teams can use the Exchange to store and access private resources they want to make
available to a select user group. This gives them the opportunity to collaborate and access company
templates, and use them across corporate projects.

On this page ...

Access the Exchange
Import an Ignition Exchange
Package from the Gateway
Import an Ignition Exchange
Project Package from the
Designer
Upload a Resource to Ignition
Exchange
Restore a Gateway Backup from
Ignition Exchange

Access the Exchange

You can access the Ignition Exchange, in several ways:

Go to . https://inductiveautomation.com/exchange/

Within the Designer, select .File > Ignition Exchange

https://inductiveautomation.com/exchange/

1.
2.
3.

Within the Gateway webpage, click on . Then click .Config > Ignition Exchange Browse Ignition Exchange

Import an Ignition Exchange Package from the Gateway

When you import a project from an exported file in the Gateway, it will be merged into your existing Gateway. To import a downloaded resource file:

Go to the Gateway, and click . Config > Ignition Exchange
Click on . Import Package File
Drag and drop your resource package file, or click to browse for the file you want to import and click Open.

3.

4.
5.

The Gateway will display a confirmation message if the package is valid. It will then display a README file with instructions. Click . Next
Use the down arrow in the Target Project box to choose a project. Then click .Import

Resources with the same name in the target project will be overwritten.Caution:

A confirmation message is displayed if the package was successfully imported. You can now go to your project in the Designer and see the

new resource.

1.

2.

3.

Import an Ignition Exchange Project Package from the Designer

In this example, we're going to import the Simple Light Stack project that we already downloaded from Ignition Exchange. Note that we also extracted
the initial file that was downloaded. This project contains a Perspective view with a light stack graphic. To import this view into a project that is .zip
open in the Designer, do the following.

In the Designer, click File > Import.

Navigate to the project file (or) you want to import, then click ..proj .zip Open

In the Import popup, select the resources that you want to import from the project. Click Import.

3.

1.

2.

The view is now part of the current project.

Upload a Resource to Ignition Exchange

Use your credentials to log into your account. If you do not have an account, you can sign up at https://account.inductiveautomation.com
/create-account.
Click on to open a popup that will start the resource upload draft. + New Resource

Note: The option will only appear once signed in. + New Resource

https://account.inductiveautomation.com/create-account
https://account.inductiveautomation.com/create-account

2.

3.

4.

5.

Fill out the tab based on your resource requirements. The following table shows the description for each section of the Overview:Overview

Section Description

Visibility Choose how your resource should appear on the Exchange.

Title Create an easily identifiable title for your resource. Organization resources must have a unique title.

Tagline Create a short but descriptive tagline to help identify your resource.

Description Create a detailed description of your resource. Include information like how you envision it being used, what types of
people might benefit from this package, any relevant industries, etc.

Resource Type Choose a primary resource type that best describes your resource.

Skill Level Choose a skill level that best describes the complexity of installation and use.

Background Image
(optional)

Customize the background of your resource with a colorful design.

Category Resources are displayed by category. You can select up to three.

Contact the
Developer
(optional)

This feature allows contributors to contact you via email directly from the resource page.

Tags (optional) Tags make your resource more searchable. You can create up to 10 tags.

Images &
Screenshots
(optional)

Choose any additional images that showcase your resource in use. Be sure to follow the .Exchange Guidelines

Click when finished. This will take you to the Package tab.Save & Continue

https://inductiveautomation.com/exchange/

4.

5.

6.

Fill out the tab based on your resource requirements. The following table shows the description for each section of the Package:Package

Section Description

Version Version will auto-increment by patch unless otherwise specified.

Ignition Platform Choose the minimum version of Ignition required.

Release Tagline Create a short but descriptive tagline to help identify what changes were made in this version.

Release Notes List detailed release notes explaining what changed in this version. Think about what improvements were made
and how they will impact the resource.

Required Modules
(optional)

Choose any modules that are required when using this resource.

Maker Edition
(optional)

Let people know this resource is Maker Edition compatible.

Note: This option is unavailable for resources requiring unsupported Maker Edition modules. Learn more about
Ignition Maker Edition™

Other Requirements
(optional)

List any other external or custom requirements as separate line items.

Package Files Choose a package file (up to 10mb) to upload.

Note: Uploaded files will be packaged into a .zip format. A README file with your documentation will be
created and added to the package.

Review your resource information and then click to complete the resource upload. Publish

Note: Use the option if you are not ready to publish yet or if you need to revise your published resource.Update

Your resource will be submitted to Ignition Exchange for a review process before becoming available to the community. The review process may take
up to a few weeks and only resources available to the public will be reviewed. Make sure to adhere to the guidelines and provide accurate details to
ensure a successful upload.

Restore a Gateway Backup from Ignition Exchange

Ignition Exchange can also have Gateway backup files as resources. After you've downloaded the file from Ignition Exchange, follow the steps for a
Gateway Restore in .Gateway Backup and Restore

 Caution: When you perform a Gateway Restore, ALL of the server's current configuration will be permanently lost. Restoring a Gateway backup
 overwrites all of the existing settings including your projects. There is no merge option for a Gateway backup. We recommend you always make a

 Rbackup of the existing server immediately before performing a Gateway estore.

https://inductiveautomation.com/ignition/maker-edition
https://inductiveautomation.com/ignition/maker-edition
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore#GatewayBackupandRestore-GatewayRestore

1.

2.

3.

Gateway Command-line Utility - gwcmd

The Gateway Command-line Utility provides a list of commands you can use to perform specific functions
in the Gateway. The Gateway Command-line Utility or provides basic commands, such as gwcmd
resetting the main password, changing the Gateway's port, or restarting the Gateway.

Invoking gwcmd can only be done from command line, so you'll need to utilize a command line interface
of some sort (Power Shell, Terminal, etc). Because gwcmd is a file sitting in the Gateway's installation
directory, these commands can only ever be invoked from where the Gateway is installed. Furthermore,
interacting with gwcmd requires administrative privilege.

The gwcmd file sits at the root of the Gateway's installation directory. See the Installing and Upgrading
 page for more details on default installation directories. Ignition

On this page ...

Command-line Utility Options
Use the Command-line Utility
to Start or Stop the Gateway

Command-line Utility 'gwcmd'
Options
Gateway Password Reset

Command-line Utility Options

The Gateway command-line utility supports Windows, Linux, and Mac OS platforms. The only 'gwcmd'
runs on the same machine as the Ignition Gateway and requires administrative privileges.

To run the Gateway Command-line Utility, open a command shell and type: . This example uses the Windows platform:gwcmd <option>

Open the with admin privileges. In the search bar, enter then right click next to the to select Command Prompt cmd Command Prompt Run
.as administrator

Any time you run any of the Gateway command utility options, you need to run them from the directory that Ignition is installed in. The default
install directory is: .C:/Program Files/Inductive Automation/Ignition

From here, you can enter any of the command options listed in the table below. This example is of a Gateway backup using the following
command: .gwcmd -b "C:/Gateway Backups/Backup_190108.gwbk"

A note to our legacy users...

Older versions of Ignition featured a visual Gateway Control Utility or GCU that could start and
stop the Ignition service. This visual element of the GCU, as well as the ability to start and
stop the service have since been removed in Ignition 8.0. For more information on starting or
stopping the service, please see belUse the Command-line Utility to Start or Stop the Gateway
ow.

More information on the older version of the GCU can be found in of the Deprecated Features
user manual.

https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+and+Upgrading+Ignition
https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+and+Upgrading+Ignition
https://docs.inductiveautomation.com/display/DOC81/Gateway+Command-line+Utility+-+gwcmd#GatewayCommandlineUtilitygwcmd-UsetheCommand-lineUtilitytoStartorStoptheGateway
https://docs.inductiveautomation.com/display/DEP/Legacy+Gateway+Control+Utility

3.

4. The above command created a Gateway Backup on the C drive, in the Gateway Backups folder with a file name of Backup_190108.gwbk.
The image below shows all the commands used in Steps 2 and 3.

Use the Command-line Utility to Start or Stop the Gateway

One of the common uses for the Command-Line Utility is to start or stop the Gateway.

Windows

Ignition's installation directory contains and , which can start or stop the service. Example:start-ignition.bat stop-ignition.bat

C:\Program Files\Inductive Automation\Ignition> start-ignition.bat

However, you can also use Windows native service commands to control the running state of the Gateway:

net start ignition

net stop ignition

Linux

You can control the service using the script. It can be called with the and parameters to perform the relevant operations.ignition.sh start stop

For example:

/usr/local/bin/ignition/ignition.sh start

Additionally, you can use native terminal commands to start or stop the service:

service Ignition-Gateway start

service Ignition-Gateway stop

Mac OS X

You can access the service from the install directory using the "ignition.sh" script. On a typical Mac install using the dmg installer, the full command
(without a custom location specified) is the following:

/usr/local/ignition/ignition.sh start

Using spaces in a file path

When using spaces in a file path name, use quotation marks around the full path name, as shown in the example above. Forward
or backward slashes can be used to separate folders. The file path includes the disk name, folder path, and file name.

Command-line Utility 'gwcmd' Options

The following table lists all available options.'gwcmd'

Options Description

-a,-–activate
<license-key>

Creates an file that can be used to request a file from the Inductive activation_request.txt license.ipl
Automation website. You must specify the license key to use for activation. The file is saved activation_request.txt
in the current directory.

-b,--backup
<new filepath>

Downloads a Gateway backup file and saves the file to the specified .gwbk path. The path can be either an absolute path or
a relative path.

If another file with the same name already exists, you will be prompted .gwbk whether it is OK to overwrite the file . You can
override with the option to force the file to always be -y overwritten.

-c,--clearks Clears the gateway's SSL / TLS setup. The gateway's SSL / TLS connector will be immediately shut down.

-d, --disabled Use with the flag to disable all items after gateway restoration and restart. --restore

-e, --exportks
<new filepath>

Exports the gateway's SSL KeyStore in PKCS #12 format and saves to the specified path.

-f, --exportpk
<new filepath>

Exports the private key from the gateway's SSL KeyStore in PEM format and saves to the specified path.

-g,--reloadks Reloads the Gateway's SSL KeyStore from disk. Any update to the KeyStore will be automatically applied to any new
connections.

-h,--help Shows the usage for this command.

-i,--info Retrieves server status and port information from the Gateway if it is running.

-k,--port <new
port>

Changes the Gateway http port.

-l,--sslport
<new port>

Changes the Gateway https port.

-m, --skip-
gateway-contact

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

Use with the --restore flag to skip contacting a running gateway and stage the restore file directly.

-n, --nocrypt Add to the export private key command to not encrypt the private key.

-o,--name <new
gateway name>

Specifies a Gateway name while restoring a backup. Additionally, the -y command now skips prompts asking for a
Gateway name override.

-p,--passwd Enables a password reset command, which will allow you to create a temporary user that can access the gateway again.
Requires a gateway restart to take effect. See below. Gateway Password Reset

-r,--restart Restarts the Gateway.

-s,--restore
<backup file
path>

Restores from a Gateway backup, using the file specified at the path.

-t,--tdump Performs a thread dump in the Gateway and prints the dump to the command-line.

-u,--unactivate Creates an file that you can use to unactivate a license via the Inductive Automation unactivation_message.txt
website. The is saved in the current directory.unactivation_message.txt file

-w,--
uselicense
<license.ipl
path>

Applies a file that was downloaded from the Inductive Automation website. You must supply the location of license.ipl
the file. If it is in the current directory, use for the location.license.ipl license.ipl

-y,--promptyes Automatically answers to any prompt that may appear in the above commands, such as permission to overwrite an yes
existing file.

-z, --timeout
<seconds>

The following feature is new in Ignition version 8.1.17
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418712#GatewayCommandlineUtilitygwcmd-GatewayPasswordReset
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17

Number of seconds to wait for a backup to be generated. Starting in 8.1.17, the default timeout value is 60 seconds. In older
versions, the default timeout value is 30 seconds.

Gateway Password Reset

If you can no longer access the Gateway (due to, say, a forgotten password), you can use the -p
command to cause a password reset. During a password reset, instead of just changing the initial user's
password, a partial commissioning process will trigger upon the next Gateway restart (which can be
accomplished with the command), allowing you to create a new user that can access the Gateway. -r
From there you'll be able to address any issues that prevented you from using your normal credentials.

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

However when performing this process, several things will happen to the Gateway:

During commissioning, you'll be asked to provide a user name and password for a new user.
A "temp" is created.user source
The user you provided credentials for will be added to the "temp" user source.
The new user will be assigned the role "Administrator".
A "temp" Ignition Identity Provider will be created. The "temp" user source will be assigned as
the provider backing the Identity Provider.
On the , the following properties will be changed:General Gateway Security Settings

System User Source will be set to the "temp" user source.
System Identity Provider will be set to the "temp" identity provider.
Gateway Config Permissions will be set to the "Administrator" Security Level.

Thus, if you trigger a password reset and are able to use your normal credentials again, you'll want to
make sure you change the values on the modified Gateway Security Settings to their property value.
Also, you'll likely want to remove the "temp" user source and Identity Providers.

Password Reset
with GWCMD

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/password-reset-with-gwcmd/8.1

Licensing and Activation

How Licensing Works

Ignition's licensing is unique and easy to use because Ignition is licensed by the server, not the client.
You only need one license for your server; any clients are automatically included. In addition to that, an
Ignition license is unlimited and sold based on which modules you want. There are unlimited clients,
Tags, and projects. Buy only the modules you need, and don't worry about running into limits. If you want
to test other modules, you don't need to do anything extra because of our built-in Trial mode. All
unlicensed modules can be reset in 2 hour trial mode.

Trial Period

Our goal at Inductive Automation is to provide an easy way to access and learn Ignition. We want
everyone to have the opportunity to try Ignition and start working with it with no restrictions. You can
download Ignition from our webpage, install it, and start using it for two hours at a time. At the end of the
two hour time period, all modules will stop running, but don't panic, you can reset the timer to run for
another two hours. You can reset the timer as many times as you want, so go for it! The Gateway
Webpage and the Designer are not affected by this trial, so you can develop for as long as you want
without interruption. If you do have a license, any unlicensed modules will run in this Trial mode, but
licensed modules will never timeout.

You can re-start the Trial period by logging into the Gateway, and clicking to enable another Reset Trial
two hours of execution. The Trial Timer may be restarted any number of times. Depending on
the module, you may need to take some additional actions. For example, the Vision Clients requires you
to log out and back in again in order to continue the Trial.

In the Gateway, the Trial Time banner is displayed near the top of the screen. To reset the trial timer,
click the Reset Trial button:

In a Vision Client (for Edge or Ignition Standard), the banner appears near the bottom of the screen.

On this page ...

How Licensing Works
Trial Period
Activating a Standard License
(Six-Character Key)

Online Activation Example
Offline Activation Example

Leased Licenses (Eight-
character keys)

Leased License Activation
Adding Multiple Licenses to a
Single Gateway

Effective vs Applied Licenses
Module Status

License Incomplete
Updating a License

Online License Update
Offline License Update

Unactivating a License
Online Unactivation
Offline Unactivation

Emergency Activation
How to Activate in Emergency
Mode

About Licensing

Watch the Video

About the Trial
Period

Watch the Video

Activating a Standard License (Six-Character Key)

When you purchase a license for Ignition Standard edition or Edge, you
receive a license key, a six-digit code that identifies your purchase. Use
this license key to activate the software online through the Ignition Gateway. If you
later want to add any additional modules, your account is updated and you

https://www.inductiveuniversity.com/video/about-licensing/8.1
https://www.inductiveuniversity.com/video/about-the-trial-period/8.1

1.
2.

3.

a.
b.

4.

can re-use your existing license key to activate the new features. You can
unactivate your license keyalso , and reuse it to activate Ignition on a different

machine as many times as you want, allowing you to transfer a license
from one Gateway to another.

You can activate your license in two ways:

Online Activation - from the section on the Gateway Webpage, your System > Licensing
request to activate your Gateway is activated over the internet.
Offline Activation - if you don't have an Internet connection, you can follow the manual
activation process in the Offline Activation section.

Online Activation Example

Go to the Gateway Webpage and select the section.Config
From the menu on the left, select The Licensing page will appear. If you System > Licensing.
already have a license key, click the button. Activate License

The page will be displayed. Enter your and click Licensing / Activate Online License Key Sub
. mit

If you are connected to the Internet, click the button.Activate
If you want to activate the license offline, click the button.Offline Activation

The Licensing page will refresh, and your Current License will be successfully activated.

Online Activation

Watch the Video

Offline Activations

Watch the Video

https://www.inductiveuniversity.com/videos/online-activations/8.1
https://www.inductiveuniversity.com/videos/offline-activations/8.1

4.

1.
2.
3.
4.

5.

Offline Activation Example
When you do not have an internet connection, you can do the following steps to activate your license manually.

Note: If you're planning on performing an offline activation to update a license, make sure to first. Otherwise your system may unactivate the license
enter after attempting another activation. emergency mode

Go to the Config tab on the Gateway Webpage.
Scroll down to The Licensing Activation page appears. System > Licensing.
Click on .Activate License
Enter your and click .License Key Submit

Click the button. Offline Activation

6.

7.
8.

9.
10.

Click the Download Activation Request. An activation request file, called activation_message.txt is generated and downloaded.

Take the activation_message.txt file to a machine with Internet access and go to .https://links.inductiveautomation.com/activation
Click and select the file.Choose File tactivation_message.tx

Note: Should any trouble occur with the upload process, please contact our Support department.

Once you upload the file, a license file called is generated.activation_message.txt license.ipl
Bring the file back to the computer on which you're licensing Ignition. Back on the Offline Activation page, upload the license.ipl license
.ipl file. Then click Activate to finish the process.

https://links.inductiveautomation.com/activation

10.

11.
12.

The Licensing page will refresh showing your license was successfully activated.
Click to see a list of all your activated modules. View Modules

Leased Licenses (Eight-character keys)

A license key with eight characters signifies a . These types of licenses also require an , which is a very long, Leased License activation token
unique, string of characters that must also be provided before a Gateway is licensed. Leased licenses are ideal for containerized environments
(Docker, Kubernetes), as well as cloud-based deployments.

This type of license requires that the Gateway frequently check in with an activation service to validate the license.

Validation
Feature

Description

Validation
Timer

The Gateway will attempt to renew the lease every hour. A renewed lease will also reset the timeout period. This creates a buffer,
allowing a Gateway to remain activated in cases where the Gateway is unable to reach the activation service in a timely manner.

Timeout
Period

Leased sessions have a default timeout period of four hours. If a longer timeout period is needed for specific special applications,
please discuss your requirements with your sales representative.

After Timeout After the timeout period has expired, the Gateway reverts to trial mode.

In order to reach the activation service, the Gateway must have internet access at all times.

Leased License Activation

Activating a Gateway with a leased license follows a similar flow to the . standard license's online activation

In addition, when selecting Maker Edition during installation, a leased license and activation token are required.

Adding Multiple Licenses to a Single Gateway

In order to better support our community of third-party module authors, we also allow for multiple license keys to be installed on a single Gateway. A
third-party module author can issue a license key for their module directly to a customer, whereby, they can immediately do an install of the module.
To learn more, check out the to find and purchase modules that extend Ignition's functionality.Third-Party Module Showcase

It is important to note that there may only be one license on it with a platform version per Gateway. The platform will look similar to the picture below. If
you try and activate a second license with a platform onto a Gateway that already has a license with a platform, the new license will overwrite the
previous license.

https://inductiveautomation.com/moduleshowcase/

In the image below, two licenses have been applied to this Gateway, but only one is active.

Effective vs Applied Licenses

This page has two sections, which detail different information.

Applied Licenses shows all licenses that have been applied to the gateway. Entries here are typically purchased or given, and have a license key
associated with them.

Effective Licenses provides a summary of modules active on the gateway. Modules are active if they're provided by an applied license. This area is
the result of potentially multiple licenses across various activation mechanisms. For example, if provides , and provides license A module A license B

, then Effective Licenses would show that modules A and B are active on the gateway. The caveat here is that the modules will only module B both
appear if they're installed on the Gateway. In this same scenario with licenses A and B, if module B was not installed, then it will not appear under
Effective Licenses.

In addition, the Effective Licenses area may have "synthetic" items that are translated to modules. For example, in the case of Edge gateways, their
Applied Licenses will show products. These products will be translated to modules under the Effective License section.

Module Status

It's important to know which version of a module you have installed and which version of the module you are licensed for. You could have a license
for another version of a module so it's not going to work correctly until you have the correct version of the license. To verify the versions on your
installed modules, go to the page in the section of the Gateway Webpage or by clicking in the green banner. Modules Status View Modules

Here you can see all the modules that are currently running with their version numbers and license status. The licenses are either
in Trial, Activated, or Free mode. On this page, you can add or remove modules from your Ignition. If you are licensed for a module you are running, it
will run in Activated mode. If you are not licensed for a module you are running, it will run in Trial mode until the Trial time is expired.

For more information on installing new modules, see the page. Installing or Upgrading a Module

License Incomplete

https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+or+Upgrading+a+Module

Don't be alarmed by a 'License Incomplete' message on the green banner. Click on the View Modules link within the banner. It opens an informational
message box showing modules that are installed. Some of the modules are in Trial Mode.

Updating a License

Online License Update

If you added one or more new module to an existing license, then you'll need to update (Reactivate) the
license. You update a license from the section on the Gateway webpage. Simply Config > Licensing
click the Reactivate button next to the license that was changed, as shown below.

Pressing the Reactivate button will cause the gateway to attempt to reach out to our licensing server, and
will update shortly after.

Reloading a License

Watch the Video

https://www.inductiveuniversity.com/videos/reloading-a-license/8.0/8.0/8.1

1.
2.

1.

2.

3.

4.

Offline License Update

If the gateway does not have internet access, it will be unable to update automatically. In this case you'll
need to do the following:

Unactivate the license following the steps mentioned in the next section.Offline Unactivation
Activate the license via an .Offline Activation

Unactivating a License

For a given license key, a limited amount of simultaneous activations are allowed at a given time. If you want to activate Ignition on a different server,
you must first unactivate it on the current server. You can unactivate the license on one Gateway, and then activate it on a different Gateway if
needed. Unactivation occurs immediately over the Internet, and makes this license available for activation on another machine.

Online Unactivation

To unactivate the , do the following steps: Gateway

From the section of , go to . The page is displayed and you can see the currently installed licConfig Gateway System > Licensing Licensing
ense key.
Click on icon.Unactivate License

A Licensing / Confirm Unactive window will appear asking you to confirm the unactivation. Click the Yes, Unactivate button. It may take a
minute or so for the request to finish.

The unactivation request will be sent to 's licensing servers, and the will again be available for activation on Inductive Automation license
another . Gateway

Offline Unactivation

In the event your Gateway is unable to reach our licensing server, you will need to perform an offline unactivation.

1.
2.

3.

4.
5.
6.

7.

To perform an offline unactivation, do the following steps:

Go to your Gateway's section > > . You will be able to see any licenses that are currently applied.Config System Licensing
Click the button (trash can icon) under Unactivate Applied Licenses.

A confirmation window will appear, asking you to confirm the unactivation. Click the button. It may take a minute or so for Yes, Unactivate
the request to finish.

An unactivation request file, called will be generated and downloaded.unactivation_message.txt
Take the file to a machine with Internet access and go to .activation_message.txt https://links.inductiveautomation.com/activation
Click and select the file.Choose File unactivation_message.txt

You will see a visual confirmation that your file has been successfully uploaded, and the license key can unactivation_message.txt
now be activated on a different Gateway.

https://links.inductiveautomation.com/activation

Emergency Activation

In cases where you may have a hardware or OS failure and you cannot unactivate a license, Ignition provides an mode. In this Emergency Activation
mode, you can temporarily activate your license for 7 days giving you enough time to contact . Inductive Automation Support

How to Activate in Emergency Mode

Activating your license in emergency mode is exactly the same as activating with your normal license, you don't have to do anything different because
Ignition handles it all for you. See License Activation above for details on how to activate. The Gateway will know to run in emergency activation mode
and it will display a timer stating how many days, hours, and minutes you have remaining in the Emergency Activation Mode banner. Any time before
it expires, you can contact to get your license fixed.Inductive Automation Support

In This Section ...

https://support.inductiveautomation.com/
https://support.inductiveautomation.com/

Emergency Activation

What Is Emergency Activation?

After activating your License Key in Ignition, you may see a banner that says Ignition is in Emergency
. Activation Mode

What Does this Mean?

This means the License Key that you used has already been activated. Either it was used previously on
another computer, or something went wrong during activation and it registered twice. Fortunately, you
have plenty of time to fix this problem. Emergency Activation Mode means you are fully licensed for 7

, so even at night or over the weekend, you can still run without interruption until it is fixed.days

On this page ...

What Is Emergency Activation?
What Does this Mean?
How Do I Fix it?
Why Does this Exist?

Quick Disaster Recovery Plan
Emergency Restore Steps

Emergency
Activation

Watch the Video

How Do I Fix it?

In order to fix your License Key, you must . You can reach us by email or by phone and we will walk you through fixing contact Inductive Automation
your license. It is usually a very quick procedure that involves you re-activating a license after we fixed your License Key from our end. Once your
license key is fixed, press the button and your license will be re-activated. Refresh

Why Does this Exist?

Basically, computers sometimes fail and you need to get running again, fast.

When you initially activate your copy of Ignition, it will run as long as your computer does. As we all know, sometimes there are hardware failures or
your computer just stops working. There are many things you can do to minimize this, but once it happens you need to be able to get Ignition up and
running again quickly. This Emergency Activation Mode allows you to do this without having to involve Inductive Automation until after your facility is
back on track.

Quick Disaster Recovery Plan

If you already have Ignition installed and running in your facility, it's easy to get back to running quickly. Just make sure you have the following stored
on a computer or shared drive :that is not your Ignition Gateway

A . If you haven't already, you should set up . Gateway Backup Scheduled Backups

https://www.inductiveuniversity.com/video/emergency-activation/8.1
https://inductiveautomation.com/about/contact
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Settings#GatewaySettings-ScheduledBackups

1.

a.

b.

2.
3.
4.

5.

Your Ignition License Key. Make sure you store the 6 digit code somewhere that you can easily retrieve it if your computer fails.
The . In an emergency, it's best to have the installer for the version you are currently using. You can always Ignition software Installer
download an archived version from our website, but having one on hand is preferred. : Edit the installer filename to include your Pro tip
License Key so it's easily available.

Emergency Restore Steps

Find another computer or create a new Virtual Machine. You need to get something up and running to put Ignition on first. We recommend
having something on standby that is the same as the original computer. Further considerations:

Set your new computer to the same IP Address of the original Ignition Gateway. This way your clients won't need to do anything
special to start running again.
Make sure your firewall is set correctly. At minimum, you must have the Ignition port open (8088 by default). In an emergency
situation, you may want to just disable the firewall temporarily.

Install Ignition on the new computer.
Load a Gateway Backup. Everything in Ignition is in the Gateway Backup, once it's loaded, you are running again!
Activate your License. Your existing License Key will only work normally the first time it is used. After that, if you try to use it again, it will
instead go into an . This gives you plenty of time to get back up and running before you have to deal with the License Emergency 7-Day Trial
Key, even if your failure is on the weekend or outside Inductive Automation's business hours.
Contact Inductive Automation. You can reach us by email or by phone (), and we will walk you through fixing your license.1-800-266-7798

https://inductiveautomation.com/downloads/archive
https://legacy-docs.inductiveautomation.com/display/DOC81/Installing+and+Upgrading+Ignition
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore#GatewayBackupandRestore-GatewayRestore
https://inductiveautomation.com/about/contact

1.

2.

3.

4.

1.
2.

Transfer a License Key Between Two Gateways

License Key Transfer Process

Situations sometimes arise where your current Gateway or server is no longer able to fulfill your needs.
In these cases, you may be required to set up a new server and move your license key over from your
old Gateway.

Transferring your license key combines two parts: the unactivation steps and activation steps, which are
covered on the User Manual page. License keys can be transferred from an Licensing and Activation onli

 to an , and ne (connected to the Internet) Gateway offline (not connected to the Internet) Gateway
vice versa.

On this page ...

License Key Transfer Process
Part 1: Removing the Active
License

Part 1a: Online Unactivation
Part 1b: Offline Unactivation

Part 2: Moving the License
Part 2a: Online Activation
Part 2b: Offline Activation

Part 1: Removing the Active License

To move your license key to a different Gateway, do the following steps, depending on if your Gateway is online or offline:

Part 1a: Online Unactivation

Unactivate your license key from your old Gateway by going to the section > > . You will be able to see any Config System Licensing
licenses that are currently applied.
Click the button (trash can icon) under .Unactivate Applied Licenses

A confirmation window will appear, asking you to confirm the unactivation. Click the button. It may take a minute or so for Yes, Unactivate
the request to finish.

The unactivation request will be sent to 's licensing servers, and the license will again be available for activation on Inductive Automation
another Gateway.

Part 1b: Offline Unactivation

In the event your Gateway is unable to reach our licensing server, you will need to perform an offline unactivation. Be sure not to skip any of the
following steps, as skipping a step may result in your license key going into when activating it on the new Gateway.Emergency Activation Mode

Go to your Gateway's section > > . You will be able to see any licenses that are currently applied.Config System Licensing
Click the button (trash can icon) under Unactivate Applied Licenses.

https://docs.inductiveautomation.com/display/DOC81/Licensing+and+Activation
https://docs.inductiveautomation.com/display/DOC81/Emergency+Activation

2.

3.

4.
5.
6.

7.

A confirmation window will appear, asking you to confirm the unactivation. Click the button. It may take a minute or so for Yes, Unactivate
the request to finish.

An unactivation request file, called will be generated and downloaded.unactivation_message.txt
Take the file to a machine with Internet access and go to .unactivation_message.txt https://links.inductiveautomation.com/activation
Click and select the file.Choose File unactivation_message.txt

You will see a visual confirmation that your file has been successfully uploaded, and the license key can unactivation_message.txt
now be activated on a different Gateway.

Part 2: Moving the License

Now that your license has been unactivated from the old Gateway, you are ready to activate the license on a separate Gateway.

https://links.inductiveautomation.com/activation

1.
2.

3.

4.

Part 2a: Online Activation

If the new Gateway that will house your license key is online, do the following steps:

Go to the Gateway webpage and select the section.Config
From the menu on the left, select > . The Licensing page will appear, from which you will need to click .System Licensing Activate License

The page will be shown. Enter the license key from the old Gateway and click .Activate a License Submit

If you are connected to the Internet, click the button.Activate

4.

5.

1.
2.

The page will refresh, and your license key will be successfully activated.Licensing

Part 2b: Offline Activation

If the new Gateway that will house your license key is offline, or if you want to perform an offline activation, do the following steps:

Go to the Gateway webpage and select the section.Config
From the menu on the left, select > . The Licensing page will appear, from which you will need to click .System Licensing Activate License

2.

3.

4.

The page will be shown. Enter the license key from the old Gateway and click .Activate a License Submit

If you are not connected to the Internet, or if you want to activate your Gateway manually, click the button. Offline Activation

4.

5.

6.
7.

Click the button. An activation request file, called will be generated and Download Activation Request activation_message.txt
downloaded.

Take the file to a machine with Internet access and go to .activation_message.txt https://links.inductiveautomation.com/activation
Click and select the file in the section.Choose File activation_message.txt Activate Ignition

https://links.inductiveautomation.com/activation

7.

8.
9.

10.
11.

Note: Should any trouble occur with the upload process, please .contact our Support department

Once you upload the file, a license file called is generated.activation_message.txt license.ipl
Bring the file back to the computer on which you're licensing Ignition. Back on the Offline Activation page, upload the license.ipl license
.ipl file. Them click Activate to finish the process.

The page will refresh, showing your license was successfully activated.Licensing
Click to see a list of all your activated modules.Modules

Note: If something goes wrong during the unactivation or activation step of the license key transfer, your license key may end up in Emergency
Activation Mode. If this happens, you will need to contact Inductive Automation Support to get your license fixed.

https://support.inductiveautomation.com/
https://docs.inductiveautomation.com/display/DOC81/Licensing+and+Activation#LicensingandActivation-EmergencyActivation
https://docs.inductiveautomation.com/display/DOC81/Licensing+and+Activation#LicensingandActivation-EmergencyActivation
https://support.inductiveautomation.com/

Projects

What Is a Project?

Ignition has two main parts, the Gateway and your projects. The Gateway holds all the shared
information like database connections, device connections, and Tags. Projects hold all the designed
elements that do the real work. Your projects can hold both interactive elements (like controls, charts,
reports, and entry forms) and persistent elements (like historical loggers, automated reports, etc.).

Projects are predominantly used to create the screens that your users can interact with, the visualization
part of Ignition. Here you can create any system you want, from copying existing HMI/SCADA

applications to whole new systems with anything you could want to do. The windows in your project can b

charts, reports, database forms, alarms, drawing components, scripting, and templates. e used for history

In Ignition, a project is a unit of configuration that contains:

Windows, views, and components: The HMI and SCADA controls to interact with Tags and
databases
Transaction Groups: A bi-directional link between databases and PLCs
Templates: A collection of components that can be re-used and quickly updated
Reports: PDF reports for displaying and recording data
Scripts: Timer and event based scripts used throughout the system
General settings and properties: The settings that control access, resource connections,
layout, and timing

You use the Designer to configure and create projects. The projects are then viewed in the runtime (Visio
 or). You can create as many projects as you want, and users can easily n Clients Perspective Sessions

jump between projects on the fly or open multiple projects at the same time.

On this page ...

What Is a Project?
Visualization Systems - Vision
and Perspective

When to Use Vision for a
Project
When to Use Perspective for
a Project

Designing a Project
What Is in a Project?

Switching Between Projects
Project Workflow
Project Export and Import
Project Versioning and History
Project Examples
What Is not in a Project?

Visualization Systems - Vision and Perspective

When starting a new project, there are many things to consider, such as who the users will be, how much data you need, what kind of time and
 resources you have to work with, visualization needs, and so forth. Deciding whether to use Vision or Perspective really comes down to which

 module best fits your project at the visualization level.

When to Use Vision for a Project

Vision is the best choice for traditional industrial plant-floor and desktop screens , standalone HMIs, and the like. If you need a full, production-ready
application right now, then it is best to choose Vision. If you’re using multi-monitor or multi-desktop workstations, dedicated control panels and
applications, desktop-dedicated or dedicated-access applications, terminals, or parallel screens, then Vision is the best way to go.

When to Use Perspective for a Project

If you need to build mobile-responsive applications, then Perspective is the recommended way to go. If your application needs to run on a mobile OS ,
 namely iOS or Android, then choose Perspective. If you need Two-Factor Authentication or federated identities for the application you're building,

choose Perspective.

With Perspective, you can automatically adapt to fit any screen size using mobile-optimized container types. It provides the ability to use your
device's sensors and intuitive touch commands, as well as message handling, flexible property bindings, and CSS3 styles.

Designing a Project

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions
https://inductiveautomation.com/resources/webinar/how-to-quickly-create-effective-plantfloor-screens

When you launch the Designer, you're prompted to select or create a project. The Designer then launches the project and you can set and modify the
different types of project settings and resources. In the Designer, you can create any number of projects using either Vision or Perspective. Projects
that contain viewable elements, such as Vision Windows and Perspective Pages, will have a launch link on the Gateway homepage. Non-viewable
elements such as , , and exist in a project and execute in the Gateway. These resources do not Transaction Groups Named Queries SFCs Reports
have a runtime, and run independently of any or being open. Vision Clients Perspective Sessions

There are no limits to the number of projects that can be created on a Gateway, but each runtime Client, Session, or Designer can operate only on
one project at a time.

What Is in a Project?

You use the different tools in Ignition such as components, shapes, images, Symbol Factory graphics, and Scalable Vector Graphics (SVGs) to create
the components. Configuring components is the bulk of the designer's work when designing a project. The basic workflow is to take a component from
the palette and drop it into a container on a Vision Window or Perspective View. You can use the panel to alter the Property Editor
component's properties which changes the component's appearance and behavior.

To make the component do something useful, like display dynamic information or control a device register, you configure property bindings for the
component. To make the component react to user interaction, you configure event handlers for it. It is primarily through property bindings that you
bring windows to life, and have them do useful things. A property binding simply links one component's property to another on the same window.

Switching Between Projects

When you launch an Ignition Client or Perspective Session, it opens a single project to display. If you want to open multiple projects you can have
multiple clients open on the same computer, or you can use Ignition's system to make seamless transitions between projects. The Retargeting
Retargeting feature allows you to jump from one project to another without closing the client. This allows your users to jump from area to area while
still allowing you to keep your designs compartmentalized in multiple projects.

Your projects may all use different authentication sources or role sets for . This means as your users jump from project to project, they may be security
able to use some or all of the controls on one project, but only see what is happening on another project.

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions
https://legacy-docs.inductiveautomation.com/display/DOC81/Navigation+-+Retargeting

1.
2.
3.

Project Workflow

Getting up and running quickly with your project is simple:

Open the Designer
Choose either Perspective or Vision.
Start designing!

The only challenge is figuring out exactly what you want to make with your system. For additional information, see Creating a Project.

Project Export and Import

In Ignition, a project backup and restore is referred to as Project Export and Import. Projects are exported individually and only include project-
 resources such as Perspective Views, Perspective properties, Vision Windows, Vision Templates, client event scripts, alarm pipelines, specific

named queries to name a few. They include any Gateway resources like database connections and Tag Providers. A project is exported to a do not .
file, and you can import it to any other Gateway that you have permission to access. zip

When you import a project from the file, it will be merged into the existing Gateway. If a project already exists on the Gateway you are .zip
attempting to import it on, you have the option of renaming the project or overwriting the existing project.

Project Export and Import are covered in detail on the page.Project Export and Import

Project Versioning and History

Project versioning is handled outside of Ignition. The file system that stores data in Ignition stores everything as a series of files. You can use any tool
you'd like to save or export theses files outside of Ignition, including using versioning software to keep track of your changes.

Project Examples

Ignition is such a diverse application that it can work in any field you can imagine. Just a few examples: Oil and gas, food and beverage, automotive,
medical, air traffic control, water and waste water. You can get anything you want set up in Ignition. To see a few live example screens, check out our
online demo project examples for and . They are packed with samples of the features and functions you might want to use from Vision Perspective
reporting, to history, to HMI optimization.

What Is not in a Project?

The Designer allows you to create and modify several types of resources that are shared by ALL projects. Depending on the resource, this means that
either they run independently of the projects, or they are available for use by any project. Here are a few of them:

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-CreatingaProject
http://demo.ia.io/
http://demo.ia.io/

 Alarm Pipelines - Control alarm notification (runs independently).
 Sequential Function Charts (SFC) Logic to step through a process (runs independently).-

 Transaction Groups - Perform various actions such as storing data historically, synchronizing values to , or loading valdatabase OPC recipe
ues.

 Project Library Blocks of scripting code (available to all projects).-
 Tags - Basic or UDT Tags provide realtime data (available to all projects).

 Alarming - Alarms exist on Tags, and so are not in a project (available to all projects).

In addition to these resources, the Gateway connections and settings are available to all projects and are set up in the . These include Gateway
resources such as , .database connections OPC server and device connections

Related Topics ...

Designer
Perspective Sessions
Property Bindings in Perspective
Scripting in Perspective
Vision Client Launcher
Property Bindings in Vision
Scripting in Vision
Alarming
SQL Bridge (Transaction Groups)

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803

1.

2.

3.

Project Inheritance

Project Inheritance allows one project to inherit resources from another project. If you have project
resources that you want other projects to use such as views, windows, scripts, templates, or pipelines,
you can create an inheritable project allowing other projects to inherit those resources. The project
inheriting the resources can also overwrite the resources and let you re-define them specifically for that
project.

Project inheritance is extremely flexible in that it allows inherited projects to also be configured as
'inheritable' and become a parent project itself. This allows for complex hierarchies of re-usable
resources to be designed. Within each project, inherited resources may be used by other, “local”
resources. For example, an inherited Vision template could be embedded in a window, or an inherited
script could be executed by a button.

This page demonstrates how project inheritance allows you to share resources across multiple projects
as you deem fit by pointing one project to another project, and overriding resources to re-redefine
resources specifically for the project you're working on.

Configuring Project Inheritance

In order to make a project inheritable, you need to enable project inheritance on the project containing
the resources that you want to share. In a similar way, these parent projects need to be assigned to the
child projects that will be inheriting the resources to populate those resources. The following example
demonstrates how to configure project inheritance for existing projects, but if you know a project needs to
be inheritable or inherit a parent project's resources before creating, you can configure inheritance
settings upon creation. This is available in the Gateway after selecting Create new project on the Config
> System > Projects page and choosing the settings called out below, or in the .Designer

In this example, we have two projects: one project called 'global' which contains some project resources,
and another project that is not yet inheriting any resources called 'Project_X.' Since we will be sharing
the resources from the 'global' project with Project_X, let's first configure the 'global' project to be
inheritable.

On this page ...

Configuring Project Inheritance
Configuring Parent Project
Configuring Child Project
Using Inherited Resources

Inheritance and "Runnable"
Resources

"Runnable" Resources
Overriding Inherited Resources

Discarding Inherited Resource
Overrides
Renaming an Inherited
Resource
Opening Read-only Named
Queries

Inheritable Project Examples
Project Export

Configuring Parent Project

Go to the tab on the Gateway Webpage, and select . This brings up Config Systems > Projects
a list of all your projects. You'll notice that for each project listed, you'll see at a glance if a
project is Inheritable, and if so, the name of the Parent Project will be displayed.

Find the project you want to make inheritable, and click the next to the project name (i.e., Edit
global) to open the Project Settings window.
Enable the property, and click . Inheritable Save

Allow Overrides
When you make a project inheritable, the Allow Overrides function is set by default on all
project resources in the inheritable project. This allows all project resources to be propagated
to all inherited projects

Project Inheritance

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Designer#Designer-CreatingaProject
https://inductiveuniversity.com/videos/project-inheritance/8.0/8.1

3.

1.
2.
3.

Cannot Launch Inheritable Projects
When you have a project that's flagged as inheritable, you can not launch it as a stand-alone
project (i.e., Perspective Session or Vision Client). You will get a 'Project Not Runnable" error
message. If you have an inheritable project that you want to launch, you must have another
project to inherit from it.

Configuring Child Project

Now that we have an inheritable project, let's setup an existing project (i.e., Project_X) so it inherits resources from the 'global' project.

Under the tab select pageConfig System > Projects
Find your project and click the button. Edit
Select the inheritable project from the dropdown list (i.e. global), and click .Parent Project Save

Using Inherited Resources

You can treat an inheritable project as a library of resources for use in other projects. When project resources are changed in the original project,
these changes will get passed down to the inherited projects. The same thing is true if new resources are added to the inheritable project. By using
inheritable projects, you can create a resource library that will help designers build their projects more quickly, ensure consistency and reusability
across all their projects.

To view your inherited resources, go to the Designer and open your child project (i.e., Project_X). Expand the folders that contain resources, and you'll
notice that the inherited project resources are grayed out, including the Perspective Views and Vision Windows folders. Grayed out resources mean
that those resources are inherited, and can only be edited from their parent project.

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Inherited resources will have one of two icons following the resource name. The Inherited Resource icon is displayed when the resource is grayed

out and indicates the resource is inherited and unchanged from the parent project resource. The Inherited Resource Overridden icon indicates the
resource has been overridden and is now editable.

Anytime a new resource is added or an existing resource is changed in the parent project, it will propagate down to the inherited project and will

appear grayed out with an Inherited Resource icon.

Inheritance and "Runnable" Resources

Some resources in a project "run" or execute in every leaf project (that is, a project that is inherited by any other project) in the inheritance chain. not
Thus, if multiple projects inherit from the same parent project, then each leaf project will contain runnable resources, potentially resulting in duplicate
executions.

The diagram below represents an inheritance hierarchy on a single gateway. A "Root" project contains a Gateway Tag Change script. Two projects
inherit from the Root, so they'll inherit the script. In both cases, the inheritance chain leads to leaf projects. In this single gateway, two running
instances of the same tag change script exist, meaning there will be duplicate script executions.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

In the case of resources that "run", it is highly advised that they exist in a leaf project, or a standalone project (a project that does not participate in
inheritance at all). In regards to the diagram above, we could prevent duplicate execution of our Tag Change Script easily by moving the Tag Change
Script to a separate, standalone project:

"Runnable" Resources

The following resources are considered "runnable":

Gateway Event Scripts
Alarm Notification Pipelines
Sequential Function Charts
Transaction Groups

Overriding Inherited Resources

To edit a resource in an inherited project, you need to override the resource by right-clicking the resource and selecting . By Override Resource
overriding the inherited resource, the resource is recreated in the inherited project, and any future changes made to the original project resource will not
propagate down to the inherited resource.

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803

If new resources are added in the parent project, they will automatically propagate down to inherited projects. New resources that are added in the
inherited project will initially display grayed out. You will need to override each new resource to edit it.

Discarding Inherited Resource Overrides

This feature was changed in Ignition version :8.1.26
The Discarding Overrides function was previously represented by selecting a Delete option in the
right-click menu. Since this selection results in the resource being grayed out to prevent editing,
the function name was updated to Discarding Overrides for clarity.

Changes made to inherited resources that have been overridden can be discarded. Selecting removes the overrideDiscard Overrides placed on the
inherited resource. The inherited project resource will return to its original state inherited from the parent project (without your edits), and the resource

becomes grayed out in the Project Browser with the Inherited Resource icon. To discard the override on an inherited resource, right-click on the
resource and select Discard Overrides. A dialog box will pop up confirming you want to discard the resource.

Renaming an Inherited Resource

You can easily rename an inherited resource, but beware that when you rename a resource, the inheritable project will propagate the original resource
to the inherited project. For example, say you have an inheritable project resource named 'Map_Transform' and you renamed it to 'CA
_Map_Transform.' Ignition knows that the original project resource is no longer there, and because the project is flagged as inheritable, it
will propagate that original resource to the inherited project. Now you have both the renamed 'CA_Map_Transform' and the original inheritable
resource 'Map_Transform.'

Opening Read-only Named Queries

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Overriding an inherited Named Query used to be the only way to view the Named Query, even if you did not want to make any changes. This option is
still available (and will allow you to edit the Named Query), but you can now select the option from the Named Query right-click menu Open read-only
to view the Named Query Settings, Authoring, and Testing tabs. Since the read-only option does not allow changes, you'll notice the Inherited

Resource icon remains next to the selected Named Query.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

Inheritable Project Examples

There are many ways how you might want to configure and organize your inheritable projects. It's whatever works best for your organization and
design projects. Here are a couple of common ways to organize your shareable resources.

You can create one inheritable project that contains many project different resources: scripts, pipelines, views, templates, windows, SFCs,
etc. This is one inheritable project containing all your inheritable project resources.
Another option is to create several inheritable projects. You can have one inheritable project dedicated for each type of resource: one for
scripts, one for views, one for templates, one for pipelines, etc.

Project Export

When a from the Designerproject is exported you can choose to export strictly local resources or all resources (including those inherited). Exporting
inherited resources is a great way to create a "flattened" project export, containing all resources used by the project regardless of which project the
original resources are located in.

Note that will only export a project's local resources, and not contain inherited resources. exporting a project from the Gateway's UI

Related Topics ...

Project Inheritance - Upgraded Features in Ignition 8
Project Export and Import

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Export+and+Import#ProjectExportandImport-ExportaProjectfromtheDesigner
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Export+and+Import#ProjectExportandImport-ExportaProjectfromtheGateway
https://legacy-docs.inductiveautomation.com/display/DOC81/7.9+to+8.1+Upgrade+Guide#id-7.9to8.1UpgradeGuide-ProjectInteritance&"global"upgradelogic

Project Templates

When you launch the Designer, you will be presented with the Open/Create
Project window. This window let's you hit the ground running almost
immediately by populating a few fields, the most important ones being your
project Name and Title. You can use the defaults in the remaining fields
and change them in the Config > Project page later, but don't overlook
the Project Template field. Ignition provides several project templates for
you to choose from to help you quickly get started developing your project
in either Perspective or Vision. The templates get you started with a basic
navigation structure and let you add more items as your project matures.
Additional project templates can be found on the .Ignition Exchange website

Note: You must be connected to the Internet in order to see the templates available in the Project
Template list.

On this page ...

Perspective Project Templates
Web Nav
Perspective Menu Nav
Editing Properties and Page
Configuration Settings

Vision Project Templates
Tab Nav
2-Tier Tab Nav
Tree Nav
Adding Windows to the
Navigation

Perspective Project Templates

Here are two Perspective Project Templates you can choose from to get you off to a quick start: and . Menu Nav Web Nav

The Perspective Menu Nav and Web Nav templates contain several pre-defined views: Home, Charts, Alarms, and Settings. These views can easily
be edited by selecting the view in the Project Browser and editing its Props to anything you want them to be. You can also go to the Page

 and edit the page configuration settings and properties.Configuration docked view

The images below show what the Menu Nav and Web Nav look like in a Perspective Session.

Web Nav

The Web Nav is good for small size project structures where you only have a few main Views. It allows you to navigate the areas of your project using
the tabs at the top of the screen. It has a docked view that contains tabs that are always open to do navigation, and the main view which fills the rest

a flat structure similar to the what you see on many webpages.of the space. It is

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://www.inductiveautomation.com/exchange/101/overview
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective#PagesinPerspective-ConfigureDockedView

Perspective Menu Nav

The Menu Nav template is a hierarchical view of groups of information that can be configured to expand submenu branches and menu items and is
docked on the left side of the screen. The Menu Nav is good for medium and large project structures because you can expose important information
at a glance and allow users to navigate and expand submenus if any exist. The menu automatically hides itself on smaller screens devices.

Editing Properties and Page Configuration Settings

To edit the Menu Nav and Web Nav menus, first you have to have pages configured in your project. Once you have pages configured, you can go to
the Navigation view in the Project Browser, select the component and change the corresponding component props in the Perspective Property Editor
to add, remove, or update the menu items.

Page Configuration Settings

Project Browser and Project Editor

Vision Project Templates

There are three Vision Project Templates to choose from to help kick start your project: , and 2-Tier Tab Nav Tab Nav Tree Nav.

The Vision templates, just like the Perspective templates contain several pre-defined menu objects. These objects can easily be edited by selecting
the object in the Project Browser by editing its properties and changing them to anything you want them to be.

The images below show what each of the Vision project templates look like in a Vision Client.

Tab Nav

The Tab Nav is good for small size project structures where you only have a few main . It allows you to navigate the areas of your project windows
using the tabs. The Tab Nav project template has a docked window that contains tabs that are always open to do navigation, and the main window
which fills the rest of the space.

2-Tier Tab Nav

2-Tier Tab is good for small and regular size project structures where are grouped. The Tab Nav project template is similar to the Tab Nav windows
template only it has a second tier of tabs added. It contains a second level of tabs allowing you to navigate around various areas of your project. The 2-
Tier Tab Nav project template has a docked window that contains tabs that show and hide based on selection that are always open to do navigation,
and the main window which fills the rest of the space.

Tree Nav

The Tree Nav project template is a hierarchical view of groups of information that can be configured to expand submenu branches and menu items
and is docked on the left side of the screen. It is great for medium and large project structures because you can view the entire project structure at a
glance allowing you to navigate to any structure within the tree view. The tree structure uses folders to group main windows, and can be as many
levels deep as you need.

Adding Windows to the Navigation

To edit the Tab Nav and Tree Nav menus, you just need to edit the properties of the navigation components. You can go to the Navigation window in
the Project Browser, select the Tab Strip, and open the Tab Strip Customizer to change the corresponding component props to add, remove, or
update the menu items.

Related Topics ...

Quick Start Guide
Designer
Pages in Perspective
Navigation Strategies in Vision

https://docs.inductiveautomation.com/display/DOC79/Quick+Start+Guide#QuickStartGuide-QuickStart_OpenDesigner
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Navigation+Strategies+in+Vision

Project Settings

Project Settings

When you create a new project, the Open/Create Project window captures most of the project settings.
See . If you want to view or edit your project settings once your project Creating a Project in the Designer
is saved, go to the Config section on the Gateway Webpage and select System > Projects.

On this page ...

Project Settings
Project Settings Table

Managing Projects
Viewing the Details of a
Project
Editing a Project
Deleting a Project
Copying a Project
Renaming a Project
Exporting a Project

Click on the Edit to the right of the project name.

This opens up the Project Settings page.

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-CreatingaProject

Project Settings Table

Project Settings

Property Description

Name Name of the project (read only).

Description Brief description of the project (optional). This description can be viewed on the Open/Create Project screen when you hover over the I

nformation icon.

Title Title for the project (optional). This is the name that will be displayed on the launch page of the Gateway and in the runtime Client or
will be used instead.Session. There are no restrictions to special characters or spaces. If no title is specified, the project name

Enabled A disabled project will not be active on the Gateway, but will remain editable in the Designer.

Inheritable Inheritable projects are not runnable as a stand-alone project, but are intended to provide shared resources to one or more child
projects.

Parent Each project can have a parent project, and will inherit all of the resources of that parent project.

Project

Connections

User
Source

A group of users with their associated roles. Security policies are defined in terms of these roles.

Default
Database

Database to be used for historical data logging, reporting, storing logs, and Tags storage. You can also query existing data and alarm
update data in the database.

Default
Tag
Provider

Identifies a (a collection of Tags) and a name.Tag database

Managing Projects

Once you have a project or two (or twenty) set up, you might want to change some of the base settings. You can manage the projects from
the Config section of by going to . The Projects window displays all your projects. To the right of the project name, click Gateway System > Projects
the button, and here you can Edit, Delete, view Details, Copy, Rename or Export your project. More

Note: You can manage many of these settings in the . See the page Designer Project Properties for more information.

Viewing the Details of a Project

To view the project details, go to the Config section of the Gateway webpage, and select . Find your project, press the buttonSystem > Projects More
to the right of the project name, and select . The Details link on the Project window takes you to the Project details for '<Project Name>' page Details
where you can choose to view the .Project Settings

Editing a Project

To edit some of the project settings, go to the Config section of Gateway, and then to . You will see a list of all your projects. Click System > Projects E
to the right of project name in the list. The Project - Edit page is displayed. You can now change some of the project settings such as project dit

Description, Title, Enabled, etc. You can also change connections to the User Source, Default Database, and Default Tag Provider.

Caution: Recommend Changing the Title, not the Project Name
It is not advisable to change the Project Name after it's been created, instead, change the Title property if you want to change how the project
appears. Shortcuts that refer to the project will no longer work if the project name is changed.

Many of these settings can be modified in the Designer too, but it is important to note that you cannot change any of these project settings from the
Gateway if the project is currently open in a Designer.

Deleting a Project

Be aware that once you delete a project, it cannot be undone, a deleted project is gone forever (unless it can be recovered from a , or a project export
). Always make a or before deleting a project. To delete a project, go to the Config section of Gateway backup project export Gateway Backup

Gateway, and then to . You will now see a list of all your projects. To the right of the project name in the list, look for and System > Projects Delete
click on it. This deletes your project.

Copying a Project

Copying your project is useful when you need a of a project before starting major changes, or for creating a starting point for a new project snapshot
based on an old one. To copy a project, go to the Config section of Gateway, and then to . You will now see a list of all your System > Projects
projects. To the right of the project name in the list, click . This creates a copy of your project. Copy

Renaming a Project

Changing the name of a project is risky. Shortcuts that refer to the project will no longer work. It is advisible to change the Title which is much safer. If
you decide to rename a project, go to to the Config section of Gateway and then to . To the right of the project name in the list, System> Projects
click . This will open a Rename Project window. Read it carefully, and if you want to proceed, enter a new project name, mark the checkbox Rename
acknowledging that the project will shutdown and restart, then click .Save

Note: Renaming a project triggers a project shutdown and restart.

Exporting a Project

Project Export is a project backup. It takes less time than a Gateway backup and it's smaller. This exports your project as a file. Once you have .zip
an exported file of your project, you can take it to any other Gateway and merge it in with other projects. Refer to the page Project Export and Import
to learn exactly what is included in a project export.

Related Topics ...

Project Properties

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore#GatewayBackupandRestore-GatewayBackup
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Backup+and+Restore#GatewayBackupandRestore-GatewayBackup

Project Export and Import

1.
2.

Project Export and Import

Project backup and restoring from a project backup is referred to as Project Export and Import. Projects

are exported individually, and only include project-specific elements shown in the list below. They do
not include Gateway level configurations, like database connections, Tag Providers, and Tags. The

exported file (.) is used to restore / import a project.zip

The resources listed below are included in a project export.

Alarm Pipelines
Named Queries
Perspective Properties
Perspective Views
Project Properties
Reports
Sequential Function Charts
Transaction Groups
Vision Client Tags
Vision Windows
Vision Templates
Client Event Scripts
Gateway Event Scripts

There are two primary ways to export and import a project:

 - exports and imports the entire project.Gateway Webpage
 - exports and imports only those resources that are selected.Designer

This page describes how to create a project export and import a project from an exported file.

On this page ...

Project Export
Export a Project from the
Gateway
Export a Project from the
Designer

Project Import
Import a Project from the
Gateway Webpage
Import a Project from the
Designer

Making Project
Backups

Watch the Video

Project Export

A Project Export is a little smaller and takes even less time to run than a backup! Once you have an exported file of your project, you can Gateway
take it to any other and merge it in with the other projects. This makes it simple to keep a development and push your projects after Gateway server
you complete them. The can even do this for you. You can perform a project export from two locations, the Gateway Administration ModuleEnterprise
Webpage and the Designer. This secton describes how to create a project export from the Gateway Webpage and the Designer.

Export a Project from the Gateway

Making an export from the Gateway Webpage, exports the entire project to a (. file). The exported file only includes resources from the zip
project. Notably missing from the project export are any Gateway resources, even if they are presented in the such as Tags. They Designer Ignition
need to be exported separately. Refer to . Exporting and Importing Tags

Remember that Tags and Gateway level configurations (such as device connections, database connections, tags, etc) are not included in a Caution:
Project Backup. Those resources are only exported in a . gateway backup

Go to the tab of the Gateway Webpage, and click on Config System > Projects.
The screen will be displayed and you can see your existing projects. Projects
To the right of project name, click the button and select . This exports your project as a file. The exported file will have the More Export .zip
project name, date, and a 4 digit unique number followed by the file extension (i.e., Compressor_2019-03-21_1123.zip).

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/Pages+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Views+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Tags
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Windows
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Templates
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://www.inductiveuniversity.com/video/making-project-backups/8.1
https://docs.inductiveautomation.com/display/DOC80/Agent+Task+-+Send+Project

2.

3.

1.
2.

3.

By default, the file is saved in your web browser's default folder. This export of the project can be imported to any other .zip Downloads
instance of Ignition that is running the same version or later.

Export a Project from the Designer

When making a project export from the , you get to choose which project resources are added to the export file. The export does not include Designer
any Gateway resources. When restoring a project export in the , you also get to choose which project resources are restored into the Designer
currently open project from the exported file..zip

From the Designer, go to the top menubar, click on the menu and select .File Export
The Export screen will be displayed and you'll see a list of project resources to export. By default, local project resources are selected.
Unselect any resources you don't want to include in the export.

When exporting a project, there is a button that allows you to directly send the project (or resources in a project) to another Send to Project
project on the same gateway. There is a project export option, meaning only local (non-inherited) project resources are selected and 'local'
will be exported.

Click .Export

This opens a Save dialog window. Select a folder and click . Save

3.

4.

1.
2.
3.
4.

5.

6.

1.

This export of the project can be imported to any other instance of Ignition that is running the same version or later.

Project Import

When you restore / import a project from an exported file in the , it will be merged into your existing . If there is a naming Gateway Webpage Gateway
collision, you have the option of renaming the project or overwriting the project. Project exports can also be restored / imported in the . This Designer
will even allow you to select which parts of the project import you want to include and will merge them into the currently open project.

Import a Project from the Gateway Webpage

When restoring a project from the Gateway Webpage, Ignition imports the entire project from an exported file.

Go to the tab of the Gateway Webpage, and click on Config System > Projects.
The screen will be displayed and you can see your existing projects. At the bottom of the screen, click the link.Projects Import project...
A second Projects screen will open. Click on , find your exported file from your browser, and then click . Choose File .zip Open
Enter the . If there is already a project with the same name, the preventing you from Project Name Import button will be grayed out
importing the file. The system gives you the option to the project you want to import, or the existing project.Rename Overwrite
Click . Import

If you are importing a new project, you will see your new project added to the list along with the other projects.

Import a Project from the Designer

When restoring a project from the Designer, you can select the entire project or parts of the project, and merge them into the one you are currently
working on. Ignition will let you choose which resources to import.

In , select .Designer File > Import

2.

3.

The dialog screen will open, select the project export file (from the default folder, and click ..zip) Open

By default, all resources are selected. Unselect the resources from the project that you do not want to import. Click the button. Import

4. If there are any conflicts when importing your project resources, a dialog box will appear and ask you to either , , ,Overwrite Overwrite All Skip
, the affected items or . Once all conflicts are resolved, your project. Skip All Rename , Cancel Save

Related Topics ...

Gateway Backups and Restore
Exporting and Importing Tags
Project Inheritance

Ignition Redundancy

Ignition redundancy supports a 2-node system, meaning there are two copies of the Gateway running.
One node is the Master Gateway and the other is the Backup Gateway or backup node. All projects,
Gateway settings, etc., are shared between nodes. The master node manages the configuration then
replicates it to the backup node. On this page ...

Redundancy Status Page
Overview
Node Communication
Configuration Synchronization
Runtime State Synchronization
Status Monitoring
Historical Logging
Client Failover

Vision Clients
Perspective Sessions

How Redundancy
Works

Watch the Video

Updating or
Patching a
Redundant Ignition
Pair

Learn about updating
redundant servers and
how to make the process
a success.

Link to Knowledge
Base Article

When you have redundant systems in place, you can get detailed status information by going to Gateway webpage and selecting Status >
 to view the system's status and events. Redundancy

https://www.inductiveuniversity.com/videos/how-redundancy-works/8.0/8.1
https://support.inductiveautomation.com/hc/en-us/articles/360047136192-Upgrading-or-Patching-a-Redundant-Ignition-Pair
https://support.inductiveautomation.com/hc/en-us/articles/360047136192-Upgrading-or-Patching-a-Redundant-Ignition-Pair

Redundancy Status Page Overview

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

The Redundancy Status page has been overhauled starting in 8.1.21. This section breaks down the Redundancy Status Page, describing each
feature.

Metrics and Information

The top section of the Redundancy Status page gives information about the Gateway and your redundancy setup, including:

Redundancy configuration settings
The current Gateway's role in the Redundant pair
If the Gateway has a peer connected
The current node's uptime after failover
Current redundancy settings
Force re-sync and failover options

Redundancy Providers Statistics

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21

The next section of the Redundancy Status page details metrics about applicable redundancy providers.

Data that is presented include:

The name of the provider
When the provider was last pulled
The latest time duration (or how long it takes) for the Gateway to get data from the provider
The latest time duration (or how long it takes) for the Gateway to apply the data received from the provider
Whether a full sync is needed
Whether a system restart is needed

System Event Information

The third section of the Redundancy Status page displays a table that will log system events whenever a full sync is required, helping to establish a
timeline of when full sync events were requested.

Information displayed in this table includes:

How severe the system event was/is
When the system event occurred
The reason for the system event

Logging Activity

The final section of the Redundancy Status page shows logger activity and allows users to enable DEBUG and TRACE logs for a specific redundancy
provider.

Features of the log activity table include:

Minimum logging level. Options are:
INFO
DEBUG
TRACE

An option to merge logs to the main diagnostic log viewer
The specified logger
The log's timestamp
The issue being logged

Node Communication

The master and backup nodes communicate over TCP/IP. Therefore, they must be able to see each other over the network, through any firewalls
that might be in place. All communication goes from the backup to the master node over the gateway network (default without SSL, port 8088 port

 with SSL). Therefore, that port must allow TCP listening on the master machine.8060

Configuration Synchronization

The master node maintains the official version of the system configuration. You must make all changes to the system on the master Gateway,
the backup Gateway does not allow you to edit properties. Similarly, the Designer only connects to the master node.

When changes are made on the master, they are queued up to be sent to the backup node. When the backup connects, it retrieves these updates,
or downloads a full system backup if it is too far out of date.

If the master node has modules that aren't present on the backup, they are sent across. Both types of backup transfers, and , will trigger data only full
the Gateway to perform a soft reboot.

Runtime State Synchronization

Information that is only relevant to the running state, such as current alarm states, is shared between nodes on a differential basis so that the
backup can take over with the same state that the master had.

On first connection or if the backup node falls too far out of sync, a full state transfer is performed. This information is light-weight and does not trigger
a Gateway restart.

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

After the Master Gateway and Backup Gateway reestablishes a redundancy connection, the Backup Gateway will check if it has any conflicting data
compared to the Master Gateway's data. If the Backup Gateway has instances of conflicting data, the Backup Gateway will drop those instances in
favor of the Master Gateway's data.

This feature was changed in Ignition version :8.1.31

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

1.
2.

The above behavior changes depending on if the Use Active Uptime to Resolve Conflicts property is toggled. If this property is toggled, the
redundancy system will compare the Master and Backup nodes' active uptimes to each other, and use the data from the node with higher active
uptime. This behavior can result in the Master overwriting its own data with data from an active Backup node.

Status Monitoring

Once connected, the nodes begin monitoring each other for liveliness and configuration changes. While the master is up, the backup runs according
to the in the settings.stand by activity level

When the master cannot be contacted by the backup for the specified amount of time, it is determined to be down and the backup
assumes responsibility. When the master becomes available again, responsibility is dictated by the recovery mode and the master either takes
over immediately or waits for user interaction.

Historical Logging

Historical data presents a unique challenge when working with redundancy because it is never possible for the backup node to know whether the
master is truly down or simply unreachable. If the master was running, but unreachable due to a network failure, the backup node becomes active and
begins to log history at the same time as the master, who is still active.

In some cases this is OK because the immediate availability of the data is more important than the fact that duplicate entries are logged. But in
other cases, it's desirable to avoid duplicates, even at the cost of not having the data available until information about the master state is available.

Ignition redundancy provides for both of these cases, with the , which can be either or .backup history level Partial Full

In mode, the backup node logs data directly to the database.Full

In mode, however, all historical data is cached until a connection is reestablished with the master. At that time, the backup and master Partial
communicate about the uptime of the master, and only the data that was collected while the master was truly down is forwarded to the
database.

Client Failover

This feature was changed in Ignition version :8.1.17
Failover to the other redundant node is now allowed if the nodes have different platform versions,
which will allow attached clients to remain connected to at least one node during a redundant pair
upgrade.

Vision Clients

All Vision clients connect to the active node. When this system fails and is no longer available, they automatically re-target to the other node.
The reconnection and session establishment procedures are handled automatically, but the user is notified that they have been transferred to
a different node so that they can notify the system administrator that the system may need attention.

Perspective Sessions

Like Vision clients, Perspective sessions connect to the active node. When connection to the active node is lost, or the activity level of the
Gateway changes from , the session will simultaneously attempt to:active

Re-establish the connection to the Gateway it was connected to, and check to make sure its activity level is .active
Monitor the backup Gateway. If the backup Gateway becomes reachable and before the connection to the active Gateway can be re-active
established, the Perspective session navigates in the browser to the same project and page on the backup Gateway.

In This Section ...

1.

2.

3.

1.
2.

3.

Setting Up Redundancy

In redundancy, both nodes will share the exact same configuration state. When a Backup node connects
to a Master node, the Backup will attempt to synchronize itself with the Master. Therefore, before you set
up for redundancy the following should be considered:

Start with a fresh install for the Backup node.
Because the current configuration of the Backup node will be overwritten, make sure that it does
not contain anything valuable. It is a good idea to export any projects that are unique to the
Backup before enabling redundancy.

All system configurations relative to the Master node must also resolve on the Backup
node.
For example, OPC UA connections and database connections must use addresses that resolve
from both nodes, or any OPC-COM servers must be installed and configured identically on both
nodes. This means using "localhost" in any of the database connections won't work. You should
use the IP address of the computer instead.

Configure firewalls between the redundancy nodes.
Redundant systems need TCP connectivity between each other on the default Gateway network
ports. Turning off software firewalls or adding special exception rules for each others' addresses
is required. The default Gateway Network port is (without SSL), and (with port 8088 port 8060
SSL), and the Backup node must be able to send outgoing data on that port. The port can be
changed from Gateway Network settings.

Note: Two s can be set up withEdge Gateway redundancy. An Edge Gateway can only failover to
another Edge Gateway (not a standard Ignition Gateway). Also, an Edge Gateway cannot be used as
backup to a Standard Ignition Gateway.

Note:

While the OS platform (i.e., Windows, OS X, Linux) for the Master and Backup can differ, it is
recommended to have similar OS platforms. If the OS platforms do differ, the Windows machine should
be the master system or else the Force Failover option will not work.

However, different versions of the same operating system such as Windows 10 and Windows 8 or OSX
10 and OSX 11 have full functionality.

On this page ...

On the Master Gateway
On the Backup Gateway
On the Master Gateway
Redundancy Settings
Troubleshooting

Redundancy Connectivity
Advanced Troubleshooting

Setting Up
Redundancy

Watch the Video

On the Master Gateway

Go to the section of the Master Gateway Webpage.Config
Select System > Redundancy.
The Redundancy and Network Configuration page is displayed showing different sections and settings. See the table below for a description
of all settings.

https://legacy-docs.inductiveautomation.com/display/DOC81/Edge+Gateway
https://www.inductiveuniversity.com/video/setting-up-redundancy/8.1

3.

4.

5.
6.

Change the following settings:
Under Redundancy Settings, set Mode to .Master
Optionally, configure any desired settings under Master Node Settings.

Click . The Confirm change to Redundancy Settings page is displayed.Save Changes

Click to apply your settings. Confirm
Go to the Config tab and select to ensure the redundancy mode and state is properly set. System > Redundancy

On the Backup Gateway

Do the exact same steps 1-6 above on the Backup Gateway Webpage, except replace step 3 with the following:

Under Redundancy Settings, set to .Mode Backup
Under Backup Node Settings, configure the Master Node Address and Port to point to the Master Gateway. The Master Node
address should be a hostname or IP address. The Port setting (assuming default configurations) should be if using SSL, 8060

1.
2.

3.

4.

otherwise .8088

On the Master Gateway

Return to the Config section of the Master Gateway Webpage.
Select . Networking > Gateway Network

Navigate to the tab. You should see a new incoming connection from the Backup Gateway. Find the connection, Incoming Connections
select .More

Select .approve

If you are not using SSL and your connection isn't displayed, make sure the box is unchecked under the Require SSL General
tab. Clearing the checkmark and returning to the tab will now populate your new incoming Settings Incoming Connections

connection.

 This feature was removed from Ignition in version

8.1.37

4.

5. To verify the setup, that is, to ensure the Master and the Backup Gateways are connected, go the Status tab of the redundancy Gateway
 and click on . The Redundancy page will show the connected nodes and their current states.Webpage System > Redundancy

After approving the connection, the Backup connects to the Master and downloads a system backup, then restarts. Once the restart is
complete, the Backup node is synchronized and in communication with the Master.

Redundancy Settings

All redundancy settings are configured in the Gateway Webpage under the Config tab, . Most settings are used by both the Systems > Redundancy
Master and Backup nodes, with their individual settings broken out into separate categories.

It is important to know that while the full system configuration is shared between nodes, redundancy settings are not shared between nodes.
Therefore, it is perfectly acceptable to have different values for the same settings on the two nodes. For example, it is possible to have a different
Standby Activity Level on both nodes, and, of course, the network settings will often be different.

Note: The Master node shares all configuration with the Backup node, and this means that changes cannot be made to your project from the
Backup. In fact, the Designer can never be opened from a Backup node, even if the Master is currently offline.

Redundancy Settings

Mode Enable or disable redundancy, and specify this node's role. There should be one master and one backup node per redundant pair.

Independent turns off redundancy.

Independent - Redundancy is not enabled and this Ignition system runs as an independent node.

 - This is the Master node, who listens for a connection from the Backup node, and is in charge of managing system Master
synchronization.

 - This is the Backup node, who will connect to the Master and receive system updates.Backup

Standby
Activity
Level

How the node should run when it is not currently the node.Active
 - The system connects to all OPC servers but does not subscribe to Tag values. The Ignition OPC UA server does Cold

not communicate with any device, but third party OPC UA servers may still have device connections. This allows the system to standby
without putting additional load on the devices and network. Failover takes slightly longer, as Tags must be subscribed and initialized.

Warm - The system runs as if it were active, with the exception of logging data or writing to devices, allowing for faster fail-over.

Failover
Timeout

The time of inactivity, in milliseconds, before the backup assumes responsibility. Default is 10000 milliseconds.

Startup
Connecti

 This feature was removed from Ignition in version

8.1.21

on
Allowance

 The time in milliseconds that the system will wait at startup for a connection before making a decision on the node's responsibility level.
This is used to prevent unnecessary switch over caused by a node starting as active, only to connect and find that the other node is
active, resulting in one of the nodes being deactivated. Default is 30000 milliseconds.

Note:

It is important to notice that this setting can interfere with the Master Recovery mode:

If the Master is active, it will always request the Backup to de-activate.
If this setting is low, or 0, the Master will always become active before connecting to the Backup, and thus "manual recovery" will
not be possible.

Sync
Timeout

The following feature is new in Ignition version 8.1.22
 to check out the other new featuresClick here

The maximum time in seconds allowed for a redundancy sync operation. Sync operations that exceed this value will time out. Default is
60 seconds

Network Settings

Auto Detect
Network
Interface

If true, the system will automatically select which network interface to use. Most commonly disabled on systems with multiple
network cards, in order to explicitly specify which interface to use. If false, the system will itself to the interface of the specified bind
address.

Network
Bind
Interface

The IP address of the network interface to use for redundancy. Only used if "Auto Detect" is false.

Master Node Settings

Recovery
Mode

How the Master node resumes responsibility after starting again.

Automatic - The Master automatically takes back responsibility, and becomes active. The Backup node goes to standby.
Manual - The Backup node is allowed to stay active. The Master will become active if the Backup node fails, or if the user requests a
switchover from the Gateway configuration page.

Runtime
Update
Buffer Size

How many "runtime state" updates can be queued in memory before the system stops tracking and a full transfer is performed. These
updates represent information that the other node should have in order to have the same running state as the Master when it's forced
to take over.

This is most often the values of static Tags and the current state. Given that the update buffer is only used once the nodes are alarm
connected, the default value is usually fine, and only needs to be increased on systems that may have many alarms that change
together, or many static Tag writes.

Config
Update
Queue
Size

The maximum size (in megabytes) of config updates allowed before a full transfer is performed.

Backup Node Settings

Master Node
Address

The address of the Master Ignition system.

Port The Gateway Network port used by the Master to listen on. For the Backup, the port to connect to on the Master.

Use SSL Use SSL to connect to the remote machine.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Ping Rate How often, in milliseconds, to send a message from the Backup to the Master.

Ping Timeout The maximum time, in milliseconds, allowed for a ping response. Pings that time out are counted as missed pings.

Ping Max Missed The amount of missed pings that will force the connection to the master to be considered faulted.

Websocket
Timeout

The maximum time, in milliseconds, allowed for a new web socket to connect to the Master.

HTTP Connect
Timeout

The maximum time, in milliseconds, allowed to establish an HTTP connection to the Master.

HTTP Read
Timeout

The maximum time, in milliseconds, allowed to read or send HTTP data to the Master.

History Mode How history is treated by the Backup system. If Full, history will be stored normally, as it would be on the Master system. If Parti
al, history will be cached until the Master is available again and the Backup node is able to determine the exact time that the
Master was down.

Use Active
Uptime to
Resolve Conflicts The following feature is new in Ignition version 8.1.31

 to check out the other new featuresClick here

When enabled, the system will resolve data conflicts by examining if the Master node or Backup node have been active for
longer. The redundancy data from the longer running active node will be selected, and will overwrite the data on the other node.

Troubleshooting

Redundancy Connectivity

When the two redundant nodes are connected, you will be able to see their state details in the section of the Gateway Webpage. There are Status
also various other places where the redundancy state is shown as .connected

If the two nodes cannot connect, check the following:

Verify that the Master address is correct in the Backup. Try to ping the Master machine from the Backup machine, and verify that you're using
the correct address for the network card that the Master is connected through.
If using system names (or domain names), verify that the name is resolving to the correct address by performing a ping.
Verify that the firewall on the Master is set to allow TCP traffic to the designated port.
Verify that the Backup is not connecting and then immediately disconnected for some reason.
Viewing the error log in the Gateway console section should show this. If errors are occurring at regular intervals, look at the message for an
indication of what is happening. An example of a potential problem is when the failover time is set too low for the given network, which results
in many socket read timeout exceptions, which in turn leads to many disconnect/reconnect attempts.
If errors are occurring, but the cause isn't clear, contact .Inductive Automation Support

Advanced Troubleshooting

A variety of loggers can be found under the Gateway console section by going to "Levels" and searching for "Redundancy". By setting these loggers
to a finer level, more information will be logged to the console. This is generally only useful under the guidance of Inductive Automation
support personnel, though more advanced users may find the additional logged information helpful.

Related Topics ...

Database Considerations

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.31
https://support.inductiveautomation.com/

Database Considerations

Ignition Database Requirements

Given that many parts of the Ignition system interact with the database, it's important to give
some thought as to how it will be used when redundancy is turned on, and the different
database architectures that are possible.

When evaluating database architectures for use with Ignition, it's important to look carefully at how
the system will use the database. Which pieces are critical? Which pieces are "optional" so that
the system continues to function while the database is down? Which pieces can operate in "read-
only" mode if necessary?

Ignition uses the database for many purposes. Here are some common areas where they are used, and
how availability can impact the system:

Tags

Tags rely on the database for Tags that execute queries. These Tags will error out if the database is
unavailable, but the status and control functionality of the system will function on the whole.

History - Tags and Other

All history in Ignition goes through the system, meaning that it will be cached until the Store-and-Forward
database is available. However, while the data is cached, it will be unavailable to view or analyze on the
clients. Therefore, when looking at how the database should be set up, it is necessary to determine how
crucial rapid-availability of the data is.

Alarming

The alarm status system does not reside in the database, so it will continue to function if the connection
is down. information will go through the system as history data.Alarm Journal Store-and-Forward

Project Screens

Almost all projects use database access for providing information on screens. These queries will error
out as long as the database is unavailable. Screens that only use Tags (in an internal provider) will
continue to function, so it would be beneficial to make a distinction between status screens and history
screens, if a failover database is not used.

On this page ...

Ignition Database Requirements
Tags
History - Tags and Other
Alarming
Project Screens

Database Architectures
Single Shared Server
Clustered/Replicated
Database Servers

Pertinent Settings
Database Connection
Settings - Failover Datasource
Clustering Settings - History
Mode

Database Architectures

Single Shared Server

A single database server is used. Any Ignition Gateways will use it, so it is expected to be available even when one of the nodes is not. For that
reason, it almost always resides externally, on a separate server machine. This arrangement is the easiest to use with Ignition. A single database
connection configured on the master will be replicated to the backup, and both nodes will use the connection as necessary.

Clustered/Replicated Database Servers

There is a wide variety of capabilities supported by the different brands of database servers. To obtain fault-tolerance on the database front, it is
usually necessary to have some sort of cluster/replication system in place. However, it can be very important to examine how Ignition is using
the databases, and what capabilities the clustering solution provides.

For example, in many replication scenarios, the master database copies data to the backup. The backup can be used for read purposes, but new data
inserted will not be replicated back to the master. Therefore, it is possible to have a failover connection to the backup database, so that clients will
continue to receive data, but it would be necessary to run in partial history mode, so that the historical data was cached and inserted only to the
master database. The failover connection would be set to standard mode, so the primary connection would be used when possible.

In a more complete cluster environment, where writes to either node would be replicated, a sticky failover connection could be used with full history
mode.

Pertinent Settings

When working with various database architectures, there are a few settings in various parts of the system that are important.

Database Connection Settings - Failover Datasource

Any database connection can have a failover datasource. If the main connection is unavailable, any queries executed on it will pass through to the
secondary connection. In this way, a secondary database can be used when the first is not available, and the system will continue to function. It
is important to note that everything passed through to the failover will function normally- no special considerations will be made. For example, the
system won't cache data for the primary connection, it will forward it to the secondary. In cases where you want to allow reading from the
secondary database, but not writing, you can set up another connection directly to the first database, with no failover, and set all of your write
operations to use that.

Clustering Settings - History Mode

The history mode dictates how history will be treated when the node is not active. If partial, the data will be cached, and only forwarded when the
master node is available. This mode can be used to prevent data from being inserted into a backup database in some cases. This setting can be
found on the page under the section of the Gateway. Redundancy Config

Related Topics ...

Redundant Licensing
Setting Up Redundancy

Redundant Licensing

Types of Redundant Licensing

When working with Redundancy, both nodes will require a license. However, there are two approaches
that are detailed below. In both cases, the license for the Backup node generally contains most, if not all,
the same modules as the Master node. For example, if the Master is storing history with the SQL Bridge
module, then the Backup would also require the module in the event a failover occurs, otherwise, data
would be lost.

However, non-critical modules do not need to be added to the Backup License. The Master license could
make use of the Symbol Factory module, and since the Designer only connects to the Master node, there
is no reason to add this module to the Backup node.

Two Standard Licenses - Classic Redundancy

Traditionally, Redundancy involves two standard licenses: one license will be applied to the Master
Gateway, and the other license will be applied to the Backup Gateway. Since two standard licenses are
being used, this approach allows users to disable Redundancy, and set both Gateways to independent
modes.

Backup-Only Licenses

Backup-Only licenses are available for purchase. This license forces the Gateway into a Backup mode,
and the mode can not be changed while the license is applied. The benefit of this type of license is that
they come at a discounted price. For more details, contact your Account Representative.

On this page ...

Types of Redundant Licensing
Two Standard Licenses -
Classic Redundancy
Backup-Only Licenses

Redundant
Licensing

Watch the Video

If using a Backup only license, the Mode property on the Backup Gateway's Redundancy page will look like the image below.

Instead of the dropdown list that normally appears on this property, the license forced this Gateway into a Backup mode.

https://www.inductiveuniversity.com/videos/redundant-licensing/8.0/8.1

If you would like to change the mode of this Gateway, the backup-only license must first be unactivated. Once unactivated, a new license will need to
be applied, otherwise, the Gateway will operate in 2 hour trial mode.

Gateway Network

The Gateway Network allows you to connect multiple Gateways together over a wide area network, and
opens up many distributed features between Gateways.

The Gateway Network provides the following features:

A dedicated HTTP data channel that can handle multiple streams of message data.
The ability to set up a node to act as a proxy for another node.
Security settings that restrict incoming connections based on a white list or on manual approval
of the connection. Incoming connections can also be disabled entirely.
An available mode. When enabled, connections must send SSL Secure Socket Layer (SSL)
certificates to prove their identity. A connection will not be accepted until its SSL certificate is
approved.

Gateway Network Features

The Gateway Network opens up certain services for use that make managing multiple Gateways and
having them effectively communicate with each other a snap. It also has special security that can restrict
certain services from happening in certain zones of the Gateway Network.

Enterprise Administration

The Enterprise Administration Module (EAM) uses the Gateway Network for message and file transfer,
and can monitor network connections for availability. The EAM reports whenever communications are
lost via alarm events and system Tags.

Distributed Services

Distributed services included the following:

Remote Providers: Remote Realtime and Historical Tag providers make remotely controlling
and storing Tag data even easier.
Remote Alarming: Remote Alarming makes notifying all Gateways in the network possible, to
quickly and effortlessly track down issues.

Security Zones and Service Security

Security Zones can be set up to lock down or prevent access to certain parts of Gateways within the
Gateway Network.

On this page ...

Gateway Network Features
Enterprise Administration
Distributed Services
Security Zones and Service
Security

Outgoing vs. Incoming
Connections

Connections and Servers
Which Server Should I
Configure the Outgoing
Connection On?

General Settings
Main
Security

Setting Up a Gateway Network
Connection

Main
Ping
Timeouts
Gateway Network Connection
Example

Deleting Connections
Gateway Network Diagnostics
Gateway Network Queue
Management

Queue Settings
Adjust Queue Message
Capacity

Gateway Network Proxy Rules
Proxy Rule Settings
Setting up a Proxy Rule

Gateway Network
Overview

Watch the Video

Outgoing vs. Incoming Connections

When using the Gateway Network, you will be working with two type of connections.

 To establish communications, create an outgoing connection on the local machine. The outgoing connection Outgoing Connections:
always begins the connection process to a remote machine. After the outgoing connection is created, the local machine will attempt to use
the connection to establish communications with the remote machine.

 On the remote machine, an incoming connection will automatically be created when the new connection attempt is Incoming Connections:
detected. For connections where security settings require manual approval, you will need to approve the incoming connection before it can
be used. If no security controls have been set, the incoming connection will automatically accept the connection from the local machine and
begin sharing data.

Connections and Servers

https://legacy-docs.inductiveautomation.com/display/DOC81/Enterprise+Administration+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-RemoteHistoryProvider
https://legacy-docs.inductiveautomation.com/display/DOC81/Remote+Gateway+Notification
https://inductiveuniversity.com/video/gateway-network-overview/8.1

Every machine on the Gateway Network is known as a Server. When you establish a connection to a remote machine, the remote Server sends data
about itself and also sends data about any other Servers known to that machine. For example, assume your local machine is GatewayA. The remote
machine is known as GatewayB. GatewayB also knows about another remote machine named GatewayC. As soon as your local GatewayA
establishes a connection with GatewayB, GatewayB also sends information about the existence of GatewayC.

Modules such as the Enterprise Administration Module (EAM) are aware of this relationship and allow communication between GatewayA and
GatewayC, even though there is no direct connection from the local machine to GatewayC.

If you are cloning Gateways to then be connected via Gateway Network, it is important to notice that there is a Gateway unique identifier in %
IgnitionInstallationDirectory%/data/.uuid. No two Gateways connected via Gateway Network should share a .uuid. Generally, Gateways are cloned by
restoring the same Gateway backup on multiple servers. Since Gateway backups carry their .uuid with them, restoring the same Gateway on multiple
servers will result in multiple Gateways having the same .uuid. To get around this, you must stop your Ignition service, delete %
IgnitionInstallationDirectory%/data/.uuid, then start your Ignition service so that a new, unique .uuid is generated. Doing this before connecting two
cloned Gateways will prevent any .uuid collisions.

Which Server Should I Configure the Outgoing Connection On?

In regards to connecting multiple Gateways over the Gateway Network, there is little difference between an Outgoing and Incoming connection: these
terms simply indicate which server the connection was configured on, and are mostly ignored by the rest of Ignition. Thus, assuming GatewayA and
GatewayB, configuring an outgoing connection from to is equivalent to configuring an outgoing connection from to . When connecting two A B B A
Gateways, only a single connection is required between them.

General Settings

Main

The Gateway Network General Settings set the basic rules for the system. By default, these settings are lenient to allow for easy setup, but can be set
for security.

Setting Description

Enabled Uncheck this checkbox to disable using the Gateway Network.

Require
SSL

If true, only connections that use SSL to encrypt traffic will be allowed. Default is true.This setting only applies to incoming connections.

Require
Two
Way Auth

Enforces two-way SSL authentication. If true, you will need to install the remote machine's certificate on this machine, in addition to
manual approval of this machine's certificate on the remote machine.

To provide the remote machine's certificate, manually export a certificate from the remote machine's metro KeyStore, located in
<installdir>/webserver/metro-keystore. Default KeyStore password is metro , and the alias is metro-key . Place the certificate on the
local machine in data/certificates/gateway_network

This feature was changed in Ignition version :8.1.14

On Ignition versions 8.1.14 and greater, the certificate is stored at data/gateway-network/client/security/pki/trusted
 /certs

Send
Threads

The maximum number of threads that will be used to upload messages. Applies to outgoing connections. Default is 5.

This feature was changed in Ignition version :8.1.37
This property was moved to the Gateway Network Settings > Outgoing Connections tab to be set
when creating or editing an outgoing connection. See Connection Send Threads under Setting up

 for more details.a Gateway Network Connection

Receive
Threads

The maximum number of threads that will be used to download messages. Applies to outgoing connections. Default is 5.

This feature was changed in Ignition version :8.1.37
This property was moved to the Gateway Network Settings > Outgoing Connections tab to be set
when creating or editing an outgoing connection. See Connection Receive Threads under Setting

 for more details.up a Gateway Network Connection

Processi
ng
Queue
Limit

Number of received messages that can be held until they are processed by the local system. When this capacity is exceeded, new
messages are rejected and errors are reported to the remote Gateway. Applies to incoming connections.

Websock
et Idle
Timeout The following feature is new in Ignition version 8.1.3

 to check out the other new featuresClick here

The maximum number of milliseconds that a websocket is allowed to remain idle before it is closed. This value should always be set
higher than outgoing connection ping rates to avoid premature connection termination.

Proxy
Service
Call
Intercept

The following feature is new in Ignition version 8.1.34
 to check out the other new featuresClick here

If enabled on a proxy Gateway, this setting will intercept recurring service enumeration calls that the proxy Gateway normally passes
along. If the service enumeration information is available locally on a proxy Gateway, the information is returned directly instead of
forwarding the call. Useful when too many service enumeration calls are occurring. Default is false.

Security

You have several options to control security from the Gateway Network settings.

Note: These settings are independent of SSL mode, which is detailed below. To change security settings, go to the Gateway Webpage and navigate
to and select the tab.Config -> Networking -> Gateway Network General Settings

https://docs.inductiveautomation.com/display/DOC81/Gateway+Network#GatewayNetwork-SettingUpaGatewayNetworkConnection
https://docs.inductiveautomation.com/display/DOC81/Gateway+Network#GatewayNetwork-SettingUpaGatewayNetworkConnection
https://docs.inductiveautomation.com/display/DOC81/Gateway+Network#GatewayNetwork-SettingUpaGatewayNetworkConnection
https://docs.inductiveautomation.com/display/DOC81/Gateway+Network#GatewayNetwork-SettingUpaGatewayNetworkConnection
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

Setting Description

Allow
Incoming
Connecti
ons

Uncheck this checkbox to disable all remote machines from If false, only outward connections defined on this gateway will be allowed.
being able to establish an incoming connection. To establish any connections with remote machines, you will need to create outgoing
connections from this machine. Default is true.

Connecti
on Policy

Dictates what connections are allowed. Options as follows:

ApprovedOnly - Default mode, where incoming connections are created, but cannot be used to send or receive data until you
approve the connection under Gateway Network > Incoming Connections tab. To approve an incoming connection, click the
Approve link on the right side of the connection. You can also deny a previously approved connection by clicking the deny link.
The approve and deny links will appear next to a connection only if you have enabled the ApproveOnly setting.
Unrestricted - Allows all incoming connections unless the Allow Incoming Connections checkbox is unchecked.
SpecifiedList - An incoming connection will only be allowed if its server name is on this list. Separate server names with a comma.

Specified
List

Separate Connections with a Gateway Name in this list are automatically allowed if the is set to . Connection Policy SpecifiedList
Gateway names with a comma.

Allow
Proxying

If enabled, this Gateway will be allowed to act as a proxy, and forward requests between Gateways that do not have direct
connections. Default is false.

This feature was changed in Ignition version :8.1.14

This setting was replaced in 8.1.14 with Allowed Proxy Hops.

Allowed
Proxy
Hops The following feature is new in Ignition version 8.1.14

 to check out the other new featuresClick here

The maximum number of proxy hops which could be used to reach the destination Gateway. Any number less than or equal to zero is
equivalent to no proxy hops allowed.

Setting Up a Gateway Network Connection

When you create a new outgoing Gateway Network connection, you need to specify the address for the
remote server. There are also settings for ping rates and timeouts. The defaults can be used for these
fields. The following are all the available settings for setting up an outgoing Gateway Network.

Main

Setting Description

Setting up a
Gateway Network
Connection

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.14
https://inductiveuniversity.com/video/setting-up-a-gateway-network-connection/8.1

Host The address of the remote server, not including the port. Example: 1.2.3.4

Port The port of the remote server. Default is 8060.

Enabled Whether this connection is enabled. Default is true.

Use SSL Use SSL to connect to the remote machine. Default is true.

Descripti
on

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Documentation about how the connection is used. The description will not be sent to other Gateways.

Connecti
on Send
Threads The following feature is new in Ignition version 8.1.37

 to check out the other new featuresClick here

The maximum number of threads that will be used to upload messages for this outgoing connection.
Default is 5.

Connecti
on
Receive
Threads

The following feature is new in Ignition version 8.1.37
 to check out the other new featuresClick here

The maximum numbers of threads that will be used to download messages for this outgoing
connection. Default is 5.

Ping

Setting Description

Ping
Rate

How often, in milliseconds, to send a ping to a remote machine. Default is 1,000.

Ping
Timeout

The maximum time, in milliseconds, allowed for a ping response. Pings that time out are
counted as missed pings. Default is 300.

Missed
Pings

The amount of missed pings that will force the connection to be considered faulted.
Default is 30.

Timeouts

Setting Description

Websocket
Connect Timeout

The maximum time, in milliseconds, allowed for a new web socket to connect to
a remote machine. Default is 10,000.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.37

1.
2.

3.
4.

5.
6.

7.
8.
9.

10.

11.
12.

HTTP Connect
Timeout

The maximum time, in milliseconds, allowed to establish an HTTP connection to
a remote machine. Default is 10,000.

HTTP Read
Timeout

The maximum time, in milliseconds, allowed to read or send HTTP data to a
remote machine. Default is 60,000.

Gateway Network Connection Example

To establish a basic communication link between two Gateways, first log into the Gateway where you want to establish the outgoing connection. For
this example, we use an SSL connection.

On the Gateway Webpage, navigate to .Config>Networking>Gateway Network
Click on the Outgoing Connections tab. Click the Create new Outgoing Gateway Connection link.

In the field, enter the network address of the remote server. Host
In the field, enter the SSL port used by the . By default, this is set toPort remote server 8060 (which is defined /data/gateway.xml).

Note: This port is different from the default SSL port an Ignition Gateway would use when communicating to a client (default port 8043).

Check the checkbox. Use SSL
Enter any desired information in the field to easily identify how the connection is used from the Outgoing Connections list.Description

Use the default settings in the section and section of the page.Ping Timeouts
Click the Create New Outgoing Gateway Connection button at the bottom of the page.
You'll see a confirmation message that the connection was created.
At this point, your Gateway transmitted its certificate to the connected Gateway, but the incoming connection is not yet allowed. The Gateway’
s connection will not show up under the Incoming Connections section until after the certificate has been approved.
Log into the other Gateway. Navigate to .Config>Networking>Gateway Network
Click on the Incoming Connections tab. The first Gateway’s certificate should be present. The certificate Common Name field holds the
network address of the machine that transmitted the certificate. The Serial field holds a numeric string that is automatically generated when
the certificate is created, and is unique to every certificate.

12.

13.

14.

1.
2.
3.

Click the button approve to accept the certificate. You'll see a confirmation message. Click the button.Confirm

Now, the Gateway’s connection will appear under the Incoming Connections section with a Security status. Click >PendingApproval More Ap
 to establish the connection.prove

Deleting Connections

Outgoing and incoming connections can be deleted for cases when the connection no longer exists on the other side.

To delete a connection, navigate to .Config>Networking>Gateway Network
Click on either the tab or the tab. Outgoing Connections Incoming Connections
Click , and then select next to the connection. More Delete

Note: For incoming connections, if a remote machine is still connected to the local machine with an outgoing connection, a new incoming
connection will be created after deletion. For these cases, you must log into the remote Gateway and delete the outgoing connection. Then
you can delete the local incoming connection.

3.

1.
2.

3.

Gateway Network Diagnostics

The Diagnostics tab on the Gateway Network Settings page gives you insight to the Gateway and and remote server response times.

To test the response time of a remote server, select the server name from the dropdown list.Server
Click the button.Submit

The results will be displayed indicating if the call to the remote server was successful, what the response time was, and if there were any
errors.

Gateway Network Queue Management

The Gateway Network system shares information across Gateways using a configurable number of send and receive threads. Gateway Network
Queues are named to reflect their purpose and enable Ignition to prioritize which subsystem should have access to send or receive a thread at any
given time. The Queue Management tab allows users to further direct how a queue should behave.

Queue Settings

Clicking for a queue type accesses the Queue Settings page where the following information is available to view or edit. modify

Settings Description

Queue
Name

Name of the queue you are modifying (read only).

Description Description for the queue you are modifying (read only).

Synchrono
us
Delivery

This setting is configured by the queue and is unchangeable. If true, the queue will not dispatch another task until the current active
task has completed. When a queue uses synchronous delivery, the maximum number of allowed active tasks is fixed at 1 and cannot
be changed. Default is false.

Note: Some queues are hard-coded as “Synchronous Delivery” queues, for example the Tag Value Update queue. For these
queues, the Max Active setting is fixed at 1 and cannot be changed by the user. The user can only change the priority of the queue.

Max Active The maximum number of active tasks allowed at a time. A task is considered active when it has been dispatched to the Gateway
Network connection. You can set a limit to ensure that the Gateway Network connection will not become overloaded. Set this value to
-1 to not enforce a limit on active tasks. Default is -1.

Priority Determines the queue's priority in relation to other queues. A lower priority may result in messages in this queue taking longer to
send, but can help prevent a Gateway Network connection from being overloaded.

Adjust Queue Message Capacity

Overloading a Gateway’s queue active messages can starve the send or receive threads for Gateway Network connections. Starving the send or
receive threads for the connection can potentially prevent other subsystem messages from getting through. To solve this issue, edit the fielMax Active
d to set a limit that will allow the Gateway Network connection to continue functioning correctly.

Since this is a known problem with Tag History Queues, we will use an example with a GatewayA and GatewayB, where GatewayA requests tag
history data from GatewayB to display on a chart. A user has noticed other items related to the Gateway Network connection, such as remote tags,
are no longer displaying properly. They use the Gateway Network Diagnostics tab to confirm the network is not the issue, which indicates a slow
database may be causing a cascading effect where other messages are delayed by all the Tag History Query calls.

This cascading effect happens because the Gateway Network asynchronously dispatches some functions. One Gateway thread handles the initial
call, and a different Gateway thread dispatches the call’s results. In our example, GatewayA is unaware that GatewayB is taking a long time to run the
queries and will continue to dispatch more tag history requests. When the limit of send and receive threads available to a Gateway Network
connection is reached, other messages can no longer get through. This can be verified as the issue by checking GatewayB’s current Incoming
/Outgoing Tasks and Results Response Time.

Adjusting queue message capacity controls the flow of requests to prevent thread starvation across the network. Select Modify for the Tag History
Queue to access Queue Settings and adjust capacity. Make sure the Gateway responsible for the thread requests is where the queue capacity is
updated. In this example, GatewayA Tag History Queue Max Active count was set to 2 and saved by clicking Create New Queue Override Settings.

The Gateway Network Status page Remote Gateway Details now shows pending items since the Tag History Active upper limit has been met. Note
that pending tasks are ones that have not yet been picked up for dispatch by the Gateway Network connection. These will be discarded if not
dispatched within 1 minute. Be aware these requests being deleted may show more errors on components like the GatewayA chart, but all other
subsystem messages can now get through without issue.

1.
2.

3.

4.

Gateway Network Proxy Rules

The following feature is new in Ignition version 8.1.34
 to check out the other new featuresClick here

Gateway Network Proxy Rules allow you to control the amount of service enumeration calls over your Gateway Network. Service enumeration calls
run every 60 seconds against every other Gateway the local Gateway is aware of, including Gateways on the opposite side of a proxy connection.
Given enough Gateways, this may result in a large amount of network traffic, negatively impacting your Gateway Network.

Proxy Rule Settings

The following table represents the various configurable settings within a proxy rule. In addition to specifying individual Gateways, you can use
wildcards to list out Gateways you want.

Main

Name Description

Source
Gateways

The list of Gateways that are asking for available routes. If the asking Gateway is on this list either by name or wildcard, the proxy
Gateway will check the list of Destination Gateways to determine what to do next.

Destination
Gateways

The list of Gateways the proxy Gateway will use to see if there is a name or wildcard match. The Action property will then either Allow
or Deny the route.

Description Description of the proxy rule. Useful for users to determine what the rule is used for.

Action The action to take when a proxy route between a source Gateway and a destination Gateway matches this rule. Options include Allow
or . If set to Deny, the proxy route will not be reported to remote Gateways. Default is Allow.Deny

If a route does not match a proxy rule, that route will be allowed and be visible to the asking Gateway by default.

Setting up a Proxy Rule

Navigate to your Gateway Network configuration settings, located at > > .Config Networking Gateway Network
Go to the tab and click on Proxy Rules Create new Proxy Rule...

Set up your list of Source Gateways and Destination Gateways. See for a description of each setting.Proxy Rule Settings

Give your rule a description. This will make it easier to identify the purpose of your rule in the future.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

4.

5. Set the Action setting to either allow the proxy route or deny the proxy route, then click .Create New Proxy Rule

A few things to note about proxy rules:

Proxy rules are followed in a top-down order, with the rule at the top of the list having the highest priority.
Proxy rules are bidirectional. If a controller Gateway can access an agent Gateway with proxy rules, the agent Gateway can also access the
controller Gateway.
Proxy rules view redundant Gateway pairs as a single entity.

In This Section ...

Gateway Network Certificates and SSL
When a remote machine establishes an incoming connection, its server name is transmitted and appears
in the Server Name field under Gateway Network -> Incoming Connections . However, no identity
authentication is performed when the connection is created. The local system accepts the remote system
id without question. To perform identity authentication on a connection, you must use Secure Socket
Layer (SSL) and certificates. By default, SSL is enabled.

Note: When using the Gateway Network and Redundancy, SSL Certificates are automatically pushed
from the redundant Master to the Backup.

Client Certificates

The following feature is new in Ignition version 8.1.14
 to check out the other new featuresClick here

Client certificates are the certificates of peer Gateways that the current Gateway trusts when it is making
outgoing connections. Client certificates live under:

$GATEWAY_HOME/data/gateway-network/client/security/pki/

When the Gateway makes an outgoing connection to a peer Gateway whose certificate is not yet trusted,
the peer certificate (or its certificate chain if one is configured) is copied into:

$GATEWAY_HOME/data/gateway-network/client/security/pki/rejected/

This model allows users to configure the Gateway Network client to trust the peer Gateways on outgoing
connections by moving the certificate on the file system from $GATEWAY_HOME/data/gateway-

tonetwork/client/security/pki/rejected/ $GATEWAY_HOME/data/gateway-network
. This file system change will be picked up immediately /client/security/pki/trusted/certs/

by the Gateway and the connection will be trusted when it attempts to reconnect again.

On this page ...

Client Certificates
Server Certificates
Denying a Certificate
Regenerating Gateway Network
Certificates

Server Certificates

The following feature is new in Ignition version 8.1.14
 to check out the other new featuresClick here

Server certificates are the certificates of peer Gateways that the current Gateway trusts when it is handling incoming connections. Server certificates
live under:

$GATEWAY_HOME/data/gateway-network/server/security/pki/

The Gateway Network config UI's tab was made compatible with this new model so that incoming connection certificates may Incoming Connections
continue to be approved, denied, or deleted there.

Note:

If you are using your own CA to sign Gateway Area Network certificates, add the CA public key to:

$GATEWAY_HOME/data/gateway-network/server/security/pki/trusted/certs/

Denying a Certificate

To deny a certificate, navigate to . The certificate dropdown displays Config -> Networking -> Gateway Network -> Incoming Connections More de
and options. If deny is selected, tny delete he connection that has been using that certificate will no longer be allowed to connect. Select delete for

certificates that are no longer in use. Keep in mind that if you delete a certificate, and a remote machine is still using that certificate, it will reappear on
the Certificates page. In this case, you must navigate to the remote Gateway and delete its outgoing connection. Then you can permanently delete the
certificate from the Certificates page.

Regenerating Gateway Network Certificates

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.14
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.14
https://docs.inductiveautomation.com/display/DOC81/Gateway+Network#GatewayNetwork-CertificatesandSSL

Ignition generates a self-signed certificate for the Gateway Network on start up if no existing certificate is found. These self-signed certificates have a
lifespan of 10 years. Unlike trusted certificates, self-signed certificates cannot simply be reuploaded and replaced. Regenerating the certificates
creates a new certificate with an expiration date set for ten years from the date the certificate is regenerated. If you need to regenerate a self-signed
certificate, remove the $INSTALL_LOCATION/webserver/metro-keystore file and restart the Gateway. The certificate will need to be trusted
again by all other gateways that trusted the expired certificate.

Database Connections

How Are Databases Used in Ignition?

While connecting to a database is not required for basic status and control functionality, it can
dramatically increase the possibilities that the system offers. There are a few places where databases
are used in Ignition, such as historical data logging, reporting, and storing alarm logs.

Historical Data Logging

Logging data for historical analysis, either through or with the , requireTags Historian SQL Bridge module
s a database connection. Databases are great at handling historical data, and by using a standard
relational database your data is stored in an open format that can be used in many ways.

Reports, Graphs, and Charts

The Vision module makes it easy to present data stored in databases in a variety of ways. You
can quickly create charts that show performance over time, locate anomalies and detect
trends.. Furthermore, it's important to remember that it is possible to pull data from any database that
Ignition is connected to, even if the data wasn't placed there by Ignition. This means you can tie in data
from other sources or areas of your company, such as pulling in inventory and staff information, as well.

Storing Alarm Logs

Store alarm information historically and examine it later for patterns or trouble spots.

On this page ...

How Are Databases Used in
Ignition?

Historical Data Logging
Reports, Graphs, and Charts
Storing Alarm Logs

Getting Started with Databases
Supported Databases in
Ignition
Database
Version
Installing and Connecting to a
Database

Database Drivers and Translators
What Is JDBC?
JDBC in Ignition

Monitoring Connection Status

Getting Started with Databases

The first step in using a database with Ignition is to identify a database server. Many companies already have database servers maintained by their IT
departments. If you do not, or wish to set up your own database server for Ignition, the Supported Databases section below offers some advice on
choosing a database vendor.

 Once you've identified a server, all you need to do is create a connection to that server to get up and running.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Bridge+Module

Supported Databases in Ignition

Ignition has been tested with the following databases, and can connect to them directly after installation. You can connect to other databases by
installing additional JDBC drivers (the Java database connection specification), which are often provided by database vendors.

Database Version

Full Support

MySQL 5.0+ for full support. Ignition can connect to 4.x, but many features such as Tags are not tested.

Microsoft SQL
Server

2005, 2008, 2012, 2014, 2016, 2017, 2019, 2022 (full and express editions). Ignition can connect to 2000, but has not been fully
tested.

Oracle 10g, 11g, 12c (full and express). The letters stand for "grid" and "cloud"

PostgreSQL 8.0+

Firebird All versions.

IBM DB2 9.5+

SQLite A driver for the popular embedded database system. This can be used to connect to an existing SQLite database, or create a
new database: setting the connect URL property to a file that doesn't exist will result in the driver attempting to create the
database.

Limited support

Other JDBC
drivers

Due to variances in databases, some features may not work fully through other non-tested JDBC drivers. However, it is usually
possible to get full functionality though the careful use of the database translator feature.

For example, the JDBC driver for MariaDB could be downloaded and added to Ignition.

Installing and Connecting to a Database

Once you've identified a server, all you need to do is create a connection to that server to get up and running. See the and Installing Databases Conne
 sections for details about how to install and connect to different databases through Ignition.cting to Databases

If we don't already have a connector for your database type, you can yourself.simply add it in

Database Drivers and Translators

What Is JDBC?

JDBC stands for the Java DataBase Connectivity API. It is a standardized way for Java-based applications to interact with a wide range of databases
and data sources. A JDBC Driver enables Ignition to connect to, and use data from, a particular database system.

JDBC in Ignition

Ignition, being a Java-based application, leverages JDBC in order to connect to a variety of data sources. This enables Ignition to offer a standardized
set of functionality on a wide range of different systems and databases. This includes not only commonly-used databases such as MySQL, Microsoft
SQL Server, and Oracle, but additionally other lesser-known systems as well, provided the manufacturer offers a JDBC driver for the system.

Monitoring Connection Status

The state or status of a database can be monitored from the section of the Gateway Webpage, under . The status Status Connections > Databases
panels show the current state and a fault message, if applicable, or throughput statistics if the connection is active.

When a connection is not available, it is re-tested every 10 seconds, and the status is updated.

Related Topics ...

SQL in Ignition
JDBC Drivers and Translators

In This Section ...

Installing Databases

Why Install a Database?

A lot of additional functionality becomes simple or is only accessible when Ignition is connected to a
database. Storing Historical data, storing notes or files, and creating dynamic lists to name a few. It is
important to note that Ignition does not install any databases for you. There are many types that you can
connect to, but you need to choose the database that is best for you. Installing your own database
means you have complete control over it, anything Ignition adds to it can be accessed by another
program easily.

You can install as many database systems as you like, and each of them allow your to create as many
schemas (or groups of data) as you want. You get to decide where your database is installed, or where
you want to install all of them.

On this page ...

Why Install a Database?
Which Database Should You
Use?
Where to Install a Database

Which Database Should You Use?

There is a lot of debate on this subject but the short answer to this question is 'whichever database your IT department already uses.' Modern
relational database all have the same basic functionality, but slightly different ways of doing things. If your IT department already supports Microsoft
SQL Server (MSSQL), then they already have the tools and knowledge to manage those databases. Because they are so similar (and Ignition takes
care of so much for you), it is almost always easier to learn to use an existing database than to add IT support for a second type. Not to mention that
adding a second type might mean hiring new personnel in the IT department.

If your company does not already have a database preference, then it's up to you to decide which is best based on your needs. They all have a free
version, but different limitations. For example: MSSQL has a cap on how much data can be stored in their free version. MySQL does not have a cap
like this, but also does not allow phone support for their free version.

Where to Install a Database

You can install your database anywhere that Ignition has access to through the network. There are two main options for installing your database: one
is on the computer that Ignition is installed on, and the other is installed on a different server in your network. Technically, there is a third option to
connect Ignition to a database that is in a remote location using a VPN or some other way to access it. This third option will work, but because of
latency and the data being physically very far away, it is not recommended for storing data that will be accessed often like Tag History.

For production systems, we recommend that your database is on its own server, not installed on the computer with Ignition. This is helpful for many
reasons, but mostly because databases can potentially take up a lot of resources on a computer. If the database is on its own computer, you don't
have to worry about other programs starving for memory or CPU. If you do this and install your database on another computer, just make sure to
adjust your firewalls and pay attention to the database connection security. Most databases don't allow the default username to connect remotely.

In This Section ...

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

1.

2.

3.

4.

Installing IBM DB2

You need to install before you connect to the database.IBM DB2 Community Edition

To Download IBM DB2 Community Edition

Go to the Db2 Download page and sign in with your IBM credentials.

Download the IBM® Db2 11.5 Edition for your Operating System.

Log on to your system using a local administrator account.

Locate the file that you downloaded and extract it to your desired v11.5_ntx64_dec.zip
location.

In the extracted folder, right-click on the setup.exe file and select .Run as administrator

Click Install a Product

Scroll down to the end of the Db2 Version 11.5.0.0 Server Editions section and click Install New,
then click Next to begin the installation process.

Review and accept the software license agreement and click Next.

Select the Typical Installation option and then click Next.

Select Install Db2 Server Edition on this computer and save my settings in a response file
and click Next.

Set your installation path and click Next.

Set your DB2 copy name and click Next.

Select Local user or Domain user account and enter your user credentials.

Select DB2 as the default instance and click Next.

Uncheck the Set up your DB2 server to send notifications checkbox and click Next.

Select the Enable operating system security checkbox and click Next.

Click Finish to finalize your installation.

After you have successfully installed IBM DB2, you will need to create a database.

Creating a database in Windows

Open Command Prompt with Administrator privileges.

Type db2cmd (This will open the DB2 Command Line Tool)

Type db2 (This will open the Command Line Processor for DB2 Client)

To create a database:
CREATE DATABASE database_name

On this page ...

To Download IBM DB2
Community Edition
Creating a database in Windows

For detailed instructions, refer to the links below:

Installing the Db2 server by using the Db2 Setup wizard (Windows)

Installing the Db2 server by using the Db2 Setup wizard (Linux and UNIX)

Downloading and Installing Docker Editions

Note: The links above are for the IBM DB2 Database version 11.5.

You can change the instruction version by using the drop-down list located on the top
left side

IBM Documentation on creating databases:

https://www.ibm.com/account/reg/ca-en/signup?formid=urx-33669
https://www.ibm.com/docs/en/db2/11.5?topic=idds-installing-db2-database-servers-by-using-db2-setup-wizard-windows
https://www.ibm.com/docs/en/db2/11.5?topic=idds-installing-db2-servers-by-using-db2-setup-wizard-linux-unix
https://www.ibm.com/docs/en/db2/11.5?topic=docker-downloading-installing-editions

4.

Creating Databases

https://www.ibm.com/docs/en/db2/11.5?topic=databases-creating

1.

2.

3.
4.

1.
2.
3.

Installing MySQL

Install MySQL Server and MySQL Workbench

The goal of this page is to demonstrate how to install MySQL Server, and a helpful tool called MySQL
workbench. This guide is not an exhaustive listing of all of the various installation steps or scenarios for
MySQL. For more information, take a look at MySQL's documentation: .MySQL Documentation

Go to the MySQL website at
https://dev.mysql.com/downloads/mysql/
Scroll-down to You will notice multiple download options. Windows (x86, 32-bit), MSI Installer.
Both allow you to install MySQL

Note: MySQL Installer is 32-bit, but will allow you to install the 64-bit version of MySQL.

.Click on the buttonDownload
On the next page, you can login or create an account if you'd like. Otherwise click No thanks,
just start my download.

On this page ...

Install MySQL Server and
MySQL Workbench
Running the Installer

Installing MySQL

Watch the Video

Running the Installer

Once the file is downloaded, run the file .msi to begin the installation process.
The window is displayed. Welcome Select the Install MySQL Products action.
On the Choosing a Setup Type page, select and click . While you can select one of the other options, at minimum you'll want to Custom Next
install both the server (the actual database) and MySQL Workbench (an application that allows you to quickly and easily interact with the
database, without using a command-line client). Any other items beyond these two are generally unnecessary in most environments.

https://dev.mysql.com/doc/refman/8.0/en/installing.html
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://www.inductiveuniversity.com/video/installing-mysql/8.1

3.

4.

5.
6.

If you want to learn more, MySQl does have some additional information on their documentation if you're curious about the other options: MyS
. This example will continue with a Custom installation. QL Docs

On the Select Products and Features page, scroll down to choose . Click the right arrow to move it to the "ProductsMySQL Server 8.0
/Features To Be Installed" column.

Scroll down to MySQL Workbench, select a version, and click the right arrow to move it to the "Products/Features To Be Installed" column.
Click .Next

https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html

6.

7.

8.
9.

On the Installation screen, click .Execute

After these are downloaded and installed, you see the Product Configuration page. Click . Next
In this guide, we're going to use a standalone server. On the High Availability page, select Standalone MySQL Server / Classic MySQL

, and click Replication Next.

9.

10.

11.

Leave the default settings on the Type and Networking page. Click .Next

On the Authentication Method page, choose . Click .Use Strong Password Encryption for Authentication Next

11.

12.

13.

Create a strong password and click .Next

On the Windows Service page, leave the default settings and click .Next

13.

14.

15.

On the Apply Configuration page, click Execute.

Once the configuration is applied and the database is initialized, you'll see a confirmation message. Click to complete the install Finish
process.

15.

16.
17.

18.
19.

The window is displayed. MySQL Workbench lets you to administrate the MySQL server.MySQL Workbench
Click on to connect to the newly installed MySQL server.Local instance MySQL

Enter the root you earlier entered into the installer and click .password OK
You are now connected and can see, in the Navigator, the default schema. Click on the sys Schemas tab to see a listing of schemas

19.

20.

21.

A "schema" is a collection of tables and other database objects. Ignition needs a schema to connect to. Instead of using the schema, we sys
can create a scheme dedicated to Ignition.

To create the schema, click the Create New Schema icon.

You'll see the Schema creation tab. This allows you to make a new Type in as the name, and click . Technically you can Schema. test Apply
call the schema anything the database allows, but the default MySQL connection in Ignition assumes a schema named "test". If you name
the schema something else here, you'll need to remember the name when creating the database connection in Ignition later.

21.

22.
23.

You'll see the window. Click . Apply SQL Script to Database Apply
If there was an issue, the following window will state the issue. Go back and address the issue. Otherwise, click the button. You Finish
should now see the schema in the Navigator. test

Now that the database is installed, you can connect Ignition to it. Learn more here: .Connecting to MySQL

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1.

2.

3.

4.

5.

Installing Microsoft SQL Server Express

You need to download and install both the and the SQL Server Express SQL Management Studio
before you connect to the database.

To Download SQL Server Express

This section walks through the process of installing a new instance of SQL Server Express.

Go to https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Look for the link/button to download the .Express Edition

Run the installer

When given a choice between installation type, select . Custom

Select an installation directory. If you don't have a preference, simply use the default.

The installer will unpack and download required files.

Once the installer is ready, the window will appear. Select the SQL Server Installation Center I
heading on the side bar, and click on the nstallation New SQL Server stand-alone

installation or add features to an existing installation link.

On the window, choose and click .License Terms I accept the license terms Next

On the window, click to start installing the SQL Server.Product Updates Next

On the window, select the features you require and click . Feature Selection Next

Note:

Be mindful that you may find some of the default packages extraneous. You can uncheck
many of the options, such as the optional Machine Learning Services and Language
Extensions. The Server and SQL Server Management Studio are the main tools you'll need
when interacting with an Ignition installation. You can always remove additional components
from the SQL Server installer later if you choose so.

Check for more details on what each package does.Microsoft's documentation

The window shows , you can keep it Instance Configuration Named instance: SQL Express
or change it if you like. Click .Next

When asked about a JRE to use, you can use the provided JRE. Click . Next

On the Server Configuration window, choose Automatic from the dropdown under Startup
Type for the SQL Server Browser service, and click Next.

On the window, for choose Database Engine Configuration Authentication Mode Mixed

, enter a for the SA account. Note that you can use a Windows Authentication Mode password
Mode with Ignition, but it does require some when connecting later on. additional configuration
In either case, click .Next

On the next few windows, continue clicking until it shows installation is .Next Complete

 is now installed. SQL Server Express

To Download SQL Management Studio

Go to http://www.microsoft.com/en-us/download/details.aspx?id=8961

Click on the button.Download

Click on the file to run the executable.SQLManagementStudio_x64_ENU.exe

On the SQL Server Installation Center window, click on the New SQL Server stand-alone
installation or add features to an existing installation link.

On this page ...

To Download SQL Server
Express
To Download SQL Management
Studio

Installing Microsoft
SQL Server Express

Watch the Video

https://www.microsoft.com/en-us/sql-server/sql-server-downloads
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver16
https://legacy-docs.inductiveautomation.com/display/DOC81/Connecting+to+Microsoft+SQL+Server#ConnectingtoMicrosoftSQLServer-DifferentWaysofConnectingtoSQLServer
http://www.microsoft.com/en-us/download/details.aspx?id=8961
https://www.inductiveuniversity.com/video/installing-microsoft-sql-server-express/8.1

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

On the Installation Type, keep the defaults and click Next.

On the window, choose and click .License Terms I accept the license terms Next

On the window, click to start installing the SQL Server.Product Updates Next

On the window, stay with the default selection of and Feature Selection Management Tools
click .Next

On the window, for choose Database Engine Configuration Authentication Mode Mixed
, enter a , and click .Mode password Next

On the next few windows, continue clicking until it shows installation is .Next Complete
The is now installed.Management Tools

To run the program, go to Start > Programs > Microsoft SQL Server > SQL Server
.Management Studio

Click on to connect to the Microsoft SQL Server.Connect

In , you can now see some databases under .Object Explorer Databases > System Databases

Right-click on and select .Databases New Databases...
The window is displayed.New Databases

In , enter , click and then .Database name test Add, OK
Now you can see the database in the folder and can connect Ignition to it, seetest Databases C

.onnecting to Microsoft SQL Server

1.

2.

3.

4.

5.

6.

7.

Installing PostgreSQL

To Install the PostreSQL Database

Go to the website atPostgre SQL
http://www.postgresql.org

Click on , look for and click on the link.Downloads Windows

On the page, find the link and click on it, and on the next page Windows installers Download
select the installer you are interested in.
For example, you can select the .Wins x86-32

From you Download folder on your computer, click on the Postgre file to install the .exe
database.

Go through all the windows of the until installation is complete. Install Wizard

From the Windows menu, open the database.Start Postgre pgAdmin

In the of the window, right-click on , select , Object browser pgAdmin PostgreSQL Connect
enter your to connect to the Server, and click .password OK
You will now see the folder in the Object browser.Databases

On this page ...

To Install the PostreSQL
Database

Installing
PostgreSQL

Watch the Video

http://www.postgresql.org
https://www.inductiveuniversity.com/video/installing-postgresql/8.1

1.

2.

3.

4.

Connecting to Databases

Connect Once

Many of the advanced features of Ignition, such as the Transaction Groups and Tags Historian require a
connection to an external database and most databases require special permissions for each computer
that wants to connect. Fortunately, Ignition takes care of all of this for us. You can create a connection to
your database once and every system in Ignition will use that central connection. There's no need to
worry about updating your database settings to add another client.

This central database connection also makes it easy to swap between databases or schemas. You can
tell every query to use the default connection, then just change the default to update everything.
Alternatively, you can force specific queries or systems to use a particular connection. Create as many
database connections as you want and start designing using all of them.

On this page ...

Connect Once
Add a Database Connection

Add a Database Connection

Now that we've installed your database, let's connect to it. You can find detailed descriptions for many database connections in this User Manual,
however, they all include the same steps:

On the Gateway Webpage, go to the Gateway tab. Scroll down to the section. Config Databases > Connections

On at the Database Connections page, click on the link at the bottom of the table.Create new Database Connection...

The next step is to choose a JDBC Driver.
Ignition connects to databases using JDBC drivers that are unique to each database. Drivers for the most popular databases are included so
there is usually no need to install the JDBC driver manually.

Ignition ships with drivers for Microsoft SQL Server, MySQL, Oracle, and PostgreSQL. Pick the JDBC driver for your database, and click on
the button. Next
If a suitable driver is not available in the list, you need to add a new JDBC driver for other databases, like IBM DB2, which is not very difficult
to do, see .Adding a JDBC Driver

Configure the Connection
After selecting the driver, you'll configure the settings for the connection. Some settings, such as the Connect URL are specific to the driver
that you're using.

Main Database Connection Properties

https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-AddingaJDBCDriver

4.

Name Each database connection needs a unique name, which consists of letters, numbers and underscores.

Description A brief description of the database.

JDBC Driver The JDBC driver dictates the type of database that this connection can connect to. It cannot be changed once created.

Connect URL A string that instructs the driver how to connect to the database. This string is the server address, and may include the
port, instance name, database name, and so on. The format and parameters depend on the driver being used.

Username The username to use when connecting. Some databases support other authentication methods, such as Windows
authentication, in which case this field is not used.

Change
Password?

Check the box to change the existing password.

Password Enter password.

Password Re-type password for verification.

Extra
Connection Pro
perties

Depending on which database you are connecting to, there will be different default values placed in this box. MS SQL
Server requires you to place your database name here, but for other databases you can usually leave this at its default
values.
Each database has its own set of available extra connection properties so you must refer to your Database
documentation to determine what is valid here.

Enabled Lets you to enable or disable a database connection.

Failover
Datasource

The connection that is automatically used when this connection is not available.

Failover Mode Lets you select how to handle the database connection failing and recovering.
Database connections support This means that the objects which use a database connection will use a failover.
different connection if the one they are using becomes unavailable. The property determines Failover Datasource
which connection is used, and the determines when, if ever, the connection is switch back to the primary Failover Mode
connection.
There are two failover modes:
• mode STANDARD means that this datasource will fail over when a connection cannot be retrieved, but when
connectivity is restored, connections will again come from this datasource.
• mode STICKY means that once this datasource fails over, connections will continue coming from the failover
datasource until the failover datasource itself fails or the Gateway is restarted.

Slow Query
Log Threshold

Queries that take longer than this amount of time, in milliseconds, will be logged. This helps to find queries that are not
performing well. (default: 60,000)

Validation
Timeout

The time in milliseconds between database validation checks. (default: 10,000)

Advanced Settings

There are many advanced settings that you don't need to change under normal circumstances. See the description for each property on
the settings page.

In This Section ...

1.
2.

3.

4.

5.

Connecting to IBM DB2

IBM DB2 Connection Requirements

In order to connect Ignition to IBM DB2 you must have a Translator, a Driver, and a Database
Connection.

The Translator and Driver only need to be configured once. You can make as many connections as you
want to any compatible IBM DB2 database.

Connect to IBM DB2

On the Gateway Webpage, go to the Config section.
Scroll down to Databases > Connections.

 The Database Connections page is displayed. Click on Create new Database Connection....

Select IBM DB2 JDBC Driver, and click Next.

On the New Database Connection page, enter the following information:
Name: IBM_DB2
Connect URL: jdbc:db2://localhost:25000/SAMPLE

Username: your_username
Password: your_password

On this page ...

IBM DB2 Connection
Requirements
Connect to IBM DB2
Troubleshooting

Troubleshooting Tools
Installation Issues
Other Issues

JDBC Drivers and Translators

For more information, see JDBC Drivers and Translators for instructions on obtaining
the requisite JAR file, and then follow the steps for Upgrading a JDBC Driver before
continuing with these instructions.

If on Db2 Version 11.5.5 and older, the default port number is 50000.
If on Db2 Version 11.5.6 and newer, the default port number is 25000.

https://docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-CommonThirdPartyDrivers
https://docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-UpgradeaJDBCDriver

5.

6.

7.

At the bottom of the form, click on Create New Database Connection.
Your connection is now created. The Database Connections page is displayed and will show the
status of Reconnecting, then Valid.

To display the details about the status of your database connection, see the Note on the above
window and click on the Database Connection Status link.

Troubleshooting

Troubleshooting Tools

IBM DOC - Troubleshooting Tools

Installation Issues

DB2 installation fails to create instance and DAS: IBM DOC - DB2 installation fails to create instance and DAS

Other Issues

Error Code Error Description Resources

SQL30081N Various TCP/IP communication errors. Each error has its own definition and action plan. SQL30081N TCP/IP communication errors

SQL1092N “USERID does not have the authority to perform the requested command or operation” SQL1092N Error

JDBC Drivers and Translators

https://www.ibm.com/docs/en/db2/11.5?topic=techniques-troubleshooting-tools
https://www.ibm.com/support/pages/db2-installation-fails-create-instance-and-das
https://www.ibm.com/docs/en/db2/11.5?topic=errors-sql30081n-tcpip-communication
https://www.ibm.com/docs/en/baw/19.x?topic=tic-db2-log-file-error-sql1092n-userid-does-not-have-authority-perform-requested-command-operation

In some cases, you may need to add your own JDBC Driver, or configure a Translator. More information on configuring these can be found on the JDB
C Drivers and Translators page. However, you may need to check the JDBC driver's documentation for information on how to configure them.

Related Topics ...

Connecting to MariaDB
Store and Forward
OPC UA
Designer

https://docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators
https://docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA

1.

2.

3.

4.
5.

6.

a.
b.
c.
d.

7.

Connecting to MariaDB

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

 lick on C Create new Database Connection....

Select the driver and click .MariaDB Next
On the New Database Connection page, enter the following information:

Name: (or use a meaningful name for this connection)MariaDB
Connect URL: jdbc:mariadb://localhost:3306/myDB

Where is the IP address or hostname of the machine with MariaDB installed, for localhost
example: localhost, 192.168.1.1, db-server, etc.

specifies the name of the database in MariaDB you want Ignition to connect to. If you're myDB
uncertain which database to connect to, speak with your local database administrator.

To configure the connection, Ignition needs credentials to connect to MariaDB. The aUsername
nd fields are where you provide credentials for a user that Ignition will use to Password
authenticate against the database. The user should be able to do the following:

Create and drop tables within the schema
Alter tables within the schema
Insert, update, select, and delete rows from tables in the schema
Create, alter, and execute stored procedures within the schema

After entering a username and password, click on at the Create New Database Connection
bottom of the form. Your connection is now created and the Database Connections page
is displayed showing the of your connection as .Status Valid

Connecting to
MariaDB

Watch the Video

https://inductiveuniversity.com/videos/connecting-to-mariadb/8.1

1.
2.

3.
4.

5.

Connecting to Microsoft Azure SQL

Azure SQL Server Requirements

Microsoft Azure SQL Server uses the same (JDBC) driver as Java Database Connectivity Microsoft
 (MSSQL). As long as you are able to connect to an MSSQL database in Ignition, you can SQL Server

use the same JDBC driver to connect to Azure SQL Server. The steps below will show you how to set up
Ignition to connect to Azure SQL Server.

On this page ...

Azure SQL Server Requirements
Connect Ignition to Azure SQL
Server
Troubleshooting and Tips

TCP/IP Communication
Windows Firewall
JDBC Drivers

Connect Ignition to Azure SQL Server

In this example, we are using SQL Authentication. For information on using Azure Active Directory authentication with Java-based applications, see Mi
.crosoft's official documentation

On the Gateway Webpage, go to the section.Config
Scroll down to > .Databases Connections

The Database Connections page is displayed. Click on Create new Database Connection...
Select , and click .Microsoft SQLServer Next

On the Database Connections page, enter the following information:
Name: The name of the connection. In this example, we are naming our connection .AzureSQLServer
Connect URL: The address that your Azure SQL Server instance is hosted on. In this example, we are using jdbc:sqlserver://sudev.

.database.windows.net:1433
Username: The username of your database login credentials. In this example, we are using .dev_admin@sudev
Password: The password of your database login credentials.
Extra Connection Properties (Optional): Any other properties you may need to configure to connect to your Azure SQL Server instance will be
listed here, such as the database name and SSL.

Note:

https://learn.microsoft.com/en-us/sql/connect/jdbc/connecting-using-azure-active-directory-authentication?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/connect/jdbc/connecting-using-azure-active-directory-authentication?view=sql-server-ver15

5.

6.

In this example, we are using port 1433 to connect to our Azure instance. This is the default port Ignition uses and and is called since Proxy
it uses Microsoft's proxy servers to connect. Connecting to an Azure SQL Server instance while using Microsoft's proxy servers is easier to
configure as you only need to have one IP/port open. However, this method can increase latency and reduce throughput.

If you want to connect directly to your Azure SQL Server instance, you can instead use port 3306. This policy is called and Redirect
requires many more open ports and IP addresses. However, since the connection is direct, performance will be much better with decreases
in latency and increases in throughput.

You can learn more about Microsoft's proxy settings in their .Azure SQL documentation

At the bottom of the form, click in .Create New Database Connection
Your connection is now created. The Database Connections page is displayed and will show the status of , then .Reconnecting Valid

https://learn.microsoft.com/en-us/azure/azure-sql/database/connectivity-architecture?view=azuresql

7. To display the details about the status of your database connection, see the on the above window and click on the Note Database
 link.Connection Status

Troubleshooting and Tips

TCP/IP Communication

If your database connection is not successfully connecting, you may need to check your TCP/IP settings. See Microsoft's documentation on configurin
.g IP addresses for an Azure network interface

Windows Firewall

In some situations, you may need to configure your firewall to set up any required ports. Typically, ports 1433 and 1434 need to be open for TCP
traffic, but other ports may also need to be configured, such as when connecting to your Azure SQL Server instance directly using port 3306.

JDBC Drivers

When using a JDBC driver to connect Ignition to Azure SQL Server, there are two things you may need to check:

Make sure your JDBC driver is up to date.
Make sure the JDBC driver version you are using is the same as the Java version Ignition is using. Using an incompatible JDBC driver may
result in Gateway errors and crashes.

https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/virtual-network-network-interface-addresses
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/virtual-network-network-interface-addresses

1.
2.

3.
4.

Connecting to Microsoft SQL Server

SQL Server Connection Requirements

In order to get connected to SQL Server, you must have a Translator, a Driver, and a Connection. The
Translator and Driver only needs to be installed once, and after that you can make as many connections
as you want to any compatible SQL Server databases.

Note: When you Upgrade Ignition, any existing drivers are carried over. This means only a fresh install
of Ignition will not have a SQL Server Connector.

On this page...

SQL Server Connection
Requirements
Connect to Microsoft SQL Server
Microsoft SQL Server Connection
Guide
Different Ways of Connecting to
SQL Server
Troubleshooting
JDBC Drivers and Translators

Connecting to
Microsoft SQL
Server Express

Watch the Video

Connect to Microsoft SQL Server

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

 lick on The Database Connections page is displayed. C Create new Database Connection....
Select and click .Microsoft SQLServer JDBC Driver, Next

https://www.inductiveuniversity.com/video/connecting-to-microsoft-sql-server-express/8.1

4.

5.

6.

On the page, enter the following information:Database Connections
Name: SQLServer

 Connect URL: jdbc:sqlserver://localhost\SQLEXPRESS

Note: W have the full SQL Server with default e are connecting to the express edition of SQL Server using the default instance name. If you
settings, replace SQLEXPRESS with the instance name of your SQL Server installation. Non-express versions of SQL Server tend to use
MSSQLSERVER as a default instance name.

username: sa
password: (password is what you entered during the SQL Server installation. For this example, password is)sqlserver sqlserver

At the bottom of the form, click on . Create New Database Connection
Your connection is now created. The Database Connections page is displayed and will show the status of Reconnecting, then Valid.

6.

7. To display the details about the status of your database connection, see the on the above window and click on the Note Database
 link.Connection Status

Microsoft SQL Server Connection Guide

This guide helps you with any difficulties you may have in getting the correct settings and parameters when connecting Ignition to Microsoft SQL
Server, a popular and robust relational database.

Multiple Instances of Database

Microsoft SQL Server supports multiple instances of the database running concurrently on the same computer. Each instance has its own name and
set of system and user databases that are not shared between instances. Applications, such as Ignition, can connect to each instance on a
computer in much the same way they connect to databases running on different computers. By default, each instance gets assigned a dynamic TCP
/IP port on startup that listens for any incoming requests. Since the port is dynamic and the application does not know what the new port is, it must
connect using the instance name.

So if the communication is over TCP/IP and the application knows the instance name, how does the application find which port to communicate to?

The answer is the service. The Microsoft SQL Server Browser program runs as a Windows service and listens for Microsoft SQL Server Browser
all incoming requests for resources and provides information, such as the TCP/IP port, about each instance installed on the computer. Microsoft SQL
Server Browser also contributes to these two actions: browsing a list of available servers and connecting to the correct server instance.

1.

2.

3.

If the Microsoft SQL Server Browser service is not running, you can still connect to SQL Server if you provide the correct port number. For
example, you can connect to the default instance of SQL Server with TCP/IP if it is running on port 1433.

Check 1: Make Sure the Database has TCP/IP Enabled

Ignition connects using TCP/IP, therefore make sure your database has TCP/IP enabled.

Open the SQL Server Configuration Manager from Start > All Programs > Microsoft SQL Server Version # > Configuration Tools > SQL
Server Configuration Manager.
The Sql Server Configuration Manager window is displayed.

To see all the instances set up on that machine, expand .SQL Server Network Configuration

Find the database (or instance) you plan on using. To the right, all of the protocols the database supports are shown. Find the protocoTCP/IP
l and select it.

4.

1.

2.

3.

Make sure the next to TCP/IP is . If not, double-click and choose from the drop-down next to Enabled and click Status Enabled TCP/IP Yes OK
.

Check 2: Make Sure Microsoft SQL Server Browser is Running

If you ARE connecting to your database using a NAMED INSTANCE, you must make sure that the Microsoft SQL Server Browser is running. As
mentioned earlier, the Microsoft SQL Server Browser translates the instance name to a TCP/IP port in order for Ignition to connect to it.

Open the from SQL Server Configuration Manager Start > All Programs > Microsoft SQL Server Version # > Configuration Tools >
SQL Server Configuration Manager.

Select the section.SQL Server Services

On the right, see all of the services installed. One of the services is . Make sure this service is in fact running. If the SQL Server Browser
service is not running, right-click and select .Start

 The service could be disabled, so you may need to double-click it to enable the service before starting it up.Note:

3.

1.

2.

3.

4.

5.

6.

7.

8.

9.

1.

2.

3.

4.

1.

2.

Check 3: Make Sure There is a Database Created

If you are connecting to an existing SQL Server installation, you only need to know the name of the database and you can skip this step. In newer
versions of SQL Server, a fresh installation does not include a database so you must first create a new database.

Open the program. This program was an option when you installed SQL Server.SQL Server Management Studio

Log into the Management Studio using either SQL Server Authentication or Windows Authentication.

In the (on the left), expand the instance folder to find the folder. The instances folder is usually expanded by Object Explorer Databases
default.

Right Click on the folder and select the option.Databases New Database...

Type in a Database Name.

Click the OK button in the lower right. You can then expand the Databases folder in the Object Explorer to see the new database. If it doesn't
show up right away you can right-click to refresh.

 - Make your user a db_owner of the new database.Security
In the Object Explorer, expand to the > folder, right click on your username, and select .Security Logins Properties

In the page click the checkbox next to your new database, then click the checkbox below.User Mapping db_owner

Click OK. Now your user has access to a database.

Different Ways of Connecting to SQL Server

Now that you have ensured that TCP/IP is enables and the Microsoft SQL Server Browser is running, you can connect to Microsoft SQL Server in
four different ways (all using TCP/IP communication) as follows:

Connect using an Instance Name and SQL Authentication.

Connect using an Instance Name and Windows Authentication (this is the most common method).

Connect using a Port and SQL Authentication.

Connect using a Port and Windows Authentication.

Scenario 1: Connect By Using an Instance Name and SQL Authentication

By default, Microsoft SQL Server only allows Windows authentication since it is more secure. But because we are using SQL authentication, we
must enable Microsoft SQL to allow this type of authentication.

Enable SQL Authentication

Open the window from Microsoft SQL Server Management Studio Start > All Programs > Microsoft SQL Server Version # > SQL
Server Management Studio.
The window is displayed showing connections to your database.

Right-click the top-level database in the and select .Object Explorer Properties

2.

3.

4.

5.

6.

From the Server Properties window, on the left side, select .Security

Verify that mode is selected. SQL Server and Windows Authentication
If not, select it and click . OK

Now you need to restart the service so that this setting takes effect.SQL Server Windows

Open the at SQL Server Configuration Manager
Start > All Programs > Microsoft SQL Server Version # > Configuration Tools > SQL Server Configuration Manager.

Select the section and restart the item.SQL Server Services SQL Server (Instance Name)

6.

1.
2.
3.
4.

5.

6.

Now that Microsoft SQL Server accepts SQL authentication, we can configure Ignition.

Configure the Database Connection in Ignition

Go to and login to the Ignition Gateway Config page from your webbrowser at http://hostname:8088/main/web/config/
Select from the menu.Databases > Connections
Click on .Create new Database Connection
Select and click . Microsoft SQL Server JDBC Driver Next

In the window, enter the following information:New Database Connection

Name: (no spaces)SQLServer_SQLAuth

Connect URL: jdbc:sqlserver://Hostname\InstanceName

where is your databases IP address or hostname and is your databases instance name, for example:Hostname InstanceName
jdbc:sqlserver://localhost\SQLEXPRESS
jdbc:sqlserver://10.10.1.5\MSSQLSERVER

Set the username and password to a valid SQL authentication user. For example, is the default administrator account you can use.sa

6.

7.

a.

b.

8.

9.

1.

To add your own user account, open the SQL Server Management Studio and expand the folder.Security > Logins
You will see all the current logins including and you can add a new login.sa

To add a new login, right-click on the folder and click .Logins New Login...
The window is displayed.Login

Choose the mode and type in a Login name and password. SQL Server authentication

Note: You will also have to add permissions to your database by mapping db_datareader and to the new user db_datawriter
in the User Mapping section of the Login window. If you want Ignition to be able to create tables (ie: for Tag History), you also need
to give table creation access such as db_owner.

Go back to the page in the Gateway, enter the name of your database, for example, in the New Database Connection Extra Connection
 enter: (replace with your database name, not the instance name).Properties databaseName=test test

Click .Create New Database Connection
The Database Connection page is displayed showing the Status as after a couple of seconds. If the connection is , click on Valid Faulted
the Database Connection Status link to find out why. Typically, the username/password is incorrect or the user doesn't have the right
permissions.

Scenario 2: Connect By Using Instance Name and Windows Authentication

In Windows authentication mode, the username and password used to connect comes from the Ignition Windows Service logon. By default,
the Ignition Windows Service is set to local system account which usually doesn't have privileges to connect.

Set Up the Service to Use Windows Authentication

Download a copy of the . Specifically, download a ZIP or tar.gz file (NOT an installer), as you will need to extract a SQL Server JDBC driver
specific file and relocate it to the Gateway's installation directory. The exact version required depends on the version of Java your Gateway is
using. Ignition 8.1.33+ uses Java 17, but previous 8.0/8.1 versions use Java 11.

 Although, it's recommended you use the most recent driver available for your system, make sure the version of the JDBC Driver
Ignition is using matches the downloaded DLL file. Your current driver version can be seen in the following directory:

https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-ver15

1.

2.
3.

4.

5.
6.
7.
8.
9.

1.
2.
3.
4.

5.

Locate the file from the correct architecture folder ("x64" for 64-bit JDBC) inside of the folders in the zip file. DLL enu/auth
Copy the DLL file to the folder in your install directory. If you have the default install directory, it's in the following location: lib
C:\Program Files\Inductive Automation\Ignition\lib\

Note: Older versions of the JDBC driver (such as version 7.2.1) need to be renamed to before Ignition can utilize the sqljdbc_auth.dll
file. However, in more modern versions of the driver, this is no longer the case.

The account used to connect will be the account that Ignition is running under in the services menu. To set up Ignition to logon using the right
Windows account, open the from Start > Control Panel > Administrative Tools > ServicesServices Control Panel
Right-click the service (or whatever service name your Ignition installation is using) and choose .Ignition Properties
Select the tab.Log On
Choose the radio button and enter in your Windows username and password.This account
Click to save.OK
Now restart the Ignition service to make this change take effect. Click the button in the menubar to restart the Action > Restart
Ignition service (or your can stop and start from the right-click menu).

Configure the Database Connection in Ignition

Go to and login to the Ignition Gateway Config page from your webbrowser at http://hostname:8088/main/web/config/
Select from the menu.Databases > Connections
Click on .Create new Database Connection
Select r JDBC Driver and click .Microsoft SQL Serve Next

On the page, enter the following information:New Database Connection
Name: (no spaces)SQLServer_WinAuth

Connect URL: jdbc:sqlserver://Hostname\InstanceName

where is your databases IP address or hostname and is your databases instance name, for example:Hostname InstanceName
jdbc:sqlserver://localhost\SQLEXPRESS
jdbc:sqlserver://10.10.1.5\MSSQLSERVER

: leave blankusername
: leave blankpassword

Extra Connection Properties:
 (replace test with your database name)databaseName=test; integratedSecurity=true;

{installDirectory}/user-lib/jdbc

http://hostname:8088/main/web/config/

5.

6.

1.

2.

Click on .Create New Database Connection
The Status should be Valid after a couple of seconds. Again, if the connection is Faulted, click the Database Connection Status link to
find out why.

Scenario 3: Connect By Using Port and SQL Authentication

Connecting by using a port and SQL authentication is just like scenario 1 above except you specify a port instead of the instance name in the
 page.New Database Connection

Enter the following:

Connect URL: jdbc:sqlserver://Hostname:Port

where Hostname is your databases IP address or hostname and Port is your databases TCP/IP port (SQLSERVER default port is 1433), for
example:
jdbc:sqlserver://localhost:1433
jdbc:sqlserver://10.10.1.5:1433

Scenario 4: Connect By Using Port and Windows Authentication

Connecting by using a port and Windows authentication is just like scenario 2 above except you specify a port instead of the instance name in the New
 page. Don't forget to download the file if you need it. Database Connection sqljdbc_auth.dll

Enter the following:

Connect URL: jdbc:sqlserver://Hostname:Port

1.
2.
3.
4.

where is your databases IP address or hostname and is your databases TCP/IP port (SQLSERVER default port is 1433), for example:Hostname Port
jdbc:sqlserver://localhost:1433
jdbc:sqlserver://10.10.1.5:1433

Troubleshooting

TCP/IP Communication Not Enabled

SQL Server requires that you explicitly turn on TCP connectivity. To do this, use the SQL Server Configuration Manager, located in the menu Start
under . Under , select your instance, and then enable TCP/IP Microsoft SQL Server > Configuration Tools SQL Server Network Configuration
in the panel to the right. You need to restart the server for the change to take affect.

Window Firewall

When connecting remotely, make sure that Windows Firewall is disabled, or set up to allow the necessary ports. Normally ports 1434 and 1433 must
be open for TCP traffic, but other ports may be required based on configuration.

SQL Server Browser Process Not Running

To connect to a named instance, the service must be running. It is occasionally disabled by default, so you need to verify that SQL Server Browser
the service is not only running, but set to
start automatically on bootup. The service can be found in the Windows Service Manager ().Control Panel > Administrative Tools > Services

Mixed Mode Authentication Not Enabled

Unless selected during setup, or is not enabled by default. This mode of authentication is the mixed mode SQL authentication username/password
scheme that most users are used to. When not enabled, SQL Server only allows connections using Windows Authentication. Due to the ease of using
SQL Authentication over Windows Authentication, we recommend enabling this option and defining a user account for Ignition.

To enable this, open the SQL Server Management Studio.
Connect to the server.
Right click on the instance and select .Properties
Under , select .Security SQL Sever and Windows Authentication mode

TLS/Security

An update starting in Java 8 disables TLS 1.0 and 1.1, which may affect your connection to an MSSQL database. The department has written Support
.a guide on how to resolve this issue

JDBC Drivers and Translators

In some cases, you may need to add your own JDBC Driver, or configure a Translator. More information on configuring these can be found on the JDB
 page. However, you may need to check the JDBC driver's documentation for information on how to configure them. C Drivers and Translators

If you are using a more recent JDBC driver such as 10.2 or 11.2, you will need to add the following argument to the extra connection properties: trustS
. This will allow the transport layer to use SSL to encrypt the channel and bypass going through the certificate chain to validate erverCertificate=true

trust.

Related Topics ...

Connecting to Oracle Express
Store and Forward
OPC UA
Designer

https://support.inductiveautomation.com/hc/en-us
https://support.inductiveautomation.com/hc/en-us/articles/4417310204813-TLS-v1-0-and-v1-1-Microsoft-SQL-Server-Database-connection-issue
https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA

1.
2.

3.

4.

Connecting to MySQL

On this page we'll demonstrate how to connect Ignition to MySQL.

MariaDB Connections to MySQL Databases

Ignition can use the built-in MariaDB driver to connect to MySQL 5.7 and prior databases. This
circumvents the need to manually provide a JAR file to the MySQL JDBC Driver configuration on the
Gateway.

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Ignition version 8.1.2 includes a driver that can connect to databases. Note that MariaDB MySQL 8
upgrading Ignition does not replace existing JDBC drivers. See the page JDBC Drivers and Translators
for more information.

MySQL Connector/J Connections to MySQL Databases

Should you choose to to connect to a MySQL database using the official MySQL JDBC Driver, you will
need to install the driver. New Ignition installations do not have the driver (a JAR file), so you will have to
acquire the file yourself. See the page for more details on obtaining the JDBC Drivers and Translators
required file.

Once acquired, you can follow the steps for . Once the JAR file has been Upgrading a JDBC Driver
provided, you can follow the steps listed on this page to configure a connection between Ignition and
MySQL.

On this page ...

MariaDB Connections to MySQL
Databases
MySQL Connector/J Connections
to MySQL Databases
Connect Ignition to MySQL
Database

Connecting to
MySQL

Watch the Video

Connect Ignition to MySQL Database

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

 lick on C Create new Database Connection....

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-UpgradeaJDBCDriver
https://www.inductiveuniversity.com/video/connecting-to-mysql/8.1

4.

5.

6.

a.
b.
c.
d.

7.

Select the driver and click . You may need to install a JDBC driver for MySQL. MySQL Next

For more information, see for instructions on obtaining the requisite JAR file, and then follow the steps for JDBC Drivers and Translators Upgr
 before continuing with these instructions. ading a JDBC Driver

Note: Alternatively, you may select the driver, and use that to connect to MySQL. See the MariaDB MariaDB Connections to MySQL
 section above. Databases

On the New Database Connection page, enter the following information:

Name: (use a meaningful name such as)MySQL MySQL
Connect URL: (By default, MySQL creates an empty database called test)jdbc:mysql://localhost:3306/test

As you see in the example above, MySQL uses the following format:Connect URL
jdbc:mysqldb://hostaddress:3306/database

Where is the address of the machine with MySQL installed, for example: localhost, 192.168.1.1, db-server, etc. hostaddress Database
specifies the database schema the connection will target. The connection will target one schema (a collection of tables and other objects) in
the database.

To configure the connection, Ignition needs credentials to connect to MySQL. The and fields are where you provide Username Password
credentials for a user that Ignition will use to authenticate against the database. The user should be able to do the following:

Create and drop tables within the schema
Alter tables within the schema
Insert, update, select, and delete rows from tables in the schema
Create, alter, and execute stored procedures within the schema

After entering a username and password, click on at the bottom of the form. Your connection is now Create New Database Connection
created and the Database Connections page is displayed showing the of your connection as .Status Valid

https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-CommonThirdPartyDrivers
https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-UpgradeaJDBCDriver
https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-UpgradeaJDBCDriver

7.

8. To display the details about the status of your database connection, see the on the above window and click on the Note Database
 link. This will display any errors if your status is Faulted, in this example it shows the status as being Valid.Connection Status

1.
2.

3.

4.

Connecting to Oracle Express

This page documents how to configure a database connection to an Oracle Express instance.

Oracle User Grants

When using an Oracle Express database connection, it is required to provide user credentials that have
grants for "CREATE TRIGGER" and "CREATE SEQUENCE". Some of Ignition's subsystems, such as
the , will fail to work properly if the user defined in the Database Connection does not have Tag Historian
these grants. In addition, any manual queries (for example, those called by) system.db.runNamedQuery
that need to insert records or create sequences may fail if the gateway does not have the grants.

On this page ...

Oracle User Grants
Connect Ignition to the Oracle
Express Database
JDBC Drivers and Translators

Connecting to
Oracle Express

Watch the Video

Connect Ignition to the Oracle Express Database

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

 lick on The Database Connections page is displayed. C Create new Database Connection....

 Select the Oracle JDBC Driver and click Next.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery
https://www.inductiveuniversity.com/video/connecting-to-oracle-express/8.1

4.

5. Enter the following information:

Property
Name

How should it be configured

Name The name of the database connection. Other features in Ignition will reference this connection by the name specified here.

Connect
URL

A URL that describes where on the network the database is, as well as information about which schema to connect to. The
initial value should look something like the following

jdbc:oracle:thin:@localhost:1521:XE

However, you may need to make some changes. If we examine the key pieces of the URL, it would look like this:

jdbc:oracle:thin://1:2:3

Where:

1 = The IP Address or hostname of the computer/sever that the database is installed on.

2 = The port that the database is running on. The default is 1521, but this could have been changed during installation, or
sometime afterwards. When in doubt, ask the person that installed the database.

3 = The System ID for the database. More information on the System ID can be found in Oracle's documentation.

Username The username that the Gateway will use to connect to the database.

Password The password for the user specified under the Username property.

For our example, we entered information relevant to our installation. The values seen below may differ from each installation.

5.

6.
7.

8.

 Click Create New Database Connection at the bottom of the form.
The Database Connections page is displayed showing the of your connection as .Status Valid

To display the details about the status of your database connection, see the on the above window and click on the Note Database
 link.Connection Status

JDBC Drivers and Translators

In some cases, you may need to add your own JDBC Driver, or configure a Translator. More information on configuring these can be found on the JDB
 page. C Drivers and Translators

Related Topics ...

Store and Forward
OPC UA
Designer

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA

1.
2.

3.

4.

5.

Connecting to PostgreSQL

Connect Ignition to the PostreSQL Database

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

The Database Connections page is displayed. Click on Create new Database Connection....

Select the PostgreSQL JDBC Driver and click Next.

Next, you'll need to enter information that will allow the Gateway to connect to a Postgres
instance. In most cases, the following properties should be updated:

Property
Name

How should it be configured

Name The name of the database connection. Other features in Ignition will reference
this connection by the name specified here.

Connect
URL

A URL that describes where on the network the database is, as well as
information about which database to connect to. The initial value should look
something like the following:

jdbc:postgresql://localhost:5432/database

However, you may need to make some changes. If we examine the key pieces
of the URL, it would look like this:

jdbc:postgresql://1:2/3

Where:

1 = The IP Address or hostname of the computer/sever that Postgres is
installed on

On this page ...

Connect Ignition to the
PostreSQL Database
JDBC Drivers and Translators

Connecting to
PostgreSQL

Watch the Video

https://www.inductiveuniversity.com/video/connecting-to-postgresql/8.1

5.

6.
7.
8.

2 = The port that Postgres is running on. The default is 5432, but this could
have been changed during installation, or sometime afterwards. When in
doubt, ask the person that installed the database.

3 = The database name that this connection will provide access to.

Username The username that the Gateway will use to connect to the database.

Password The password that the Gateway will use to connect to the database.

Click Create New Database Connection at the bottom of the form.
The Database Connections page is displayed showing the of your connection as .Status Valid
To display the details about the status of your database connection, see the on the above Note
window and click on the link.Database Connection Status

JDBC Drivers and Translators

In some cases, you may need to add your own JDBC Driver, or configure a Translator. More information on configuring these can be found on the JDB
 page. C Drivers and Translators

Related Topics ...

Store and Forward
OPC UA
Designer

https://legacy-docs.inductiveautomation.com/display/DOC81/OPC+UA

Connecting to SQLite

An Ignition Gateway can create a SQLite database, allowing for data collection without installing a
separate SQL database. This is ideal for small scale applications, as well as testing and demonstrations.

Note: SQLite connections offer convenience, but Relational Database Management Systems (RDBMS)
generally offer better performance, especially in cases where queries are frequently executed such as
systems utilizing a historian system. As a result, the SQLite connection is not recommended for
production systems as a historian database. Learn more about appropriate uses of SQLite in their officia
l documentation.

Unlike other database connections, SQLite databases only support a single connection at a time.
Configuring this type of Database Connection means the Gateway will constantly be connected to the
SQLite database, preventing other systems from connecting.

SQLite Connect URL

Ignition Gateways can configure a SQLite database connection without any additional installation. This is
because the driver will create a file (which is the SQLite database) at the directory specified in the
Connect URL property. Pointing the Connect URL to an existing IDB file will cause the connection to
access the existing tables within the file. All Connect URLs must start with the following pattern:

jdbc:sqlite:

Followed by the destination to the database file.

On Windows
jdbc:sqlite:C:/Path/To/File.db

On Mac
jdbc:sqlite:/path/on/mac/File.bd

On Linux
jdbc:sqlite:/path/on/linux/File.db

Note: For Windows machines, either forward / or backslashes\ can be used.

Storing to Memory

Instead of creating a file, the Connect URL can specify that data should be stored in memory. As
expected, this is not an ideal solution for systems that require any sort of long term storage, but can be
useful in cases where data should be ephemeral.

jdbc:sqlite::memory

Relative Paths

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

SQLite database connections feature several keywords that represent relative locations within Ignition's
installation directory.

Keyword Description

${data} Represents the Gateway's "data" directory at /usr/local/ignition/data/.

${local} Represents the Gateway's "local" directory at /usr/local/.

On this page ...

SQLite Connect URL
Storing to Memory
Relative Paths

Connect Ignition to SQLite
Database

https://www.sqlite.org/whentouse.html
https://www.sqlite.org/whentouse.html
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

1.

2.

3.

4.

Note: SQLite files created in this directory will not be included in gateway backup files.
If you wish for a GWBK to include the SQLite file, then set the path to another location
within the data directory, but outside of the local file.

In both cases, additional folders can be added after the keyword. The example below would create
"Folder" in the gateway's data directory, and place the DB file in the Folder.

jdbc:sqlite:${data}/Folder/File.db

Connect Ignition to SQLite Database

On the Gateway Webpage, go to the section.Config
Scroll down to .Databases > Connections

 lick on The Database Connections page is displayed. C Create new Database Connection....

Select the driver and click .SQLite Next

4.

5.
6.

7.

On the page, enter a name for your connection. We used .New Database Connection SQLite_Connect
Next, enter the connect URL for the database. For SQLite this setting must lead to a location on a filesystem. In our example here we used jd

This path ultimately must lead to a local directory, or a locally mapped drive. bc:sqlite:C:Program Files/SQLite/File.db.

Click on Create New Database Connection at the bottom of the form.

Your connection is now created and the Database Connections page is displayed showing the Status of your connection as Valid.

7.

1.
2.
3.

1.
2.

3.

1.
2.
3.

JDBC Drivers and Translators

In most cases, the default JDBC drivers and Translator settings in Ignition will not need to be modified.
However, there are cases where drivers or translators may need modification.

JDBC Drivers and Ignition Upgrades

When upgrading Ignition, JDBC drivers are modified during the upgrade process. This is to prevent not
database connection issues on upgrade: you should only need to upgrade your JDBC drivers when the
database is updated, not when Ignition is upgraded. Only new Ignition installations will always use the
JDBC drivers that are included with the installer.

Running the installer to upgrade a preexisting Ignition installation will not modify the installed JDBC
drivers, even if newer drivers are included in the installer. In addition, restoring a Gateway backup from
an older version will replace any new versions of the drivers with the versions from the backup. In this
case, you will need to manually update the JDBC drivers.

On this page ...

JDBC Drivers and Ignition
Upgrades

Common Third Party Drivers
Bundled JDBC Drivers and
Ignition Upgrades

Database Translator and JDBC
Driver Settings
Add a New JDBC Driver
Upgrade a JDBC Driver
Database Translators

Common Third Party Drivers

Commonly, you will have to download the official JAR file from the creator's website. We have a few links here to make it easy to find.

Database Link Notes

IBM DB2 https://www.ibm.com/support/

pages/db2-jdbc-driver-versions-and-
downloads

Select the GA version of your desired driver.
Select your desired package.
Log in to your IBM account and complete your package download.

MySQL https://dev.mysql.com/downloads
/connector/j/ Select Your Operating system (or if you are on Windows).Platform Independent

After the file has been downloaded, unzip the the archive. On Windows you can right-
click and select the option.Extract All
The location of the JAR we need should be in the extracted folder under mysql-

 where the Xs are the version number. You are looking for a connector-java-X.X.XX
file that is named like .mysql-connector-java-X.X.XX.jar

Compatibility with different JRE versions can be found in the . MySQL connector docs

MSSQL https://github.com/microsoft/mssql-jdbc
/releases

You only need the .jar file, so you can select just the file. The mssql-jdbc-X.X.XX.jreX.jar
Xs will be replaced with the version numbers of both the jdbc driver and jre used.

Check the for more details which jdbc drivers contain jre versions SQL Server docs
compatible with your Ignition server's embedded Java version.

Oracle https://www.oracle.com/technetwork
/database/application-development
/jdbc/downloads/index.html

You will need to create an Oracle account to download the JAR files.
You can select the Unzipped version of the newest JAR.
You are looking for a file that is named like . Where X is the version number.odbcX.jar

Bundled JDBC Drivers and Ignition Upgrades

Ignition installers come with the latest version of some JDBC drivers. During the installation process, the installer will use these drivers. However,
during upgrade, the installer will not replace existing drivers with those in the installer. This is to preserve your existing connections, since newer
drivers may not work with older database installations.

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

The following feature is new in Ignition version 8.1.33
 to check out the other new featuresClick here

. If The bundled version of Java in Ignition has been upgraded from Java 11 to Java 17.0.8
upgrading, make sure to check if any JDBC drivers need to be modified for Java 17
compatibility.

https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html
https://github.com/microsoft/mssql-jdbc/releases
https://github.com/microsoft/mssql-jdbc/releases
https://docs.microsoft.com/en-us/sql/connect/jdbc/system-requirements-for-the-jdbc-driver?view=sql-server-ver15
https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.33

1.

2.

3.
4.

5.

As of 8.1.8, upgrading Ignition will create a directory at and place updated JDBC drivers in the installDirectory/user-lib/jdbc-bundled
directory, allowing you to manually update your system's JDBC drivers at a later time without having obtain more recent drivers yourself.

Database Translator and JDBC Driver Settings

In some cases, you may need to add your own Driver, or configure a Translator. However, you may need to check the 's JDBC JDBC driver
documentation for information on how to configure them. The contains some recommended JDBC Driver and Database Translator Settings page
settings, but the vendor's documentation should always supersede any suggestions here.

Add a New JDBC Driver

To add a new JDBC driver to Ignition, do the following steps:

On the Gateway Webpage section, click on .Config Databases > Drivers

The Database Drivers & Settings page is displayed.

Click on the link at the bottom of the page. Create new JDBC Driver...

Note: Ignition comes preconfigured with some popular JDBC drivers already. In some cases you may only need to provide a JAR file to an
existing driver configuration, instead of creating a new driver configuration. See the for a list of Common Third Party Drivers table
preconfigured drivers that need a JAR file.

In the field, type the full name of the JDBC driver, see the manufacturer's documentation to get the name.Name
In the field, specify the JAR file that contains the driver, as well as any other required JARs. If you do not have the JAR file JAR File(s)
needed, see above for download links.
Use the default settings for the following properties:

Driver Defaults and Instructions

Driver
Type

Is the brand of database. This is used for optimizations in the Gateway, if in doubt, select GENERIC.

URL
Format

Is a default value for the connect URL. This provides a hint to the format of the connect URL that this driver
requires while adding a datasource connection. For example, the hint for the format can be, jdbc:dbtype://host:port

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58612484#JDBCDriversandTranslators-CommonThirdPartyDrivers

5.

6.

1.

2.
3.

4.
a.
b.

5.

6.

./database

URL
Instructions

Free form instructions that are shown to help the user to create a connection.

Default
Connection

Properties

Any additional properties to add by default to the connection string.

Connectio
n
Properties
Instructions

Tips about which connection properties might be useful.

Default
Validation
Query

The default query that is used to verify that the connection is available.

SQL Language Compatibility

Default
Translator

The database translator that is used by default for connections from this driver.

Click the button, located at the very bottom of the page, to create the new driver.Create New JDBC Driver

Upgrade a JDBC Driver

In some cases you may need to upgrade a driver. The steps below detail where this would take place

You will need to obtain the new driver. These are typically provided by the same organization that made the database. The driver will be a
JAR file.
Once you have the new driver, head to your Ignition Gateway's section, click on .Config Databases > Drivers
The Database Drivers & Settings page will be displayed. These are the currently configured JDBC drivers on the Gateway, and can be
modified from the button. Click the Edit button for the driver you need to upgrade.Edit
You will need to pass in the new driver to the property.JAR File(s)

Click the buttonChoose File
Navigate to the driver, and click .Open

[Optional] Update any other properties. In most cases, you may skip this step. However you may need to update some other properties
when a new driver is in place. This step depends on the driver, and what it changes. Refer to the driver's documentation to determine if any
connection properties need to be changed. For example, users upgrading to MySQL 8.0 from legacy versions will need to change the Default
Connection Properties value from:

zeroDateTimeBehavior=convertToNull;

to:

zeroDateTimeBehavior=CONVERT_TO_NULL;useSSL=false;allowPublicKeyRetrieval=true;

Again, this step depends on the driver, and in some cases you may be able to skip it.

Click the button at the bottom of the page. Save Changes

Database Translators

Despite the presence of a SQL standard, many database system vary in how they implement or accomplish various tasks. The JDBC driver system
tries to hide these differences as much as possible, but unfortunately some differences persist.

The database translator system in Ignition navigates these differences as they apply to the system. It provides a way to define certain key operations
that are commonly different between database vendors, such as creating auto-incrementing index columns, and the keywords used for different data
types.

Translator Management

Database translators are managed in the Gateway from the tab. Ignition comes pre-configured with translators Databases > Drivers > Translators
for the major supported databases, but you can edit and remove them, as well as create new translators. It is necessary to create a new translator
only when adding a new JDBC driver for a database that does not share syntax with any of the existing translators.

1.

2.

3.

4.

Creating a New Translator

To add a new database translator to Ignition, do the following steps:

In the Gateway Config section, click on .Databases > Drivers
The Database Drivers & Settings page is displayed.

Go to the Translators tab, find the blue arrow, and click on the link. Create new Database Translator...
The New Database Translator page is displayed showing a list of all the translator properties.

Define the tokens used with the translator properties on the New Database Translator page.

For most of the properties, you need to define special token markers to indicate places where other values are placed. For example, the
default entry looks as follows:Create Table Syntax

CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Where:
, , and are all tokens that are expanded. is replaced directly with the table, tablename creationdef primarykeydef tablename creati

 is a list of columns, and is the phrase created by the entry in the translator.ondef primarykeydef Primary Key Syntax

The possible tokens are as follows:

Token Description

tablename The name of the table being created.

indexname The name of the index to create, when adding a column index to the table.

primarykeydef A clause that defines a primary key for a new table.

creationdef The list of columns to create in the table.

alterdef A list of columns to add/remove/modify in the table.

columnname The name of a column.

type The data type of a column.

limit The value of the limit clause.

Other Properties

Limit Position Defines where the limit clause should be placed. , the limit is placed at the end of the query. , places Back Front
it directly after the SELECT keyword.

Column Quote
Character

All columns are created and accessed with the defined quote, which tells the database to use a specific casing,
as well as avoiding collisions between the column name and database keywords.

Supports Returning
Auto-generated Keys? /
Fetch Key Query

Indicates whether the JDBC driver supports the return of generated keys. If the driver does not support this
feature, the is used to retrieve the last key.Fetch Key Query

Date Type Mapping

All data types The keywords that are used when creating columns of the given types.

Click the button, located at the very bottom of the page, to create the translator.Create New Database Translator

In This Section ...

JDBC Driver and Database Translator Settings

This page details various JDBC driver and translator settings. See the JDBC Drivers and Translators
 for information on adding and configuring JDBC drivers and translators.page

On this page ...

IBM
IBM Default JDBC Driver
Settings
IBM Default Translator
Settings

MySQL
MySQL Default JDBC Driver
Settings
MySQL Default Translator
Settings

MSSQL
MSSQL Default JDBC Driver
Settings
MSSQL Default Translator
Settings

Oracle Express
Oracle Express Default JDBC
Driver Settings
Oracle Express Default
Translator Settings

PostgreSQL
PostgreSQL Default JDBC
Driver Settings
PostgreSQL Default
Translator Settings

Snowflake
Snowflake Default JDBC
Driver Settings
Snowflake Default Translator
Settings

IBM

IBM Default JDBC Driver Settings

Main Properties

Name IBM DB2

Descri
ption

The official IBM DB2 JDBC Driver.

Classn
ame

com.ibm.db2.jcc.DB2Driver

JAR
File(s)

<Click on the Choose File button to select and upload the JAR(s). This is the part where you upload the JDBC driver.>

Driver Defaults & Instructions

Driver
Type

DB2

URL
Format

jdbc: ORdb2://localhost:50000/SAMPLE
jdbc:db2://localhost:25000/SAMPLE

URL
Instruct
ions

The format of the DB2 connect URL is:
<code>db2://host:port/database</code>
With the three
parameters (in bold) <ul style="list-style-type:none;margin-left:10px;">host: The host name or IP address of the database
server.port: The port that the database server is running on. DB2 default port is 50000.database:
The name of the logical database that you are connecting to on the DB2 server.

Default
Conne

<Leave Blank>

https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-AddaNewJDBCDriver
https://legacy-docs.inductiveautomation.com/display/DOC81/JDBC+Drivers+and+Translators#JDBCDriversandTranslators-AddaNewJDBCDriver

ction
Propert
ies

Conne
ction
Propert
y
Instruct
ions

<Leave Blank>

Default
Validati
on
Query

select 1 from sysibm.sysdummy1

SQL Language Compatibility

Default
Transl
ator

<The Translator this driver should use> Default: IBM DB2

IBM Default Translator Settings

Main Properties

Name <Name of the Translator. The JDBC driver will reference the settings below by the name specified
here>

Create Table Syntax CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Create Sequence Syntax <leave empty>

Create Trigger Syntax <leave empty>

Create Index Syntax CREATE INDEX {indexname} ON {tablename}({columnname})

Auto Increment Field Definition {type} GENERATED ALWAYS AS IDENTITY PRIMARY KEY

Alter Table Syntax ALTER TABLE {tablename} {alterdef}

Add Column Syntax ADD COLUMN {columnname} {type}

Primary Key Syntax <leave empty>

Limit Syntax FETCH FIRST {limit} ROWS ONLY

Limit Position Back

Current Timestamp Query values current timestamp

Column Quote Character "

Supports Returning Auto-generated
Keys?

False

Fetch Key Query SELECT max({columnname}) FROM {tablename}

Table List Filter <leave empty>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) bigint

Boolean int

Datetime timestamp

Float (R4) float

Double (R8) double

String varchar(255)

Binary blob

Long Text clob(65536)

MySQL

MySQL Default JDBC Driver Settings

Main Properties

Name MySQL

Descrip
tion

The official MySQL JDBC Driver, Connector/J.

Classn
ame

com.mysql.cj.jdbc.Driver

JAR
File(s)

<Click on the button to select and upload the JAR(s). This is the part where you upload the JDBC driver.> Choose File

Driver Defaults & Instructions

Driver
Type

MySQL

URL
Format

jdbc:mysql://localhost:3306/test

URL
Instruct
ions

The format of the MySQL connect URL is:
<code>jdbc:mysql://host:port/database</code>
With the
three parameters (in bold) <ul style="list-style-type:none;margin-left:10px;">host: The host name or IP address of the
database server.port: The port that the database server is running on. MySQL default port is 3306.<
/li>database: The name of the logical database that you are connecting to on the MySQL server.

Default
Conne
ction
Propert
ies

zeroDateTimeBehavior=CONVERT_TO_NULL;connectTimeout=120000;socketTimeout=120000;useSSL=false;
allowPublicKeyRetrieval=true;

Conne
ction
Propert
ies
Instruct
ions

There is an extensive list of extra connection properties available for MySQL Connector/J. See http://dev.mysql.com/doc
documentation for a table describing all connection /connectors/en/connector-j-reference-configuration-properties.html'>the

properties.
A default <tt>serverTimezone</tt> value (taken from the Gateway) will be appended to the connection string if one is not
specified.

Default
Validati
on
Query

SELECT 1

SQL Language Compatibility

Default
Transla
tor

MySQL

MySQL Default Translator Settings

Main Properties

Name MySQL

Create Table Syntax CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Create Sequence Syntax <leave empty>

Create Trigger Syntax <leave empty>

Create Index Syntax CREATE INDEX {indexname} ON {tablename}({columnname})

Auto Increment Field Definition {type} NOT NULL AUTO_INCREMENT

mysql://localhost:3306/test
http://dev.mysql.com/doc/connectors/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connectors/en/connector-j-reference-configuration-properties.html

Alter Table Syntax ALTER TABLE {tablename} {alterdef}

Add Column Syntax ADD COLUMN {columnname} {type}

Primary Key Syntax PRIMARY KEY ({columnname})

Limit Syntax LIMIT {limit}

Limit Position Back

Current Timestamp Query SELECT CURRENT_TIMESTAMP

Column Quote Character `

Supports Returning Auto-generated Keys? True

Fetch Key Query <leave empty>

Table List Filter <leave empty>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) bigint

Boolean int

Datetime datetime

Float (R4) float(10)

Double (R8) double

String varchar(255)

Binary varbinary

Long Text text

MSSQL

MSSQL Default JDBC Driver Settings

Main Properties

Na
me

<Name of the driver, as you would like it to appear on the Gateway>

Des
cript
ion

<Enter a useful description you would like to see next to the driver>

Cla
ssn
ame

com.microsoft.sqlserver.jdbc.SQLServerDriver

JAR
File
(s)

<Click on the button to select and upload the JAR(s). This is the part where you upload the JDBC driver.> Choose File

Driver Defaults & Instructions

Driv
er
Type

Microsoft SQL Server

UR
L
For
mat

jdbc:sqlserver://localhost\SQLEXPRESS

sqlserver://localhost\SQLEXPRESS

UR
L
Inst
ructi
ons

The format of the SQL Server connect URL is:
<code>jdbc:sqlserver://host\instanceName[:port]<
/code>
With the three parameters (in bold) <ul style="list-style-type:none;margin-left:10px;">host: The host name or IP
address of the database server.instanceName: (optional) the instance to connect to on the host. If not specified, a
connection to the default instance is made.port: (optional) the port to connect to. The default is 1433. If you are
using the default, you can omit the port and the preceding ':'.
For SQL Server, you specify the <i>database name</i> to
connect to using the <code>databaseName</code> property in the <i>Extra Connection Properties</i>.

Def
ault
Con
nect
ion
Pro
pert
ies

databaseName=test

Con
nect
ion
Pro
pert
ies
Inst
ructi
ons

Use <i>databaseName=YOUR_DATABASE</i> to specify the database to connect to.

Def
ault
Vali
dati
on
Que
ry

SELECT 1

SQL Language Compatibility

Def
ault
Tra
nsla
tor

The Translator this driver should use. If you're adding a new Driver, then you may

MSSQL Default Translator Settings

Main Properties

Name <Name of the Translator. The JDBC driver will reference the settings below by the name specified
here>

Create Table Syntax CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Create Sequence Syntax <Blank>

Create Trigger Syntax <Blank>

Create Index Syntax CREATE INDEX {indexname} ON {tablename}({columnname})

Auto Increment Field Definition {type} IDENTITY(1,1)

Alter Table Syntax ALTER TABLE {tablename} ADD {alterdef}

Add Column Syntax {columnname} {type}

Primary Key Syntax PRIMARY KEY CLUSTERED ({columnname})

Limit Syntax TOP {limit}

Limit Position Front

Current Timestamp Query SELECT CURRENT_TIMESTAMP

Column Quote Character "

Supports Returning Auto-generated
Keys?

True

Fetch Key Query <Blank>

Table List Filter <Blank>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) bigint

Boolean int

Datetime datetime

Float (R4) float(10)

Double (R8) double precision

String varchar(255)

Binary varbinary

Long Text nvarchar(max)

Oracle Express

Oracle Express Default JDBC Driver Settings

Main Properties

Name <Name of the driver, as you would like it to appear on the Gateway>

Descrip
tion

<Enter a useful description you would like to see next to the driver>

Classna
me

oracle.jdbc.driver.OracleDriver

JAR
File(s)

<Click on the button to select and upload the JAR(s). This is the part where you upload the JDBC driver.> Choose File

Driver Defaults & Instructions

Driver
Type

Oracle

URL
Format

jdbc:oracle:thin:@localhost:1521:test

URL
Instructi
ons

The format of the Oracle connect URL is:
<code>jdbc:oracle:thin:@host:port:SID</code>
With
the three parameters (in bold) <ul style="list-style-type:none;margin-left:10px;">host: The host name or IP address of the
database server.port: The port that the database server is running on. Oracle's default port is 1521.<
/li>SID: the system ID that identifies the database to connect to.

Default
Connec
tion
Properti
es

<Blank>

Connec
tion
Properti
es
Instructi
ons

<Blank>

Default
Validati
on
Query

SELECT 1 FROM DUAL

SQL Language Compatibility

Default
Translat
or

The Translator this driver should use. If you're adding a new Driver, then you may

Oracle Express Default Translator Settings

Main Properties

Name <Name of the Translator. The JDBC driver will reference the settings below by the name specified here>

Create Table Syntax CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Create Sequence
Syntax

CREATE SEQUENCE {tablename}seq START WITH 1 INCREMENT BY 1

Create Trigger Syntax CREATE TRIGGER {tablename}trig BEFORE INSERT ON {tablename} REFERENCING NEW AS NEW FOR EACH
ROW BEGIN select {tablename}seq.nextval INTO :NEW.{columnname} FROM dual; END;

Create Index Syntax CREATE INDEX {indexname} ON {tablename}({columnname})

Auto Increment Field
Definition

{type} NOT NULL

Alter Table Syntax ALTER TABLE {tablename} ADD ({alterdef})

Add Column Syntax {columnname} {type}

Primary Key Syntax PRIMARY KEY ({columnname})

Limit Syntax rownum<={limit}

Limit Position Where

Current Timestamp
Query

SELECT CURRENT_TIMESTAMP FROM DUAL

Column Quote
Character

"

Supports Returning
Auto-generated Keys?

False

Fetch Key Query SELECT {tablename}SEQ.CURRVAL FROM DUAL

Table List Filter <leave empty>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) int

Boolean int

Datetime timestamp

Float (R4) float

Double (R8) double precision

String varchar2(255)

Binary varbinary

Long Text nclob

PostgreSQL

PostgreSQL Default JDBC Driver Settings

Main Properties

Name <Name of the driver, as you would like it to appear on the Gateway>

Descri
ption

<Enter a useful description you would like to see next to the driver>

Classn
ame

org.postgresql.Driver

JAR
File(s)

<Click on the button to select and upload the JAR(s). This is the part where you upload the JDBC driver.> Choose File

Driver Defaults & Instructions

Driver
Type

PostgreSQL

URL
Format

jdbc:postgresql://localhost:5432/test

URL
Instruc
tions

The format of the PostgreSQL connect URL is:
<code>jdbc:postgresql://host:port/database</code>
With the three parameters (in bold) <ul style="list-style-type:none;margin-left:10px;">host: The host name or IP address of
the database server.port: The port that the database server is running on. PostgreSQL default port is 5432.<
/li>database: The name of the logical database that you are connecting to on the PostgreSQL server.

Default
Conne
ction
Proper
ties

<Blank>

Conne
ction
Proper
ties
Instruc
tions

No extra connection parameters are recommended for PostgreSQL. For possible parameter values, see the documentation at <a href='the
PostgreSQL JDBC driver website.'>http://jdbc.postgresql.org'>the

Default
Validat
ion
Query

SELECT 1

SQL Language Compatibility

Default
Transl
ator

The Translator this driver should use. If you're adding a new Driver, then you may

PostgreSQL Default Translator Settings

Main Properties

Name <Name of the Translator. The JDBC driver will reference the settings below by the name specified
here>

Create Table Syntax CREATE TABLE {tablename} ({creationdef}{primarykeydef})

Create Sequence Syntax <Blank>

Create Trigger Syntax <Blank>

Create Index Syntax CREATE INDEX {indexname} ON {tablename}({columnname})

Auto Increment Field Definition SERIAL NOT NULL

Alter Table Syntax ALTER TABLE {tablename} {alterdef}

Add Column Syntax ADD COLUMN {columnname} {type}

Primary Key Syntax PRIMARY KEY ({columnname})

Limit Syntax LIMIT {limit}

Limit Position Back

Current Timestamp Query SELECT CURRENT_TIMESTAMP

postgresql://localhost:5432/test
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/

Column Quote Character "

Supports Returning Auto-generated
Keys?

True

Fetch Key Query <Blank>

Table List Filter <Blank>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) bigint

Boolean int

Datetime timestamp

Float (R4) float

Double (R8) double precision

String varchar(255)

Binary bytea

Long Text text

Snowflake

Snowflake Default JDBC Driver Settings

Note: Many of the fields for the Snowflake JDBC driver can be left blank if your custom Snowflake translator is set up properly and referenced in the
"Default Translator" field.

Main Properties

Name <Name of the driver, as you would like it to appear on the Gateway>

Description <Enter a useful description you would like to see next to the driver>

Classname net.snowflake.client.jdbc.SnowflakeDriver

JAR File(s) <Click on the button to select and upload the JAR(s). This is the part where you upload the JDBC Choose File
driver.>

Driver Defaults & Instructions

Driver Type Generic

URL Format <Blank>

URL Instructions <Blank>

Default Connection Properties <Blank>

Connection Properties
Instructions

<Blank>

Default Validation Query SELECT 1

SQL Language Compatibility

Default Translator <Your custom Snowflake Translator>

Snowflake Default Translator Settings

Note: If you have a database table called "NO_OP_TABLE", you should use a different table name for the "Create Index Syntax" field.

Main Properties

Name <Name of the translator, as you would like it to appear on the Gateway>

Create Table Syntax CREATE TABLE IF NOT EXISTS {tablename} ({creationdef}{primarykeydef})

Create Sequence Syntax CREATE SEQUENCE IF NOT EXISTS {tablename}seq

Create Trigger Syntax <Blank>

Create Index Syntax ALTER TABLE IF EXISTS NO_OP_TABLE SET COMMENT='no-op table due to forced value for
TRANSLATORS > ALTER TABLE SYNTAX';

Auto Increment Field Definition {type} NOT NULL AUTOINCREMENT

Alter Table Syntax ALTER TABLE {tablename} {alterdef}

Add Column Syntax ADD COLUMN {columnname} {type}

Primary Key Syntax PRIMARY KEY ({columnname})

Limit Syntax LIMIT {limit}

Limit Position Back

Current Timestamp Query SELECT CURRENT_TIMESTAMP

Column Quote Character <Leave Field Blank>

Supports Returning Auto-
generated Keys?

False

Fetch Key Query SELECT NEXT_VALUE FROM INFORMATION_SCHEMA.SEQUENCES WHERE
SEQUENCE_NAME='{tablename}'

Table List Filter <Blank>

Data Type Mapping

Byte (I1) int

Short (I2) int

Integer (I4) int

Long (I8) bigint

Boolean int

Datetime datetime

Float (R4) float

Double (R8) double

String string

Binary binary

Long Text text

Note: In addition to a custom JDBC driver and custom translator, you may need to also configure the Connection Initialization Commands
property in your Snowflake to properly store Tag History. Add the following values to the database connection Connection Initialization

 property:Commands
USE DATABASE ignition_db
USE SCHEMA ignition_db.time_series

1.
2.
3.

4.

5.
6.
7.

Store and Forward

The store-and-forward system provides a reliable way for Ignition to store data to the database. In
Ignition, systems such as and use store-and-forward to Tag Historian SQL Bridge (Transaction Groups)
ensure that data reaches its destination in the database, and is stored in an efficient manner. The store-
and-forward system can be configured in a number of ways, offering both memory buffering for
performance and local disk caching for safe storage.

Store-and-forward engines are automatically created for each Database Connection.: Note

Primary Features and Benefits

The store-and-forward system offers a number of benefits over other systems that log directly to
the database, such as:

Data loss prevention
Data is removed from the system only when the write to the database has executed
successfully.

Guaranteed ordering
Data is forwarded in the same order that it arrived, even if a database connection is not
currently available.

Enhanced performance
By first buffering the data in memory, the store-and-forward system can optimize writes, and
prevent the originating systems from blocking. This means that the system is less likely to lose
data samples in the event of system slow downs.

On this page ...

Primary Features and Benefits
Store and Forward Data Flow

Understanding the Forward
Triggers
Single Connection Policy

Store and Forward for Reliability

Using Store and
Forward

Watch the Video

Store and Forward Data Flow

Although the system offers settings that can affect the pipeline, by default the data flow occurs as follows:

Data is generated in some system.
Data is placed in a memory buffer.
If not removed from memory buffer in some time (the), or if a certain amount of data Write Time accumulates (), it is placed in the Write Size
local cache.
The data sink, based on a database connection, pulls data in first from the local store, and then the memory buffer, based on the Write Time
and settings under .Write Size Forward Settings
If the data fails to forward, either due to an error in the connection or in the data itself, it is returned to the buffer or cache.
If the data errors out too many times, it becomes quarantined.
Quarantined data can be managed through the Gateway, and can be deleted or un-quarantined, once the error is resolved.

Understanding the Forward Triggers

Data is forwarded from one stage to the next based on the and triggers. These settings work as an manner, meaning Write Time Write Size either/or
that if either of them is surpassed, the data is forwarded. One important point to note is that the setting influences the transaction size of Write Size
similar data to be forwarded, and therefore can have a big impact on performance. As a result, the should normally be used as the Write Time
controlling factor, with the set to something that will provide reasonable transactions, like 100.Write Size

Single Connection Policy

While database connections have a pool of multiple connection (8 by default), the Store and Forward engine only uses one of those connections. The
system heavily optimizes queries by grouping multiple queries into a single transaction before sending the data off.

Store and Forward for Reliability

The store-and-forward system settings, while seemingly limited, offer a good deal of flexibility in tuning. Different types of situations and goals will
likely require different configurations.

When the safety of the data is a concern, the goal is to get the data stored to disk as quickly as possible in order to minimize risk of loss due to a
power outage or system failure. The local cache plays a crucial role in this, allowing the system to store data locally for any amount of time until
the remote database can accept it. This protects against network failures and database failures, as well.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://www.inductiveuniversity.com/video/using-store-forward/8.1

By setting the and of both the local cache and forwarder to low values, the data spends less time in the memory buffer. While write size write time
the memory buffer can be set to 0 to bypass it completely, this is not usually recommended, as the buffer is used to create a loose coupling between
the history system and other parts of Ignition that report history. This disconnect improves performance and protects against temporary system
slowdowns. In fact, it is recommended that for reliable logging, this value be set to a high value, to allow the maximum possible amount of data to
enter the system in the case of a storage slowdown.

In This Section ...

1.

2.

Using Store and Forward
The current status of the Store and Forward system can be viewed from the Status section of the Gatewa

. These pages provide detailed analysis on each Store and Forward engine. y Web Interface

To Monitor the Store and Forward Engine

Go to the Status section of the Gateway.

Click on Store & Forward from the left menus.
The Store & Forward Connections page is displayed showing each store-and-forward engine
along with the current throughput and capacity of its Memory Buffer and Disk Cache.

On this page, there are several notable items:

Name Description

Aggreg
ate
Throug
hput

The aggregated number of records inserted into a database from any engine, per
second.

Total
Quarant
ined

The current count of quarantined items across all engines.

Total
Dropped

The number of records that have been dropped from all store and forward
engines. A record is considered dropped if it can not be added to one of the
buffers, such as when a buffer is full, and the engine can no longer accept new
records.

On this page ...

To Monitor the Store and
Forward Engine

Using Store and
Forward

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage
https://www.inductiveuniversity.com/video/using-store-forward/8.1

You can click on under the section Details Store and Forward Engines to refresh and update the displayed values. This page provides in-depth
 information on the current status of the engine.

Name Description

Memory
Buffer

The number of records entering the Memory Buffer per second. The progress bar shows the percent of the buffer being utilized, along
with the current and max number of records.

Disk
Buffer

The number of records entering the Disk Buffer per second. Note that a state of "idle" means the engine is able to successfully store all
The progress bar shows the percent of the records into the database before the or values have been reached. Write Size Write Time

buffer being utilized, along with the current and max number of records.

Databa
se

Shows the number of records pushed from either buffer to the database per second.

Quarant
ined
Items

Lists all quarantined items in the engine. Includes the number of occurrences, a description of the where the items originated from, and
the reason why the record was placed into the quarantine. Provides an opportunity to retry, export, or delete the items.

Related Topics ...

Configuring Store and Forward

1.

2.

Configuring Store and Forward

Store and Forward for High-speed Buffering

When configuring the store-and-forward system for high-speed buffering, you are expecting the case that
data will come in quick bursts. By buffering the data, the system can accommodate more information
than would be possible going directly against the database.

The key points in configuring a buffering system is to avoid expensive operations like storing and reading
from the local cache, and to set the memory buffer large enough to accommodate the expected burst
sizes.

Store-and-forward engines are directly Each database connection has its own store and forward settings.
correlated to database connections, and are automatically managed so that each connection has an
engine defined.

Configuring Store and Forward

To configure the Store and Forward engine for your database, do the following steps:

Go to the Gateway section and select . Config Databases > Store and Forward
The page is displayed and you will see a store-and-forward setting for each Store and Forward
of your database connections and you can edit these settings.

On the page, look for at the far right of the table and click on it to see Store and Forward edit
all the store-and-forward settings.
The settings of a store-and-forward engine define how and when data is moved through the
system. You must understand these settings so that you can carefully set them according to
your goals.

On this page ...

Store and Forward for High-
speed Buffering

Configuring Store and Forward
Store and Forward Settings

Configuring Store
and Forward

Watch the Video

Store and Forward Settings

Buffer Settings

 You can create multiple database connections pointing to the same database if you wish to
configure multiple store-and-forward engines for different purposes.

https://www.inductiveuniversity.com/video/configuring-store-forward/8.1

Mem
ory
Buff
er
Size

The number of records that can be stored in the memory buffer, the first stage of the store-and-forward chain. Other settings define when
the data will move from the memory buffer forward, this setting only determines the maximum size. If the max size is reached, additional
data will error out and be discarded. The memory buffer cannot quarantine data, so if there are errors and the disk cache is not enabled, the
data will be lost.

If set to 0, the memory buffer will always be considered full, dropping records.

Store Settings

These settings apply to the local disk storage cache.

Disk
Cac
he
Ena
bled

Turns on the hard-disk cache. Data is stored here if it cannot be forwarded in a timely manner. The cache also stores quarantined data (that
is, data with errors).

Max
Rec
ords

The maximum size of the cache. After the max is reached, data is backed up into the memory buffer, and once that is full, it is dropped. A
'record' is an insert or update statement. These statements may be batches, thus it is possible for a single 'record' to impact multiple rows.
The default maximum is 25,000 records.

Note: The disk cache is intended to be a short term storage system. It is not recommend to increase the Max Records beyond 50,000.

Writ
e
Size

The number of records that should be accumulated in the memory store before written to the cache. Writing data in blocks can increase
performance, but too large of a size increases the risk of data being lost in the event of a power outage or system failure.

Writ
e
Time

The max age of records in the memory buffer before they are stored to the cache. This setting is used in combination with the write size in
order to give the forwarder the opportunity to retrieve data directly from the memory store and avoid the write to disk entirely.

Forward Settings

These settings govern when data is forwarded to the database. The data is pulled first from the local cache, and then from the memory
store. When no data is present in the cache, it is pulled directly from the memory store.

Writ
e
Size

Same as disk cache setting above.

Writ
e
Time

Same as disk cache setting above.

Ena
ble
Sch
edule

If enable schedule is selected, the forward engine will only be enabled during the times specified by the pattern. The pattern can specify
specific times and ranges using a simple syntax.

Sch
edul
e
Patt
ern

The schedule is specified as a comma separated list of times or time ranges. You can use the following formats:

24-hour times, that is (for 8am through 3pm) or (9pm through midnight).8:00-15:00 21:00-24:00

12-hour with am/pm (if not specified, is considered noon): 12 8am-3pm or 9pm-12am

Note: When the time period is over, any queued data will remain cached until the next execution period. That is, the forward engine does
not run until all data is forwarded.

Once you made the changes you want, click at the bottom of the page.Save Changes
This will take you back to the Store and Forward page.

Related Topics ...

Controlling Quarantine Data

1.

2.

3.

4.

Controlling Quarantine Data

Quarantined data is data that has erred-out multiple times during attempts to forward it or data that could
not be stored because of some configuration issues. It is removed from the forward queue to allow other
data to pass. The most common reason for data quarantining is an invalid schema in the database for
the data that is being stored. Quarantined data is held indefinitely until the issue is resolved, then you can
either delete it or re-insert it into the queue.

Handle the Quarantined Data

From section of the Gateway, go to .Status Connections > Store and Forward

Click the tab next to a Store and Forward engine that you would like to see the Details
quarantine data for. Here you will see any quarantined data, including the number of
occurrences, a description of the where the items originated from, and the reason why the
record was placed into the quarantine. Each set of data has the option to retry it, delete it, or
export it for later use. If there are a lot of quarantined records, it may be a good idea to export
and delete them so that the store and forward engine won't fill up and drop records.

Fix the problem/error you found that caused the quarantine data.

Click on , or if the data had been exported, import the data using the import tool and then retry re
. This way, you can ensure no data gets lost.try

On this page ...

Handle the Quarantined Data
Disk Cache Management

Archive Disk Cache
Load Disk Cache

Controlling
Quarantine Data

Watch the Video

 https://www.inductiveuniversity.com/video/controlling-quarantine-data/8.1

Disk Cache Management

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

In the Gateway's Config > Databases > Store and Forward section, there are two options regarding a database connection's disk cache. Note that the
following options will only appear if the Disk Cache Enabled property for the specified database connection is set to : true

Archive Disk Cache
Load Disk Cache

Archive Disk Cache

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21

1.
2.

3.

Attempting to archive a disk cache will result in Ignition throwing a warning, saying that the existing cache will be locked and incoming data may be
blocked or lost.

During the archiving process:

The disk cache is shut down.
Archived data is moved to a folder located at , making it available %IgnitionInstallationDirectory%/data/datacache/archives

.to load to replace an existing disk cache. The cache folder will use the following naming convention: {database name}_{timestamp}
The disk cache is started again, and a new cache folder is created.

Load Disk Cache

1.
2.
3.

Attempting to load a disk cache will result in Ignition throwing a warning, saying that the existing disk cache will be overwritten.

During the loading process:

The local disk cache is stopped and deleted.
The chosen archived disk cache is renamed.
The disk cache is started again.

Related Topics ...

Store and Forward
Connections - Store & Forward

Security

Security options in Ignition provide many ways to safeguard access to your data and applications. You
control not only who accesses your systems, but when and where they can access them. Ignition offers
two authentications strategies: Classic Authentication Strategy or Identity Provider Authentication

.Strategy

Gateway Security

Security in Ignition falls into a few categories, tying into the various scopes (Designer, Gateway, Vision
Clients and Perspective Sessions). In the Gateway scope, the bulk of security setup happens under the C

 section of the Gateway Webpage, under the Security header, you'll find pages for authentication, onfig
role mappings, and zones.

The primary purpose of Gateway security is to protect access to the two
most critical areas of Ignition: the Designer and the Gateway. Many
important resources are configured in these areas, so access to each
Gateway section (Status and Config), as well as the Designer, can be
limited by Security Level.

On this page ...

Gateway Security
Authentication Strategies

Classic Authentication
Strategy (Designer and Vision
Only)
Identity Provider
Authentication Strategy

Authentication Strategies

In regard to authentication and permissions, there are two approaches.

Classic Authentication Strategy (Designer and Vision Only)

Classic Authentication Strategy involves a concept known as a User Source, which is a configuration that contains multiple roles and users. Users are
assigned roles, and security restrictions within a project can be used to check if a user has one or more roles. User Sources can be "internal",
meaning all users and roles are contained within an Ignition Gateway, or externally stored in an SQL database. Furthermore, User Sources offer
integration with . Active Directory

Identity Provider Authentication Strategy

Ignition can also integrate with Federated (IdP), allowing users to authenticate against a trusted third party. Identity Providers The Identity Provider
Authentication Strategy works by assigning restrictions to various features within Ignition, and utilizing and Security Level User Attribute Mapping Secur

 to assign Security Levels to users. ity Level Rules

Ignition can integrate with both OpenID Connect and Security Assertion Markup Language (SAML) providers. In addition, Ignition can act as an
Identity Provider for isolated systems.

Gateway General Security Settings

The following feature is new in Ignition version 8.1
 to check out the other new featuresClick here

The Gateway General Security Settings page is new for release 8.1. This
page determines security permissions for the Gateway and Designer.

On this page ...

Gateway Security Settings Table

Restricting
Gateway Access

Watch the Video

Gateway Security Settings Table

Setting Description

System Identity
Provider

Dropdown list to select the Identity Provider that controls access to the Gateway's web configuration interface and the Designer
(only when the Designer Authentication Strategy is set to).Identity Provider

Additional option to always ask the IdP to re-authenticate users by default. When enabled, Ignition will always ask the IdP to re-
authenticate the user by default. This effectively disables Single Sign-On.

This field is required.

Designer
Authentication
Strategy

Controls how the Designer authenticates users. Options are or .Classic Identity Provider

: The Classic strategy requires the user to enter their username and password in an embedded login form in the Classic
Designer. Classic authentication is performed against the System User Source.

: The Identity Provider strategy redirects the user to their IdP in their web browser in order to authenticate. Identity Provider
The System Identity Provider setting controls which Identity Provider the user is redirected to. Required.

This field is required. Additional options on this screen will change depending on the Designer Authentication Strategy that is
selected here.

Designer Auth
Token
Inactivity
Timeout

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

() Identity Provider onlystrategy The number of minutes which must elapse before expiring a designer user's auth token due to
inactivity caused by a disconnected session. Must be greater than zero. Default value is 10.

Designer Auth

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1
https://www.inductiveuniversity.com/videos/restricting-gateway-access/8.1/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Token Time-To-
Live

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

The maximum number of minutes a designer user's auth token may exist before it expires. If set (Identity Provider strategy only)
to any number less than or equal to zero, auth tokens may live forever, as long as the auth token has not expired due to inactivity.

Designer
Permissions

() Identity Provider onlystrategy Select one of the following options:

Users must belong to all of these security levels in order to login to the Designer.
Users must belong to at least one of these security levels in order to login to the Designer.

Empty value in this field means "Public" security level: Access will be unrestricted.Caution:

Create Project
Permissions

() Identity Provider onlystrategy Enter the security levels required to create a new project, for example, Authenticated/Roles
/Administrator, SecurityZones/localhost.. Then select one of the following options:

Users must belong to all of these security levels in order to create a new Designer project.
Users must belong to at least one of these security levels in order to create a new Designer project.

Empty value in this field means "Public" security level: Access will be unrestricted.Caution:

System User
Source

This user source controls access to the Designer. This field is required.() Classic strategy only authentication

Designer Role
(s)

Users must belong to at least one of () Classic only authentication strategy Enter the roles required for access to the Designer.
these roles in order to log into the Designer. Multiple roles can be specified by separating them with commas, for example: Admini
strator, Operator.

Create Project
Role(s)

(Classic authentication strategy) only Enter the roles required for create a new Designer project. Users must belong to at least
one of these roles in order to create a new Designer project. Multiple roles can be specified by separating them with commas, for
example: Administrator, Operator.

Gateway
Config
Permissions

elect one of the following options: Enter the security levels required for access to the Gateway Config section. Then s

Users must belong to all of these security levels in order to login to the configuration section.
Users must belong to at least one of these security levels in order to login to the configuration section.

Multiple security level paths can be specified by separating them with commas. For example, Authenticated/Roles/Administrator,
SecurityZones/localhost

Empty value in this field means "Public" security level: Access will be unrestricted.Caution:

Status Page
Permissions

elect one of the following options: Enter the security levels required for access to the Gateway Status section. Then s

Users must belong to all of these security levels in order to login to the configuration section.
Users must belong to at least one of these security levels in order to login to the configuration section. Multiple security level
paths can be specified by separating them with commas, for example: Authenticated/Roles/Administrator, SecurityZones
/localhost.

Empty value in this field means "Public" security level: Access will be unrestricted.Caution:

Home Page
Permissions

Sets the security levels required to access the Gateway Home section. Then select one of the following options:

Users must belong to all of these security levels in order to login to the home section.
Users must belong to at least one of these security levels in order to login to the home section. Multiple security level paths
can be specified by separating them with commas, for example: Authenticated/Roles/Administrator, SecurityZones/localhost.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Empty value in this field means "Public" security level: Access will be unrestricted.Caution:

User Inactivity
Timeout

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

The number of minutes which must elapse before expiring a user's gateway web interface session to inactivity. Sessions will not
timeout if set to any number less than or equal to zero.

Allow User
Admin

Allows the administration of the gateway's system user source from the Designer and client. Unless this is enabled, the Vision
module's 'User Management Component' will be prevented from altering the gateway's system user source and scripts will not be
able to alter users or roles. (Default is false.)

Allow Designer
SSO

Allows single-sign-on authentication for logging into the Designer if the System User Source supports it. The Designer SSO
capability is only available when the Designer Authentication Strategy is set to Classic. (Default is false.)

Gateway Audit
Profile Dropdown list to select the The name of the audit profile that Gateway-scoped actions will log to.

Related Topics ...

Users, Roles
Service Security

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

Classic Authentication Strategy

The authenticatesClassic Authentication strategy users against a User Source. Both the Designer and
Vision Client can authenticate users with this strategy.

Note: If you have Ignition 8.1 with the Perspective module, authentication is handled instead by the Iden
.tity Provider Authentication Strategy

User Sources

User sources are a collection of users, roles, and other user data, such as contact information or
schedule. When a , it is applied and stored in the user source. Projects and new user or role is created
the Gateway are assigned a User Source to authenticate against. This determines which users have
access to which project(s).

There are several types of user sources: single-storage types with varying storage mediums, "hybrids"
that combine features of the other types, and a cache type used in Local Client Fallback systems.

On this page ...

User Sources
Single-Storage
Hybrid
Fallback Cache
Creating a User Source

Shared Functionality
Main Properties
The Default User Source

Editing a User

Single-Storage

Users and roles are stored in a single location. The single-storage users sources are:

Internal Authentication - Users and roles are stored internally to Ignition.
Database Authentication - Users and roles are stored in a SQL database. Managing users is done via direct interaction with the database.
Active Directory Authentication - Users and roles are managed by Active Directory. Users are authenticated through the LDAP protocol.

Hybrid

Users in hybrid user sources authenticate against Active Directory, meaning that user names and passwords are checked against those stored in
Active Directory. However, roles are stored either internally in Ignition or in a SQL database, so it is possible to make a role change without have to
contact your Active Directory administrator. This way, Active Directory can be consulted to see if a user is valid, but the management of roles does
not require coordination with the IT department, who typically control the Active Directory system. This "best of both worlds" approach is popular for
many users of Active Directory.

Active Directory-Internal Hybrid - Users managed by Active Directory and roles stored to Ignition internally.
Active Directory-Database Hybrid - Users managed by Active Directory and roles stored in an SQL database.

Fallback Cache

This User Source was developed specifically for a system that is using Local Client Fallback, and allows you to cache the login credentials from a
remote user source. This means your users can still log in with their normal username/password on a Local Client Fallback project, even when the
network connection is unavailable.

More information can be found on the page. Fallback Cache Authentication

Creating a User Source

All of the described User Source types can be created by navigating to the Config > Security > Users, Roles section of the Gateway. To begin the
process, select Create new User Source... and choose the User Source type you need. Once you've finished entering the User Source properties,
click .Create New User Source

Note: The User Source page also includes a link to .. See the page for information on how to Verify a User Source. Verify a User on a User Source
verify an existing user's profile.

Shared Functionality

Regardless of type, all User Sources have the following functionality:

Failover Source: If the User Source is unavailable for authentication, then a backup User Source can be specified. The type of the fail-over
User Source can differ from the primary, so configurations where an internal-type fails over to a database-type are possible.
Schedule Restrictions: The User Source can prevent users from logging in when they are off schedule, meaning that the schedule assigned
to the user determines when the user may login.

Main Properties

All User Sources have a section of properties that are listed before their unique type properties. Below are the descriptions of the Main Main
properties. See the individual User Source pages for the remaining property descriptions.

Name Description

Name The name of the User Source. This is how other systems in Ignition reference the user source. Note that every User Source have must
a unique name.

Description An optional description of the user source. Useful for noting which database connection or AD server the User Source may be
referencing.

Enabled

The following feature is new in Ignition version 8.1.27
 to check out the other new featuresClick here

Disabling a User Source profile will prevent it from being used completely, including authentication and user/role management. User
Sources are enabled by default.

Schedule
Restricted

Forces schedule restrictions on users. If true, users are This means a login only able to log in when their assigned is active.schedule
will fail for users attempting to log into a client while they are off schedule.

Failover
Source

Allows authentication attempts against this User Source to failover to another User Source in the event of a network outage, or some
other connection issue. Useful with database or Active Directory user sources, as connection failures to the database/AD server will
prevent users from logging in.

This property is initially set to , meaning a failover User Source is not configured.None

Failover
Mode

When a is configured, this property determines when the failover User Source should be consulted. The following Failover Source
options are available:

https://docs.inductiveautomation.com/display/DOC81/Verify+a+User+on+a+User+Source
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27
https://docs.inductiveautomation.com/display/DOC81/Alarming+Schedules

Hard: The Failover User Source is only consulted when this User Source is unreachable.

Soft: The Failover User Source will be consulted if the user's credentials fail authentication, meaning that the user typed in credentials
that are unrecognized or incorrect.

Cache
Validation
Timeout

The amount of time between cache updates of the User Source. If you set this value to -1, the cache validation timeout is turned off.

Lockout
Enabled

Lock out a user's account after more than the maximum allowed number of failed authentication attempts occur within the lockout
window. Default is true.

Note that access can be restored to all locked out users by editing the user source, and clicking the button. Save Changes

Lockout
Attempts

Maximum number of failed authentication attempts allowed within the lockout window before locking the user out. Default is 5. If this
value is set to something less than zero (for example, -1), then the lockout functionality will be entirely disabled, regardless of what the

 property is set to. Lockout Enabled

Lockout
Window

The duration of the lockout window in minutes. Default is 15. Setting this property to a value of less than zero (for example, -1) will
disable the lockout functionality entirely, regardless of what the property is set to. Lockout Enabled

Details on the Password Policy Properties can be found on the page.Internal Authentication

The Default User Source

When Ignition is installed for the first time, an internal User Source named 'default' is created. You can manage the default User Source by navigating
to the , section of the Gateway.Config > Security > Users Roles

The option under the 'default' user source dropdown allows you to add new users, modify roles and passwords for existing manage users More
users, remove users, and add/remove roles from the user source.

When you open the 'default' user source for the first time, you will see the first user that was created at installation. This is the administrator account
that has full privileges. If this user source has been modified before, a list of existing users is displayed.

Editing a User

Clicking on the > > page will access the corresponding User Properties page, which allows you to make any Edit User Source More manage users
necessary changes to that user.

Fill out the fields for that user then click . Save Changes

User Properties

Name Description

Userna
me

The name of the user.

Change
Passwor
d?

Check this box to change the existing password.

Password New password.

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

The set for the internal User Source this user belongs to will be listed under the password field for better requirement password policies
visibility when creating user passwords. If any password requirement changes are desired, they must be made to the User Source.

Password Re-type password for verification.

First
Name

First name of the user.

Last
Name

Last name of the user.

Roles Role(s) assigned to this user. Check the box next to each role you want this user to have.

Schedule Schedule for the user. Choose from a dropdown list of schedules that are already defined.

Language Language to be used for the user. Choose from a dropdown list of languages that are already defined.

Notes Any notes for this user.

Badge A string that represents the value set for the user's badge.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://docs.inductiveautomation.com/display/DOC81/Internal+Authentication#InternalAuthentication-PasswordPoliciesProperties

Contact Info

Type Choose email or SMS.

Value The email value or SMS number.

In This Section ...

1.
2.
3.

4.
5.

Managing Users and Roles

Users and Roles

Security is based on the roles that are assigned to specific users. Roles do not have any structure or
hierarchy by default, but it can be created. You can create a hierarchy based on users with a greater role
being assigned all matching lesser roles.

There isn't a built-in restriction to the number of roles a user can have, so each user can be assigned
many roles or none at all.

It's important to think about the different roles in your project and how they affect the security of your
project. For instance, what level of access a particular area of a project needs may determine the
functional type roles that you create, and the different users assigned to each role.

You can manage users and roles using either the Gateway interface, or using the User Management
 inside the Designer or Client. This section shows how to manage users and roles using the component

Gateway interface under Config > Security > Users, Roles. Click on the manage users link for the User
Source you want to administer.

On this page ...

Users and Roles
Manage Users
Create a Role

Assigning Roles
Role Hierarchy

User Management Component

Manage Users

User Sources support managing the users and roles from within Ignition to varying degrees. Some User Sources are fully manageable, meaning that
you can administer the users, roles, contact info, and so on from within the Ignition Gateway, as well as inside a Vision Client. Other User Sources do
not support this at all or only partially support it. Make sure you understand how and where the administration takes place before you choose a User
Source type.

Often, it is desirable to let some management or administrative users of a Vision project manage other users without having to log into the Gateway's
Configure section. To do this, you can simply use the built-in User Management Component that comes with the Vision Module.

Create a Role

When a project is first created, the role is the only role available. Additional roles can be added from the User Sources page on the Administrator
Gateway.

On the Gateway Webpage, go to the section.Config
Navigate to .Security > Users, Roles
Click on the link for the you want to manage.manage users User Source

Click the tab. Look for the blue arrow at the bottom, and click the link.Roles Add Role
Name the role by entering it in the field, and click on the button. Role Name Add Role The role is now available to be associated with
specific users.

When using role-based security in a project, the project stores the name of the role as a
string. This means that if you were to modify the name of the role in the Gateway, the role-
based security in your project will not update to reflect the new name, and instead will try
searching for a role with the original name. Be very careful when modifying the names of roles.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management
https://docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy#ClassicAuthenticationStrategy-MainProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management

5.

1.
2.
3.

4.

5.

1.
2.
3.

Assigning Roles
Although it is not required for a user to have a role, be aware users without role assignments might not have access to an area of the project that
requires a role.

Existing Users

On the Gateway Webpage, go to the tab, and navigate to to access tConfig Security > Users, Roles he User Sources page.
Click > for the you want to manage.more manage users User Source
Click the link for the User you want to edit. The User Settings page is displayed.Edit

Select the role(s) that you want this user to have from the supplied Roles list.

Click The user now has the privileges associated with the selected role(s). Save Changes.

New Users

On the Gateway Webpage, go to the tab, and navigate to to access tConfig Security > Users, Roles he User Sources page.
Click on > for the you want to manage.more manage users User Source
Click to add a new user. The User Settings page is displayed.Add User

3.

4.

5.

1.
2.
3.

4.

5.

Enter the , including the roles you want this user to have. user's properties

Click . The user now has the privileges associated with the selected role(s). Add User

Role Hierarchy

Often you might want to have one role that includes all the permissions for another role, i.e., Supervisor can do everything that Administration and
Maintenance roles can do. In the Designer, access to components can be restricted to specific security roles. You can give any Supervisor both of the
Administration and Maintenance.

User Management Component

Ignition has a special User Management component in the Vision Module that allows you to add, modify, and delete users and roles (and more) inside
the Designer and the Client. By default, changes to a User Source may not be made from this component to prevent users from locking themselves
out of the Gateway, or give themselves access to the Gateway. You can override this behavior by enabling the Allow User Admin property located

 simple to set up under the Gateway's general security settings. Once the Allow User Admin property is enabled, the User Management component is
and use.

In Designer, go to the Project Browser and then to Vision.
Create a new Window or open an existing one.
Drag a component to your window. This component will automatically point to the default user source being used by your User Management
project. You can change the User Source property if needed.
If you already have some users and roles set up using the Gateway Webpage, you will see them in the User Management component. If you
don't have any users or roles set up, you can create them here. Use the icons on the right side to add, edit, or delete a user or role.

To add a new user, put the Designer in . Click the the plus icon next next to the user section.Preview Mode

https://docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy#ClassicAuthenticationStrategy-EditingaUser
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management

5.

6.

7.

8.

The Add User window will open. At a minimum, enter the and . All other properties are optional. When finished, click Username Password Sa
. ve

To add a new role, make sure the Designer is in . Click the the plus icon next to the role.Preview Mode
The Add Role window will open.
Enter the name of the new role. Click . Save

8.

9. Now you can see the user and role that were just added in the User Management window.

1.
2.
3.

Internal Authentication

Internal User Sources

An Internal type User Source stores user information internally in the Gateway's database. This means
that Internal User Sources are included in Gateway Backup files, and don't require an external SQL
database, or other external user management system.

When Ignition is first installed, the that initially grants access to the Gateway and default User Source
Design is an Internal type User Source. You can, of course, continue to use this default internal User
Source for your project(s), or you may choose to use other User Sources instead.

The Internal User Source is fully from within Ignition. You can access User Sources from the manageable
Gateway Webpage under the section, , and click the button.Config Security > User, Roles edit

On this page ...

Internal User Sources
Property Reference

Main Properties
Password Policies Properties

Internal
Authentication

Watch the Video

Property Reference

This section details Internal User Source properties, organized by category.

Main Properties

Details on the Main Properties can be found on the page.User Sources

Password Policies Properties

The Internal User Source has password policies that are configurable from within the Gateway to provide an extra layer of security by ensuring that
good password practices are used.

From the tab in the , select . Config Gateway Webpage Users, Roles
Click the Edit button for the User Source you want to update.
Scroll down to the Password Policy section. You can change the default password policies by entering the appropriate password values to
support your password policies.

https://legacy-docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy#ClassicAuthenticationStrategy-The'default'UserSource
https://inductiveuniversity.com/video/internal-authentication/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy#ClassicAuthenticationStrategy-MainProperties

Below is a description of the Password Policy properties.

Name Description

Password
Maximum
Age

The maximum age in days that the password will still be valid. After the number of days has past, when the user tries to login, it will
prompt them to change their password. A value of 0 will disable this feature.

The following feature is new in Ignition version 8.1.23
 to check out the other new featuresClick here

This property will also affect password age and expiration when you are using Ignition's Internal Identity Provider (IdP). If you try to log
in after the expiration period, you will be redirected and prompted to update your password.

Password
Minimum
Length

The minimum amount of characters that a password must contain to be considered valid. If the user tries to make a shorter password,
it will not allow it, and let them know that it does not meet the minimum length requirements.

Password
Complexity

This determines how complex a password must be. There are four character types: lowercase letter, uppercase letter, digits, and
special characters. The value here determines how many of those character types must be present at least once in the password for it
to be considered valid.

Password
History

Determines the number of previously used passwords to store. When users make a new password, old passwords can not be re-used.
A value of zero disables this functionality. History is only stored while this setting is turned on, so any passwords used while this is off
can be re-used when history is turned back on.

Related Topics ...

Database Authentication
Active Directory Authentication
AD Internal Hybrid Authentication
AD Database Hybrid Authentication
Identity Provider Authentication Strategy
User Management
Managing Users and Roles
Security

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.23
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+User+Management

Database Authentication

Database User Source

The Database Authentication type uses an external database instead of storing data inside Ignition.
Managing users is done via direct interaction with the database. This section addresses how to set up a
database user source. The Database Authentication type requires you have a connection to an existing
database, like SQL Server, Oracle, or MySQL. It stores all users, roles, schedules, and and more in the
database, and uses queries to check login credentials. When you create a database user source, you
have the option of setting it up in Automatic or Manual mode.

Automatic Mode

In Automatic mode, Ignition will create and manage the database tables for you. You can specify a prefix
for the tables that are created automatically for you, but their names after the prefix are chosen by the
user source. In this mode, the user source will be fully in Ignition.manageable

Manual Mode

In Manual mode, you must provide SQL queries for various functions of the user source. In this mode,
the user source will not be manageable from the Gateway or the Clients. You'll have to manage the
users directly through the database. Examples for each of the queries are given on the user source setup
page. Read each query description carefully to make sure you design your queries to return all the
columns that are defined in the query's description as shown below.

Property Reference

Database User Sources have the following properties, organized by category

Main Properties

Details on the Main Properties can be found on the page. The Database Classic Authentication Strategy
User Source also has the following properties:

Name Description

Databa
se

The database connection this User Source will retrieve user information from.

Mode How the Gateway should manage the database tables. Has two settings:

Automatic: The gateway will automatically create the database tables necessary, and all
interactions with the table will use the built-in queries. When this option is set, the Tablenam

 property is utilized.e Prefix

Manual: The Gateway will not automatically create any database tables, nor will it
automatically modify users or roles. When set to manual, it is assumed that you want to
manually write the queries that update the tables, or are utilizing another system. When
Mode is set to this option, the properties are used to determine how the Manual Mode
Gateway should query user data.

On this page ...

Database User Source
Property Reference

Main Properties
Automatic Mode Properties
Manual Mode

To Create a Database User
Source

Database
Authentication

Watch the Video

Automatic Mode Properties

Name Description

Tablenam
e Prefix

When set to mode, this property determines the prefix that will be used on all automatically created tables. Useful when Automatic
multiple database User Sources are connected to the same database scheme.

Manual Mode

Name Description

Authenti
cation
Query

A query that return a row if the given username and password combination provided is valid. The query will run as a prepared must
statement, so use the question mark character (?) to represent username first and then password. The returned row may contain the
user's basic properties under the column names: [firstname, lastname, schedule, language, notes]

Note that the Gateway will pass both the username and password the user typed in, so this query utilize exactly two question MUST
marks, otherwise an exception will occur.

https://inductiveuniversity.com/video/database-authentication/8.1

1.

2.

Badge
Authenti
cation
Query

A query that must return a row if the given badge provided is valid. The query will be run as a prepared statement, so use question mark
(?) to represent the badge. The returned row must contain the username.
Example: SELECT username FROM USERS WHERE badge = ?

List
Roles
Query

A query that returns all possible roles that any user could be a member of. The role names must be returned in the first column of the
query's results.

User's
Roles
Query

A query that returns all of the roles that the provided user belongs to. The roles must be strings and must be in the first column of the
query's results. The query will be run as a prepared statement with one parameter: the username.

Find
User
Query The following feature is new in Ignition version 8.1.6

 to check out the other new featuresClick here

A query that must return a row if a user with the given username exists. The query will be run as a prepared statement, so use question
mark (?) to represent username. There must be at least one column: the username. Other columns are optional, supported columns
are: [username, firstname, lastname, schedule, language, notes, badge].

Example: SELECT username, firstname, lastname, schedule, FROM USERS WHERE username = ?

When the User Source is paired with an , enabling this option can provide a modest performance improvement Ignition Identity Provider
during session login.

List
Users
Query

A query that returns a row containing each username. There must be at least one column: the username. Other columns are optional,
supported columns are: [username, firstname, lastname, schedule, language, notes].

Contact
Info
Query

A query that returns all of the contact info for the user. The first column must be the contact type, the second column the contact value.
Optional, may be blank.

Schedul
e
Adjustm
ent
Query

A query that returns the upcoming schedule adjustments for the user. This property is optional, and may be left blank.

The results set expects the following columns:

(date)Start
(date)End

(boolean)Available
(string)Note

Extra
Propertie
s Query

A query that returns name, value pairs of extra properties for the user. Will be run with one parameter: the username. Optional, may be
blank.

To Create a Database User Source

On the Gateway Webpage under the tab, go . Config Security > Users, Roles
The User Sources page will be displayed. Click the blue arrow, Create new User Source.

 Choose the authentication type, and click .Database Next

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-IgnitionIdentityProvider

2.

3. The New User Source window will open. Some properties are optional, but if you're using Automatic mode, enter the following properties as
appropriate.

Name: DBAuth - name of the user source.
Failover Source: default - failover user source ('default' is the internal user source).
Failover Mode: Hard - if the source is unreachable, then use the failover source. (Can choose the Hard or Soft option).
Database: MySQL - external database.
Mode: Automatic - tables in the external database will be automatically created when needed.
Tablename Prefix: 'auth_' is the prefix for all the tables that get created. (You can leave this field blank, but if you use a prefix
when the tables get created, they will contain the specified prefix in their name).
When finished, click .Create New User Source

3.

4.

5.

Now that your Authentication profile is created, add a user. On the right, click on the link. Click on the link More > Manage Users Add User
and fill in the required fields.

Table Creation

The tables in the database will not be created in the database until they are needed. For example, as soon as a user or
role is added, the associated tables will automatically get created.

5.

6.

Now that your tables are created we can verify them. To view the tables, go into and from the menu bar, select Designer Tools > Database
. Query Browser

You will see all the tables that were created beginning with 'auth_' when the user and role get created.

Double click on any of tables beginning with , and click . In this example, you will see the tables associated with 'roles' and 'auth_' Execute
'users' displayed in the Schema area.

Active Directory Authentication

Active Directory User Source

The Active Directory Authentication profile uses Microsoft's Active Directory over (LDAP Lightweight
) to store all the users, roles, and more Directory Access Protocol that make up an Authentication profile.

Active Directory are used for Ignition's and user-role mappings.Groups roles

While using an Active Directory User Source, administration of users and roles is through Active
Directory itself, and not manageable within Ignition. Thus adding new users to an Active Directory User
Source, or modifying pre existing users, requires the modifications be made from Active Directory,
usually through an AD Administrator.

Active Directory User Sources supports SASL (Simple Authentication and Security Layer). SASL is a
framework for authentication and data security in Internet protocols such as LDAP.

Property Reference

Active Directory User Sources have the following properties shown in the table below, organized by
category.

Note: Certain properties in the Active Directory User Source allow you to filter users, such as the User
List Filter. These filters only determine which users will be displayed on screen. They are not
authentication filters, so even if a user does not show in the list they can still authenticate and may have
access to unintended areas. Be sure to configure appropriately to prevent this from project security
happening!

Main Properties

Details on the Main Properties can be found on the page. Classic Authentication Strategy

On this page ...

Active Directory User Source
Property Reference

Main Properties
Active Directory Properties
LDAP Search Properties
SASL Properties

To Create an Active Directory
User Source
Connect AD over SSL

 Active Directory Properties

Name Description

Domain The Windows Domain your active Active Directory server is running on. If you aren't sure of your domain, ask your
network administrator.

Leave blank to set advanced properties manually.

Gateway Username The login name for the Gateway to use when querying Active Directory. Used for retrieving the list of users and
roles via LDAP.

Password The password for the above username.

Password Re-type password for verification.

Primary Domain Controller
Host

The IP address or hostname of your primary domain controller. Example: "192.168.1.4" or "MainServer"

Primary Domain Controller
Port

The port number for the primary domain controller's LDAP interface.

Secondary Domain
Controller Host

The IP address or hostname of your secondary domain controller (optional). Example: "192.168.1.4" or "MainServer"

Secondary Domain
Controller Port

The port number for the secondary domain controller's LDAP interface.

Use SSL Disable to use " " protocol, enable to use " " ldap:// ldaps://

SSO Domain The domain that Windows users must match in order to use SSO. If blank, the main "Domain" property will be used.
Not case-sensitive.

This feature was changed in Ignition version :8.1.17
This setting was disabled and deprecated in 8.1.17 to protect against a potential SSO Enabled
security vulnerability. While the property is still visible, it cannot be enabled without setting a
special system property. This is not recommended. See the Active Directory Deprecated

 page for more information. Properties

https://docs.inductiveautomation.com/display/DEP/User+Sources+and+Classic+Authentication
https://docs.inductiveautomation.com/display/DEP/User+Sources+and+Classic+Authentication

LDAP Search Properties

Name Description

Username Prefix This prefix will be prepended to the username before an Active Directory bind is attempted for authentication.

Username Suffix This suffix will be appended to the username before an Active Directory bind is attempted for authentication.

Automatic Suffix If this option is checked, and the suffix is left blank, then the suffix will automatically be assigned a value of "@<domain>".

Use prefix and
suffix for
Gateway
username

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

If this option is checked, the username prefix and suffix will be applied to the Gateway username before a bind is attempted.
This option is checked by default.

User Search
Base

The base folder to search for users under, such as:

DC=MyCompany,DC=com

The entire subtree under this folder will be searched using the User Search Filter.

Multiple subtrees can be specified by putting them in parenthesis, like so:

(OU=Administrators,DC=MyCompany,DC=com)(OU=Operators,DC=MyCompany,DC=com)

User Search
Filter

The LDAP search filter that will be used to find a specific user. Use the placeholder {0} as a standin for the login name.

User List Filter The LDAP search filter used when querying for the list of all users. Should restrict the type to user.

User Name
Attribute

The attribute on the User object to define the username.

User Role
Attribute

Attributes of this name on the User object will define the user's roles.

Role Name
Attribute

The attribute of this name on the Role object will define the role's name. Leave blank to use the raw value of the attribute
defined by the property.User Role Attribute

Full Name
Attribute

The attribute on the User object to define the full name of the user.

Phone Attribute The attribute name on the user object that represents the user's phone number.

Email Attribute The attribute name on the user object that represents the user's email address.

SMS Attribute The attribute name on the user object that represents the phone number that this user receives text messages on.

Badge Attribute

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

The attribute on the User object to define the badge. This setting is required to enable badge-based authentication.

Read Timeout The read timeout in milliseconds for LDAP operations.

Results Page
Size

The number of entries returned per page of results in a query.

Role Search
Base

The base folder to search for roles under, such as:

OU=Roles,DC=MyCompany,DC=com

The entire subtree under this folder will be searched using the Role Search Filter. If you specify the root of your tree structure,
the search may take a very long time.

Multiple subtrees can be specified by putting them in parenthesis, like so:

(OU=Builtin,DC=MyCompany,DC=com)(OU=Users,DC=MyCompany,DC=com)

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

If you leave this blank the whole subtree of the domain controller will be searched.

Role Search
Filter

The LDAP search filter that will be used to locate roles.

Badge Search
Filter

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

The LDAP search filter to use to find a specific user given a badge. Use the placeholder {0} as a stand-in for the user's badge.
Example: (&(objectClass=user)(badge={0}))

Allow
Anonymous

If enabled, authentication attempts with blank passwords will be passed through to LDAP, which may choose to accept them.

It is highly recommended to disable this setting unless you know it is required. AD servers may allow logging in as Caution:
any user with a blank password when Security Authentication is set to “None” or “Simple” (even if a provided username does
not exist in AD), which is a major security risk.

Security Protocol Specifies the security protocol between the Gateway and AD server. The following options are available:

AUTO: No security protocol is explicitly used or requested by the Gateway.

SSL: SSL should be used for the connection.

Security
Authentication

This property specifies how usernames and passwords are used to bind to LDAP. The following options are available:

AUTO: Unspecified from the Gateway side, meaning the LDAP implementation will choose.

NONE: Anonymous access. ()Not recommended due to security risks

SIMPLE: Plaintext username and passwords will be used. ()Not recommended due to security risks

STRONG: Usernames and passwords will be encrypted.

SASL: Simple Authentication and Security Layer. See the SASL Properties table below for additional SASL authentication
configuration settings.

Referral

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

Specifies how referrals are to be processed. Possible options are:

Follow: Always automatically follow referrals. This is the default option.

Ignore: Ignores referrals.

Throw: Throws a ReferralException whenever a referral is encountered.

SASL Properties

These settings are utilized when Security Authentication is set to . SASL

Name Description

Mechan
ism

 An ordered list of space-separated mechanism names. The LDAP provider will use the first mechanism for which it finds an
implementation. A blank value will leave this setting unspecified. (Default is .)DIGEST-MD5 CRAM-MD5

Realm A realm defines the namespace from which the user is selected. A blank value will leave this setting unspecified. This setting will only be
used by mechanisms which support it. Default is blank.

Quality
of
Protecti
on

 A comma-separated list of Quality-of-Protection (QoP) values, the order of which specifies the preference order. There are three well-
known values: "auth" (authentication only), "auth-int" (authentication with integrity protection), and "auth-conf" (authentication with
integrity and privacy protection). A blank value will leave this setting unspecified. This setting will only be used by mechanisms which
support it. (Default is)auth-conf,auth-int,auth.

Protecti A comma-separated list of privacy protection strength values, the order of which specifies the preference order. The three possible

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

1.

2.

3.

4.

1.

2.

on
Strength

strength values are "low", "medium", and "high". A blank value will leave this setting unspecified. This setting will only be used by
mechanisms which support it. Default is .high,medium,low

Mutual
Authenti
cation

Enable or disable mutual authentication. This setting will only be used by mechanisms which support it. Default is disabled.

To Create an Active Directory User Source

To configure an Active Directory User Source, you must specify the host that is acting as your primary domain controller. You can also use a
secondary domain controller in case the primary is unavailable. You'll also need to specify the name of the domain and credentials for the Gateway
itself to use: the Gateway needs a user account to interact with the AD server, even when it's simply querying for a list of roles.

Note: When using Active Directory User Source, you may need to consult with your internal IT Department to get the required information to
complete your user source setup. These settings are common to AD (not specific to Ignition), and your IT department will know what values to supply
to each property.

On the , under the Config tab, go to .Gateway Webpage Security > Users, Roles
The User Sources page will be displayed. Click the blue arrow, .Create new User Source

Choose the authentication type, and click . Active Directory Next

The New User Source window will open. Some properties are optional. In the very least, you must specify the following: , Domain Gateway U
, , . sername Password Primary Domain Controller Host

Cick the button to create the User Source.Create New User Source

Connect AD over SSL

For additional security, you can adjust the Active Directory settings to enable SSL since LDAP is not encrypted by default. The default port for LDAP is
port 389, but LDAPS uses port 636 and establishes SSL upon connecting.

On the Gateway Webpage, under the Config tab, go to Security > Users, Roles.

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage

2.
3.
4.

5.
6.
7.

Click the Create new User Source blue arrow on the User Sources page.
Choose the Active Directory authentication type, and click Next.
Change the Primary Domain Controller Port to 636.

Check Use SSL to enable “ldaps://”.
Check Show advanced properties to expand.
Change the to SSL.Security Protocol

If you try to query or authenticate against the AD server at this point, you will receive the following error:

Caused by: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid
certification path to requested target

This error indicates Ignition was unable find a valid certificate generated from the AD server, and therefore cannot validate the AD server's identity.
Work with IT to obtain a certificate from the AD server. This certificate must be added to the data/certificates/supplemental directory and then
imported into the Java keystore. Once the certificate is added, restart the Gateway.cacerts

Related Topics ...

Internal Authentication
Database Authentication
AD Internal Hybrid Authentication
AD Database Hybrid Authentication
Identity Provider Authentication Strategy
Classic Authentication Strategy
Project Security in the Designer

1.

2.

AD Internal Hybrid

AD/Internal User Source

The Active Directory/Internal Hybrid authentication profile type combines the Internal User Source type
with the Active Directory User Source type. Active Directory is used to find all of the users, and to check
their credentials when they attempt to log in. However, it allows assigning of roles, contact info, and
other meta-information about a user through Ignition, then stores all this information as if it were an
Internal User Source. This way, Active Directory can be consulted to see if a username/password is
valid, but the management of roles does not require coordination with your IT Department, who typically
controls the Active Directory system. This "best of both worlds" approach is popular for many users of
Active Directory.

The AD/Internal Hybrid User Source is partially Users cannot be added or manageable in Ignition.
removed, and their usernames and passwords cannot be changed. This is because this information
resides in Active Directory, not within Ignition. Other information, such as user roles, contact info,
schedules, are in Ignition.manageable

Property Reference

This shares many properties with the AD User Source. Please see the User Source Active Directory
page for a list of properties. Authentication

On this page ...

AD/Internal User Source
Property Reference
Creating an AD/Internal Hybrid
User Source

Active Directory Properties
Advanced Properties
SASL Properties

AD Internal Hybrid

Watch the Video

Creating an AD/Internal Hybrid User Source

To set up an AD/Internal Hybrid User Source, you must specify the host that is acting as your primary domain controller. You can also use a
secondary domain controller in case the primary is unavailable. You'll also need to specify the name of the domain and credentials for the Gateway
itself to use for authentication for when it queries the list of roles.

On the , under the Config tab, go to . Gateway Webpage Security > Users, Roles
The User Sources page will be displayed. Click the blue arrow, .Create new User Source

Choose the authentication type, and click . AD/Internal Hybrid Next

Gateway Settings

Before you can use the User Management component to manage roles, contact info, etc., you
first have to go into , and mark the checkbox to This Gateway Settings 'Allow User Admin.'
allows for the administration of the Gateway's system user source from the Designer and the
Client. Unless this is enabled, the Vision Module's User Management component is prevented
from modifying the Gateway system's user source.

May need to contact your internal IT Department for...

When using AD/Internal Hybrid User Source, you may need to consult with your internal IT Department to get the required information to
complete your user source setup.

https://legacy-docs.inductiveautomation.com/display/DOC81/Active+Directory+Authentication#ActiveDirectoryAuthentication-PropertyReference
https://legacy-docs.inductiveautomation.com/display/DOC81/Active+Directory+Authentication#ActiveDirectoryAuthentication-PropertyReference
https://inductiveuniversity.com/video/ad-internal-hybrid/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage

2.

3.

4.

The New User Source window will open. Some properties are optional depending on how you set up your profile. Details on the Main
Properties can be found on the User Sources page. Active Directory properties are listed in the table below.
Click to save the new user source.Create New User Source

Active Directory Properties

Name Description

Domain The Windows Domain your active is running on. If you aren't sure of your domain, ask your admi Active Directory server network
nistrator.

Leave blank to set advanced properties manually.

Primary Domain
Controller Host

The IP address or hostname of your primary domain controller. Example: "192.168.1.4" or "MainServer"

Primary Domain
Controller Port

The port number for the primary domain controller's interface. LDAP

List Users from
Active Directory

If true, Active Directory will be queried for the list of all users. If false, users must be added manually. Default is true.

Populate Users
On-Demand

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

If true, a user record will be created in the Internal Database from the AD entry of any user who successfully authenticates into
Active Directory if the record does not already exist in the Internal Database at the time of authentication.

When the User Source is paired with an Ignition Identity Provider, enabling this option can provide a modest performance
improvement during session login.

Gateway
Username

The login name for the Gateway to use when querying Active Directory. Used for retrieving the list of users and roles via LDAP.

Password The password for the above username.

Password Re-type password for verification.

https://docs.inductiveautomation.com/display/DOC80/User+Sources
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-IgnitionIdentityProvider

SSO Enabled Whether or not to use Single-Sign-On () to authenticate users. Note that projects must also have this option enabled for SSO AD
SSO to work. Default is false.

This feature was changed in Ignition version :8.1.17
This setting was disabled and deprecated in 8.1.17 to protect against a potential security
vulnerability. While the property is still visible, it cannot be enabled without setting a special
system property. This is not recommended. Check out the Active Directory SSO Disabled for

 article for more information. 8.1.17 & 7.9.20

SSO Domain The domain that Windows users must match in order to use . If blank, the main "Domain" will be used. Not case- SSO property
sensitive.

Advanced Properties

Name Description

Secondary
Domain
Controller
Host

The IP address or hostname of your secondary domain controller (optional). Example: "192.168.1.5" or "BackupServer"

Secondary
Domain
Controller
Port

The port number for the secondary domain controller's LDAP interface. Default: 389.

Read
Timeout

The read timeout in milliseconds for LDAP operations. Default is 60,000.

Results
Page Size

The number of entries returned per page of results in a query. Default is 1,000.

User Listing
Base

The base folder to search for users under, such as "DC=MyCompany,DC=com". The entire subtree under this folder will be
searched using the User List Filter. Multiple subtrees can be specified by putting them in parenthesis, like so: "(OU=Administrators,
DC=MyCompany,DC=com)(OU=Operators,DC=MyCompany,DC=com)" If you leave this blank the whole subtree of the domain
controller will be searched.

User List
Filter

The LDAP search filter used when querying for the list of all users. Should restrict the type to user. Default is (&
(objectClass=user)(!(objectClass=computer))).

User
Search Filter

The LDAP search filter to use to find a specific user. Use the placeholder {0} as a standin for the login name. Default is (&
(objectClass=user)(sAMAccountName={0})).

Username
Attribute

The attribute on the User object to define the username. Default is sAMAccountName.

Username
Prefix

This prefix will be prepended to the username before an Active Directory bind is attempted for authentication.

Username
Suffix

This suffix will be appended to the username before an Active Directory bind is attempted for authentication.

Automatic
Suffix

If this option is checked, and the suffix is left blank, then the suffix will automatically be assigned a value of "@<domain>". Default is
true.

Use prefix
and suffix
for Gateway
username

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

If this option is checked, the username prefix and suffix will be applied to the Gateway username before a bind is attempted. This
option is checked by default.

Allow
Anonymous

If enabled, authentication attempts with blank passwords will be passed through to LDAP, which may choose to accept them.

It is highly recommended to disable this setting unless you know it is required. AD servers may allow logging in as any Caution:
user with a blank password when Security Authentication is set to “None” or “Simple” (even if a provided username does not exist
in AD), which is a major security risk.

Security Auto or SSL. Default is Auto.

https://support.inductiveautomation.com/hc/en-us/articles/5979279808397-Active-Directory-SSO-Disabled-for-8-1-17-7-9-20-
https://support.inductiveautomation.com/hc/en-us/articles/5979279808397-Active-Directory-SSO-Disabled-for-8-1-17-7-9-20-
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Protocol

Security
Authenticati
on

This property specifies how usernames and passwords are used to bind to LDAP. The following options are available:

AUTO: Unspecified from the Gateway side, meaning the LDAP implementation will choose.

NONE: Anonymous access.

SIMPLE: Plaintext username and passwords will be used.

STRONG: Usernames and passwords will be encrypted.

SASL: Simple Authentication and Security Layer. See the SASL Properties table below for additional SASL authentication
configuration settings.

Referral

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

Specifies how referrals are to be processed. Possible options are:

Follow: Always automatically follow referrals. This is the default option.

Ignore: Ignores referrals.

Throw: Throws a ReferralException whenever a referral is encountered.

SASL Properties

These settings are utilized when Security Authentication is set to SASL.

Name Description

Mechan
ism

 An ordered list of space-separated mechanism names. The LDAP provider will use the first mechanism for which it finds an
implementation. A blank value will leave this setting unspecified. Default is .DIGEST-MD5 CRAM-MD5

Realm A realm defines the namespace from which the user is selected. A blank value will leave this setting unspecified. This setting will only be
used by mechanisms which support it. Default is blank.

Quality
of
Protecti
on

 A comma-separated list of Quality-of-Protection (QoP) values, the order of which specifies the preference order. There are three well-
known values: "auth" (authentication only), "auth-int" (authentication with integrity protection), and "auth-conf" (authentication with
integrity and privacy protection). A blank value will leave this setting unspecified. This setting will only be used by mechanisms which
support it. Default is auth-conf,auth-int,auth.

Protecti
on
Strength

 A comma-separated list of privacy protection strength values, the order of which specifies the preference order. The three possible
strength values are "low", "medium", and "high". A blank value will leave this setting unspecified. This setting will only be used by
mechanisms which support it. Default is .high,medium,low

Mutual
Authenti
cation

Enable or disable mutual authentication. This setting will only be used by mechanisms which support it. Default is disabled.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

1.

2.

AD Database Hybrid

AD/Database User Source

This AD/Database Hybrid User Source is not from within Ignition. Users/passwords must manageable
be administered through , and roles, contact info, and so on, must be administered Active Directory
directly through the database. The way AD/Database Hybrid works, is it has all the same information
requirements as the other authentication profiles, but it also has a number of Database properties. You
need to specify a database (i.e., MySQL) to store information, and set up queries that you want to use.
You must also specify the host that is acting as your primary domain controller, and a secondary domain
controller in case the primary is unavailable. You'll also need to specify the name of the domain and
credentials for the Gateway itself to use for authentication when it queries the list of roles.

AD/Database User Sources now support SASL (Simple Authentication and Security Layer). SASL is a
framework for authentication and data security in Internet protocols such as LDAP.

Property Reference

This shares many properties with both the AD .User Source User Source and Database User Source

See the page for a list of Active Directory User Source related AuthenticationActive Directory
properties.
See the page for a list of Database User Source related properties.Database Authentication

On this page ...

AD/Database User Source
Property Reference
Creating an AD/Database Hybrid
User Source

Active Directory Properties
Database Properties
Advanced Properties
SASL Properties

AD Database Hybrid

Watch the Video

Creating an AD/Database Hybrid User Source

On the , under the Config tab, go to . Gateway Webpage Security > Users, Roles
The page will be displayed. Click the blue arrow, .Classic Authentication Strategy Create new User Source

Choose the authentication type, and click . AD/Database Hybrid Next

https://legacy-docs.inductiveautomation.com/display/DOC81/Active+Directory+Authentication#ActiveDirectoryAuthentication-PropertyReference
https://legacy-docs.inductiveautomation.com/display/DOC81/Database+Authentication#DatabaseAuthentication-PropertyReference
https://inductiveuniversity.com/video/ad-database-hybrid/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway#Gateway-GatewayWebpage

2.

3.

4.

Note: When using AD/Database Hybrid User Source, you may need to consult with your internal IT Department to get the required
information to complete your user source setup.

The New User Source window will open. Some properties are optional depending on how you set up your profile. Details on the Main
Properties can be found on the User Sources page. The Active Directory Properties and Database properties are listed in the tables below.
Click to save the new user source.Create New User Source

Active Directory Properties

Name Description

Domain The Windows Domain your active is running on. If you aren't sure of your domain, ask your Active Directory server network
administrator.

Leave blank to set advanced properties manually.

Primary Domain
Controller Host

The IP address or hostname of your primary domain controller. Example: "192.168.1.4" or "MainServer"

Primary Domain
Controller Port

The port number for the primary domain controller's interface. LDAP

List Users from Active
Directory

If true, Active Directory will be queried for the list of all users. If false, users must be added manually. (Default is true.)

Gateway Username The login name for the Gateway to use when querying Active Directory. Used for retrieving the list of users and roles via
LDAP.

Password The password for the above username.

Password Re-type password for verification.

SSO Enabled Whether or not to use Single-Sign-On () to authenticate users. Note that projects must also have this option SSO AD
enabled for SSO to work. (Default is false.)

This feature was changed in Ignition version :8.1.17

https://docs.inductiveautomation.com/display/DOC80/User+Sources

This setting was disabled and deprecated in 8.1.17 to protect against a potential security
vulnerability. While the property is still visible, it cannot be enabled without setting a special
system property. This is not recommended. Check out the Active Directory SSO Disabled for

 article for more information. 8.1.17 & 7.9.20

SSO Domain The domain that Windows users must match in order to use . If blank, the main "Domain" will be used. Not SSO property
case-sensitive.

Database Properties

Name Description

Database Dropdown list. Choose the database connection this authentication profile will use.

User
Propertie
s Query

A query that returns the basic properties for a single user. Supported return columns are [username, firstname, lastname, schedule,
language, notes].

Role List
Query

A query that returns all possible roles that any user could have. The role names must be returned in the first column of the query's
results

User's
Roles
Query

A query that returns all of the roles that the provided user belongs to. The roles must be strings (i.e., the role names), and must be in
the first column of the query's results. The username will be inserted into this query as a parameter.

Contact
Info
Query

A query that returns all of the contact info for the user. The first column must be the contact type, the second column the contact value,
and the third column the name of a schedule. Optional, may be blank.

Schedule
Adjustme
nt Query

A query that returns the upcoming schedule adjustments for the user. Columns must be Start(date), End(date), Available(boolean), Note
(string). Optional, may be blank.

Extra
Propertie
s Query

A query that returns name, value pairs of extra properties for the user. Will be run with one parameter: the username. Optional, may be
blank.

Find
User
Query The following feature is new in Ignition version 8.1.6

 to check out the other new featuresClick here

A query that must return a row if a user with the given username exists. The query will be run as a prepared statement, so use question
mark (?) to represent username. There must be at least one column: the username. Other columns are optional, supported columns
are: [username, firstname, lastname, schedule, language, notes, badge].

Example: SELECT username, firstname, lastname, schedule, FROM USERS WHERE username = ?

When the User Source is paired with an , enabling this option can provide a modest performance improvement Ignition Identity Provider
during session login.

List
Users
Query

A query that returns a row containing each username. Only used if "List Users from Active Directory" is false. There must be at least
one column: the username. Other columns are optional, supported columns are: [username, firstname, lastname, schedule, language,
notes.

Badge
Authentic
ation
Query

A query that must return a row if the given badge provided is valid. The query will be run as a prepared statement, so use question
mark (?) to represent the badge. The returned row must contain the username.
Example: SELECT username FROM USERS WHERE badge = ?

Advanced Properties

Name Description

Secondary
Domain
Controller
Host

The IP address or hostname of your secondary domain controller (optional). Example: "192.168.1.5" or "BackupServer"

Secondary
Domain
Controller
Port

The port number for the secondary domain controller's LDAP interface. Default: 389.

https://support.inductiveautomation.com/hc/en-us/articles/5979279808397-Active-Directory-SSO-Disabled-for-8-1-17-7-9-20-
https://support.inductiveautomation.com/hc/en-us/articles/5979279808397-Active-Directory-SSO-Disabled-for-8-1-17-7-9-20-
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-IgnitionIdentityProvider

Read
Timeout

The read timeout in milliseconds for LDAP operations. Default is 60,000.

Results
Page Size

The number of entries returned per page of results in a query. Default is 1,000.

User Listing
Base

The base folder to search for users under, such as "DC=MyCompany,DC=com". The entire subtree under this folder will be
searched using the User List Filter. Multiple subtrees can be specified by putting them in parenthesis, like so: "(OU=Administrators,
DC=MyCompany,DC=com)(OU=Operators,DC=MyCompany,DC=com)" If you leave this blank the whole subtree of the domain
controller will be searched.

User List
Filter

The LDAP search filter used when querying for the list of all users. Should restrict the type to user. Default is (&
(objectClass=user)(!(objectClass=computer))).

User
Search Filter

The LDAP search filter to use to find a specific user. Use the placeholder {0} as a standin for the login name. Default is (&
(objectClass=user)(sAMAccountName={0})).

Username
Attribute

The attribute on the User object to define the username. Default is sAMAccountName.

Username
Prefix

This prefix will be prepended to the username before an Active Directory bind is attempted for authentication.

Username
Suffix

This suffix will be appended to the username before an Active Directory bind is attempted for authentication.

Automatic
Suffix

If this option is checked, and the suffix is left blank, then the suffix will automatically be assigned a value of "@<domain>". Default is
true.

Use prefix
and suffix
for Gateway
username

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

If this option is checked, the username prefix and suffix will be applied to the Gateway username before a bind is attempted. This
option is checked by default.

Allow
Anonymous

If enabled, authentication attempts with blank passwords will be passed through to LDAP, which may choose to accept them.

It is highly recommended to disable this setting unless you know it is required. AD servers may allow logging in as any Caution:
user with a blank password when Security Authentication is set to “None” or “Simple” (even if a provided username does not exist
in AD), which is a major security risk.

Security
Protocol

Auto or SSL. Default is Auto.

Security
Authenticati
on

This property specifies how usernames and passwords are used to bind to LDAP. The following options are available:

AUTO: Unspecified from the Gateway side, meaning the LDAP implementation will choose.

NONE: Anonymous access.

SIMPLE: Plaintext username and passwords will be used.

STRONG: Usernames and passwords will be encrypted.

SASL: Simple Authentication and Security Layer. See the SASL Properties table below for additional SASL authentication
configuration settings.

Referral

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

Specifies how referrals are to be processed. Possible options are:

Follow: Always automatically follow referrals. This is the default option.

Ignore: Ignores referrals.

Throw: Throws a ReferralException whenever a referral is encountered.

SASL Properties
These settings are utilized when Security Authentication is set to SASL.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

Name Description

Mechan
ism

 An ordered list of space-separated mechanism names. The LDAP provider will use the first mechanism for which it finds an
implementation. A blank value will leave this setting unspecified. (Default is .)DIGEST-MD5 CRAM-MD5

Realm A realm defines the namespace from which the user is selected. A blank value will leave this setting unspecified. This setting will only be
used by mechanisms which support it. (Default is blank.)

Quality
of
Protecti
on

 A comma-separated list of Quality-of-Protection (QoP) values, the order of which specifies the preference order. There are three well-
known values: "auth" (authentication only), "auth-int" (authentication with integrity protection), and "auth-conf" (authentication with
integrity and privacy protection). A blank value will leave this setting unspecified. This setting will only be used by mechanisms which
support it. (Default is)auth-conf,auth-int,auth.

Protecti
on
Strength

 A comma-separated list of privacy protection strength values, the order of which specifies the preference order. The three possible
strength values are "low", "medium", and "high". A blank value will leave this setting unspecified. This setting will only be used by
mechanisms which support it. (Default is .)high,medium,low

Mutual
Authenti
cation

Enable or disable mutual authentication. This setting will only be used by mechanisms which support it. (Default is disabled.)

1.
2.
3.

4.
5.

6.

Fallback Cache Authentication

This User Source was developed specifically for a system that is using Local Vision Client Fallback, and
allows you to cache the login credentials from a remote user source. This means your users can still log
in with their normal username/password on a Local Vision Client Fallback project, even when the network
connection is unavailable.

Note: Fallback Cache Authentication does not work with . This Identity Provider Authentication Strategy
User Source will only function with Vision clients and user sources using Classic Authentication Strategy
.

Creating the Fallback Cache User Source

The Fallback Cache User Source is created in a similar fashion to any other User Source:

On the go to the tab. Select Gateway Webpage, Config Security > User, Roles.
Click on the link Create new User Source... .
Select the Fallback Cache option and click the button.Next

Type in a name for the new User Source and click . Create New User Source
Details on the Main Properties can be found on the User Sources page. You can also set Cache
Retention as follows.

Fallback Cache Properties

Cac
he
Rete
ntion

Number of days that the cache will retain recently used credentials. This property
determines the number of days credentials will be stored in the cache. Once
exceeded, the credentials will be removed from the cache. (Default: 15)

Click the button.Create New User Source

Populating the Cache

Users and Roles can not be manually added to the Fallback Cache. Instead, they are automatically
copied from remote Gateways. This type of User Source is normally configured on an , but Edge Gateway
can be utilized on an Ignition Gateway.

Before the Fallback Cache will populate, both the and Central Ignition Gateway Fallback
 must be connected over the . The credentials are passed from a Gateway Gateway Network

User Source on the to the Fallback Cache over the Gateway Central Ignition Gateway
Network.
A Fallback Cache User Source must exist on the .Fallback Gateway
A client must be launched on the from the . If the Fallback Gateway Central Ignition Gateway
user successfully authenticates against the User Source, then the Central Ignition Gateway's
credentials are cached into the Fallback Cache.

On this page ...

Creating the Fallback Cache
User Source
Populating the Cache

https://legacy-docs.inductiveautomation.com/display/DOC81/Local+Client+Fallback#LocalClientFallback-LocalClientFallback
https://docs.inductiveautomation.com/display/DOC80/User+Sources
https://legacy-docs.inductiveautomation.com/display/DEP/Ignition+Edge

Related Topics ...

User Source

1.
2.

3.

4.

Verify a User on a User Source

You can verify that a user exists in a given , if the password is correct, what roles a user has, User Source
and any other information added about the user.

Verify a User

On the Gateway Webpage, go to the tab.Config
Choose from the menu on the left.Security > Users, Roles
The page is displayed.User Sources
Select the link.Verify an Authentication Profile

The Verify Authentication Profile window will appear. Choose a from the dropdown list.Profile
Enter a and Click . Username Password. Test Login
Ignition will test the credentials then display the results of the validity test.

If the Login is incorrect, an error message will appear stating that the Login failed for a specified
user.
If the Login is correct, a successful message will appear for a specified user along with their
information.

On this page ...

Verify a User

Verifying an
Authentication
Profile

Watch the Video

https://inductiveuniversity.com/video/verifying-an-authentication-profile/8.1

Identity Provider Authentication Strategy

An Identity Provider (IdP) offers a way for users to log in to Ignition using credentials stored outside of
Ignition. An IdP creates, maintains, and manages identity (login) information while providing
authentication services to Ignition. This provides a secure login that allows Ignition to use SSL and two-
factor authentication (2FA). Note that launching a project from an IdP-initiated SSO response is not
currently supported.

Identity Providers (IdPs) offer user authentication as a service. An IdP creates, maintains, and manages
identity information for principals while providing authentication services to relying party applications
within a federation or distributed network. Authentication of the user is handled by the IdP. Ignition can
connect to these three different types of IdPs:

Ignition's internal IdP
OpenID Connect 1.0
Security Assertion Markup Language (SAML)

Your organization's IT may have some sort of existing integration with an Identity Provider. Some popular
Identity Providers are listed below.

Ping Identity
Okta
Active Directory Federation Services
Duo

IdPs are set up at the Gateway level. Security Levels are also set through the Gateway. The Security
Levels enable you to define a hierarchy of access inside a Perspective Session.

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

As of release 8.1, Identity Providers can also be used in the Vision module, the Designer, and on the
Gateway. The Identity Provider strategy redirects the user to their IdP in their web browser in order to
authenticate. The System Identity Provider setting controls which Identity Provider the user is redirected
to.

Note: If your browser is not supported, you will get an error message.

On this page ...

Identity Provider Authentication
Workflow
Using Identity Providers

Auth Token Connection
Recovery

Identity Provider Authentication Workflow

The following diagram illustrates how IdP authentication works.

https://docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-IgnitionIdentityProvider
https://docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-OpenIDConnectProviders
https://docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-SecurityAssertionMarkupLanguage(SAML)Providers
https://www.pingidentity.com
https://www.okta.com/
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://duo.com/
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

1.
2.
3.
4.

5.
6.

7.

User make a login attempt to the Gateway, Perspective, the Designer, or a Vision Client.
Ignition sees that IdP authentication is required.
Ignition redirects the User to Identity Provider for authentication of their credentials:
IdP Authenticates the User: The IdP prompts the user with a security challenge, such as requesting a username and password. The extent
of the challenge depends entirely on the provider, but many providers may offer support for multi-factor authentication (MFA).
User Responds: The user correctly responds to the security challenge.
Redirect back to Ignition: If the IdP successfully validates the user, it will redirect the user back to the Perspective Session. Some IdPs may
have an additional workflow they will guide the user through, such as re-verifying an email address or replacing an expired password. The
IdP will also return information about that user to the Session. This provides some context about the user that the Session can use to assign
Security Levels.
Update the User's Security Level: Once back at the session, the user will be mapped to the specified Security Level, giving the user access
to the restricted action.

Using Identity Providers

The first step in using Identity Providers is to configure them. For the steps for configuring Internal Ignition IdP, OpenID Connect 1.0, or Security
Assertion Markup Language (SAML), go to .Configuring Identity Providers

Once an Identity Provider has been configured, there are a few things that can be done to test and adjust how it works. You can map the attributes
that are returned in the IdP response document to more familiar user properties that are available to use within the project. You can add rules to
custom security levels that determine when a user falls into the level. Overrides can be given to users in the form of User Grants, so that they are
granted certain security levels regardless of the rules. Finally, you can test out the IdP by logging in with a user to confirm what is returned in the
response document.

Auth Token Connection Recovery

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

After logging into the IdP, a special auth token is generated with the session on the Gateway and is saved in the Designer and Vision Client instance
memory after authenticating with an IdP. If a connection is lost and later recovered, Designers and Vision Client instances may securely resume their
sessions without having to completely restart by passing the Gateway a valid auth token. Note that auth tokens are not included in Gateway Backups.
Any existing auth tokens are cleared when a Gateway Backup is restored.

You can further configure auth tokens by adjusting settings that control the auth token lifecycle. To see these settings, make sure Identity Provider is
selected as the Authentication Strategy as these settings do not apply to the Classic Authentication Strategy.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

User Inactivity Timeout: The number of minutes which must elapse before expiring a user's auth token due to inactivity caused by a
disconnected session. Must be greater than zero. Default: 10 minutes.
Time-To-Live (TTL): The maximum number of minutes a user's auth token may exist before it expires. If set to any number less than or equal
to zero, auth tokens will not expire, as long as the auth token has not expired due to inactivity. Default: 0 minutes (does not expire).

For Designer Auth Tokens, these settings can be found on the Gateway General Security Settings page by navigating to Gateway > Config > Security
> General.

For Vision Client auth tokens, these settings can be found in the Designer by opening the Project Menu, selecting Project Properties and navigating
to Vision > Login.

When redundancy is enabled, Vision Client auth tokens are synchronized from the Master to the Backup so that IdP-authenticated Vision Client
sessions may be resumed seamlessly during failover by using an auth token.

https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Security+Settings

In This Section ...

1.

Configuring Identity Providers

Registering the Ignition Gateway

Before configuring an Identity Provider on the Ignition Gateway, it must first be registered as an Identity
Provider Client. Your Identity Provider will have a workflow to register, and it will most likely request
something called a or . The paths provided utilize your Gateway's addressreturn URL redirect URI
/hostname, and they change depending on the type of provider.

Note: The same redirect URI is used for login and logout.

: OpenID Connect Providers (OP)

OpenID Connect Providers

http://yourGatewayAddress:Port/data/federate/callback/oidc

SAML Providers:

SAML Providers

http://yourGatewayAddress:Port/data/federate/callback/saml

Secure Integration with IdPs

You should always use the secure versions of those redirect URIs (https) in production environments. To
do this you must in Ignition and install a valid certificate. This is the best practice for enable SSL/TLS
maintaining a secure integration with third party Identity Providers.

On this page ...

Registering the Ignition Gateway
Secure Integration with IdPs
Configure an Identity Provider
Common Properties
Ignition Identity Provider

Badge (RFID) Settings
Built-In Attributes
Remember Me Example

OpenID Connect Providers
Importing Metadata from the
Provider
Configuring the Provider
JSON Web Key Configuration

Security Assertion Markup
Language (SAML) Providers

Importing Metadata from the
Provider
Configuring the Provider
SAML Signature Verifying Key
Configuration

Import Provider Metadata for
Redundant Backup
IdP Examples and
Troubleshooting

Configuring
Identity Providers

Watch the Video

Configure an Identity Provider

Although there are several types, the general workflow for creating an Identity Provider is the same.

On the Gateway Webpage, click on the tab. Config

https://www.inductiveuniversity.com/videos/creating-an-identity-provider/8.0/8.1

1.

2.

3.
4.

5.

6.

Under the Security section, click on . The Identity Providers screen is displayed. This screen will list all IdPs that have Identity Providers
been configured. You can change filter by name or adjust the number of IdPs displayed in the view.

Click on Create New Identity Provider...
Choose the type of provider. The current options are , or Ignition OpenID Connect 1.0 .Security Assertion Markup Language 2.0 (SAML)

Click the button.Next

6.
7.

Configure the adapter. This step varies based on the type of provider. Please see the reference tables below for a description of properties.
Once you've filled in the properties, click . Save

Common Properties

All Identity Provider types share the following properties:

Property Name Description

Provider Name The name of the adapter. Adapter names must be unique, so no two adapters on the same Gateway may have the same
name.

The naming conventions for IdPs are as follows:

IdP names must begin with an underscore or alpha character.
The remaining characters in the name must be either underscores or alphanumeric.
IdP names are case sensitive.not

Provider
Description

A description of the provider.

Provider Type The type of Identity Provider. The value for this field comes from the previous screen. It cannot be changed here.

Ignition Identity Provider

The Ignition Identity Provider has the following properties:

Property
Name

Description

User Source The User Source for this IdP. In order to properly authenticate users, the Ignition Identity Provider must be able to query the list of
users from the underlying user source profile.

Session
Inactivity
Timeout The following feature is new in Ignition version 8.1.0

 to check out the other new featuresClick here

The number of minutes which must elapse before expiring a session due to user inactivity. Sessions will not timeout if set to any
number less than or equal to zero.

Session
Expiration

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The maximum number of minutes a session may exist before it is expired. Sessions will not have a max lifetime if set to any number
less than or equal to zero.

Remember
Me
Expiration The following feature is new in Ignition version 8.1.0

 to check out the other new featuresClick here

The maximum number of hours a user will be remembered if they elect to be remembered. Remember Me is disabled when this
value is set to any number less than or equal to zero. For more information on this option, see the Remember Me section below.

Authenticati
on Methods

You can opt into Badge based authentication for the IdP by enabling the “Badge” Authentication Method. The “Default” radio button
determines which option users first see when attempting to authenticate against the IdP.

Badge
Secret

Choose whether or not the user is required to enter a secret (password) along with their badge scan. Additional option can be
checked to require the user to enter their password in addition to scanning their badge.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

Badge (RFID) Settings

Property
Name

Description Required?

Badge
Secret

Choose whether or not the user is required to enter a secret (password) along with their badge scan. Check to require
the user to enter their password in addition to scanning their badge. Default is false (not checked).

Yes

Built-In Attributes

The following attributes are available in the Ignition IdP.

Attribute Type Description Example

auth_time Date Represents the time the user last authenticated.
// Check if
it has been
within 15
minutes
since the
last
//
authenticatio
n attempt
dateDiff
({idp-
attributes:
auth_time},
now(),
"minutes")
<= 15

challenged Boolean Signifies if the user provided credentials at the last login.

If true, then the user was asked to re-validate their credentials the last time they attempted to login.

If false, then they were not challenged to re-validate their credentials during the last login attempt. This can
happen when a login request was made after a user was already authenticated. For example, if a user was
already authenticated in a Perspective Session, and a separate call to system.perspective.login function was
made with the forceAuth parameter set to false, meaning the user did not provide credentials during the last
authentication challenge.

// Returns
True or
False,
depending on
whether or
not the user
//
provided
credentials
at the last
login.
{idp-
attributes:
challenged}

Remember Me Example

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The Remember Me option allows your login to be remembered for a set amount of time, even if you close your browser or restart your Gateway.
When set, you will be remembered on this device for the specified number of hours without needed to log in again.

Note:

The following items will prevent this feature from working successfully:

Updating the Ignition Gateway to a new version will cause the device to "forget" the remembered user for some update versions, namely
8.1.2.
Checking the option for the Always ask the IdP to re-authenticate users by default > General Gateway Security Settings System

 setting will still require re-authentication regardless of Remember Me time allotments.Identity Provider

https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.login
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Security+Settings#GatewayGeneralSecuritySettings-GatewaySecuritySettingsTable
https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Security+Settings#GatewayGeneralSecuritySettings-GatewaySecuritySettingsTable

1.
2.

3.
4.

5.

1.
2.
3.

This option is not recommended if you are using a public or shared device.Caution:

To set up Remember me, do the steps that follow:

On the Gateway Webpage, click on the tab. Scroll down to Config Security > Identity Providers.
For the Ignition Identity Provider you'd like to configure, click on the option and choose .More Settings

On the Settings page, scroll down to the section.Provider Configuration
For the Remember Me Expiration option, enter a value greater than zero. For this example, we set the option to hours. two

Click Save to save your changes.

To enable Remember Me for your login, do a test login:

On the Gateway Webpage, click on the tab. Scroll down to .Config Security > Identity Providers
For the Ignition Identity Provider you'd like to configure, click on the option and choose .More Test Login
Enter your password and select the Remember Me option.

3.

4.
5.

Click the button.Continue
Your login will now be remembered for the amount of hours that were specified in the Gateway setting (in this example, it is 2 hours).

OpenID Connect Providers

OpenID Connect Providers (OP) properties are listed in the following tables. The values on many of these properties may require you to refer to
information from your third-party IdP.

Importing Metadata from the Provider

This method is preferred because of its ease-of-use and accuracy. After importing, you will only need to add your client ID and secret
manually. (However you can revise the imported data if needed as well.)

Property
Name

Description

Import
from URL

URL to the OpenID Provider Configuration document. Typically, if the issuer is " " then the metadata URL https://example.org/foo
would be " "https://example.org/foo/.well-known/openid-configuration

Import
From File

File must be a JSON document with the properties described in section 3 (OpenID Provider Metadata) of the OpenID Connect
Discovery 1.0 specification.

Configuring the Provider

Most OpenID Providers will require registering Ignition as a client. After the registration process is complete, the provider will generate a client ID and
secret for Ignition, which is required below. This gives Ignition the ability to communicate securely with the provider. Most providers will also require a
set of redirect URIs. An example redirect URI would look like: http://hostname:port/data/federate/callback/oidc

Property
Name

Description

Client ID The client identifier registered within the identity provider. This value is provided the Identity Provider.

Client Secret The client secret registered within the identity provider. This value is provided by the Identity Provider.

Authorization
URL

URL of the OP's OAuth 2.0 Authorization Endpoint.

Token URL URL of the OP's OAuth 2.0 Token Endpoint.

https://example.org/foo
https://example.org/foo/.well-known/openid-configuration

Logout URL Optional URL at the OP to which an RP can perform a redirect to request that the end user be logged out at the OP.

JSON Web
Keys URL

URL of the OP's JSON Web Key Set document.

Use Json
Web Keys
URI

If checked, then identity provider public keys will be automatically downloaded from given JSON Web Keys URL. New keys will be
automatically fetched when the identity provider generates new keys. If unchecked, then the static set of JSON Web Keys
(configured below) are used, so when the identity provider rotates keys, they must be manually added to this configuration.

User Info URL Optional URL to retrieve UserInfo claims from the provider. Resulting claims are typically determined by the scopes listed under
the Scope setting.

User Info
HTTP
Request
Method The following feature is new in Ignition version 8.1.27

 to check out the other new featuresClick here

The HTTP method used for sending User Info API requests to the User Info URL. Available options are POST and GET.

Issuer Entity that issues a set of claims.

Supported ID
Token
Signing
Algorithm
Values

A list of the JSON Web Signature (JWS) signing algorithms supported by the OP for the ID Token to encode the claims in a JWT.

Scope A list of scopes which will be sent for each auth request to the OP. Commonly used scopes would be and but email profile
check your Identity Provider's documentation for more information.

JSON Web
Key Config

A list of signing key(s) the RP uses to validate signatures from the OP.

JSON Web Key Configuration

Property
Name

Description

Key Type The cryptographic algorithm family used with the key. Options are EC, RSA or oct.

Public Key Use The intended use of the public key. Options are sig or eng.

Key Operations The operation(s) for which the key is intended to be used.

Algorithm The algorithm intended for use with the key.

Key ID Used to match a specific key.

X.509 URL A URI that refers to a resource for an X.509 public key certificate or certificate chain. The identified resource MUST provide a
representation of the certificate or certificate chain that conforms to RFC 5280 in PEM-encoded form, with each certificate
delimited as specified in Section 6.1 of RFC 4945.

X.509
Certificate
Chain

The "x5c" (X.509 certificate chain) parameter contains a chain of one or more PKIX certificates. Each entry must be a base64-
encoded (Section 4 of RFC4648 -- not base64url-encoded) DER PKIX certificate value.

X.509
Certificate
SHA-1
Thumbprint

A base64url-encoded SHA-1 thumbprint (a.k.a. digest) of the DER encoding of an X.509 certificate.

X.509
Certificate
SHA-256
Thumbprint

A base64url-encoded SHA-256 thumbprint (a.k.a. digest) of the DER encoding of an X.509 certificate.

There are some additional properties, that depend on which Key Type is selected.

Key Type: EC

Property Name Description

crv (Curve) The cryptographic curve used with the key.

x (X Coordinate) The x coordinate for the Elliptic Curve point represented as the base64url encoding of the octet string representation of the

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27

coordinate.

y (Y Coordinate) The y coordinate for the Elliptic Curve point represented as the base64url encoding of the octet string representation of the
coordinate.

d (ECC Private
Key)

The Elliptic Curve private key value represented as the base64url encoding of the octet string representation of the private key
value.

Key Type: RSA

Property Name Description

n (Modulus) The modulus value for the RSA public key represented as a Base64urlUInt-encoded value.

e (Exponent) The exponent value for the RSA public key represented as a Base64urlUInt-encoded value.

d (Private
Exponent)

The private exponent value for the RSA public key represented as a Base64urlUInt-encoded value.

p (First Prime
Factor)

The first prime factor represented as a Base64urlUInt-encoded value.

q (Second Prime
Factor)

The second prime factor represented as a Base64urlUInt-encoded value.

dp (First Factor
CRT Exponent)

The Chinese Remainder Theorem (CRT) exponent of the first factor represented as a Base64urlUInt-encoded value.

dq (Second
Factor CRT
Exponent)

The CRT exponent of the second factor represented as a Base64urlUInt-encoded value.

qi (First CRT
Coefficient)

The CRT coefficient of the second factor represented as a Base64urlUInt-encoded value.

oth (Other Primes
Info)

Information about any third and subsequent primes, should the exist. Each new Prime added will provide users with new
Prime Factor, Factor CRT Exponent, and Factor CRT Coefficient properties, all of which are required.

Key Type: oct

Property
Name

Description

k (Key Value) The value of the symmetric (or other single-values) key represented as the base64url encoding of the octet sequence containing
the key value.

Import Provider Metadata for Redundant Backup

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

See the below. Import Provider MetaData for Redundant Backup section

Security Assertion Markup Language (SAML) Providers

The properties for Security Assertion Markup Language (SAML) are listed in the following tables. The values on many of these properties may require
you to refer to information from your third-party IdP.

Importing Metadata from the Provider

This method is preferred because of its ease-of-use and accuracy. After importing, you will have the opportunity to revise the imported data if needed
before saving.

Property Name Description

Import from URL URL to the SAML Identity Provider Metadata document.

Import From File File must be an XML document which conforms to the SAML 2.0 metadata schema described in saml-metadata-2.0-os.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11

The SAML Service Provider (SP) metadata for an Ignition Gateway may be accessed at the following URL: http://<ipaddress>:<port>/data/saml
/metadata/sp.

The Assertion Consumer Service (ACS) URL for this Ignition Gateway is: http:// /data/federate/callback/saml<ipaddress>:<port>

Both of these addresses assume you know the IP Address and port of your Ignition install. For example, if you are on the computer Ignition is installed
on, you could use: for the SP metadata.http://localhost:8088/data/saml/metadata/sp

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

SAML IdPs may send the Base64-encoded SAML Response in a line-wrapped form (with new line characters such as \r and \n separating each
line). As of release 8.1.1, Ignition's 2.0 SP implementation can handle both line-wrapped and non-line-wrappedBase64-encoded SAML responses.

Configuring the Provider

Property
Name

Description

IdP Entity
ID

The Identity Provider's Entity ID.

SP Entity
ID

The Service Provider's Entity ID. In this case, the Service Provider is the current Ignition Gateway.

By default, the Identity Provider will automatically generate the SP Entity ID based on the hostname that the client uses to connect to
this Gateway. You may opt out of this setting and input a different SP Entity ID for the Gateway.

Assertion
Consumer
Service
(ACS)
Binding

The expected binding used by the Identity Provider when interacting with Ignition's Assertion Consumer Service.

Name ID
Format

The expected name ID format for subjects of assertions resulting from Authn Requests. Options are UNSPECIFIED,
EMAIL_ADDRESS, X509_SUBJECT_NAME, WINDOWS_DOMAIN_QUALIFIED_NAME, KERBEROS_PRINCIPAL_NAME,
ENTITY_IDENTIFIER, PERSISTENT_IDENTIFIER, TRANSIENT_IDENTIFIER.

Single
Sign-On
(SSO)
Service
URL

The Identity Provider's Single Sign-On (SSO) Service URL.

Single
Sign-On
(SSO)
Service
Binding

The binding Ignition will use for sending Authn Requests to the Identity Provider's Single Sign-On (SSO) Service.

Force
Authn

Check this box to force complying Identity Providers to authenticate the user each time instead of relying on a previous security
context. See section 3.4.1 of saml-core-2.0-os for more details.

Validate
Response
Signatures

Check this box to validate the signature of the response from the Identity Provider.

Validate
Assertion
Signatures

Check this box if it is expected that assertions will be signed. Ignition will validate the signatures of each assertion.

IdP
Metadata
URL The following feature is new in Ignition version 8.1.16

 to check out the other new featuresClick here

URL to the SAML Identity Provider Metadata document.

If is checked, the identity provider's signature verifying keys and certificates will be automatically Use IdP Metadata URL
downloaded from the given metadata URL. New keys and certificates will be automatically fetched when the identity provider
generates them. If unchecked, then the static set of keys and certificates (configured below) are used, so when the identity provider
rotates them, they must be manually added to this configuration.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16

Signature
Verifying
Keys

A list of signing key(s) that Ignition uses to validate signatures from the IdP.

Signature
Verifying
Certificates

A base64-encoded DER PKIX certificate value.

SAML Signature Verifying Key Configuration

Property Name Description

Key Algorithm The algorithm identifier for this signature verifying key. Options are DSA, RSA, or EC.

Key Value A base64-encoded DER key value.

Import Provider Metadata for Redundant Backup

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

See the below. Import Provider Metadata for Redundant Backup section

Import Provider Metadata for Redundant Backup

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

Both OIDC and SAML provider configurations contain a section that allows you to define metadata which will be used by the backup gateway in a
redundant Ignition configuration. When a backup gateway becomes the active node, it will interact with the identity provider via the backup settings. By
default, the backup meta data will use the same configuration settings that the master node uses, unless "Provider Metadata for Redundant Backup"
is set to false, in which case the IdP configuration will allow you to define settings for the backup gateway.

IdP Examples and Troubleshooting

The page will show you how to configure an external that used 1.0 with your system. 1.0 ExampleOpenID Connect IdP OpenID Connect Ignition
Go to for helpful examples to help you diagnose and troubleshoot issues with configuring IdPs.Troubleshooting Identity Providers
Refer to page for how to configure an that is using the . SAML Example Identity Provider SAML protocol

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC80/OpenID+Connect+1.0+Example
https://docs.inductiveautomation.com/display/DOC80/Troubleshooting+Identity+Providers

1.
2.

3.

User Attribute Mapping
The User Attribute Mapping page allows you to map information in the Identity Providers (IdP) response
document to easily understandable properties. These properties are then made available as Session

in the Perspective Session. To work, this requires that the Gateway already has a valid IdP Properties
configuration which returns a response document when attempting to login. On this page ...

Configuring a User Attribute
Mapping
User Attribute Mapping Property
Reference Table
Direct Mapping

Attribute Sources
Expression Mapping
Built-in Expression Objects

Single-Valued Object Example
Multi-Valued Object Example
Tag Path Example

Configuring a User Attribute Mapping

From the Gateway Webpage tab, click on .Config Security > Identity Providers
Select the and click on under the button.Identity Provider User Attribute Mapping More

The Name, Description, and Provider Type are not editable here, but are listed on the page to make clear which IdP the User Attribute
Mapping is being configured on.

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties

3.

4.

Under the section of properties, you'll find settings for each of the mappable user attributes. User Attributes

4.

5.

If you make changes to any of the mappings, be sure to click when finished. Save

User Attribute Mapping Property Reference Table

Mappings can be configured on several user attributes.

Attribute Description Data Type

ID The Type of mapping to apply for user IDs. String

Username The Type of mapping to apply for usernames. String

First Name The type of mapping to apply for first names. String

Last Name The type of mapping to apply for last names. String

Email The type of mapping to apply for email addresses. String

Roles The type of mapping to apply for user roles.

Note:

While using an Expression type attribute mapping, you can use a call to create a list of roles through runScript
scripting. However the script must return an ArrayList, as opposed to Jython collection types:

import java.util.ArrayList as ArrayList

roles = ArrayList()

roles.add("Operator")

Java
ArrayList of
Strings

Each attribute mapping has similar properties, which are listed below

Property Name Description

Type The Type of mapping to apply for the attribute. Options are or . direct expression

Source The name of the attribute source. In cases where the identity provider has several , this property allows Attribute Sources
you to specify which source the mapping should use. (for type only)direct

Path Path to the attribute map based on the selected source. Each node in the path is delimited by a slash character ("/"). (for di
 type only)rect

Expression The source code for the expression used to map the targeted user attribute. See the . (for Security Level Rules expression
type only)

Direct Mapping

Direct mappings require that you enter in the path to an attribute in the response document for the given property. Values in the Identity Provider’s
response document are dereferenced using the configured paths and are copied to the respective user properties in Ignition. The Source dropdown
allows a particular mapping to target a specific object in the response document. The Path property then determines what object inside of source
should be.

In the image below, the ID of the user, as represented on the Ignition Gateway, will be determined by the attribute, located in the sub ID Token Claims
source in the response document.

https://legacy-docs.inductiveautomation.com/display/DOC81/runScript
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Level+Rules#SecurityLevelRules-SpecialObjectReference

Attribute Sources

Each Identity Provider has a different list of possible attribute sources. Below are several tables that list each possible source, as well as the
expression path name for the source (used by and expression paths. See {attribute-source:X:Y} {multi-attribute-source:X:Y} Securit

.)y Level Rules

IdP Type Attribute Source(s)

Ignition

ID Token Claims (default)

Token Endpoint Response

OIDC ID Token Claims (default)

Token Endpoint Response

User Info Claims

SAML Authentication Response

For Ignition and OIDC IdPs, the correct source to use will vary with the referenced attribute, and is included in the response document on the Test
 page. Login

Note: The user info claims attribute source is present only when the user info URL is configured and Ignition receives a valid user info response from
the IdP.

Expression Mapping

The Expression type allows you to use the expression language to derive the mapping from contextual data, such as the IdP response document or
Tags. To assist with parsing the response document in an expression, there are several built-in objects.

Built-in Expression Objects

In IdP contexts, it is possible to reference IdP response document elements using a three-part format:

{<Attribute Type>:<Attribute Source>:<Attribute Path>}

In this format, " " is the attribute type we're attempting to reference, " " is the name of the top-level <Attribute Type> <Attribute Source>
attribute source, and " " is a path to the property inside the attribute source. Here, we'll discuss the possible values for each part <Attribute Path>
of this expression, and when they should be used.

Attribute Type

Type Expression
Value

Description

Single-
Valued
Object

attribute-
source

Provides the ability to reference an attribute (such as the username) returned from an IdP attribute source where the
attribute's value is expected to be a single atomic value, usually a string.

Multi-
Valued
Object

multi-
attribute-
source

Provides the ability to reference an attribute (such as the user's roles) returned from an IdP attribute source where
the attribute's value is expected to be a collection of single atomic values, usually a collection of strings.

Attribute Source

Possible values for the attribute source will vary by IdP type:

IdP Type Attribute Source(s) Expression Path Name

Ignition

ID Token Claims (default) idTokenClaims

Token Endpoint Response tokenEndpointResponse

OIDC ID Token Claims (default) idTokenClaims

Token Endpoint Response tokenEndpointResponse

User Info Claims userInfo

SAML Authentication Response authnResponse

For Ignition and OIDC IdPs, the correct source to use will vary with the referenced attribute, and is included in the response document on the Test
 page.Login

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

Prior to Ignition 8.1.5, the expression path for SAML Authentication Response did not have an explicit name, so the attribute-source expression path
would simply default to Authentication Response in all cases. As of 8.1.5, authnResponse must be explicitly stated when attempting to access the
Authentication Response source with expression paths. See .Expression Mapping

Attribute Path

The final element in an attribute reference is a path to the attribute within the attribute source. Here, the page is helpful for accessing the Test Login
attribute source's structure in the response document.

If the attribute source is a JSON document (as is the case with Ignition and OIDC IdPs), then a JSON Path may be used to reference the target
attribute.

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

If the attribute source is an XML document (as is the case with SAML IdPs), then an XPath 1.0 expression may be used to reference the target
attribute. See the further down. Multi-Valued Object Example

Single-Valued Object Example

This example makes use of the Single-Valued Object on an JSON response document from an OpenID Connect IdP. The document used by this
example is listed in the code block below.

Sample OIDC Response Document

{
 "idTokenClaims": {
 "sub": "00u4zl66kjWSxpKyH357",
 "name": "Paul Person",
 "email": "person@company.com",
 "ver": 1,
 "iss": "https://573779.okta.com",
 "aud": "0oa2uqi4odPcNHRpS357",
 "iat": 1617831866,
 "exp": 1617835466,
 "jti": "ID.itbv0TrKsyxqJpEsqwkVHaVa07xBD_haRQMnGUQ5tz4",
 "amr": [
 "pwd"
],
 "idp": "00ob8o86nJ2kN48V4356",
 "nonce": "a2Zq9QA1xL7t_apS58YIPaegbGD9w6FN60qSgP0i7fg",
 "preferred_username": "person@company.com",
 "auth_time": 1617831865,
 "at_hash": "TEbuSUf8aMhWGYDuHsC0jQ"
 },
 "tokenEndpointResponse": {
 "token_type": "Bearer",
 "expires_in": 3600,
 "access_token":
"eyJraWQiOiJCVlowd3JweUdiRnB5cG5EQ05HbUpnMnhtbW5sc0h3TlBRdVp3MjQxSjdrIiwiYWxnIjoiUlMyNTYifQ.
eyJ2ZXIiOjEsImp0aSI6IkFULmhmaEVRLUFiZzIyVU1Bb3NWNm9wWld1NHFGWmIzZUdLR25VVUNhX1lWWWciLCJpc3MiOiJodHRwczovL2Rld
i01NzM3Nzkub2t0YS5jb20iLCJhdWQiOiJodHRwczovL2Rldi01NzM3Nzkub2t0YS5jb20iLCJzdWIiOiJwc2NvdHRAaW5kdWN0aXZlYXV0b2
1hdGlvbi5jb20iLCJpYXQiOjE2MTc4MzE4NjYsImV4cCI6MTYxNzgzNTQ2NiwiY2lkIjoiMG9hMnVxaTRvZFBjTkhScFMzNTciLCJ1aWQiOiI
wMHU0emw2NmtqV1N4cEt5SDM1NyIsInNjcCI6WyJvcGVuaWQiLCJlbWFpbCIsInByb2ZpbGUiXX0.
GR3JoTmbNtD7FDV59cuiE3wXsNJARN_zz5pmtnhLr19BGgiR7KJonYXBo7E_KPJ82RAEKsGRKFLzSDIzaB2QUCPyzJSsNg2LKvht5yoQoguoY
6HqgeU73UkF6gbEhE3c_WfW1reewN8eazIOnvYJQhmVZYrhlF04XYOcB8o_1raNku3yUw76MDyAlWpaXuYQ2b9UYir3CLlb7AwpYTHdRHAk7z
dFv713m4aR5IgVt0Pch8pFarX4k3o6Sg4ZghLW-
4eioSzs0CrVLk3j09vQIEKn0jdlKqY0i9_9HBiEGUrVOXuiJ587ocRTjvxeNCpr_B7DBczBbtTkOFNzw3xRhw",
 "scope": "openid email profile",
 "id_token": "eyJraWQiOiJUNEhmZDQ0LXVVQ09sMGJpTl9fWnprQkJYWVdSSXlQYXBIZi1QeFRFTHYwIiwiYWxnIjoiUlMyNTYifQ.
eyJzdWIiOiIwMHU0emw2NmtqV1N4cEt5SDM1NyIsIm5hbWUiOiJQYXVsIFNjb3R0IiwiZW1haWwiOiJwc2NvdHRAaW5kdWN0aXZlYXV0b21hd
Glvbi5jb20iLCJ2ZXIiOjEsImlzcyI6Imh0dHBzOi8vZGV2LTU3Mzc3OS5va3RhLmNvbSIsImF1ZCI6IjBvYTJ1cWk0b2RQY05IUnBTMzU3Ii
wiaWF0IjoxNjE3ODMxODY2LCJleHAiOjE2MTc4MzU0NjYsImp0aSI6IklELml0YnYwVHJLc3l4cUpwRXNxd2tWSGFWYTA3eEJEX2hhUlFNbkd
VUTV0ejQiLCJhbXIiOlsicHdkIl0sImlkcCI6IjAwb2I4bzg2bkoya040OFY0MzU2Iiwibm9uY2UiOiJhMlpxOVFBMXhMN3RfYXBTNThZSVBh
ZWdiR0Q5dzZGTjYwcVNnUDBpN2ZnIiwicHJlZmVycmVkX3VzZXJuYW1lIjoicHNjb3R0QGluZHVjdGl2ZWF1dG9tYXRpb24uY29tIiwiYXV0a
F90aW1lIjoxNjE3ODMxODY1LCJhdF9oYXNoIjoiVEVidVNVZjhhTWhXR1lEdUhzQzBqUSJ9.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5
https://www.w3schools.com/xml/xpath_syntax.asp

b5wi6CH0p1OigL6aaamZu3aVbOHRgiKdHFKqEgU0PLfbTILGtabhLktic843XaBTiQm8s3oXz153P3rdsUP4VPj1jXF8C221iEjP-
55PyBX2kQ-ggyqXVrWlywmOWFNn4kSjViuzMIt2gXeW8yW-
OBtxBTZr7QPDF6XKwZk6V183K0hT3ZbrzHcqZ0juIEkxrrfDU8N8Fo8bO94A2rGPp0mfSPttkrxxZBJ3bO6oY5e7NtcBnt4IsbSZfvI3_1KUo
Qt0SylljsescEZGxRJCfNdE3dJyOaQZuBKLN8ouxibD9Jdmn9_raeLGKOsxNHK0pNMRbptJ9UD4VemyezQvzA"
 },
 "userInfo": {
 "sub": "00u4zl66kjWSxpKyH357",
 "name": "Paul Person",
 "locale": "en-US",
 "email": "person@company.com",
 "preferred_username": "person@company.com",
 "given_name": "Paul",
 "family_name": "Person",
 "zoneinfo": "America/Los_Angeles",
 "updated_at": 1596495564,
 "email_verified": true
 }
}

If, for example, we wanted to configure a mapping on the First Name, which would allow us to retrieve the name of the user provided by the response
document. The under appears to have the value we're looking for. given_name userInfo

We can use the attribute-source object to directly reference the node.

{attribute-source:userInfo:given_name}

This is equivalent to using a direct mapping type with Source set to "ID Token Claims" and Path set to "name". However, since we're using the
expression language, we have access to more tools, which is useful in cases where the attribute value we're looking for isn't as readily accessible.

For example, say the response document did not contain a node that represented just the users first name. However, it does contain a name under id
 TokenClaims (line 4) to that has the user's full name. We could access the full name, and then use the expression language's split function to split

the first and last names.

split({attribute-source:idTokenClaims:name}, ' ')[0,0]

Multi-Valued Object Example

This example makes use of the Multi-Valued Object on an XML response document from a SAML IdP. Here we can use an to XPath expression
examine the document and reference a specific node. We'll configure an expression type mapping that will retrieve attribute values that we want
mapped to a user's Roles. Below we see the results of a test login . Our user does not appear to have any roles mapped.

https://legacy-docs.inductiveautomation.com/display/DOC81/split
https://www.w3schools.com/xml/xpath_syntax.asp
https://docs.inductiveautomation.com/display/DOC81/Test+Login+and+Logout

If we click on the tab, we see the results listed in the code block below. IdP Response Data

Sample SAML Response Document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<saml2p:Response xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol" xmlns:xs="http://www.w3.org/2001
/XMLSchema" Destination="http://localhost:8088/data/federate/callback/saml" ID="id508417152055433477622124"
InResponseTo="A-tiacipjeAZM4e4xHRRgFkV9KrOx5Mv8tHrdowuL7zi0" IssueInstant="2021-04-06T21:42:33.776Z"
Version="2.0">
 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" Format="urn:oasis:names:tc:SAML:2.0:
nameid-format:entity">http://www.okta.com/exkj0b0vtttYvPzH10h7</saml2:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#id508417152055433477622124">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="xs"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>UYW4pdcsWK19aRbSl3NlgRc+RZ1jIyCK6hsXnSu7VYs=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 </ds:Signature>
 <saml2p:Status>
 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </saml2p:Status>
 <saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" ID="id508417152165556256586917"
IssueInstant="2021-04-06T21:42:33.776Z" Version="2.0">
 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http://www.okta.com
/exkj0b0vtttYvPzH10h7</saml2:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#id508417152165556256586917">

 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="xs"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>xNlFDTmRTPXYqSLpruOZoPSq2Lz6q1rPrGiROR6MXdM=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 </ds:Signature>
 <saml2:Subject>
 <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">person@company.com<
/saml2:NameID>
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml2:SubjectConfirmationData InResponseTo="A-tiacipjeAZM4e4xHRRgFkV9KrOx5Mv8tHrdowuL7zi0"
NotOnOrAfter="2021-04-06T21:47:33.776Z" Recipient="http://localhost:8088/data/federate/callback/saml"/>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions NotBefore="2021-04-06T21:37:33.776Z" NotOnOrAfter="2021-04-06T21:47:33.776Z">
 <saml2:AudienceRestriction>
 <saml2:Audience>http://localhost:8088</saml2:Audience>
 </saml2:AudienceRestriction>
 </saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2021-04-06T21:26:07.499Z" SessionIndex="A-
tiacipjeAZM4e4xHRRgFkV9KrOx5Mv8tHrdowuL7zi0">
 <saml2:AuthnContext>
 <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:
PasswordProtectedTransport</saml2:AuthnContextClassRef>
 </saml2:AuthnContext>
 </saml2:AuthnStatement>
 <saml2:AttributeStatement>
 <saml2:Attribute Name="FirstName" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:
unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:
string">Paul</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="LastName" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:
unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:
string">Scott</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="Email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:
unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:
string">person@company.com</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="Role" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified"
>
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:
string"/>Operator</saml2:AttributeValue>
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string"/>Supervisor</saml2:AttributeValue>
 </saml2:Attribute>
 <saml2:Attribute Name="Groups" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:
unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="xs:
string"/>
 </saml2:Attribute>
 </saml2:AttributeStatement>
 </saml2:Assertion>
</saml2p:Response>

In the example document, lines 68 and 69 contain elements, which contain the roles for our user. Starting from the roles, we saml2:AttribueValue
can work our way back towards the top of the document, but making the following observations.

We see both elements are under a element (line 67).saml2:Attribute

The element is under a element (line 57).saml2:Attribute saml2:AttributeStatement
The element is under a element (line 23).saml2:AttribueStatement saml2:Assertion
Finally, the element is under the , which seems to be the root for the entire path (line 2). saml2:Assertion saml2p:Response element

Thus, we're looking for all text values of all saml2:AttributeValue elements that are under a specific saml2:Attribute element. We see that the
saml2SAttribute element we're looking for also has name attribute set to "Role", which we can use to help focus our path. Based on our observations,
the path looks like the following:

Note that we start at the root of the saml2p:Reponse element (on the left), and build the rest of the path in reverse order of our observations.

We specified that the saml2:Attribute must contain an attribute by the name of "Name", with a value of "Role", with which filters out the other saml2:
Attribute elements in the document (such as the elements with FirstName and LastName).

In addition, we ended the path with text(), which access the text values of the nodes.

/saml2p:Response/saml2:Assertion/saml2:AttributeStatement/saml2:Attribute[@Name="Role"]/saml2:AttributeValue
/text()

Writing the Path

Now that we know what our path looks like, we can write an expression. We'll type the following into the "Expression" field for the Roles setting:

{multi-attribute-source:authnResponse:/saml2p:Response/saml2:Assertion/saml2:AttributeStatement/saml2:
Attribute[@Name="Role"]/saml2:AttributeValue/text()}

If we then , we can attempt a Save test login , and check the mapped user attributes, where we see our roles from the response document now
appear mapped to our user.

https://docs.inductiveautomation.com/display/DOC81/Test+Login+and+Logout

Tag Path Example

In addition, Tag values can be referenced by mappings. Note that the values are only checked when the user logs in. So if the value of any tags used
in a mapping change after the user logs in, the result of the mapping won't retroactively change.

{[default]A_Folder/A_Tag.value}

In the example above, the expression would attempt to return the value of the Tag at path "A_Folder/A_Tag", in the Tag Provider named "default".

OpenID Connect 1.0 Example

This section provides an example of how to connect an Identity Provider that is using the OpenID
Connect 1.0 protocol. This example uses the Okta IdP service. Your IdP vendor may differ and the
specific links will differ.

Prerequisites

Before you begin configuring Ignition there are some preliminary requirements that need to be done
outside of Ignition:

A configured remote IdP (Okta in this example)
The metadata file specific to your IdP
The scope data specific to your IdP
Login credentials to use as a test

On this page ...

Prerequisites
Configured IdP
Metadata File
Scope Data
Test Login Credentials

Configure Ignition Gateway

Configured IdP

An IT department is usually the one to set up and configure a remote IdP. You need a configured remote IdP that is compatible with OpenID Connect
1.0. protocol. At minimum there needs to be an account set up with the IdP, users added to the IdP account, and applications added to the IdP.

Metadata File

You will need the metadata file specific to your IdP. This document defines how to communicate with the IdP. It is usually a web page that allows the
metadata file to be exported to a JSON file. Often it is a URL that ends with “.well-known/openid-configuration”.

You will need the URL link to this page or a JSON export of this page. For example, if your IdP user login URL is something like this:

 https://dev-123456.oktapreview.com/login/login.htm

Then the metadata import URL may look like something like this:

 https://dev-123456.oktapreview.com/.well-known/openid-configuration

Here is an example of part of a metadata file for Okta. Notice that the URL link has "/.well-known/openid-configuration" at the end and is very similar
It is recommended to use the URL specific to your IdP. Your IT department may choose to export this JSON file of this page and to the login URL.

provide it to you. Either option will work.

https://dev-123456.oktapreview.com/login/login.htm
https://dev-123456.oktapreview.com/.well-known/openid-configuration

1.
2.

Note: It is recommended to use the URL specific to your IdP. Your IT dept. may choose to export this JSON file of this page and provide it to
you. Either option will work.

Scope Data

When a user is verified by the IdP a lot of the user specific data is not returned in the response file by default (i.e., username, email, firstname,
lastname, etc). This user specific data is called the scope, and it can be returned if the section of the Ignition Gateway is configured. The list Scope
of available scope definitions may be available from your IT deptartment or available from the developer documentation of the IdP you are using.

For this Okta example, the scope data is in the developer notes at https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-
always-returned

Test Login Credentials

You need an account specific to the IdP for testing purposes (Okta in this example). To test and verify the IdP account, login to your IdP. For our
example, the Okta login page is shown here:

Configure Ignition Gateway

On the Gateway Webpage, click on the tab. You will need to log in if you aren't already.Config
Under the Security section, click on . The Identity Providers screen is displayed. This screen will list all IdPs that have Identity Providers
been configured. You can filter by name or adjust the number of IdPs displayed per page in the view.

https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned
https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned

2.

3.

4.

5.

Click on the Create a New Identity Provider... link.

Select the OpenID Connect 1.0 option and click Next.

On the Basic Details screen, provide an Provider Name. You can also add an Provider Description if desired. The Provider Type field will
fill in automatically from the previous screen.

5.

6.

7.

8.

9.

10.

The next section is Import Provider Metadata. In the Import from URL section, enter in the URL from earlier that shows the “.well-known
/openid-configuration” link specific to your IdP. You can also import a file below if it was provided by your IT department.
Click on the button. Import

Ignition will now generate a URI redirect address for your Ignition server. It is listed just below the “Import Provider Metadata” area of the
configuration page.
In our example it is . You need to provide this URI to your IdP (usually this means giving it http://10.10.115.3:8088/data/federate/callback/oidc
to your IT department).

Note: The URI should be a web address that is accessible from the end user's web browser.

Once you've given your IT department the redirect address, they can add your Ignition server as an application to the IdP.
Once they have done this, they can provide you with a “Client ID” and “Client Secret”. This is needed for the Ignition Gateway to properly
communicate with the IdP.

Note: The IdP can use the same redirect address for the Login, Logout, and Initiate Login.

The next section is Provider Configuration. Most of the fields below should now be filled in when you imported the IdP Metadata. Fill in the Cli
 and fields with the information obtained from your IdP (or IT department). If you don't know them yet, you can put in ent ID Client Secret

bogus values for now and edit them later once the correct values are provided to you.

http://localhost:8088/data/federate/callback/oidc

10.

11. Providing scope is optional. These fields are specific to your IdP, and you may need to find the developer documentation specific to your IdP.

Enter "email" in the field and press the button. Repeat for each scope you want returned.Scope Add
For our example, the list of available scopes is in the Okta developer documentation: https://developer.okta.com/docs/api/resources

. /oidc#scope-dependent-claims-not-always-returned

https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned
https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned

11.

12.

13.
14.

Press the button at the bottom right of the page. You'll see a confirmation message. Save

The next step is to perform a test login. From the Identity Providers screen, select and then More Test Login.
You will be re-directed to the Okta login. Enter in your test login credentials and click the button.Sign In

14.

15. If the login is successful, you will be returned to the Identity Provider Test Login screen. The returned results will be displayed in the Results
section.

Note: In this example, we did not add the username or email to our scope. Thus they have not been returned.

15.

Editor notes are only visible to logged in users
Admin Username/password for Training's OKTA instance are available through
LastPass. See Bobby.

OKTA USER LOGIN INFO:

Okta Login Page: https://dev-997763.oktapreview.com/login/login.htm

Okta ia User: training@ia.io

Okta ia Pass: P4ssw0rd

Okta Metadata Definition: https://dev-997763.oktapreview.com/.well-known
/openid-configuration

Okta Scope Definition: https://developer.okta.com/docs/api/resources
/oidc#scope-dependent-claims-not-always-returned

Okta Client ID: 0oaifp0dlntvhYxaX0h7

Okta Client Secret: ZvMy_gt-XqiILB4qQH6AacpsEqA_M2Y8gwkvoj3Q

https://dev-997763.oktapreview.com/login/login.htm
mailto:training@ia.io
https://dev-997763.oktapreview.com/.well-known/openid-configuration
https://dev-997763.oktapreview.com/.well-known/openid-configuration
https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned
https://developer.okta.com/docs/api/resources/oidc#scope-dependent-claims-not-always-returned

SAML Example

This section provides an example of how to connect an Identity Provider that is using the SAML protocol.
This example uses the Okta IdP service. Your IdP vendor may differ and the specific links will differ.

Prerequisites

Before you begin configuring Ignition there are some preliminary requirements that need to be done
outside of Ignition:

A configured remote IdP (Okta in this example)
The metadata file specific to your IdP
The scope data specific to your IdP
Login credentials to use as a test

On this page ...

Prerequisites
Configured IdP
Metadata File
Test Login Credentials

Configure Ignition Gateway

Configured IdP

An IT department is usually the one to set up and configure a remote IdP. You need a configured remote IdP that is compatible with SAML protocol.

At minimum there needs to be an account set up with the IdP, users added to the IdP account, and applications added to the IdP.

Metadata File

You will need the metadata file specific to your IdP. This document defines how to communicate with the IdP. It is usually a web page that allows the
metadata file to be exported to an XML file.
You will need the URL link to this page or an XML export of this page. For example, the metadata import URL may look like something like this:

https://dev-123456.okta.com/app/esdfsdf7886sd6723hjkdf/sso/saml/metadata

Here is an example of part of a metadata file for Okta. Notice that file is XML format. You can use the file or the URL to automatically import the
configuration into Ignition. Otherwise it will need to be manually typed in.

Test Login Credentials

You need an account specific to the IdP for testing purposes (Okta in this example). To test and verify the IdP account, login to your IdP. For our
example, the Okta login page is shown here:

1.
2.

3.

You should now have a IdP credentials to test with, a metadata URL or metadata XML file. The next step is to configure Ignition to communicate with
your IdP.

Configure Ignition Gateway

On the Gateway Webpage, click on the tab. You will need to log in if you aren't already.Config
Under the Security section, click on Identity Providers. The Identity Providers screen is displayed. This screen will list all IdPs that have
been configured. You can filter by name or adjust the number of IdPs displayed per page in the view.

Click on the link.Create a New Identity Provider...

3.

4.

5.

Select the Security Assertion Markup Language 2.0 option and click Next.

On the Basic Details screen, provide an Provider Name. You can also add an Provider Description if desired. The Provider Type field will
fill in automatically from the previous screen.

5.

6.

7.

8.

9.

10.

The next section is Import Provider Metadata. In the Import from URL section, enter in the URL from earlier specific to your IdP. You can
also import a file below if it was provided by your IT department.
Click on the button. Import

Ignition will now generate a URI redirect address for your Ignition server. It is listed just below the “Import Provider Metadata” area of the
configuration page.
In our example it is http://10.10.110.86:8088/data/federate/callback/saml. You need to provide this URI to your IdP (usually this means giving
it to your IT department).

Note: The URI should be a web address that is accessible from the IdP server.

Once you have given your IT department the redirect address, they can add your Ignition server as an application to the IdP.

Note: The IdP can use the same redirect address for the Login, Logout, and Initiate Login.

The next section is Provider Configuration. Most of the fields below should now be filled in when you imported the IdP Metadata.

10.

11. Press the Save button at the bottom right of the page. You'll see a confirmation message.

11.

12.
13.

14.

The next step is to perform a test login. From the Identity Providers screen, select and then More Test Login.
You will be re-directed to the Okta login. Enter in your test login credentials and click the button.Sign In

If the login is successful, you will be returned to the Identity Provider Test Login screen. The returned results will be displayed in the Results
section.

14.

1.

2.
3.

4.
5.

User Grants

A User Grant is a way to directly assign a user to a , even if they do not meet the Security Level
requirements of the . User Grants essentially act as an override to the original rules Security Level Rules
of the Security Level.

User Grants are accessed from the Gateway Webpage section in . Config Security > Identity Providers
Users can be added and edited using the buttons in the Users table so that Security Levels can then be
granted to them.

Note: When adding, editing, and deleting users in User Grants, you are only modifying the User Grant
(whether the user is granted permission that overrides the Security Rules). The user is not changed in
the Identity Provider.

Users are identified by either their username or their ID from the provider response document. Once you
have identified a user, you can assign them any number of grants to Security Levels. Selecting a level
will automatically select all security levels above it. The User Grants can only be applied to a user after
they authenticate with the Identity Provider, though the grants do not have to be for levels within the

 Authenticated branch.

Note: The system can't validate any user created here against actual users in the Identity Provider
(IdP). Instead, the username or ID needs to be entered exactly, and when a user logs in, the system will
check to see if they match any of the configured usernames/IDs to give User Grants to.

On this page ...

Configuring a User Grant

User Grants

Watch the Video

Configuring a User Grant

There are two parts to configuring a User Grant: Adding a user then applying User Grants.

From the Gateway Webpage tab, click on . The screen will refresh and you will see a list of all your Config Security > Identity Providers
IdPs.
Choose the IdP and click the button to see the actions in the dropdown list.More
Select .User Grants

To add a new user, click the icon.Add
Choose how you will identify the user; either with a username or an ID. Click to save the changes.Confirm

https://www.inductiveuniversity.com/videos/user-grants/8.0/8.1

5.

6.

7.

With the user created and highlighted in the Users table, select Security Levels to grant them when they Authenticate with this Identity
Provider.

Click .Save

Now you can test this user through the screen to verify the new roles have been assigned.Test Login and Logout

1.

2.

3.

4.

Test Login and Logout

On the Identity Providers screen you can test a username and password combination against an Identity
Provider (IdP).

When you select the Test Login option for your IdP, it will confirm the IdP name and Type that you are
testing against. It gives you a way to test your attribute mapping configuration and your security level
rules / direct user grants configuration

Clicking the Test Login button will redirect you to the IdP where you can login. Upon successful
authentication with the IdP, the page navigates back to Ignition, and Ignition displays the response
document as the results. These results can vary between IdPs, so it can be useful to test out a login to
see what your IdP returns in its response document.

You can use Test Logout option to log out of the ID you were testing.

Ignition's IdP returns an 'amr' attribute that indicates how the user was authenticated.

If the user was authenticated with a username and password challenge, the amr returns
["uname", "pwd"]
If the user was authenticated with a badge challenge, the amr returns: ["badge"]
If the user was authenticated with a badge and password challenge, the amr returns:[:badge",
"pwd"]

With this feature, you can enable different security levels based on how the user authenticated. In a
security level rule, you could enter:

 containsAll ({idp-attributes:amr}, 'uname', 'pwd')

On this page ...

Test a Login
Test a Logout

Test a Login

From the Gateway Webpage tab, go to . The window will refresh and your list of Identity Providers will Config Security > Identity Providers
be displayed.
Choose the and click the button to see the actions in the dropdown list, and select .Identity Provider More Test Login

Log in at your IdP's login screen.

4.

5.

6.

If the login is successful, you will be returned to the Test Login screen. The returned results will be displayed under the IdP Identity Provider
Response Data tab.

Click on the Mapped User Attributes tab to view the user attributes for the currently logged in user.

Click on the Security Level Grants tab to view the Security Levels for the roles of the currently logged in user.

6.

1.

Test a Logout

After testing a User ID, you do not want to stay logged in as the user. You can use the Test Logout function to log out. For the Ignition IdP, this
function also logs you out of the IdP. For an OpenID Connect IdP, this function will also log you out of the IdP if you have a .Logout URL

To log out of the ID you were testing, click the button on the Test Login page.Test Logout

https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Identity+Providers#ConfiguringIdentityProviders-ConfiguringtheProvider

2. You will get a confirmation message of a successful logout.

Security Levels

With Security Levels, you define a hierarchy for access inside a Perspective Session or Vision Client.
This authorization system provides a way for you to map roles from an Identity Provider (IdP) to Ignition
roles. Any IdP can be used to provide roles, and security levels are independent of the type of IdP being
used. Any role from the IdP is automatically granted to the user as a role, but only roles in your Security
Levels are available to the security screens in the Designer. You can also use the User Grants option to
grant additional access for each user.

Security Levels are defined at the Gateway and they are arranged in a tree structure. Each child (nested)
level of the tree inherits the security of its parent levels. There are four reserved Security Levels in the
platform:

Public
Authenticated
Authenticated/Roles
Security Zones.

To access Security Levels, go to the Gateway Webpage under the tab, and chooseConfig Security >
.Security Levels

The following feature is new in Ignition version 8.1.16
 to check out the other new featuresClick here

You may now copy the selected Security Level Path to your clipboard by clicking in the Copy Path
Security Level Details panel:

On this page ...

Reserved Security Levels
Public
Authenticated
Authenticated/Roles
SecurityZones

Custom Security Levels
Add a New Security Level
Edit a Security Level
Delete a Security Level
Import a Security Levels
Configuration
Export a Security Levels
Configuration

Security Levels

Watch the Video

Reserved Security Levels

The reserved security levels are mostly created for you, and have special rules that determine when a user is granted that level. They can't be
renamed or deleted.

Public

All users are always granted the Public security level, even if they are not authenticated (logged in). Public security level indicates open access and
the least amount of security. A session that only has the Public security level is not authenticated. This is similar to being a guest or anonymous. Unles

The Public security level is the ancestor of all other security levels in the hierarchy.s another security level is required, guest access will be allowed.

Authenticated

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://www.inductiveuniversity.com/videos/security-levels/8.0/8.1

1.
2.
3.

4.

5.

The Authenticated Security Level is a child of the Public Security Level. If a session has authenticated against the configured IdP successfully, the
Authenticated Security Level is granted. Users are required to be logged in in order to have access to this level.

Authenticated/Roles

The Roles level is a special level which itself has no special rules, but it acts as a parent placeholder for potential roles returned from the IdP. This
particular level is not configurable; however there can be levels added underneath the Roles level as children. These levels should correspond to the
names of roles that would be expected from the IdP. If the IdP provides role information, these roles are automatically mapped to the child security
levels underneath Authenticated/Roles. The names of the roles must match exactly for them to be correctly mapped to. For example, if you
authenticate against the Ignition IdP configured to delegate to the Internal user source, and your user was granted the roles “A”, and “B”, you would
have (at a minimum) the following security levels granted to you:

Public
Authenticated

Roles
A
B

Note: You can only add one level of children to the Roles Security Level. Custom Roles can be nested as deeply as you want.

SecurityZones

The SecurityZones level is another special placeholder level that itself has no rules but is a parent for all of the Security Zones on the Gateway.
Security Zones are automatically pulled in from the Gateway. A is a list of Gateways, Computers, or IP addresses that are defined and Security Zone
grouped together. This group is a zone on the , which can have additional policies and restrictions placed on it. Security Zones NetworkGateway
provide a way to bridge the IdP method of permissions with location-based permission modeling. You cannot add, edit, or remove the SecurityZones
node or any node in the SecurityZones sub-tree.

Custom Security Levels

Custom Security Levels can be added to almost anywhere within the tree. When these levels are granted to a user is determined by the Security Level
, which can pull information from the IdP, Security Zones, and even Tags. The placement of custom Security Levels can affect when they may Rules

be potentially granted to a user. Any custom levels set under the Public level, but not within Authenticated, do not need to have a user authenticate
against the IdP to be granted to a user. However, custom levels within Authenticated do need to have the user authenticate to be granted to the user,
even if the rule for that level does not use any of the IdP attributes.

Add a New Security Level

From the Gateway Webpage tab, click on .Config Security > Security Levels
In the Security Level tree, select the level that will be a parent for the new level.
Click the button. Add Security Level

In the screen area, enter the for the level. Security Level Details Name

Note: Security Level names within the same parent must be unique.

The path for the parent is filled in automatically. Use the dropdown list if you want to change the parent for this new level.Parent

https://docs.inductiveautomation.com/display/DOC80/Gateway+Network

5.

6.

7.

8.

1.
2.

Add a for the new level (optional).Description

If you make changes to Security Levels, but decide not to save them, you can use the Reset button to return the tree view to its
currently saved configuration.
To save the changes, press .Save

Edit a Security Level

From the Gateway Webpage section, click on choose .Config Security > Security Levels
In the Security Level Tree, select the level that you want to edit.

Editor notes are only visible to logged in users

2.

3.

4.

5.

1.
2.
3.

Make the desired changes in the screen area. Security Levels Details

If you make changes to Security Levels, but decide not to save them, you can use the Reset button to return the tree view to its
currently saved configuration.
To save the changes, click the button.Save

Delete a Security Level

When you delete a Security Level, all children under that level will also be deleted.Caution:

From the Gateway Webpage tab, click on .Config Security > Security Levels
In the Security Level tree, select the level that you want to delete.
Click the button on the screen.Delete Security Level Details

3.

4.

1.

2.
3.

In the confirmation box, click to confirm the delete.Delete

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Note: Deleted security levels will need to be unchecked in the Designer permissions configurations with new settings saved to avoid
permission errors. Warning indicators for selected security levels that no longer exist will be visible on the Project Properties, Event
Configuration, Edit Permissions, and Tag Editor windows when applicable.

Import a Security Levels Configuration

From the Gateway webpage tab, click on .Config Security > Security Levels

Click the Import icon .
Choose on the confirmation screen.Import

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/Security+in+Perspective
https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties#TagSecurityProperties-UsingSecurityLevels

3.

4.
5.

1.

2.
3.

Choose a security levels configuration file to import.
Click .Open

Export a Security Levels Configuration

From the Gateway Webpage tab, choose .Config Security > Security Levels

Click the Export icon .
The security levels configuration will be saved as a .json file with a unique number, for example:

Security Level Rules

When a user accesses a project, they can fall into one or more of many that you can set Security Levels
up. The Security Level Rules determine if the user has that Security Level or not. The rules come in the
form of expressions that can access any of the Expression Language's functions, Tag values, Security
Zone information, or Identity Provider attributes. Security Level Rules are accessible from the Gateway
Webpage tab in . Config Security > Identity Providers

Predefined Rulesets

One thing you may notice right away is that on the Security Level Rules page, many of the built in
Security Levels are missing. Some Security Levels don't allow you to create an expression that defines
their rules. These particular Security Levels already have a set of rules that govern how a user gets
them. The Security Levels corresponding to the different Security Zones are automatically given to users
depending on which zones they fall into. Similarly, the Security Levels that correspond to the Roles a
user gets while authenticated are automatically given to users depending on what roles we receive from
the Identity Provider. These Security Levels are removed from the tree here because rules can't be
defined on them. The "Public" and "Authenticated" Security Levels also can't have Security Level Rules
defined on them, but are present in the tree because they can potentially be a parent to custom nodes
which can have Security Level Rules. The Public level is granted to every user when they open the
project, and the Authenticated level is granted when the user authenticates against an Identity Provider,
regardless of what roles they may have.

On this page ...

Predefined Rulesets
Defining Security Level Rules
Special Object Reference

Special Function Reference
Evaluating Tag Values
Special Considerations for
Rules

Configuring Security Level Rules

Security Level
Rules

Watch the Video

https://www.inductiveuniversity.com/videos/security-level-rules/8.0/8.1

Defining Security Level Rules

For the Security Levels that can have rules defined, the rules are defined in the form of an expression which should return either True or False, the
results of which determine whether a user falls into that level or not. The rules can take advantage of everything the has to offer, expression language
including the built in expression functions and any Tag values. The expressions here also have the unique ability to access attributes from the Identity
Providers response document for the authenticated user, as well as what Security Zone the user falls into.

Special Object Reference

These special objects can be used to reference information gathered from the IdP response document, mapped user attributes, or the Security Zone
that the user falls under.

Object
Type

Reference Description

Response
Attributes

Varies, see Expression
 for syntax info.Mappings

References Response Document Attributes directly.

https://docs.inductiveautomation.com/display/DOC81/User+Attribute+Mapping#UserAttributeMapping-ExpressionMapping
https://docs.inductiveautomation.com/display/DOC81/User+Attribute+Mapping#UserAttributeMapping-ExpressionMapping

User
Attributes

{user:id}
{user:userName}
{user:firstName}
{user:lastName}
{user:email}
{user:roles}

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

References mapped User Attributes. Relies on mappings configured on the User Attribute Mappings
page. The attribute can be handled using the or roles containsAll .containsAny

Security
Zones

{security-zones} References the collection of security zones that the user currently has. The collection can be handled
using one of the unique functions: or . containsAll containsAny

Security
Level
Name

{security-level-
name}

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

References the name of the security level being configured. For example, if the Security Level is
"Authenticated/PlantA/Administrator", then the security level name is "Administrator"

Security
Level Path

{security-level-
path}

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

References the full path to the security level being configured, beginning with the first node below . Public
For example, "Authenticated/PlantA/Administrator".

Note: Response and User Attributes are only available to Security Levels that fall within the Authenticated Security Level. See below under Special
Considerations for Rules.

Special Function Reference

When writing an expression to determine Security Level Rules, there are functions available that are not a part of the normal set available to
Expression Bindings. These additional functions are:

Function Name Description Example

containsAll(collection,
element 0, ..., element
N)

Checks to see if all of the listed elements are present in the collection object. The
function requires at least two arguments, a and an .collection element containsAll(

 {security-
zones},
 'PlantA',
 'Floor1',
 'Press Room'
)

containsAny(collection,
element 0, ..., element
N)

Checks to see if any of the listed elements are present in the collection object. The
function requires at least two arguments, a collection and an element. containsAny(

 {attribute-
source:idTokenClaims:
roles},
 'Manager',
 'Operator'
)

Evaluating Values Tag

Tag values can be accessed in the Security Level Rules expression area by encasing the Path (including the Provider) in braces ("{}") Tag Tag

{[tagProvider]path/to/tag}

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5
https://legacy-docs.inductiveautomation.com/display/DOC81/containsAll
https://legacy-docs.inductiveautomation.com/display/DOC81/containsAny
https://legacy-docs.inductiveautomation.com/display/DOC81/containsAll
https://legacy-docs.inductiveautomation.com/display/DOC81/containsAny
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

1.
2.

3.

Note: Security Levels are determined on initial login for each session, so if a Security Level is using an expression that references a value, Tag
changing the value while the session is running won't change the Security Levels applied to the users already logged in.

Special Considerations for Rules

When defining rules for a Security Level, it is important to notice where in the Security Level tree you are. If you want to access information out of the
Identity Provider such as the username, you will need to ensure that the Security Level is located in the Authenticated branch. User information is only
captured once a user logs in, so that information will only fall under Security Levels that come from the user being Authenticated. If a Security Level
lies outside of the Authenticated branch, then the level will only have access to information such as Tag values and Security Zones.

Configuring Security Level Rules

From the Gateway Webpage under the tab, go to .Config Security > Identity Providers
A list of the Identity Providers will be displayed. Click the button for the Identity Provider you wand to edit, and select More Security Level

.Rules

2.

3.

4.

Select the and, if a rule is defined, it will appear in the Rule field. If not, you can create one. We copied the expression Security Level Name
 from the example above for the following example. "containsAny ({security-zones}, 'PlantA', 'Floor1', 'Press Room')"

After your enter your rule, click .Save

1.
2.
3.

1.

2.

Troubleshooting Identity Providers

Editor notes are only visible to logged in users
QA items:

 Logout URL seems to have no effect

 JSON Web Key seems to have no effect

This Troubleshooting section has a compilation of examples to help you diagnose and troubleshoot
issues with configuring IdPs.

The Save Button Is not Selectable

All required fields must be entered on the Identity Providers screen before Save can be
selected. Required fields have an asterisk (*) next to their name.

Note:

If you are waiting for values for the ClientID and Client Secret fields, you can enter fake values and
return when you have the correct value.

After Importing Metadata from a File, Values Did not Auto Populate

Verify that import file is JSON format.
Verify that the import URL is valid.
Re-import the file.

Login Testing: IdP Login Page Does not Appear

Confirm that the values in and fields are correct. These come from the Client ID Client Secret
IdP when your Ignition Gateway is added as an application.
Check all other configuration settings.

On this page ...

The Save Button Is not Selectable
After Importing Metadata from a
File, Values Did not Auto
Populate
Login Testing: IdP Login Page
Does not Appear
Login Testing: The IdP login Is
Displayed but the Login Attempt
Fails
Login Testing: The IdP Login
Accepts the User but the IDP
Redirect Fails (HTTP ERROR
500)
Login Testing: The Test Is
Successful, but Results Do not
Show Useful data (i.e., user
name, eMail)
Login Testing: Revised User
Attributes Are not Shown in the
Results of a Successful Test
You Are not Re-directed Back to
Ignition after a Successful IdP
Login

Login Testing: The IdP login Is Displayed but the Login Attempt Fails

This issue is outside of Ignition. Check with your IT department and verify the login credentials (username and password) for your IdP.

1.

2.
3.
4.
5.
6.
7.

Login Testing: The IdP Login Accepts the User but the IDP Redirect Fails (HTTP ERROR 500)

Go to Settings for you IdP.

Verify the setting for . Supported ID Token Signing Algorithm Values
If the URL for the IdP's metadata is available, try re-importing it.
Verify and re-enter the Client Id and Client Secret.
Verify the Token URL. Then re-import the IdP's metadata.
Verify the JSON web keys URL. (Default is to leave the check box checked.) Then re-import the IdP's metadata.
Verify the Issuer URL, then re-import the IdP's metadata.

1.
2.

3.
4.

1.
2.
3.
4.

1.
2.

Login Testing: The Test Is Successful, but Results Do not Show Useful data (i.e., user name, eMail)

Go to settings for you IdP.
Add the desired fields to the Scope section. You may have to reference the developers documentation Scope document

Click Save.
Repeat the Login test.

Login Testing: Revised User Attributes Are not Shown in the Results of a Successful Test

Go to the settings for your IdP.
Add the desired fields to the Scope section.
Click Save.
Repeat the Login test.

You Are not Re-directed Back to Ignition after a Successful IdP Login

Verify the Adapter Configuration: Authorization URL.
Re-import the IdP's metadata.

Referencing User Information

When we work with Identity Providers, the user signs into the provider, and the provider sends Ignition a
response document containing information about the user that successfully logged in. This document is
the basis for how Ignition handles the user, including what ID, username, roles, and contact info the user
is assigned. When configuring a custom identity provider in Ignition, it will often be necessary to
determine the contents of the response document, and make decisions about the logged-in user based
on what is found.

Here, we'll discuss some of the ways of referencing user information in Identity Provider-driven
expressions.

On this page ...

Accessing a Response Document
Referencing Response Elements

Reference Structure
Special Object Reference
Special Function Reference
Evaluating Tag Values
Special Considerations for
Rules

Referencing Mapped Attributes

Accessing a Response Document

Many of the expressions found in the following sections will require us to know the layout of our Identity Provider's response document, as returned for
a user when they authenticate. To view the structure of the response document for a given user, the feature can be used for the provider. Test Login
The tab will contain the returned document.IdP Response Data

Referencing Response Elements

Whenever we work with a response document in an Ignition , as from or , we may need to expression User Attribute Mappings Security Level Rules
reference items in the document directly.

Reference Structure

In IdP contexts, it is possible to reference IdP document elements using a three-part format: }{attribute-source:X:Y

In this format, "X" is the attribute source for the provider, while "Y" is a path to the property inside the attribute source. Possible values for the attribute
source will vary by IdP type:

IdP Type Attribute Source(s) Expression Path Name

Ignition

ID Token Claims (default) idTokenClaims

Token Endpoint Response tokenEndpointResponse

User Info Claims userInfo

OIDC ID Token Claims (default) idTokenClaims

Token Endpoint Response tokenEndpointResponse

SAML Authentication Response authnResponse

In Ignition and OIDC Identity Providers, the Attribute Source is included in the response document already, with member properties inside. For SAML
Identity Providers, the authnResponse string will not be shown in the structure, but must be included in the expression.

Special Object Reference

These special objects can be used to reference information gathered from the IdP response document or the Security Zone that the user falls under.

Object
Name

Description

{security
-zones}

This object gives the collection of security zones that the user currently has. The collection can be handled using one of the unique
functions: or .containsAll containsAny

{attribut
e-source:
X:Y }

This object can be used to access values in deeper structures by using colons to delimit each object. Where "X" is the attribute
source for the provider, as defined on the page. "Y" is any number of additional attributes along the path to User Attribute Mapping
the desired attribute.

Editor notes are only visible to logged in users
As part of , add an extra sentence above. Something like:https://youtrack.ia.local/issue/DOC-319

"The is the best way to find the paths possible". test login page

Assuming the following JSON response from an identity provider:

{
 "idTokenClaims":
 {
 "foo" : "bar"
 },
 "userInfo":
 {
 "email" : "person@place.com"
 }
}

{attribute-source:userInfo:email} would retrieve the value of the user's email.

Attribute Path Example

https://legacy-docs.inductiveautomation.com/display/DOC81/User+Attribute+Mapping#UserAttributeMapping-AttributeSources
https://youtrack.ia.local/issue/DOC-319

ID sub {attribute-source:idTokenClaims:sub}

Username preferred_username
{attribute-source:idTokenClaims:preferred_username}

First Name given_name
{attribute-source:idTokenClaims:given_name}

Last Name family_name
{attribute-source:idTokenClaims:family_name}

Email email
{attribute-source:idTokenClaims:email}

Roles roles
{attribute-source:idTokenClaims:roles}

Editor notes are only visible to logged in users
Add a new row with the following:

Add the following
ONE

{user:id}
{user:userName}
{user:firstName}
{user:lastName}
{user:email}
{user:roles}

TWO

Change "These special objects can be used to reference information gathered from the IdP response document or the Security
Zone that the user falls under."

To "These special objects can be used to reference information gathered from the IdP response document, mapped user
attributes, or the Security Zone that the user falls under."

THREE

Mention that the new items are post parsed, not pre-parsed

FOUR
Mention that the previous two rows are pre-mapped ("from the response document directly"

Note: The } object is only available to Security Levels that fall within the Authenticated Security Level. See below under {attribute-source:X:Y
Special Considerations for Rules.

Special Function Reference

When writing an expression to determine Security Level Rules, there are functions available that are not a part of the normal set available to
Expression Bindings. These additional functions are:

Function Name Description Example

containsAll(collection,
element 0, ..., element
N)

Checks to see if all of the listed elements are present in the collection object. The
function requires at least two arguments, a and an .collection element containsAll(

 {security-

zones},
 'PlantA',
 'Floor1',
 'Press Room'
)

containsAny(collection,
element 0, ..., element
N)

Checks to see if any of the listed elements are present in the collection object. The
function requires at least two arguments, a collection and an element. containsAny(

 {attribute-
source:idTokenClaims:
roles},
 'Manager',
 'Operator'
)

Evaluating Values Tag

Tag values can be accessed in the Security Level Rules expression area by encasing the Path (including the Provider) in braces ("{}") Tag Tag

{[tagProvider]path/to/tag}

Note: Security Levels are determined on initial login for each session, so if a Security Level is using an expression that references a value, Tag
changing the value while the session is running won't change the Security Levels applied to the users already logged in.

Special Considerations for Rules

When defining rules for a Security Level, it is important to notice where in the Security Level tree you are. If you want to access information out of the
Identity Provider such as the username, you will need to ensure that the Security Level is located in the Authenticated branch. User information is only
captured once a user logs in, so that information will only fall under Security Levels that come from the user being Authenticated. If a Security Level
lies outside of the Authenticated branch, then the level will only have access to information such as Tag values and Security Zones.

Referencing Mapped Attributes

In the context of , it is possible to reference response document elements as discussed above, but it is also possible to use Security Level Rules
mapped attributes directly.

Service Security

Service Security

After creating some Security Zones, a Security Policy can then be defined for each zone. This can be
found by going to the section of the Gateway Webpage and navigating to Config Security > Service

. At first, none of the zones will have a policy defined, and the Default zone will be at the top. Security
Selecting for any of them will bring up the Security Policy definition page for that zone. The Security Edit
Policy has four sections: Alarm Notification, Alarm Status, History Provider Access, and Tag Access.
They work together to define how the local Gateway gives access to incoming Gateway connections. All
four sections also have the ability to completely block access to specific services with the Service Access
setting in each section. Setting that to deny will prevent zone access to that particular information,
regardless of what the rest of the options are set to.

Note: It is important to realize that if you have a single Gateway, limiting access of certain clients to
certain Tags is still done in the .individual Tags

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

Alarm Journal Access - Alarm Journal Access has two main settings associated with it. The
Default Profile Access is the default access rights for the Alarm Journal service. There will be an
additional setting for each Alarm Journal configured on the local Gateway. As an example, the
image below shows an "Access Level: 'MyJournal'" setting which corresponds to the configured
Alarm Journal named "MyJournal". This setting can be set to which will cause this Inherited
specific Alarm Journal to inherit the access rights set in the Default Provider Access Level. It
can also be set to to block query and storage to this specific Alarm Journal. Setting No Access
it to will allow users to only query data from this Alarm Journal without any storing Query Only
capability. In contrast, the option allows users to store and query data from Query and Storage
this Alarm Journal. It is important to note that every time a new Alarm Journal is created in the
local Gateway, a new setting for this journal will be added to this Security Policy and it will
automatically default to inherited.

Alarm Notification - The Accessible Pipeline Filter setting is a list of Pipelines in the current
Gateway that other connections can use for alarm notification. Pipelines must be entered in the
format "project_name/pipeline_name". The list is a comma separated list, and it can make use
of the (*) wildcard. This setting is an inclusionary list not an exclusionary list, meaning that if
there are no pipelines listed here, then all of them will be available.

Alarm Status - The Allow Acknowledge setting will allow the Gateways that fall within the
zone to acknowledge alarms on the local Gateway. The Allow Shelving setting will allow the
Gateways that fall within the zone to Shelve alarms on the local Gateway. IE: Other Gateways
can shelve alarms on this Gateway. For this Gateway to shelve alarms on others, this must be
set on the remote Gateway.

The following feature is new in Ignition version 8.0.7
 to check out the other new featuresClick here

Audit Log Access - Audit Log Access has two main settings associated with it. The Default
Profile Access is the default access rights for the Audit Profile service. There will be an
additional setting for each Audit Profile configured on the local Gateway. Similar to the Alarm
Journal Access, the image below will show an "Access Level: 'MyProfile'" setting which in this
case corresponds to the configured Audit Profile named "MyProfile". This setting can be set to In

which will cause this specific Audit Profile to inherit the access rights set in the Default herited
Provider Access Level. It can also be set to to block query and storage to this No Access
specific Audit Profile. Setting it to will allow users to only query data from this Audit Query Only
Profile without any storage ability. In contrast, the option allows users to Query and Storage
store and query data from this Audit Profile. Just like with Alarm Journals, it is important to note
that every time a new Audit Profile is created in the local Gateway, a new setting for this profile
will be added to this Security Policy and it will automatically default to inherited.

History Provider Access - The History Provider Access has two different settings. First, it has
a Default Access Profile. This is the default access rights for Tag History. Second, there will be
a setting for each History Provider set up on the local Gateway. In the image below, there is an
"Access Level: 'DB'" that can be set that corresponds to the History Provider that was created
when a database was connected. It can be set to Query and Storage, which will allow
connections in the current zone to both run queries and store Tag History against the
Tag History provider, Query Only, which will only allow the zone to query out history data, but
not store it, and No Access, which will completely block access to that History Provider. The
final setting is Inherited, which will inherit the Default Profile Access rights. Any new history
providers will automatically get added to the Security Policy set at inherited so it may be

On this page ...

Service Security
Default Security Zone
Setting Zone Priority

https://legacy-docs.inductiveautomation.com/display/DEP/Tag+Security+Properties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.0.7
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.0.7

beneficial to set the Default Profile Access to be either Read Only or No Access so that a
recently added history provider does not accidentally get storage rights when it should not.

Note: The Default Access Profile should not be set to Inherited. This also goes for the Default
Provider Access Level in the Tag Access section.

Tag Access - The section also has a few different settings. The Default Provider Tag Access
Access Level sets the default access rights for realtime Tag providers.

The Impersonation Role Name field allows you to specify a role name to use when writing to a
Tag from an incoming Gateway Network connection (from the selected Zone). Finally, the Tag
Access section will then have a setting for each Tag provider configured in the local Gateway,
as well as an additional one for system Tags. These can be set to ReadWriteEdit, which will
allow connections in the current zone to read, write to, and edit the Tags in that provider, ReadW
rite, which allows the zone to read and write to Tags, and ReadOnly, which only allows the
zone to read the Tags. It also can be set to None, which will prevent the zone from interacting
with the Tag Provider altogether, and Inherited, which will again inherit the access rights set in
the Default Provider Access Level. Any new Tag Providers will automatically get added to the
Security Policy with Inherited access rights.

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

As of 8.1.2, the Trust Remote Security Levels setting allows users to opt into trusting the
Security Levels of remote Gateway users when remote Gateways read, write, and subscribe to
local Tags. If checked, security levels passed from the remote Gateway will be used for
determining access to Tags on the local Gateway. If unchecked, or if the remote Gateway is on
a version which does not support this feature, the remote Gateway's security zones and the
impersonation role will be used as the security levels.

Default Security Zone

While the Default zone may not have a custom Security Policy defined, it does default to not include any
notification pipelines, allow alarm acknowledgment, query only history access, and read only Tag access.
This means that if a remote Tag Provider is set up on a remote Gateway, and the local Gateway has not
changed the default security settings, the remote Gateway will have read only access to the Tag History
Provider. This can be changed by editing the Default zone's Security Policy to fit a different preference,
or creating new Security Zones with custom security policies. Once a Security Policy has been defined
on a zone, it will automatically jump to the top of the list. A new option will also become available that will
clear the policy from the zone.

https://legacy-docs.inductiveautomation.com/display/DEP/Tag+Security+Properties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

Setting Zone Priority

Once a Security Policy has been defined for two or more zones, a new option appears on the Service
Security page to move the zones up and down the list. This allows a priority to be set on the Security
Zones, since a connection can apply to multiple zones. For example, say Zone 2 dictates that all
requests coming from a range of IP addresses have query only history access, and read write access to
Tags. Zone 1 includes specific Gateways, one of which is also contained in Zone 2, that will have query
and storage history access and read write edit access to Tags. When a request comes in from a
connection, it first determines which Security Zones it belongs to. The request then starts at the top of the
Service Security list and goes down until it finds the first zone that it is in, and uses the access rights of
that zone. In our example, we want to make sure Zone 1 is above Zone 2, so that the Gateway that is in
both Zone 1 and Zone 2 gets the full access rights afforded to it by the Security Policy of Zone 1 instead
of getting the limited access rights from Zone 2.

Related Topics ...

Security in Vision

https://legacy-docs.inductiveautomation.com/display/DOC81/Security+in+Vision

1.
2.

Security Zones

A Security Zone is a list of Gateways, Computers, or IP addresses that are defined and grouped
together. This group now becomes a zone on the Gateway Network, which can have additional policies
and restrictions placed on it. While Users and Roles restrict access to specific functions within the
Gateway like making certain controls read-only for certain users and read/write for others, Security Zones
provide this functionality to the Gateway Network, limiting locations instead of people to be read-only for
specific actions. This allows for greater control over the type of information that is passing over the
network, improving security and helping to keep different areas of the business separate, while still
allowing them to interconnect.

Using Security Zones

Sometimes, in addition to knowing who the user is, it is important to know their location. An operator may
have permissions to turn on a machine from an HMI, but if the operator is logged into a project on a
different Gateway in the network that has remote access to those Tags, it might not be a good idea to let
the operator write to those Tags from a remote location. The operator can't see if the physical machine is
clear to run.

This is where Security Zones come in. While Security Zones themselves don't define the security, they
instead define an area of the Gateway Network, breaking up Gateways and network locations into
manageable zones that can then have a Security Policy set on them. Once there are zones defined, a
Security Policy can be assigned to each zone, and a priority of zones can be set in the event that more
than one zone applies in a given situation.

When using zone-based security in a project, the project stores the name of the security zone Caution:
as a string. This means that if you were to modify the name of the zone in the Gateway, the zone-based
security in your project will not update to reflect the new name, and instead will try searching for a zone
with the original name. Be very careful when modifying the names of security zones.

A connection must pass all of the qualifier checks before being accepted into a Security Zone. So if
Require Secure Connection was checked, and Allow Client Scope was not, any requests coming from
Clients would be rejected even if they are secure, and the same goes for any non-secure connections
coming from sources other than a Client.

Requests can be a part of more than one zone, depending on how the zones are set up. This can be
useful for making a whole section of IP addresses read only, but a specific Gateway in that IP address
range may be listed specifically in another zone, which can be given read/write access. Any connection
which does not fall into one of the zones will be placed in the Default zone.

On this page ...

Using Security Zones
Define a Security Zone

Settings Table

Security Zones and
Service Security

Watch the Video

Define a Security Zone

When setting up a new Security Zone, it is a good idea to set up a first if you haven't already. While Security Zones can be defined Gateway Network
and used without a connected Gateway, they work best when used in conjunction with other Gateways on a Gateway Network. There is a special
zone called Default. It is always present and can't be modified, and will be used if an incoming connection does not match any of the other defined
zones. Identifiers are how incoming connections are distinguished between different zones. While there are different options to define the incoming
connection, it only needs to match one of the Identifiers to match a zone. After first being identified as part of a particular Security Zone, the
connection then checks the Qualifiers. With the Qualifiers, the incoming connection needs to fit in with all of the properties before it is fully placed into
the Security Zone.

Under the tab of the Gateway Webpage go to .Config Security > Security Zones
Select the link.Create new Security Zone

https://inductiveuniversity.com/video/security-zones-and-service-security/8.1

2.

3.
4.
5.
6.

Enter a name and description for the new zone.
Under , enter an and a .Identifiers IP Address Gateway Name
Under , select the option. Leave the remaining options at their default settings.Qualifiers Require Secure Connection
Click Create New Security Zone. The page will refresh and you will see a green banner stating that your new Security Zone was
successfully created.

Settings Table

Setting Description

Identifiers

IP
Addresses

This defines an IP address that the connection is coming from. This can be a list of IP addresses by using commas to separate them. It
can also make use of the (*) wildcard like '192.168.100.*', or use a range such as '100.100.1-100.0-255'. With IP addresses, virtually all
connections can be listed. Use 127.0.0.1 for the local connection.

Host
Names

The host name refers to the system name of the machine generating the request such as Joe_Workstation. This can be a list of names
separated by commas, and it can also use the (*) wildcard like '*_Workstation'.

Gateway
Names

A list of Gateway system names that qualify for this zone.

Note: When identifying a Gateway through a proxy Gateway, the IP Address should be using the IP of the proxy, but the Gateway
name should use the name of the Gateway we are trying to identify.

Qualifiers

Require
Secure
Connecti
on

If this is true, only connections that are made over a secure channel will be accepted.

Direct
Connecti
on
Required

If this is true, only connections that come from a direct connection will be accepted. The Gateway Network allows you to connect three
Gateways in a 1-2-3 configuration, where Gateway 1 can see Gateway 3 through the proxy Gateway 2.

Allow
Client
Scope

If this is false, any client scoped requests will not be accepted.

Allow
Designer
Scope

If this is false, any Designer scoped requests will not be accepted.

Allow
Gateway
Scope

If this is false, any Gateway scoped requests will not be accepted.

Related Topics ...

Service Security

1.
2.
3.

4.

Project Security in the Designer

When several users are all working on the same project, managing changes to the project can become
cumbersome. By default, all users with Designer access can modify, delete, save, and publish all
resources available in the Designer. In some situations, it is desirable to limit what each user can do in
the Designer. Ignition has several built-in Designer restriction methods to help in these scenarios. On this page ...

Designer Project Permissions
Controlling Project Edits by
Role

Protecting Project Resources

Designer Project Permissions

Actions such as, viewing, saving, deleting, and editing of project resources are restricted to users who
have sufficient roles to do so. Editing of the these required roles is done in the permissions section of the
Project Properties dialog in the Designer. If required roles are not set for an action, then all users with
Designer access can perform the action.

The Designer does not poll for role changes, so if a user who is currently logged into the Designer has
their roles changed, they will need to re-launch the Designer for the new role(s) to take effect.

Controlling Project Edits by Role

You can control who gets to login to a project by assigning roles and giving permissions to those roles in
the Required Designer Roles property which you set up in the Designer.

In the Designer, from the menubar, choose .Project > Properties
Go to the area.Project > Permissions
Under the Required Designer Roles, enter the appropriate roles next to each project-level
restriction, as required. You can enter a comma-separated list of role names that are required to
access the project. As you start typing, matching role names will pop up.

Click to save the changes.OK

The following table describes each of these four options:

Option Affect

View User must have at least one of these roles to view the project in the
Designer.

Save User must have at least one of these roles to save the project.

Delete User must have at least one of these roles to delete the project.

Protect
Resources

User must have at least one of these roles to access protected resources.

Project Permissions

Watch the Video

https://inductiveuniversity.com/video/project-permissions/8.1

Protecting Project Resources

You can lock individual project resources from inside Designer by opening the Project Browser, and right
clicking on any of the objects that you want to lock in. Select the option to protect it. Once it's Protect
protected, it cannot be changed except by someone that has the permission to unprotect it, and modify it.

Protected resources are global or project resources that can only be edited by select users with the
required roles. These roles are required to protect resources from being edited in the Designer, and do
not apply to the clients. This means you can prevent a resource from being edited by other users who
have Designer access. It is often used in scenarios where development work is finished on a window or
object, and no further changes should be made to it. Other objects like or Vision Templates Alarm

 are often protected so they may be used, but not modified.Pipelines

Users without a required role will see the following message in the Designer when attempting to open a
protected resource:

Users with a required role are allowed to modify the resource, but a message will appear informing them
that the resource is protected, and will be asked how to proceed:

Additionally, a lock icon will appear on the resource informing users that it is protected. An example
can be seen on the 'Audit Events' window below:

Locking Project
Resources

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Templates
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://inductiveuniversity.com/video/locking-project-resources/8.1

To remove the protection, simply right click the object and select the option to unprotect it.Protect

Security Certificates
A security certificate, also known as a digital certificate, is used to provide trust between connections.
Trusted certificates establish the identity, authenticity and reliability of incoming and outgoing traffic.

The Ignition platform uses Secure Sockets Layer/Transport Layer Security (SSL/TLS), which requires
certificates in multiple features. The purpose and type of certificate determine how the certificate is
installed and where it is stored within Ignition. It is important to know where certificates are needed and
what their purpose is to make sure all requirements are met. For example, the Gateway Network and
OPC UA security both impact client and server connections, but because the Gateway Network
connections are between local and remote gateways and OPC UA connections are between devices, the
process for adding and trusting certificates is different.

The following is a list of locations where certificates are required, and a link pointing to a page containing
the general security purpose, settings, and certificate management properties.

Launchers and Clients
Gateway:

Acting as a server
Acting as a client, see below. Adding Security Certificates into KeyStores

GAN Security
OPC UA Security

On this page ...

Types of Certificates
SSL Certificates
OPC UA Certificates

Adding Security Certificates into
KeyStores

Types of Certificates

It may be helpful to understand the different types of certificate Ignition can use if you are new to certificates.

SSL Certificates

SSL certificates allow systems to verify identity and establish an encrypted network connection to another system using SSL/TLS protocols. There are
two types of signed SSL Certificates, self-signed certificates and trusted certificate authority (CA) certificates.

Self signed certificates are generated internally for free
Trusted CA certificates are signed by a trusted certificate authority

Ignition supports CA certificates from your organization's internal CA or any publicly trusted certificate authority.

Both signed certificates offer encryption, but without the signature of a trusted certificate authority, warning messages will appear for self-signed
certificates that are not trusted.

Since SSL/TLS requires the installation of a security certificate, both the Gateway Network and the Web Server can use self-signed certificates if CA
certificates are not yet available or needed, such as during testing. It is important to note that although the functionality of certificates installed on the
Gateway Network and Gateway Web Server are similar, they must be treated separately because settings made on one page on the Gateway do not
apply to the other, even the case of shared ports.

OPC UA Certificates

UA security contains authentication and authorization as well as encryption and data integrity by signing. Security is integral to UA and OPC UA
protocols are a hybrid variant of TLS, using binary encoding and HTTPS for transport. The Ignition platform inherently offers OPC UA client
functionality and the Gateway can connect to any compliant OPC UA server.

Adding Security Certificates into KeyStores

In some cases when the Gateway is acting as a client, you may need to provide supplemental security certificates so the Gateway can communicate
with other systems, such as databases or devices elsewhere on the network. These supplemental certificates can be added to a Gateway by simply
placing them in the following directory on the Gateway's file system:

%gateway installation directory%data/certificates/supplemental

Once added, you will need to restart the Gateway before the certificates will be used.

Supported formats are DER encoded binary X.509, and Base-64 encoded X.509 (PEM-encoded ASCII).

https://docs.inductiveautomation.com/display/DOC81/Launcher+Settings
https://docs.inductiveautomation.com/display/DOC81/Web+Server+Settings
https://docs.inductiveautomation.com/display/DOC81/Certificates+and+SSL
https://docs.inductiveautomation.com/display/DOC81/OPC+UA+Security

OAuth 2.0 Clients

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

What is OAuth 2.0?

OAuth 2.0 is an authorization standard that is developed by . Unlike basic IETF OAuth Working Group
authorization which requires a user to input a to log in, OAuth 2.0 requires users to input fixed password
an instead. This makes using OAuth 2.0 more secure than basic authorization, since the access token
access token is:

Unique to the client and the requested scope of access
Difficult to guess
Constantly changing

Some well-known authorization protocols, such as OpenID Connect, are built on the OAuth 2.0 standard.
See the for more information.official OAuth 2.0 documentation

On this page ...

What is OAuth 2.0?

Configuring OAuth2 Clients
Creating a new OAuth2 Client
OAuth2 Client Properties

OAuth2 Client Options
Test Authorization
Test Token

Test Authorization and Token
Example (Google Identity OAuth2)

Configuring OAuth2 Clients

OAuth2 Clients are used by OAuth2 Email Profiles. Additionally, multiple OAuth2 Email Profiles can use the same OAuth2 Client. When configuring an
, you can reference the name of your OAuth2 Client to use those properties. To set up or modify OAuth2 Clients, navigate OAuth2 SMTP Email Profile

to the OAuth2 Clients section. You can find this section by going to your .Gateway webpage > Config > Security > OAuth2 Clients

Creating a new OAuth2 Client

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24
https://www.ietf.org/mailman/listinfo/oauth
https://oauth.net/2/
https://legacy-docs.inductiveautomation.com/display/DOC81/Email+Settings#EmailSettings-OAuth2SMTP

1.

2.

Click on the OAuth2 Clients option. This will bring up a window where you can select an existing OAuth2 Client to modify, or create a new
OAuth2 Client. Select " "Create new OAuth2 Client...

From here, you will be able to configure your OAuth2 Clients by specifying various properties. Fill out the fields on this page and click "Create
".New OAuth2 Client

2.

2.

3. Your OAuth 2.0 Client is now set up and you can now test your token, test authorization, or begin using it.

OAuth2 Client Properties

The reference table below lists the available properties to configure and edit for OAuth2 Clients.

Property
Name

Property Description

Main

Name The name of your OAuth2 Client. This field is important, as redirect URIs will use the name of the OAuth2 Client. See the note at the
top of the OAuth2 Client properties.

Description A description of your OAuth2 Client.

Client ID The client identifier registered within the authorization server. This value is provided by the authorization server.

Client
Secret

The client secret registered within the authorization server. This value is provided by the authorization server.

Client
Secret

Re-type the client secret for verification.

Authorizatio
n URL

Optional URL of the authorization server's OAuth 2.0 Authorization Endpoint.

Token URL Required URL of the authorization server's OAuth 2.0 Token Endpoint.

HTTP Client Settings

HTTP
Version

The maximum HTTP version supported by the authorization server's token endpoint. The Gateway's HTTP client will use this version
when making HTTP requests to the authorization server. Choose between or . Default is .HTTP_1.1 HTTP_2 HTTP_2

HTTP
Connect
Timeout

In the case where the Gateway's HTTP client needs to establish a new HTTP connection with the authorization server, if the
connection cannot be established within the given amount of time in milliseconds, then the connection attempt and any pending
request requiring the connection will time out. There will be no timeout if the value is less than or equal to zero (the Gateway will wait
forever for the connection to be made). Default is 30,000.

HTTP
Request
Timeout

The timeout in milliseconds for each HTTP request sent from the Gateway's HTTP client to the authorization server. If an HTTP
response is not received within the specified timeout after sending an HTTP request then the HTTP request will time out. There will
be no timeout if the value is less than or equal to zero (the Gateway will wait forever for a response). Default is 120,000.

OAuth2 Client Options

After you set up your OAuth2 Client, you should have the option to edit your properties, delete the client, test authorization, or test your token.

Test Authorization

Note: The "test authorization" option will be unavailable if the optional configuration setting is blank on the OAuth2 Client's Authorization URL
configuration settings.

The "test authorization" tool allows you to test the integration between the OAuth2 Client configured in Ignition with the OAuth2 Authorization Server.
More specifically, it allows you to walk through a test run of the flow. During this process, the authorization server will Authorization Code Grant
validate the end user and may prompt the end user to give the Client permissions to perform actions on their behalf, such as sending emails. Once
these permissions have been granted, the authorization server will generate an authorization code, which the Client can use to obtain an access
token. To see an example of this process work alongside , go to the .testing tokens Test Authorization and Token Example

If you want to test the authorization, choose the option. test authorization

https://www.rfc-editor.org/rfc/rfc6749#section-4.1

You will need to add any you want to test with, along with any additional you want to try. You can find Request scopes Request Parameters
Parameters in your authorization server's documentation. Once those fields are filled out, click on " ".Test Authorization

Test Token

The option is useful in cases where you want to test the to make sure it successfully gives the Client an access token. test token authorization code
It is also useful if you want to test an access token request using a , or refreshing an access token using a . Durclient credentials grant refresh token
ing this process, the Gateway will make an access token request against the authorization server using one of three methods and get a response
back. To see an example of this process work alongside , see the .testing authorization Test Authorization and Token Example

https://www.rfc-editor.org/rfc/rfc6749#section-3.3
https://www.rfc-editor.org/rfc/rfc6749#section-4.1.1

You can find the option on the OAuth2 Clients page.test token

The section below details the , , or a grant types, with the main difference between the three Authorization Code Client Credentials Refresh Token
being the type of information you will need to enter.

Authorization Code
If you use an Authorization Code, you will need to enter an , , and any additional Authorization Code Redirect URL Request

. Once you input that information, click on " ".Parameters Test Token

Client Credentials
If you use Client Credentials, you will need to enter a and any additional . Once you input that scope Request Parameters
information, click on " ".Test Token

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.3
https://www.rfc-editor.org/rfc/rfc6749#section-4.4.2

1.
2.

Refresh Token
If you use a Refresh Token, you will need to enter the , , and any additional . Once you Refresh Token scope Request Parameters
input that information, click on " ".Test Token

Test Authorization and Token Example (Google Identity OAuth2)

This example walks you through a "test authorization" and "test token" workflow for an OAuth2 Client configured against Google's OAuth2
.Authorization Server

Go to your OAuth2 Clients page. This is located at your .Gateway webpage > Config > Security > OAuth2 Clients
Set up your OAuth2 Client if you haven't already. For this example, we are using the OAuth2 Client we set up earlier called "OAuth2":

https://www.rfc-editor.org/rfc/rfc6749#section-6
https://developers.google.com/identity/protocols/oauth2/web-server
https://developers.google.com/identity/protocols/oauth2/web-server

2.

3.

a.

b.

4.

Click on the "test authorization" option. This will bring up the Test Authorization window. Add any Scopes and additional Request Parameters
for your OAuth2 Client, and then press "Test Authorization".

The additional Request Parameters in the example are specific to Google's Authorization Server. They do two things:
access_type: Setting this parameter to "offline" will allow your Client to refresh access tokens while the user is not present at the
browser.
prompt: Setting this parameter to "consent" will force the Client to prompt the user for consent.

Since we are using Google Identity, we will be redirected, and a Google permission prompt will appear. Click "Allow".

4.

5. Once permissions are granted to the OAuth2 Client, you will be redirected to the Gateway. Information about the authentication, including the
authorization code, timestamps, results, and more will be displayed.

5.

6.

Note: Besides the main OAuth2 Client page, you can use the button on the authentication results page to test access tokens. Test Token
The benefit of testing your token from the authentication results page however, is that some information, such as the Authentication Code
and Redirect URL will already be filled out based off the information from the authorization test.

Click on the "Test Token" button on the authentication results page. This will bring you to the Test Token page, where some fields will already
be filled in.

6.

7.

Click on "Test Token" to see what the token test results will be.

A "Token Response" dialog box will appear, showing the results of the token test, as well as timestamps, the response, and more. Click
"Done" to close out the dialog box.

Designer

The Ignition Designer is where the majority of configuration and design work is done. The Designer uses
web-launch technology to open and edit your projects. This is how you can configure your anPerspective
d projects.Vision

The Designer provides all the firepower to bring your projects to life. It uses a drag-and-drop
configuration making screen development quick and intuitive. You can create user interfaces by dragging

 onto a view, onto a window, and Tags onto your Perspective components Vision components
components to instantly bind data to tables, charts, and graphs. You can set up Tags and Transaction

 to log data to your databases. You can set up to generate and save data however you'd Groups Reports
like. The Designer saves all your projects to the Gateway so everything is controlled in one place.

This page provides some good information about the Designer, Designer workspace, Tools, and how to
create a project.

Opening the Designer

Opening the Designer requires running the . Once the Designer Launcher is installed Designer Launcher
and configured, you'll have all your projects at your fingertips. If you created a desktop shortcut for the
Designer Launcher at install, simply click to open it and select a Designer to open. From there you can
create a new project or open an existing project.

If you have a Designer that has projects that you work on regularly, you can create a shortcut to that
Designer and keep it on your desktop. When you click on your shortcut, it opens the Designer, then click
on the project you want to edit. Now you can hit the ground running designing your project!

Refer to the page for downloading, installing, and configuring the Designer Launcher.Designer Launcher

On this page ...

Opening the Designer
Creating a Project

New Perspective Project
New Vision Project
Project Creation Settings
Open or Create a Project from
within the Designer
Updating Project Settings

Designer's Workspace
Designer Tools

Tools Menu
Status Bar
Previewing the Project
Find and Replace
Keyboard Shortcuts

Concurrent Editing and Conflict
Resolution

Concurrent Users UI
Conflict Resolution

The Designer
Launcher

Watch the Video

Creating a Project

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Perspective+Components
https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://www.inductiveuniversity.com/videos/the-designer-launcher/8.0/8.1

1.

2.

3.

The first step in working with a project is creating one. Once you launch the Designer, the Open/Create Project window is displayed. Here you have
the option to create a new project or open an existing project. Let's create a new project!

After opening the Designer, click on button. The following window will be displayed.Create a New Project

Enter the (required) and any other configuration settings you need for your project. Most settings are optional. Refer to the Project Name
New Table below for a description of each property.Project Creation Settings
Click on .Create New Project

New Perspective Project

If you have the Perspective Module installed, your project will open on the after the project is created. From here, Perspective Configuration Page
you can begin designing your Perspective project.

New Vision Project

To design your project in Vision, expand the module in the Project Browser. The will open, allowing you to Vision Vision Getting Started window
create windows, add components, and create Client Tags.

Project Creation Settings

The table below contains descriptions for available settings when creating a new project in the Designer.

Property Description

Project
Name

The Project Name can only consist of alphanumeric characters and the '_' (underscore) character. Spaces and other special
characters are not supported.

Note: It is not advisable to change the Project Name after it's been created, instead, change the Title property.

Project
Title

This is the name that will be displayed on the launch page of the and in the or Session, (optional) There are Gateway runtime Client
no restrictions on using special characters or spaces. If you do not specify a title, the project name will be displayed on the laGateway
unch page and in the .runtime

Description Enter a description of the project (optional). Once a project is created, this description can be viewed on the Open/Create Project

screen when you hover over the icon.Information

Project
Template

Select a Project Template (optional). There are several pre-built project templates focused on navigation that support either
Perspective or Vision. Click the dropdown to see all the available options.

Parent
Project

A project may have a parent project, and will all of the resources of that parent project, (optional). Click the dropdown list to see inherit
all the available options.

Inheritable
Project

 are not runnable as a stand-alone project, but are intended to provide shared resources to one or more child Inheritable projects
projects.

User
Source

Determines the User Source associated with this project (when using the).Classic authentication strategy

Default
Database

Select a Default Database (optional). Any queries to the will use this unless explicitly specified database connectiondatabase
otherwise.

Default
Tag
Provider

Select a default Tag Provider (optional). If left blank, bindings and references to tags will always need to include the tag provider

Identity
Provider

Determines the Identity Provider associated with this project (when using the). Identity Provider authentication strategy

Open or Create a Project from within the Designer

To create a new project or open a different project from within the Designer, use the menu in the top menubar. File > Open

The Open/Create Project screen will be displayed. You can choose from existing projects or create a new project.

Updating Project Settings

https://docs.inductiveautomation.com/display/DOC81/Project+Inheritance
https://docs.inductiveautomation.com/display/DOC81/Project+Inheritance
https://docs.inductiveautomation.com/display/DOC80/Connecting+to+Databases
https://docs.inductiveautomation.com/display/DOC81/Identity+Provider+Authentication+Strategy

Project settings such as the title, description, connections, and inheritance are set through the Gateway Webpage Tab, under Config System >
. For more information, see .Projects Projects

Designer's Workspace

The Designer workspace is centrally located and organized by panels. Some of the panels include a Project Browser, Tag Browser, Component
Palette, and Property Editor. These panels can change depending on the type of resource you are currently editing. For example, if you are editing a
Perspective view or Vision window, the Designer workspace has Component Palette and Property Editor panels. If you're editing an Alarm Notification
Pipeline, your Designer workspace will be the Pipeline Block Editor. If you're editing a Report, your Designer workspace will be the Report Designer.
Each type of workspace has panels that are only valid when that workspace is active.

Here are two images showing the Perspective Designer workspace and Vision Designer workspace, and an example displaying the same
components. At a glance, they look very similar, but there are some differences, including each having their own Component Palettes. To learn more,
refer to the and the pages. Perspective Designer Interface Vision Designer Interface

Perspective Designer's Workspace

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface

Vision Designer's Workspace

Designer Tools

The Designer has a host of tools to help you accelerate building, testing, and deploying your project. Let's talk about a few here.

Tools Menu

In addition to all the panels available in the Designer workspace, there is also a to help you create your projects.Tools menu

Console - The is the script-writer's best friend, and most frequently used to test and debug scripts in .Output Console Python Ignition
Image Management - The tool manages and stores images used for your projects.Image Management
Script Console - The is used to test and debug Python scripts.Script Console
Database Query Browser - The is a very convenient tool that lets you make simple selects and edits in a Database Query Browser
database table, and interact with all of the databases that Ignition is connected to (i.e., running queries, browsing tables and schemas). It is
very common during the course of project design to inspect the database directly, or to experiment with a SQL query to get it just right.
Translation Manager - Opens up the panel, and allows you to configure language translations. See also: Translation Manager Localization
and Languages
Symbol Factory - The contains a variety of high quality vector graphics symbols that can bring your projects to life.Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Console#ScriptConsole-OutputConsole
https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+and+Languages#LocalizationandLanguages-TranslationManager
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Status Bar

The Status Bar at the bottom of the Designer workspace allows you to view and adjust certain Designer settings.

Panel Chooser - Clicking the Panel Chooser icon opens a menu that allows you to open and close Designer panels, as well as to reset
all panels to their default positions.
Current Window - Displays the name of the currently open Window. (Vision only)
Mouse Coordinates - Displays the coordinates of your mouse relative to the open Window. (Vision only)
Zoom Level - Changes the zoom level. You can adjust the zoom level between a minimum of 25% and a maximum of 500%.
Memory Usage - Displays your used/maximum available memory. You can change the maximum in the server configuration.

Gateway Connection - This icon shows the current status of your Gateway connection. Clicking on the icon opens the connected
Gateway in a browser.

Previewing the Project

The Designer provides the capability to preview, test, and interact with the screens and functionality before you deploy your project. The Designer
workspace operates in two distinct modes: Design mode and . Designers can easily switch between these modes to make sure their Preview mode

project is working as expected during the course of development by simply clicking icon from the top menubar, or clicking Preview Mode Project
also from the top menubar, and selecting . Preview Mode

Note: The icon toggles to be a icon when it is pressed.Preview Mode Design Mode

Find and Replace

The is a handy tool in the Designer workspace. You can search your entire project for specific components, properties, and Find and Replace
scripts. You can even use the replace command to make mass changes expeditiously to a project with very little effort.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-PreviewingtheProject

Keyboard Shortcuts

There are a lot of ways to speed up your development once you are familiar with how Ignition works. There are many in Designer keyboard shortcuts
that are listed throughout the Designer interface alongside menu options.

Concurrent Editing and Conflict Resolution

ultiple people can work together and make changes to a project at The Ignition Designer uses a lock-free strategy for handling concurrent editing. M
the same time. An unlimited number of Designers can be open concurrently, and modifying any resource in the Designer doesn't lock it. The Designer

 keeps track of the resources that are being edited, and any conflicting edits will be resolved at the time the project is saved. The developer who
creates a saving conflict will be prompted to resolve the conflict by choosing whether to use their own changes, accept the other designer's changes,
or cancel their save and figure out what to do in another way.

Concurrent Users UI

The Concurrent User Interface allows users to see which project resources are open in other Designer instances, the names of the users that have
them open, and when a project update is available. The UI is located in the lower right corner of the Designer.

If you open a resource that is already open in another Designer, you will be greeted with a new popup confirming that you want to proceed.

The UI makes use of the color red to denote when there are conflicts with the changes in another Designer instance, or if their users are saving on
overlapping resources (multiple users are making changes and saving while the same resource is open).

If the user in the other Designer instance saves their project, the UI will display that a project update is available. Click on Project Update Available
to either update or cancel the project update.

Conflict Resolution

When you're ready to save your project, go to the Menubar and select File Save . When the Save Project dialog pops up, select the items you want
 to save and click the Save button.

If there are any conflicts, the Designer will ask you to update your project and the conflict resolution screen will open automatically. You will see a
thumbnail image of both screens and the .json code showing the conflict. To resolve the conflict, you will be given a choice; accept your changes,
accept the other developer's changes, or cancel the save and contact the other developer. Buttons are provided at the top and bottom of the screen
for you to enter how you want to resolve the conflict.

The Resource Tree displays the conflicts and the resolutions. The selected conflict will be highlighted in blue. The image below shows changes were
made to the Thermometer. The line number and the code are highlighted at the bottom so you can quickly identify the conflict. Once the conflict is
resolved, a checkmark will appear in the Resolution column next to the conflict and how it was resolved. You'll notice that there is second conflict. To
resolve the conflict, select it in the Resource Tree or click the arrow to navigate to the next conflict.

Editor notes are only visible to logged in users

Related Topics ...

Designer Launcher
Perspective Designer Interface
Vision Designer Interface

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface

1.

2.

3.

4.

General Designer Interface

Designer Spaces

The Designer has a lot of panels and menus that allow you to build out a project tailored to your needs.
However, while some of these like the File Menu are shared throughout the Designer, some of the panels
and menu options are specific to certain objects and will typically only be displayed when an object of
that type is selected. For example, when editing a Vision Window, the Designer has the Property Editor
and Component Palette panels, but when editing an Alarm Pipeline, the Pipeline Blocks and Pipeline
Block Editor panels are displayed instead. This creates different Designer Spaces that are used for
different areas of a project.

There are many dockable and draggable panels that surround the workspace, as well as the familiar
menu bars and toolbars. The dockable panels can be rearranged as you wish and will snap into place as
you move them around the screen. Each workspace remembers its layout, which is the docking
arrangement of the panels around it.

Docking System

The Designer's docking system provides a very flexible user interface allowing you to customize the
layout as you wish. To rearrange the dockable panels, simply drag on their title bars. As you drag the
panel, it will try to snap into place and show you a highlighted border. Use the highlighted border that
appears to gauge where the panel will be moved to. Hold the CTRL key as you drag these panels to
keep them from snapping into place. You can also drag these panels outside of the Designer or onto a
second monitor.

Dockable panels can be in one of four modes:

Docked - The panel is visible, and located somewhere around the perimeter of the workspace.
If two panels are docked in the same location, a tab strip will appear to switch between the two
panels.
Floating - A panel can be dragged outside of the workspace perimeter to be floated. The panel
can now be positioned anywhere on your desktop.
Pinned - Pinning a panel makes it minimize to one of the four sides of the Designer,
represented by a small tab. Hover over the tab to use the panel.
Hidden - A hidden panel is not shown. You can open it again by selecting it in the View >

 menu.Panels

Toolbars can also be rearranged and floated to your liking. Simply drag on the "textured" left edge of the
toolbar. If you re-arranged your panels into a layout that you don't like, you can quickly revert back to
the default by selecting the option from the menu bar.View > Reset Panels

On this page ...

Designer Spaces
Docking System
Project Browser

Project Resources
Right-Click Menu

Tag Browser
Menubar

File Menu
Project Menu

Comm Mode
Previewing the Project
Tools Menu
Help Menu

The Designer User
Interface

Watch the Video

Project Browser

The panel allows you to view the different Designer Spaces, and their component hierarchies at a glance. By clicking Project Browser Project

 icon you can view or change many of the properties settings in your project. You can expand the folders and navigate down through Properties
each folder to see elements of your project such as windows, views, containers, and components. The Project Browser shows the entire tree structure
from the project level folder down to the component level. You can navigate within your project in two ways, by selecting nodes in the Project Browser
tree or directly clicking on an element like a component in the project workspace. Regardless of how you select an element, properties for that element

Expert Tip

Your docking preferences are stored under . If you %USER_HOME%/.ignition/*.layout
really want to reset your preferences, remove these files and restart the Designer.

https://www.inductiveuniversity.com/videos/the-designer-user-interface/8.1

are displayed in the Property Editor.

Project Resources

All projects have resources, such as Vision Windows, Vision Templates, Perspective Views, project scripts, reports, and named queries. Project
resources can be inherited from one project to another. For more information, see .Project Inheritance

Naming Conventions

Project resource names cannot be blank. They must start with a letter, a numeral, or an underscore. The following characters are reserved and cannot
be used in names for project resources.

 < (less than)
 > (greater than)
 : (colon)
 " (double quote)
 / (forward slash)
 \ (backslash)
 | (vertical bar or pipe)
 ? (question mark)
 * (asterisk)

In addition,the following names cannot be used as project resource names:

CON, PRN, AUX, and NUL
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, and COM9
LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9

Right-Click Menu

The Project Browser basic functionality is similar to many applications that run on your PC. When you right-click on a project resource in the Project
Browser, several options are available like Copy, Paste, and Delete. The presence of certain options will change depending on the type of project reso

 you are currently editing. For example, have additional menu options that are only visible in inherited projects. The urce inherited project resources
table below lists and describes common right-click menu options:

https://docs.inductiveautomation.com/display/DOC81/Project+Inheritance#ProjectInheritance-UsingInheritedResources

Function Description

Close & Commit Saves the updates made to the project resource and closes it.

Close & Revert Reverts the project resource to its last saved state. Reverting an unsaved resource is the same as deleting it.

Configure View
Permissions

View permissions determine whether or not a user has access to load the view.

Configure Events Configures an event or action on a component.

Rename Change the name of the current selection to a new name.

Cut Cuts the current selection into the clipboard.

Copy Copies the current selection into the clipboard.

Copy Path Copies the path of the current selection into the clipboard.

Paste Pastes the contents in the clipboard to the selected content.

Delete Deletes the current selection.

Revert Changes Reverting a modified resource will revert it back to its last saved state, assuming it's been saved before. Reverting new
resources deletes them.

Export Exports resources from the project.

Protect Protects the Project Resource. For more information, see . Protecting Project Resources

Documentation...

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

Documentation can be added to all project resources. Previously, documentation was only available on Vision Windows,
Vision Templates, and Transaction Groups.

Tag Browser

The panel, located on the left side of the Designer workspace under the Project Browser, allows you to browse Tags in the Designer Tag Browser
and OPC servers. Tags an be created, edited, displayed, exported, and imported directly from the Tag Browser. See for more detailed Tag Browser
information.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

Menubar

This section addresses only the functionality that the Designer menubar shares between both the Perspective and Vision modules.

For information on the menubar tabs unique to the Vision module, see . Vision Designer Interface

For information on the menubar tabs unique to the Perspective module, see .Perspective Designer Interface

File Menu

The contains most of your basic options related to saving, similar to many other software applications on your PC. File Menu

 Function Description

New The New menu option allows you to create a new Object. That Object could be a new window, a new template, or even a new
project. It can vary depending on what modules you have installed, also providing the ability to make new transaction groups,

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface

reports, Sequential Function Charts, and more.

Open Allows you to Open a previously created project.

Save All Saves all project changes, but are not pushed out to the client.

Save Save brings up a popup menu where you can choose what to save.

Save As Saves the current project as a new project.

Update
Project

Merges any changes from the Gateway to the project, if for example there were multiple people working on the same project.

Ignition
Exchange

Provides access to resources, templates, and tools that can be shared with various other industries and used in your own projIgnition
ects.

Import Allows you to import or export specific resources into or out of the project such as Tags, scripts, and templates, to name a few.

Export Exports globally scoped resources, such as Alarm Pipelines.

Exit Exits the project and allows you to save project changes.

Project Menu

Communication between the Designer and the Gateway is controlled from the Project Menu. The
Designer offers three data communication modes for your projects: , , or Comm Off Comm Read-Only Co

. Comm Read-Only is the default mode which does not allow writing from the Designer mm Read/Write
to Tag or Database sources.

About
Communication
Modes

Watch the Video

Function Description

Comm Off, Comm Read-
Only, Comm Read/Write

Changes the communication mode for this designer session. See for more details. Comm Mode

Note: These settings do not affect the execution of a project's Transaction Groups because Transaction Groups
execute on the Gateway, not in the Designer

Properties Opens up the Project Properties window, allowing project settings to be changed. See also: Project Properties

Event Scripts Opens up the appropriate event script window, either client, session, or Gateway. These can also be accessed from
the Project Browser. and .See also: Client Event Scripts Gateway Event Scripts

Preview Mode Puts the Designer into Preview Mode, allowing you to interact with it like a client. .See also: PreviewingtheProject

Preview Language Determines the language that the Designer will revert to when in Preview Mode. See also Localization and
. and Languages Localization in Vision

Comm Mode

https://www.inductiveuniversity.com/video/about-communication-modes/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Localization+in+Vision

1.

2.
3.

The Designer, and Vision Clients, have a communication mode ("comm mode") that determines if the Designer/Client is able to read and write to tags
and databases. The comm mode is determined per Designer/Client instance, and changing the comm mode in one running instance will not impact
any other running instance's comm mode setting. The comm mode can be set to the following:

Comm Off: In this mode all database query traffic and Tag subscriptions and writes are blocked. This can be useful to temporarily disable
polling component bindings.
Comm Read-Only: Tag subscriptions and SELECT queries work, but Tag writes and UPDATE/INSERT/DELETE queries requested by the
Designer/Client are ignored by the Gateway.
Comm Read/Write: The Designer/Client can write to tags. In addition UPDATE/INSERT/DELETE queries requested by the Designer/Client
will be processed by the Gateway.

In addition to changing the comm mode from the Project Menu, it can be changed in the following ways.

Setting the Comm Mode from the Main Toolbar

If the Main Toolbar is enabled, go to , and you'll see a corresponding button for each Comm Mode. The currently selected Comm Mode will Project
have its button highlighted in gray.

Setting the Comm Mode from the Project Propertied Window

This will set the default Comm Mode that the Designer starts up in for the current project.

In the Designer, either double-click on the node in , or click on the command on Project > Properties Project Browser Project > Properties
the top menu.
The window is displayed.Project Properties
Go to .Project > Designer
Under , for the , choose from the dropdown , , or Startup Options Initial Gateway Comm Mode Comm Off Comm Ready-only Comm Read

./Write

Note: These property settings are saved on a per-project basis.

Communication Error Message

If a user is attempting to write to a project in the Designer or from a Client, and the Comm Mode is not enabled for Read/Write, a dialog box will popup
stating the Designer is not in Read/Write Mode.

If your Tag is not being written too, there are a couple places to check:

From Main Toolbar go to and make sure the Comm Mode is set to Read/Write.Project,
If Comm Read/Write is checked, you may have a Client Event Script enabled that could be preventing you from writing to a project or a Tag,
as shown in the error message example below. You may need to edit your Client Event Script.

Previewing the Project

Many times, it is useful to test the components on the screen to ensure that certain bindings or scripts
are working the way that was intended. The Designer can go into that will allow you to Preview Mode
interact with the currently opened window as though you were working in a client. This means that
instead of clicking between components and seeing their properties, you will be able to interact directly
with the components such as clicking on a button to execute its script, or entering a value into a text field
to update a Tag value.

Preview Mode

The window workspace operates in two distinct modes: Design Mode and Preview Mode. There are three different ways you can switch between
Design and Preview Mode:

One of the easiest ways is from the Main Toolbar using the icon or the icon to switch between modes.Preview Design

From the Main Toolbar using the menu item. Project > Preview Mode
Using the key to toggle between the two modes.F5

In Design Mode, your mouse is used to manipulate components in a window. You can select, drag, and resize them. You can alter data bindings and
event script configuration. Data bindings are active in Design mode, but event handlers are not.

In Preview Mode, you are interacting with a "live" version of the window. Property bindings and event handlers will run, just like in the Client.

Note: Some of Ignition's functionality will not work in Preview Mode, for example, the retarget and openWindowInstance scripting functions must be
tested in a Client.

Preview Mode is useful for a quick check of the operation of a window, but it becomes cumbersome when trying to test a whole project. For that, we
recommend having a launched Client up as well, and doing testing in the true Client. You can quickly launch a client in one of the following two launch
modes via the menu.Tools > Launch Project

Tools Menu

The provides some tools to help you when creating projects. Tools Menu

Each of the tools are described here.

Function Description

Console The is a dockable panel prints system messages that are coming from the designer. This can vary from simple info Output Console
messages that show when things are loaded, to error messages when something goes wrong. The Console is also used frequently to
test and debug Python scripts, as print statements on components that are run in the designer are printed here.

Image
Manageme
nt

The is available from the menu. This tool is a drag-and-drop browser that helps Image Manager Tools > Image Management
manage the images that are stored on the Gateway. It is important to realize that these images are shared across all projects: they
are not stored inside a project itself. Use the Image Management tool to do common tasks like uploading new images and creating
folders. You can drag images and folders from your computer's desktop or hard drive into this window to easily upload new images to
the Gateway.

You can also get to this tool by putting an component on a window, and clicking the Component Palette > Display > Image
browse button on the image's property. See and .Image Path Images and SVGs in Vision Images and Icons in Perspective

Script
Console

Opens up the . window. This is where you can test scripts out. Script Console

Database
Query
Browser

Opens up the panel, which allows you to run SQL queries against your database connections. Database Query Browser

Translation
Manager

Opens up the Translation Manager panel, which allows you to configure translations. See .Localization and Languages

https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+Icons+in+Perspective

Symbol
Factory

If you have the module installed, you'll be able to open the Symbol Factory browser under the Tools menu in the Symbol Factory
Designer. You can browse through the symbols or use the convenient search function to find the symbol you need.

Once you find a symbol, you can drag-and-drop it into a window. Each symbol is dropped as a shape group. You will be able to un-
group it or double-click into the group just as if you had drawn the symbol yourself using fundamental shapes. This means that
you can alter the shape if you need to, or bind any colors inside the shape to a Tag to make the shape dynamic.

Launch
Project

Allows you to launch the project directly from the Designer.

Help Menu

The provides online assistance when looking for information or troubleshooting an issue.Help Menu

Functions Description

Help Opens up your web browser and takes you to this User Manual for quick reference.

Diagnostics The menu in the Designer and the Vision Client has a window that contains a number of tabs each providing a Help Diagnostics
useful troubleshooting feature. You can right-click on any of the tabs to show or hide the other tabs. For more information on these
tabs and the troubleshooting features, go to Designer Diagnostics.

About
Ignition
Designer

Provides information about the Designer such as the versions of the modules, Java version, and Gateway IP Address that the
Designer is using.

Related Topics ...

Vision Designer Interface
Perspective Designer Interface

https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Designer+Interface
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Designer+Interface

Designer Tools

The Designer comes with many tools that allow you to manage and test various resources within a
project. Each of the tools have their own interface and are accessed within the Tools menu on the menu
bar of the Designer.

Image Management Tool

The allows you to manage the images that are stored within the Ignition Image Management Tool
Gateway. The path to the images can be copied out and pasted into a component's property that is
expecting an image path.

On this page ...

Image Management Tool
Script Console
Database Query Browser
Translation Manager
Symbol Factory
Output Console
Keyboard Layouts

Script Console

The allows you to test out code snippets, printing the results out in the panel on the right.Script Console

Database Query Browser

The is like the Script Console, but for SQL and databases. Here, you can test out queries to ensure you are returning the Database Query Browser
correct data from your database.

Translation Manager

The allows you to add, edit, and remove translation mappings to your system. Works in conjunction with the .Translation Manager Localization system

Symbol Factory

Symbol Factory module is a unique designer tool included with Vision or Perspective.

https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Output Console

The prints system messages coming from the Designer from simple info messages to error messages. The Console is also frequently Output Console
used to test and debug Python scripts as print statements on components that are run in the Designer.

Keyboard Layouts

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

The editor adds the ability to define custom keyboard layouts, which are then applied on Vision's touchscreen keyboard. Although Keyboard Layouts
with this tool keyboard layouts are completely customizable, you can quickly switch between a few preloaded language options to display French,

https://docs.inductiveautomation.com/display/DOC81/Output+Console
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://docs.inductiveautomation.com/display/DOC81/Keyboard+Layouts

This tool is not available in Perspective. Spanish, Italian, German, or two variations of an English keyboard.

Related Topics ...

Images and SVGs in Vision
Localization and Languages

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision

Image Management Tool

Images such as PNGs, JPGs, GIFs, and SVGs can be uploaded to the Image Management Tool and
used inside of windows in Ignition. Once uploaded, these images may be used on windows and in
templates. The Image Manager tool, available from the Tools > Image Management, provides an
interface to upload, download, or select images.

Note: The Image Management tool does not support bitmap files.

On this page ...

Uploading an Image to the Image
Management Tool
Downloading Images from the
Image Management Tool
Exporting and Importing Images
in Projects

Images (png, jpg,
gif)

Watch the Video

Uploading an Image to the Image Management Tool

There are two ways to upload an image into the Image Management tool. Both ways involve having the Image Management tool open. At the top of
the Designer in the Menu Bar, select Tools > Image Management.

Upload on Drag and Drop

Images can simply be dragged and dropped from the local file system into the window.Image Management

Manual Upload

Alternatively, the Image Management window has an Upload button to pass images in. Locate the directory you wish to upload the image. You may
use the root folder, or create a new folder to keep your images organized. When ready, click on the button. Upload Image

https://www.inductiveuniversity.com/video/images-png-jpg-gif/8.1

An dialog window will appear. Simply find your image on the local system, and click to upload the selected image. Open Open

Downloading Images from the Image Management Tool

Single images, as well as entire directories, may be downloaded from the Image Management tool. This is useful when migrating a project to another
Gateway.

Image downloads can be taken from either the or windows. If at least one folder or image is selected, the Image Management Image Browser Save

 icon will become enabled. Click the icon, pick a local directory to save the images to, and click the icon again. All images and Save Save
subfolders in the selected folder will be copied to the selected directory.

Exporting and Importing Images in Projects

Uploading an image involves storing the file in the Gateway's internal database. This means that project exports do not contain any referenced images.

When exporting a project for use in another Gateway, it is recommended to also export any images that the project uses, and upload them into the
new Gateway at the same directory. Examples of uploading and downloading images can be found on this page.

Related Topics ...

Images and Icons in Perspective
Images and SVGs in Vision
Using Images
Symbol Factory

https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+Icons+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Images+and+SVGs+in+Vision#ImagesandSVGsinVision-UsingImages
https://legacy-docs.inductiveautomation.com/display/DOC81/Symbol+Factory

Script Console

The Script Console is a live Python terminal that is only accessible in the Designer. It is a great way to
very quickly test a script as it does not rest on a scripting event or specific component. The Script
Console can be opened via u. It consists of two parts: a the Tools > Script Console men Multiline

, and an . Code can be typed into both sides.Buffer Interactive Interpreter

Due to how works, the Script Console can not interact with components on a window, but it can "scope"
call Project and Shared scripts. If a Project or Shared script was recently added, then the console will

need to be reset before it can be called. This can be accomplished by clicking on the icon in Reset
the upper right.

Note: Gateway-scoped information will not appear in either the Script Console or . Output Console
Instead, the output will be sent to the wrapper.log file. Alternatively, will send system.util.getLogger
messages to the Gateway Console, and is a preferred method of troubleshooting Gateway scoped
scripts.

On this page ...

Features
Multiline Buffer
Interactive Interpreter

Scripting Console

Watch the Video

Features

There are several icons and user interface elements located on the Script Console window. The image below highlights a syntax error.

A reference of the icons and descriptions are found in the table below:

Icon Name Description

Clear Clears the text from the Interactive Interpreter.

Reset Clears and resets the text, and deletes all user defined objects (variables and functions) from the Interactive

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Ignition#ScriptinginIgnition-Scoping
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://inductiveuniversity.com/video/scripting-console/8.1

Interpreter.

Expand/Collapse Expands / Collapses Multiline Buffer and Interactive Interpreter.

Syntax Error
Highlight

Shows up next to a line in the Multiline Buffer identifying an error. Hover over the Error Symbol to see information on
the exception.

Multiline Buffer

The Multiline Buffer, located on the left side of the Script Console, allows for multiple lines of code to be entered and then executed by clicking on the

 button. All statements will output to the Interactive Interpreter. It also supports code folding for function definitions and print
comments.

When executing a script in the console, the button will change to an button. Developers can press the In
terrupt button to interrupt / stop a script from executing when testing code with a lot of data, or when the script inadvertently gets stuck in an infinite
loop.

Font Size Adjustment

Font size in the Multiline Buffer can be adjusted by holding and scrolling the mouse wheel.Ctrl

Right-Click Menu

Right clicking on the Multiline Buffer opens a menu. The menu options are described in the table below.

Main Menu Options

Name Description

Undo Undoes the last action.

Redo Gets rid of the last undo action.

Cut Cuts the selected text.

Copy Copies the selected text.

Paste Pastes the selected text.

Delete Deletes the selected text.

Select All Selects all text in the window.

Folding

Name Description

Toggle
Current
Fold

Expand or collapse the fold where the text cursor is located.

Collapse
All
Comments

Collapse all instances of multi-line comments. Only contiguous comments are collapsible.

Collapse
All Folds

Collapse all expanded folds.

Expand All
Folds

Expand all collapsed folds.

Autocompletion

Name Description

Automatic
Activation

Determines access to the Autocompletion window. If set, the window will automatically appear after a second of inactivity occurs
when "system." has been typed. If not set, the window can still be accessed manually by pushing .Ctrl+Space

Description
Window

Shows or hides the Description pane in the Autocompletion window.

Parameter
Assistance

Enables parameter assistance for known function arguments.

Appearance

Name Description

Whitespace Paints an arrow character in whitespace sections (tabs and spaces) for each line.

Tab Lines Paints lines at the indentation level of each tab stop.

Find/Replace

Pressing while the text cursor is in the Multiline Buffer opens a Find and Replace window. This will search for instances of text throughout the Ctrl+R
Multiline Buffer, and allows the user to replace all or some instances with new text.

Keyboard Shortcuts

The following shortcuts apply only to the Multiline Buffer.

Key(s) Description

Ctrl + </> (on the number pad) Collapse all folds.

Ctrl + <*> (on the number pad) Expand all folds.

Ctrl + <-> (on the number pad) Collapse the fold on the same line as the text cursor.

Ctrl + <+> (on the number pad) Expand the fold on the same line as the text cursor.

Ctrl + <Space> Open Autocompletion window. By default, the window will automatically open once " " has been typed.system.

Ctrl + <R> Open Find/Replace window.

Ctrl + <Mouse Wheel Scroll> Increase and decrease the font size.

Ctrl + <Enter> Executes the script in the script editor.

Interactive Interpreter

The Interactive Interpreter is located on the right side of the Script Console, and allows you to run a single line of code at a time. Code is executed
from the Interactive Interpreter by pressing the key. Print statements from both sides of the Script Console will appear in the Interactive Enter
Interpreter.

The Autocompletion window, available in the Interactive Interpreter, has access to the current working environment so items such as Project and
Shared scripts will automatically appear. They can also be typed in manually.

The following feature is new in Ignition version 8.1.33
 to check out the other new featuresClick here

When first opened or refreshed, the Interactive Interpreter default header text has displayed the Jython version. Now, it also includes a reminder that
the code executes in the local Designer scope (no access to Gateway methods), and instructions for how to trigger the autocomplete hint popup using
the the Ctrl + Space keys.

Keyboard Shortcuts

The following shortcuts apply only to the Interactive Interpreter

Key(s) Description

Ctrl + <L> Clear the Interactive Interpreter. Functionally the same as clicking the Clear button.

Ctrl +
<R>

Reset the Interactive Interpreter. Functionally the same as clicking the Reset button.

Up arrow Cycle backward through command history.

Down
arrow

Cycle forward through command history.

Ctrl +
<C>

Keyboard interrupt.

Ctrl +
<Space>

Open Autocompletion window. By default, the window will automatically open once an " " has been typed such as "system" or object.
"project," and a Project script has already been defined.

Ctrl + <A> Move the text cursor to the start of the line. Similar to pressing the Home key.

Related Topics ...

Output Console

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.33

Python Scripting
Scripting in Ignition

Database Query Browser

The Database Query Browser Panel

The is a very convenient tool that lets you query any database connected to Database Query Browser
Ignition, and interact with tables. Because Ignition is so heavily integrated with databases, it is
very common in the course of project design the need to inspect the database directly, or to experiment
with a SQL query to get it just right.

The Database Query Browser is found in the tools menu and has a few basic parts to it. The first is the
query text field at the top of the window where a query can be written and then executed against the
selected database connection. This can accept any type of query, but if the query would update the
database, the Designer needs to have its Gateway set to read/write first. The Communication Mode
database connection that the query is executed against can be chosen from the dropdown, below the Exe
cute button. The Result Data space below the query field is where the results of the executed query will
appear. If a SELECT query was run, then the table data will be shown. If an UPDATE, INSERT, or
DELETE query was run, then the number of rows affected will be displayed instead. Finally, the Table
List on the right-hand side of the window will display all of the tables in the specified database
connection. The tables can be expanded to show the columns and their data types for that table to assist
in writing queries. Additionally, when a table is double-clicked, the query will automatically be populated
with a for that table.SELECT * FROM

On this page ...

The Database Query Browser
Panel
Features of the Query Browser

Query Type
Select Limit
Multiple Resultsets
Query History
Auto Refresh
Editing the Table in the GUI

Using the Query
Browser

Watch the Video

Features of the Query Browser

The Database Query Browser has a few features that can help manage and build any SQL query.

Query Type

The following feature is new in Ignition version 8.1.32
 to check out the other new featuresClick here

The Query Type field displays the mode that is used when a query is executed. By default, this field will show Auto, which will change to reflect the
query type mode as a query is entered to show either Auto (Select) or Auto (Update). This allows confirmation that the correct mode is used when
executing the query. If the auto-detected mode is incorrect, the drop down includes Select and Update to set the mode type.

For example, since the check for the query string will assume an update is being run if it doesn’t detect SELECT text at the beginning of a query, you
may want to use the Query Type dropdown to choose Select as the mode option to confirm the query will execute correctly.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-CommMode
https://www.inductiveuniversity.com/video/using-the-query-browser/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.32

Select Limit

By default, any SELECT statement is limited to 1000 rows. This is to help the queries return quickly, however, it may not always be wanted. This can
be turned off or adjusted by either clicking the checkbox or manipulating the row number located underneath the Query Area on the left. It is
recommended to leave this on unless you know the result set size. It's better to use a count query than to return all results to see the result count. IE:
SELECT COUNT(*) FROM table...

Multiple Resultsets

The Query Browser allows you to make multiple tabs of results, so that multiple queries can be run and their results compared to each other. Simply
right click on the area and select . Your queries will be saved for each tab.Resultset New Tab

Query History

At the top of the Table List, there is a second tab labeled . This will switch the Table List to instead show the history of queries run in the query History
browser. Double clicking one of the entries will push the query into the Query Area (for the selected tab). This allows you see what queries have been
run previously to help you tweak your current query.

Auto Refresh

The Query Browser also lets you monitor a database table for changes by using the button. This is often convenient when designing Auto Refresh
Transaction Groups. As the group runs, you can view the table that it is targeting with Auto Refresh turned ON to watch how the group is altering the
table. Simply click the Auto Refresh button at the bottom of the Query Browser to periodically rerun the query in the Query Area. Make sure to include
an ORDER BY clause so your results show up in the order you want.

Editing the Table in the GUI

In addition to editing the table data using INSERT, UPDATE, and DELETE statements, the data can also be edited within the Result Data. Simply click
the Edit button at the bottom of the Query Browser window.

Once the Edit button is clicked, the values in the table can be edited by double clicking on the value and entering a new one.

Right clicking on a row also provides a few options:

Add Row: Will add a new row to the table for data to be entered into.

Editing in this way requires that the data be obtained from a single table. The table must also contain a primary key.

Clear Field: Will clear out the value in the selected cell so that it will be NULL. This is different than simply deleting the value out and leaving
it empty.
Delete Row(s): Will delete the selected row or rows from the table.
Copy Row Values: Will copy the row values in a comma separated form to the clipboard.
New Tab: Will Create a new Resultset tab for a new query to be run in.

When editing values, cells will highlight depending on what is being done to them. Green cells are new, and typically indicate a new row was added.
Red cells are marked for deletion, and will be deleted when the changes are confirmed. Blue cells are cells that have had values changed during
editing.

After making edits to the table data, the changes then either need to be applied or discarded. This gives you the opportunity to revert the table to the
way it was before the current edit session, or apply the changes and rewrite the table appropriately. Simply click the corresponding button at the
bottom of the Query Browser next to the Edit button. Make sure your Gateway is set to Read/Write before Applying your Communication Mode
changes.

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Note: Copied values from the Database Query Browser will paste in an RFC 2339 compatible local datetime format. Additionally, using the shift
key while copying will copy the values in a tab-separated format ideal for pasting into spreadsheet tools such as Microsoft Excel.

Related Topics ...

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-CommMode
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

Keyboard Shortcuts

https://legacy-docs.inductiveautomation.com/display/DOC79/Keyboard+Shortcuts

Output Console

The Output Console is a dockable panel that you can open via Tools > Script Console menu or the Ctrl-Shift-C keyboard shortcut. The Output
Console prints system messages that are coming from the Designer. This can vary from simple info messages that show when things are loaded, to
error messages when something goes wrong. The Console is also frequently used to test and debug scripts, as print statements on Python components
that are run in the Designer are printed here.

For example, by using the print function in your script, you can observe the inner workings of your script as it executes. If you executed the following
script:

A Python script that demonstrates the print statement.

print "Print me first"
x=10
z=2
print x, y, x/y

#Result looks like this:
#Print me first
#10 2 5

Note: Gateway-scoped information will not appear in either the Output Console or . Instead, the output will be sent to the Script Console wrapper.log
. Alternatively, will send messages to the Gateway Console, and is a preferred method of troubleshooting Gateway scoped file system.util.getLogger()

scripts.

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

Note: You can use certain options, such as copying, in the Edit Menubar at the top of the Designer window.

The Output Console is most frequently used to test and debug Python scripts on components in Ignition. By using the print keyword in your script, you
can observe the inner workings of your script as it executes. For example, if you executed the following script:

Python - Using the Output Console to Test and Debug Python Scripts

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

A function that intercepts tag writes, printing out the previous value first.
def writeToTag(path, value):
 prevValue = system.tag.getTagValue(path)
 print "Writing value '%s' to %s, was previously '%s'" % (value, path, prevValue)
 system.tag.writeToTag(path, value)

writeToTag("Compressor/HOA", 2)

It would print the following to the console:

Writing value '2' to Compressor/HOA, was previously '0'

Note: The Output Console is also available in the Vision Client from Help > Diagnostics and selecting the tab.Console

Related Topics ...

Python Scripting
Scripting in Ignition

Keyboard Layouts
Keyboard layouts can be added, removed, and customized with the Keyboard Layout editor, which is
available in the Tools menu of the Designer Vision workspace. The Keyboard Layouts editor allows you
to create, modify, and import/export custom keyboard layouts across your entire Gateway. Keyboards
are all configured with a common JSON structure and stored directly in the IDB so that they are shared
across all projects.

On this page ...

Keyboard Layout Editor
Keyboard Definition Properties

Default Keyboard Layouts
Using the Long Press Feature

Each layout can be associated with any number of locales by a language tag. When an end user invokes
the touchscreen keyboard, Ignition will attempt to find a keyboard with support for their specific locale,
falling back to the English layout if no more appropriate keyboard is found. However, there are a few
more ways to assign what keyboard layouts appear. Keyboards can be set individually on touchscreen
enabled components using the Touchscreen Keyboard Layout property. Keyboard layouts can also be
switched in real time by operators if the keyboard layout includes a language selection key. Furthermore,
keyboard layouts can be explicitly requested with the function. system.gui.showTouchscreenKeyboard

Keyboard Layout Editor

Access the Keyboard Layout Editor in the Designer Vision workspace by selecting > . There will already be six keyboard Tools Keyboard Layouts
layouts prepopulated under Keyboard Layouts when you first open the editor. The default keyboard layouts are designed to make the best use of
screen space and be mobile-friendly. The following Any created custom keyboard layouts will also be listed here during configuration and after saving.
keyboard layouts are included by default:

English (Modern) - A legacy layout utilizing a traditional looking English keyboard.
English (Compatibility) - A revamped layout of the legacy keyboard with a design geared more toward mobile use.
Spanish
French
German
Italian

The international keyboards are included to assist in quicker implementation as needed. If your system does not these keyboards, they can be deleted

in the editor using the Remove icon. The Add icon is used to create any new keyboard layouts that may be required. There are no
significant restrictions placed on the number or location of keys. Additionally, if you don't want to build a keyboard layout from scratch, you can
duplicate an existing keyboard configuration as a starting point for a new custom keyboard. To do this, select the keyboard you want to duplicate, then

select the Duplicate icon. At the bottom of the Keyboard Layouts section is an Export Schema icon. Use this to export a JSON schema of
the selected keyboard layout for use in external JSON editors to create new keyboard layouts.

On the right side of the editor is the Keyboard Definition section. Defining the properties listed within will establish how your keyboard layout will be

configured. The Keyboard Definition area also includes Import and Export icons to import and export keyboard layouts. Imported keyboard

layouts must be JSON files. The Keyboard Definition also includes a Preview icon to display an instant, live preview in the Designer of the
currently selected keyboard layout.

https://global.discourse-cdn.com/business4/uploads/inductiveautomation/original/3X/1/d/1d6c44f90319cc52f677ce082e19e4151a05895a.png
https://docs.inductiveautomation.com/display/DOC81/system.gui.showTouchscreenKeyboard

Keyboard Definition Properties

Property Description

alias The 2-3 character string that appears on the keyboard language selector key to identify this keyboard.

id The fixed UUID for the keyboard layout. These are randomly generated and automatically updated to track layouts as they are
updated on the Gateway.

labels Localized strings to change the text on various system keys, such as backspace, shift, and cancel.

name The name of the keyboard.

rows The designation of character keys on the keyboard sorted by row. Each character within a row can have uppercase and lowercase
fields, along with the ability to add accent options for both fields. For example, row 0 character 2 on the EN keyboard is the letter "e".
The uppercase and lowercase selections for "e" include an accents dropdown that contains either the uppercase or lowercase "ê",
"é", "è", "ë", "" accent options. Row designation can be structured in any of the following three ways:

A string literal member of the enum "BACKSPACE", "SUBMIT", "SHIFT", "CANCEL", "CAPSLOCK", "NUMERIC_LAYOUT" will
create a system key at that location.
A simple key can be created with an object with at least one member { Add an lowercase: "lowercase": "a" }. uppercase key to

caps lock r more complex keys can be defined with a full object define an alternate form to use when the shift or keys are active o
pattern: { "lowercase": { "character": "e", "accents": ["ê", "é", "è", "ë", ""] }, "uppercase": { "character": "E", "accents": ["Ê", "É", "È",
"Ë", ""] } }.
An alias, allowing the typed character to be different than the label for the key: { "character": "\t", "alias": "Tab" }

https://global.discourse-cdn.com/business4/uploads/inductiveautomation/original/3X/2/f/2f816e0dfd350bd649fa743a44fb7d9137f5e5fe.png

supported
languages

An array of IETF language tags representing the languages this keyboard language supports. This includes a title field to enter the
string that is presented to the user when selecting this keyboard to use. For example, if your language tag was en, your title would be
English.

Default Keyboard Layouts

The default keyboard layouts include standard Backspace, Enter, and Shift keys in addition to system keys that switch language selection, toggle
layouts between alphabetic and numeric/symbol displays, highlight accent keys, and navigate forward or backward through the preview text field.

Additionally, there is a clear all icon at the end of the preview text field to make it easier to remove all existing text in the field.

Note: For easy navigation within the text body, use the Shift and Arrow Keys to jump to the start or end of the current text. The arrow keys can be
held to repeatedly navigate within the text field. Similarly, the backspace key can be held down to remove multiple characters at a time.

Using the Long Press Feature

Long press on any key with accent characters defined and a pop up window will open allowing you to enter any alternate variations of that key.

Another option to access accent keys is to touch the Finger Push key at the lower right of the keyboard. When this is selected, all keys with
accent options will be highlighted in blue and a single touch will invoke the accents pop up.

Note: If even greater configuration of the long press feature is required, the long press delay time can be adjusted using the ignition.
system property. touchscreen.longPressDelay

Project Properties

There are a number of properties you can set for your projects within the Designer, Vision Clients, and
Perspective Sessions. For example, there are properties for setting the touchscreen mode, customizing a
client's auto-login, or configuring how the clients receive updates.

The property settings on the Project Property window apply to the whole project. This page identifies and
describes all the available project properties.

Accessing Project Properties

In the Designer, click on Project tab on the menu bar at the top of the Designer, then select Project
. Properties

The Project Properties screen is displayed. Project Properties span several functional areas each
containing settings applicable to that area.

On this page ...

Accessing Project Properties
Project General Properties

Default Database and Default
Tag Provider
General Properties
Permissions Properties
Designer Properties

Vision Project Properties
Perspective Properties
Property Inheritance

About Project
Properties

Watch the Video

Project General Properties

A project's General properties apply to the project as a whole, across all module functionality. For a new project, there are many default settings that
you can use. For example, there are default settings for the Tag provider, database, initial comm mode, window editing, and Client launching.

When properties in a section have been updated but not saved yet, the section heading will change to italicized text.

https://www.inductiveuniversity.com/video/about-project-properties/8.1

When properties in a section have been updated but not saved yet, the section heading will change to italicized text. In the following example,
changes have been made in the the Perspective General and Permissions properties but they have not been saved or applied yet.

Note: There are a few properties of a project, such as its name, description, and title that are not available from the Designer and you need to set
them in the Gateway. To do so, go to the , under the section, click on the link next to the project. You cannot edit Gateway Config > Projects edit
these settings while the project is open in the Designer.

Default Database and Default Tag Provider

Under is where you set the project's Default Database and its Default Tag Provider. It is important to understand how to use Project > General
defaults effectively for proper project design.

Wherever you use a database connection or a Tag in a project, you are always given the option to use the project's default, or an explicitly named
connection or provider. If your project is like most typical projects, it primarily uses a single database and a single Tag provider. By consistently using
the default option, you make your project more resilient to change.

For example, suppose you have a project, and it has a database connection named . Now you want to adapt the project to a new, Production_DB
similar plant, while leaving the existing project intact. You copy the project and create a new database connection, named . If your project New_DB
consistently used its default database connection, the switchover will be as simple as changing the copied project's default database. However, if you
used the explicit connection in your groups and screens, you will need to laboriously switch the bindings over to .Production_DB New_DB

General Properties

Tag Settings

Property Description

Default
Provider

The provider chosen here will act as the project's default Tag provider.Tag

Client Poll
Rate

The poll rate (in milliseconds) is the rate at which a Vision or polls the for updates to its Client Client Ignition Designer Gateway
subscribed Tags.

Database Settings

Default
Database

This is the default database connection to use for this project. To use the default database connection, use the special <default>
connection, or in scripting, the empty-string connection . ""

Security Settings

Identity
Provider

The default Identity Provider (IdP) for this project. Choose from a dropdown list of IdPs. You can also choose <None> if the project
already had an IdP but you want to remove it.

Note: If your Identify Provider was set in an Ignition version prior to 8.0.6, this property may be located in Project Properties >
instead. Perspective General

Always ask
the IdP to re-
authenticate
users by
default

When enabled, authenticated uses will always need to re-enter their credentials on login. When false, if a user is already
authenticated, then they will not be required to re-type their credentials when an action in the session triggers a login (such as a call
to system.perspective.login).

Note: Allowing re-authentication is entirely determined by the Identity Provider. This setting simply makes the Gateway send the
re-authentication request. Consult your Identity Provider's documentation for information on re-authentication support.

Automatically
redirect
users to the
IdP if
authenticatio
n is required

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

If enabled, users will be automatically redirected to the IdP for authentication if the user is not yet authenticated and authentication
is required. If disabled, users will be shown a "speed bump" page, with a message explaining how authentication is required and a
button allowing the user to redirect to the IdP for authentication.

Note: This setting only applies to Perspective Sessions.

User Source Choose the that governs this project's security: specifically, which group of users () is allowed to log into User Source User Sources
the client. The User Sources are all defined in 's section under the page. Gateway Config > User, RolesSecurity

Note: This is for Vision projects only.

Required
Client Roles

This property is for logins, and determines what role(s) a user must have before they can log into the Client. You can Client
optionally specify a list of roles that are required for a user to log into this project. Use commas to separate the roles. Users must
have the roles in order to log in. If no roles are specified, the user only needs to correctly authenticate with the at least one of User

 in order to log in. To define the roles, go to the 's Config section under the page. Click the Source Gateway > User, RolesSecurity
 link, and then go to the tab. manage users Roles

See also .Security

Audit Settings

Enable
Auditing

If auditing is enabled, audit events that relate to this project in the chosen audit profile.will be stored

Audit Profile The audit profile stores the audit events when auditing is enabled.

Permissions Properties

When opening the project in the Designer, these properties determine which roles are required when making certain changes to the project. More
details can be found on the page.Project in and Security Designer Gateway

Required Designer Roles

View Users must have at least one of these roles to view the project in the .Designer

https://docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveGeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties#PerspectiveProjectProperties-PerspectiveGeneralProperties
https://docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-GeneralProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.login
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

Save Users must have at least one of these roles to save the project.

Delete Users must have at least one of these roles to delete the project.

Protected Resources Users must have at least one of these roles to access protected resources.

Designer Properties

These preferences are saved on a per-project basis.

Startup Options

Initial
Gateway
Comm Mode

The Designer starts up in the default Comm Read-Only mode. The property allows you to change the mode the Designer starts in
when viewing the project. The options are: Comm Off, Comm Ready-Only, Comm Read/Write.

Comm Off - In this mode, all database query traffic and Tag subscriptions and writes are blocked.
Comm Read-Only - Tag subscriptions and SELECT queries work, but Tag writes and UPDATE/INSERT/DELETE queries
are blocked.
Comm Read/Write - The Designer may freely request Tag and database values from the Gateway, as well as write or
change these values.

For more information, see the page. Communication Modes

Timezone
Behavior

The following feature is new in Ignition version 8.1.22
 to check out the other new featuresClick here

Sets the timezone of the Designer. This takes precedence over Vision's Client Timezone setting If Vision is installed and applies
only to the Designer.

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Security+in+the+Designer#ProjectSecurityintheDesigner-ProtectingProjectResources
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ProjectMenu
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.22

Vision Project Properties

There are many project properties that apply specifically to Vision Clients. You can find more information at .Vision Project Properties

Perspective Properties

There are many project properties that apply specifically to Perspective Sessions. You can find more information at .Perspective Project Properties

Property Inheritance

Project properties can be inherited from parent projects. You can find more information at .Project Inheritance

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Inheriting Project Properties results in a overlay on the section. The button can be used to make changes Resource Inherited Override Resource
locally:

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Project+Properties
https://legacy-docs.inductiveautomation.com/display/DOC80/Project+Inheritance
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

While a resource is overridden, the button can be used to clear overrides for the current section.Discard Overrides

Find and Replace

The Find/Replace tool in the Edit menu of the Designer allows you to
search your entire project for specific components, properties, scripts,
Transaction Groups, and Tags. You can then use the replace feature to
make mass changes to a project with the click of a button.

On this page ...

Search Options
Contextual Find and Replace
Wildcards
Using Find and Replace

Using Find and
Replace

Watch the Video

Search Options

In the Target section, the Find/Replace tool has options for searching through many different parts of a project.

Named Queries (Added in 8.1.3)
Pipelines
SQL Bridge Transaction Groups
Scripting
Tags
Templates (Vision)
Views (Perspective)
Windows (Vision)
WebDev Resources (Added in 8.1.1)

https://www.inductiveuniversity.com/video/using-find-and-replace/8.1

You can narrow down your search by selecting and deselecting categories you include in the search. The SQL Bridge, Tags, Templates, Views,
Named Queries, and Windows options also have dropdown options to customize your search.

1.

2.
3.
4.

For example, if you want to search only a couple Views, do the following:

In the Project Browser, use to select the views you want to search. Ctrl-Click

In the Designer toolbar, go to or use the shortcut . The Find/Replace window is displayed.Edit > Find/Replace Ctrl-F
De-select all options by unchecking Select All.
In Views, click on the expand arrow and choose the option.Selected Views

4.

5.
6.
7.

Enter the property, action, script, or such that you want to search for. In this example, we searched for property value .Helvetica
Click .Find
The search results are displayed in the box.Results

Contextual Find and Replace

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

1.

2.
3.

Starting in 8.1.18, you can right-click on a node to Find/Replace within all Windows, Templates, Views, Transaction Groups, Named Queries, Scripts,
and/or selected folders in that node. This bypasses the need to narrow your search criteria with the Search Options detailed in the previous section.
For example, to search for all instances of a "Gauge" within all Perspective Views, follow these steps:

In the Project Brower, right-click on and select Views Find/Replace Views.

 This will open the Find/Replace window. Type "gauge" in the search bar and click Find.
The results displayed will be all instances of "gauge" within the Views node:

To limit your search within selected views, you may select specific views or folders within the Project Browser. Right-click on any of the selected views
and select .Find/Replace selected Views

1.
2.
3.

4.
5.
6.

7.

Wildcards

To customize your search further, you can use the wildcard characters * and ?.

Use an asterisk () to indicate that any character(s) could be where the asterisk is. For example, to search for Tags that start with the word "Motor" *
enter "Motor*". This would return Motor 1, Motor2, Motor_East3, and so forth.

Use a question mark (?) to indicate any single character could be where the question mark is. For example, to search for "Valve1Status" through
"Valve9Status", you could enter "Valve?Status". Note that this would not return something like Valve44Status because that is more than one
character where the wildcard is.

Editor notes are only visible to logged in users
The multi-line wildcard search was implemented as a part of IGN-821, but looks like there was some regressions that prevent it from actually
working.

IGN-1113 is the fix for the issue. Let's hold off on the editor note below until it's fixed.

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

As of release 8.1.1 Find/Replace can now use wildcards to match items across multiple lines of text.

Using Find and Replace

In the Designer toolbar, go to or use the shortcut . The window is displayed.Edit > Find/Replace Ctrl-F Find/Replace
Enter what you're searching for in the textbox at the top to search through your project.
Click the Find button at the top right to execute the search. All matching items appear in the Results section. Double-click on an item in the
Results table to bring that item into editing focus in the Designer.
To replace a value, select an entry in the Results section and you'll see the Value of that entry in the Current box of the Replace section.
Enter the text you want to use as a replacement in the Replace textbox and a preview of the new value is shown in the Preview box.
Click the button to execute the replace. This will move your selection down in the Results table so that you can rapidly execute Replace
multiple replacements. If you're satisfied and you'd like to make the identical replacement to many items, select them all in the Results table
and click the Replace All button.
Close the Find and Replace window.

Note: The actual replacement on some resources may not take effect until the Find and Replace window is closed.

Related Topics ...

Database Query Browser

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

Windows, Linux, and Mac Keyboard Shortcuts

Using Keyboard Shortcuts in the Designer

You can interact with screens and more by using some of the popular keyboard shortcuts in the Designer.

Action Windows
/Linux
Keystrokes

MacOS Keystrokes

Nudge
Moves selected component(s) in the direction of the arrow key by the default nudge distance.

, , , , , ,

Alt-Nudge
Same as Nudge, but uses the “alt-nudge” distance.

Alt + , Alt + ,
Alt + , Alt +

Option + , Option + ,
Option + , Option +

Resize Right
Moves the right edge of the component left or right. Add Alt to use the alt-nudge distance.

Shift + , Shift
+

Shift + , Shift +

Resize Bottom
Moves the bottom edge of the component to top or bottom.

Shift + , Shift
+

Shift + , Shift +

Resize Left
Moves the left edge of the component left or right.

Ctrl + Shift + ,
Ctrl + Shift +

Control + Shift + ,
Control + Shift +

Resize Top
Moves the top edge of the component to top or bottom.

Ctrl + Shift + ,
Ctrl + Shift +

Control + Shift + ,
Control + Shift +

Move Forward (Vision only)
Moves the selected components(s) forward in the Z-order

PgUp Fn +

Move Backward (Vision only)

Moves the selected component(s) backwards in the Z-order

PgDn Fn +

Move to Front (Vision only)
Moves the selected component(s) to the front of the Z-order

Home Fn +

Move to Back (Vision only)

Moves the selected component(s) to the back of the Z-order

End Fn +

Copy-Move
Copies the component when holding Ctrl while doing a mousemove.

Ctrl + drag a
component

Click and hold on a
component + Control +
drag

Orthogonal-Move
Restricts to only moving straight up, down, left, or right when holding Shift while doing a mousemove.

Shift + drag a
component

Shift + drag a
component

Selection-Move
Drags the components that are currently selected without having to press the mouse button down on
the component first.

Hold Alt +
drag a
component

Hold Option + drag a
component

Copy-Axis-Move
Combines copy move with axis move.

Hold Ctrl + Alt
+ drag a
component

Click and hold on a
component + Control +
Option + drag

Proportional Resize
Resizes a component while maintaining its aspect ratio.

Hold Ctrl +
resize a
component

Click and hold on a
component + Control +
resize

On-Center Resize
Resizes the selection using the center as the anchor point.

Hold Shift+
resize a
component

Hold Shift + resize a
component

Select All (Vision only)
Selects all components that are siblings of the selected component.

Ctrl + A Command + A

Select Same Type (Vision only)
Selects all components that are siblings of the selected component and the same component type.

Ctrl + Shift + A Command + Shift + A

Select Same Type in Window (Vision only)
Selects all components in a window that are the same type as the selected component.

Ctrl + Alt +
Shift + A

Command + Option +
Shift + A

Layout (Vision only)
Opens the to let you specify layout for the component(s).Layout Constraints window

Ctrl + L Command + L

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-ComponentLayout

Size & Position (Vision only)
Opens Size & Position to let you specify exact size and position for selected component or window.

Ctrl + P Command + P

Customizer (Vision only)
Opens the to let you configure complex component properties.Custom Properties window

Ctrl + U Control + U

Customizer 2 (Vision only)
Some components have a secondary customizer. This command will open that customizer, if available.

Ctrl + 2 Control + 2

Jython
Opens Event Configuration page (Perspective) or the Component Scripting page (Vision) to let you
configure actions for component or window.

Ctrl + J Command + J

Script Configuration
Opens the Script Configuration for the View or Component selected. (Perspective Only)

Ctrl + K Command + K

Security (Vision only)
Opens Security Settings to let you set security for Component(s) or window.

Ctrl + E Command + E

Save
Saves the project.

Ctrl + S Command + S

Open
Opens the Open/Create Project to let you select a different project.

Ctrl + O Command + O

Undo
Undoes the last action.

Ctrl + Z Command + Z

Redo
Gets rid of the last undo action.

Ctrl +Y Command + Y

Copy
Copies selected component(s) or window.

Ctrl + C Command + C

Duplicate
Duplicates selected component(s) or window.

Ctrl + D Command + D

Cut
Cuts selected component(s) or window.

Ctrl + X Command + X

Paste
Pastes selected component(s) or window in clipboard. Pasted component(s) wait for position before
pasting.

Ctrl + V Command + V

Immediately Paste (Vision only)
Places pasted component(s) at the same location where they were copied/cut.

Ctrl + I Command + I

Comment/Uncomment Lines of Code
Quickly comment or uncomment lines of a script or query in Designer.

Ctrl + / Command + /

Cancel
Cancels a pending paste operation, deselects the current row of a table, cancels dragging components
onto window.

Esc Esc

Find/Replace
Opens to let you Search and replace the project based on string, pattern, or regex.Find/Replace

Ctrl + F Command + F

Delete
Deletes the current selection.

Delete Delete

Snap to Grid (Vision only)
Toggles whether or not moving and resizing components snaps to the grid.

Ctrl + G Command + G

Snap to Guides (Vision only)
Toggles whether or not moving and resizing components snaps to guides.

Ctrl + Shift +
G

Command + Shift + G

Console
Opens the .Output Console

Ctrl + Shift +
C

Command + Shift + C

Help
Launches the Ignition User Manual in a web browser.

F1 Fn + F1

Rename
Renames the selected item (Tag, window, transaction group, component, and so on).

F2 Fn + F2

Preview Mode
Toggles preview/design mode.

F5 Fn + F5

F10 Fn + F10

https://legacy-docs.inductiveautomation.com/display/DOC81/Working+with+Vision+Components#WorkingwithVisionComponents-CustomProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Console#ScriptConsole-OutputConsole

Launch Client/Session (Perspective and Vision only)
When in the Vision workspace, launches a Vision Client in windowed mode.

While in the Perspective workspace, launches a Perspective Session . in windowed mode

Launch Full Screen Client (Perspective and Vision only)
While in the Vision workspace, launches a Vision Client in full screen mode.

While in the Perspective workspace, launchers a Perspective Session in full screen mode.

F11 Fn + F11

Update Project
Updates project to server. Receives concurrent edits from other Designers.

Ctrl + Shift +
U

Command + Shift + U

Zoom
Zooms in/out in the Designer.

Ctrl +
Mousewheel

Control + Mousewheel

Touch Selection (Vision only)
Draws a line while dragging. Every component in the path of the line will be selected when letting go of
the mouse button.
To activate, a container must first be selected

Alt + Left
Click and
Drag

Option + Left Click and
Drag

Select Through (Perspective and Vision only)
Click on a component that is beneath another component. You can do this multiple times if there are
several layers of components.

Alt + Click Option + Click

Code Folding/Unfolding
Select a line of code, and this command will collapse the selection. Press again while the folded code
is selected, and the code will unfold. The Script Console has a for code folding.separate command

Ctrl + . Command + .

Select Through (Perspective only)

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Click on a component that is beneath another component. You can do this multiple times if there are
several layers of components.

Ctrl + Shift +
Click

Command + Shift + Click

Deep Selection (Perspective only)

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Selects into a container and components within.

Alt + Shift +
Click

Option + Shift + Click

Related Topics ...

Saving Projects

https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Console#ScriptConsole-KeyboardShortcuts
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

Saving Projects

Once you created the Windows, Templates, Tags, Views, and anything else that goes into your project,
you need to save your work. Saving your progress means pushing the changes from your Designer into
the Gateway. If you are saving viewable resources like Vision Windows or Perspective Views, saving the
changes means telling all of the clients or sessions that they can use the new updates to your project.

When you save, it's possible to save individual resources on a project as they are finished instead of
saving the entire project. This is particularly helpful if you want to get resource updates to users quickly,
or parts of a project into production sooner rather than waiting for the entire project to be completed

You also have options on how to perform Client and Session updates. You can choose between notifying
the operator of an available update, or automatically pushing updates as soon as it is published making it
transparent to the operator. This page assumes you are using the default Notify mode, see Client Update

 or for more information.Modes Session Project Updates

Saving a Project

The project save options are all located in the Designer under the menu.File

On this page ...

Saving a Project
Save All
Save...
Save As

Update Project
Project Updates in a Vision
Client
Project Updates in a
Perspective Session

Project Creation
and Publishing

Watch the Video

Save All

Save option saves the entire project. The project will be saved immediately, unless there are any conflicts All due to . If there concurrent editing
 are conflicts, the screen will open automatically. Once you've resolved the conflicts, the Designer saves the project.Resolve Conflicts

Save...

The option option displays a list of all items that have been created, modified, or deleted since the last save. On this list you can save (or Save...
not save) individual resources on a project rather than of saving the entire project.

To deselect all items, click "none" in the lower right corner.
To select all items, click "all" in the lower right corner.

To select or deselect individual items, click on the Checkbox icon next to the item.

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Update+Modes
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Update+Modes
https://docs.inductiveautomation.com/display/DOC80/Perspective+Sessions#PerspectiveSessions-ProjectUpdates
https://www.inductiveuniversity.com/videos/project-creation-and-publishing/7.8/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-concurrentediting
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-ConcurrentEditing

Save As

The option enables you to save your open project with a different name. When you choose > , the Designer will display an Save As File Save as
Input window. It will append "Copy_Of_" to the beginning of the current project name. However, you can enter a different name in this Input window.
Click to save the project with a new name.OK

Update Project

The option pulls in any changes (saves by other people) that have happened since you opened the project or last updated it. If Update Project
there are any conflicts due to , the concurrent editing Designer screen will open automatically. Once you resolve the conflicts, the Resolve Conflicts
Designer updates the project.

Project Updates in a Vision Client

Depending on how Clients are set up to receive project updates, operators may be notified with a banner stating that a project update is available. For
more information, see .Client Update Modes

When the operator clicks on the banner, a confirmation window appears. The operator can choose to update or cancel and keep working in the
previous version of the client.

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-concurrentediting
https://legacy-docs.inductiveautomation.com/display/DOC81/Designer#Designer-ConcurrentEditing
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Update+Modes

Project Updates in a Perspective Session

If you have a Perspective Session open and a change was made in the that was saved and published, one of two things may happen. Either Designer
the project will silently update, or an Update Notification window will appear in the session. Your session will automatically update in 30 seconds or
you can click . For more information, see .Update Now Session Project Updates

Related Topics ...

Vision Client Launcher
Client Update Modes
Session Project Updates

https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Sessions#PerspectiveSessions-SessionProjectUpdates
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Launcher
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Update+Modes
https://docs.inductiveautomation.com/display/DOC80/Perspective+Sessions#PerspectiveSessions-SessionProjectUpdates

Designer Diagnostics

The Help menu in the Designer has a Diagnostics option, which displays the Diagnostics window
with tabs for six different troubleshooting features.

Note: The information accessed through Designer Diagnostics is specific to the client runtime or the
session. For Gateway statistics, see .Diagnostics - Logs

On this page ...

Performance Tab
Console Tab
Log Viewer
Logging Levels
Thread Viewer
Connections
Scripts

Performance Tab

The Performance tab displays six realtime charts, each showing an aspect of the current client's performance. These charts can be very useful to help
troubleshoot performance issues, especially slow queries.

Tag Throughput (Scans/Second) - Displays the Tag throughput in scans per second.
Tags - # of Tag Value Changes - Displays the number of Tag changes in changes per second.(Changes/Second)
Select Queries (Queries/Second) - One of the most common causes of query slowdown is simply running too many queries too frequently,
and the # of Select Queries (Queries/Second) chart can help identify when this is occurring.
Rows Returned from Select Queries (Rows/Second) - Displays the number of rows returned from selected queries in rows per second.
Update Queries (Queries/Second) - Displays the number of update queries in queries per second.
Memory (MB) - Displays the client's memory usage in megabytes. This will almost always be a saw tooth pattern since memory is used,
discarded, and re-acquired on a regular basis.

Console Tab

The Console tab displays the Ignition Console. This console displays messages that are generated by the entity that the console was launched from,
such as the Designer. Any print statements or errors in your scripts will show up here (except Gateway scope scripts).

Log Viewer

The Log Viewer tab displays the logged events for the current entity, such as the Designer. Whenever messages occur in the console, they are logged
and displayed in this tab. Each message has a logging level associated with it. This is a good place to go when troubleshooting an issue, as any
errors shown here may illuminate the cause of the problem.

Logs can be filtered by severity by selecting an option in the Filters dropdown. To view entries across all categories chronologically, uncheck the Grou
p Categories checkbox.

Logging Levels

The Logging Levels tab displays the list of internal loggers. Most users will not use this tab unless prompted by a technical support representative.
Make sure to change logging levels back to info when you are done, otherwise they will flood your console and make it difficult to find any new
problems.

A Search box in the upper left enables you to search the loggers. You can also set options to make the search case sensitive, use wildcards, use
regular expressions, match from start, match exactly, or match anywhere.

Thread Viewer

The Thread Viewer tab displays information about the currently running threads. Each thread can be expanded by clicking the icon Expand
or collapsed by clicking the icon. Most users will not use this tab unless prompted by a technical support representative.Collapse

The following feature is new in Ignition version 8.1.12
 to check out the other new featuresClick here

Now in the Designer and the Vision Client, there is an option to save a thread dump via the Thread Viewer tab. Additionally, automated thread dumps
will be saved to the Client Launcher's directory in when a UI thread takes longer than 2-5 seconds. Should the Designer or Vision .ignition/cache
Client recover, a message will appear in the console stating that a thread dump was taken, along with the full path where the file was saved.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12

Connections

The Connections tab displays the Gateway connection status as well as a realtime chart of the Gateway ping time and a summary with the current
ping time and average, minimum, and maximum ping times.

Scripts

Shows running scripts. Use the icon to terminate a script.Delete

Tags

What Is a Tag?

Tags are points of data and may have static values or dynamic values that come from an OPC address,
an expression, or a SQL query. The values can be used on screens and in transaction groups.

Tags provide a consistent data model throughout , and offer the easiest way to get up and Ignition
running creating realtime status and control systems. Despite their fast initial learning curve, however,
Tags offer a great amount of power in system design and configuration. The ability to aggregate
Tags from a variety of installations means that you can build widely distributed systems more SCADA
easily than ever before with a high level of performance and relatively easy configuration.

While the goal of Tags in is to create an easy yet powerful model, the variety of options Ignition
and terminology can sometimes make configuration confusing. Tags are created and controlled
using both the and the for configuration.Gateway Designer

In the , you create or import the Tags. There are several types of Tags such as an Designer OPC
 Tags and Memory Tags. Each has many properties and other functionality such as Tag
alarming, history, etc. Once your Tags are created, you can use them in your windows, views,

.and reports
In the , you create and modify Providers. You can create these Realtime Providers Gateway Tag
to store groupings of Tags for use in your projects either locally in or share them Ignition
externally with connected Gateways. There are also Historian Providers used to store historical
data for the Tags, but these are automatically created for each datasource you have. These Tag
Provider configurations in the apply globally to all your projects.Gateway

On this page ...

What Is a Tag?
Tag Providers
Tag User Defined Types

Tag Features
Importing and Exporting Tags
Tag Naming

The following example shows a pressureDischarge Tag in the Tag Browser and a Gauge component in the Designer. The value on the Designer
component is bound to the Tag and updates in realtime. This is just a simple example of how Tag values can be represented in your SCADA designs.

Tag Providers

There are two types of Tag providers; Internal and Remote. By default, a fresh Ignition installation will have an internal Tag provider. This can be
thought of as a standard internal Tag database, and stored in the Ignition Gateway. Additionally, it is possible to create Remote , linking Tag Providers
one installation of Ignition to the Tags on another Ignition. This ability opens up some very flexible architectures.

Tag User Defined Types

Tag (UDTs) provide an object-oriented approach to Tag building, allowing you to define parameterized data types, extend and User Defined Types
override types, and then rapidly generate instances. A change to the type definition is then inherited by all instances, drastically saving time when
making routine changes. The UDTs are fully supported by Vision templates, which means you can configure templates for your custom data types and
take advantage of drag-and-drop binding to rapidly build complex screens.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser#TagBrowser-TagProviders

Tag Features

Tags work naturally and easily with Ignition to offer the following features:

Performance and Scalability
Tags offer great performance on the Gateway, in Perspective Sessions, and in the Vision Client. On the Gateway, the system can support
many thousands of value changes per second and millions of Tags. In runtime, Tags improve efficiency with their lightweight subscription
architecture. Adding additional Clients creates a nearly negligible effect on the database and the Gateway performance.

Object-Oriented Design
Use Tag UDTs (User Defined Types) to design re-usable, parameterized, and extendable data types. You can create and configure new

 instance Tags in seconds, saving a great amount of time over traditional Tag systems.

Powerful Alarming Model
Each Tag can have any number of configured on it. There are many different accommodating simple digital alarms, alarms alarm modes
analog high/low value alarms, as well as more specialty alarms like bad data quality and bit-packed alarms. The settings for alarms can
bound to other Tags, making the alarm configuration dynamic.

Drag-and-Drop Screen Design
You can drag and drop Tags onto a window or view to automatically create new bound components. Drag Tags onto existing components or
properties to quickly bind them to the data.

Historical Logging
The makes it easier than ever to store and use . When you simply select a check box on a Tag, historical Tag Historian Module historical data
data is stored in an efficient format in your SQL database. This data is then available for querying through scripting, historical bindings, and
reporting. Also, you can drag-and-drop Tags directly onto an many components to create trends or display historical values. Tags Historian's
robust querying provides you great flexibility in how you retrieve the data.

Importing and Exporting Tags

Ignition Tags can easily be imported and exported from the Designer by selecting the More Options menu, then either the Import Tags icon

or Export Tags icon. You'll be prompted to choose the Tags or folders that you want. See the page for more Exporting and Importing Tags
information.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian+Module
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian

Tag Naming

Tags names are flexible and to not have to match data source names (like an OPC path) or tag codes (such as N7, F8, etc.). It is not necessary that T
's name be related at all to its underlying data source (OPC path, for instance). This provides a level of indirection that is convenient for ag

systems with many repeat structures. Tag

It is important to give Tags a meaningful structure and arrange them in hierarchical Tag folders so that they are easy to understand, identify, and
locate for all developers. By default, Ignition Tags are named after their OPC Server address when a Tag is dragged into the Tag Browser. You can
change this name to just about anything that you want. We recommend using names that mean something to your process, such as "Motor 3 Amps."
Alternatively you could create folders in your Tag Browser such as "Motor 3/Amps.". When renaming Tags and folders, there is really only one
question to ask: "does this structure make sense?"

Another important concept to consider when naming and organizing your Tags, is to do this early in your project. If you rename or move any of your
Tags to another folder, and your Tag is being used in other places, chances are you are going to break the reference to the Tag on your screen. So
keeping your Tags organized and defining your Tag structure early on in your project is critical.

When you choose a new name for your Tags and folders, there are some rules that must be followed. The first character of the Tag name must be
one of the following:

Letter - specifically, a letter as recognized by Unicode's Letter (L) category.
Number
Underscore

The second character, and every character after that can then be one of the following:

Letter
Number
Underscore
Space
Any of the following special characters:

' - : ()

All other special characters are not allowed in a Tag name.

Tag Browser

The Tag Browser is the central location for interaction with all types of Tags on your system. It gives you
full view of the Tags including the current value, datatype, and any traits. When panels are in their
default configuration in the Designer, the Tag Browser appears on the left side.

As of release 8.1, the Tag Browser has been updated with a new design for ease of use. Tags and UDT
 now have their own tabs. The Tag Provider Selector enables you to view Tags for a specific Definitions

Tag provider. There is a new interface for . Many other improvements have been Creating Tags
integrated, including icons for each .Tag type

On this page ...

Tag Browser Tree
Tag Browser Toolbar

Add Tag
Browse Devices
Find/Replace
Refresh Providers
Tag Provider Selector

More Options Menu
Tag Groups
Import/Export
Column Selector

Right-Click Menu
Tag Traits

Tags in Ignition

Watch the Video

Tag Browser Tree

The Tag Browser is set up in an interactive tree structure with folders that can be expanded or collapsed to view more Tags.

Click on the icon to expand any folder or the icon to collapse the folder. In the example below, the pH Tag for Tower2 was Expand Collapse
expanded.

https://docs.inductiveautomation.com/display/DOC81/Creating+Tags
https://www.inductiveuniversity.com/videos/tags-in-ignition/8.0/8.1

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

If you create a tooltip on a Tag by filling in the , hovering over the base Tag at the top of the Tag Browser Tree will display the tooltip.Tooltip property

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

Tag Browser Toolbar

The Tag Browser toolbar has several options for working with Tags.

Add Tag

The icon opens a context menu showing all the options to Browse Devices, add a Tag, Folder, UDT Instance or a UDT Definition. The new Add
object is added under the Folder you selected, or as a sibling to the Tag you selected. This button is disabled if there is no selection.

Browse Devices

With the Browse Devices, you can browse to find external PLC or OPC Tags. Click the Add icon at the top of the Tag Browser to open the
Connected Devices window. You can then select Tags and move them to the Tag Browser to be used in the Ignition system. For complete

 information, see .Creating Tags

Find/Replace

Clicking on the icon in the Tag Browser will open up the Designer's global screen. In the the example below, we searched Search Find/Replace
for the Ramp9 Tag and limited the search to the default Tags. Results are shown at the bottom of the screen. For additional information, see Find and

.Replace

Refresh Providers

The icon refreshes all of the Providers in the Tag Browser. This is useful if you or others have modified Tags and do not see Refresh Providers
an update. In general, this button is not used very often.

Tag Provider Selector

The Tag Provider Selector is a dropdown menu with a list of available Tag Providers. Use this selector to view the System Tags, Vision Client Tags,
default Tags, or other you have in your project. Tag Providers

On a new install of Ignition , a single "default" Tag Provider is created for you, but there are no Tags added to the "default" provider initially. You'll
notice the "default" provider is in bold. The bold entry in the dropdown list is determined by the Default Provider for the project. You can change the
default provider in Save and restart the Designer, and the next time you Project Properties > Project > General > Tag Settings > Default Provider.
open the Tag Provider in the dropdown of the Tag Browser, a different Default Provider will be displayed in bold.

 When a provider is selected to System , the Browsing Devices under the icon is disabled.Add

More Options Menu

A More options icon on the upper right of the Tag Browser, opens a dropdown menu of additional options.

Tag Groups

In the Tag Browser, the pens the window. Groups dictate the rate of execution of Tags. This is where Edit Tag Group o Group EditorTag Tag
you set up your Tag Groups and scan rates. See for more information.Tag Groups

Import/Export

Ignition he icon or can export and import Tag configurations to and from the JSON (JavaScript Object Notation) file format. Use t Import E
 icon to import and export Tags in this Gateway. See for more information.xport Exporting and Importing Tags

Column Selector

The Tag Browser displays the and . The Value type is set by default. To toggle any of the options, click on the Value Data Type Column Selector
 icon, then click the checkbox.
In the example below, the Tag values are shown next to the Tag names.

Right-Click Menu

Editing Tags is done mostly through the Tag Browser. The allows you to right click on a or folder to perform any of the following BrowserTag Tag
functions. Different objects will have different options available. The special folder is slightly different than a regular folder and will have Data Types
even fewer options.

Function Description

Edit Tag Disabled when a Folder is selected.

Opens the Editor window so the can be edited.Tag Tag

Edit (raw) Disabled when a Folder is selected.

Opens a JSON editor, allowing you to view and edit the underlying JSON that makes up the Tag.

View Tag
Diagnostics

The following feature is new in Ignition version 8.1.34
 to check out the other new featuresClick here

Opens the Tag Diagnostics window, which also accesses Active Subscriptions and Reference Log data.

Rename Renames the current selection.

Delete Deletes the current selection.

Cut Cuts the current selection into the clipboard.

Copy Copies the current selection into the clipboard.

Copy JSON Available for non-client tags only.

Copies the JSON for the selected Tags into the system clipboard. In addition, pasting the JSON into a different provider/designer
will create or overwrite Tags.

Copy Path Copies the currently selected path into the clipboard.Tag

Paste Pastes the content in the clipboard into the selected context.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

New Tag Disabled when a Tag is selected.

For Folders, this option opens a sub-menu to create a Tag or Tags.

Function Description

New Folder Creates a new folder.Tag

Data Type
Instance

Creates a new instance of an existing data type. The instance is linked to the parent type so when the parent
changes, the instances are overwritten with the parent type changes.

Sub Menu - based on Data Types

New
Standard T
ag

Creates different types of Tags such as Derived, Expression, Memory, , Query, and Reference Tags.OPC

Sub Menu - Standard Tag Types

Multi-
instance
Wizard

Creates many instances of a at the same time.UDT

Export Tags Exports the selected Tags.

Import Tags Imports Tags into the project.

EAM Sends Tag to EAM Agents.

Restart Tag Attempts to restart the selected Tag.

"Restarting" a Tag effectively refreshes the following traits:

Value generation (Expressions for expression tags, queries for Query Tags, OPC value for OPC tags, etc).
Scaling
Engineering Limits
Alarms
Deadbands
Event Scripts

If a folder is restarted, then all tags under the folder will restart.

Tag Traits

Certain settings or Tag configurations are visually represented next to the Tag in the Tag Browser.

The following icons enable you to note some important settings on the Tag at a glance. A description of the icons are listed below.

Icon Setting Description

Scaling The Scale Mode property under the Numeric section of the Tag Editor has been set to a value other than Tag Properties
"Off." The value on the Tag will be scaled to some degree.

Alarming At least one has been configured on this Tag.alarm

Tag
History

This Tag has been configured to log data into the system.Tag Historian

Tag Event
Script

At least one has been enabled on this Tag.Tag Event Script

Lock Shows the Tag has permissions enabled.

Inheritance Denotes inheritance. Displays the Parent Type, name of the UDT and instance name (i.e., Parent Types: Motor UDT >
Complex Motor). Refer to .UDT Inheritance Traits

Override Denotes that the property in the UDT instance overrides the parent property. Refer to Overriding Properties of the Parent
. UDT

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/UDT+Inheritance#UDTInheritance-UDTInheritanceTraits
https://legacy-docs.inductiveautomation.com/display/DOC81/UDT+Inheritance#UDTInheritance-OverridingPropertiesoftheParentUDT
https://legacy-docs.inductiveautomation.com/display/DOC81/UDT+Inheritance#UDTInheritance-OverridingPropertiesoftheParentUDT

Types of Tags

There are many different types of Tags in Ignition: standard Tags, , and . System Tags Vision Client Tags
All these Tag types are available in the Tag Browser.

Tags executed in the Gateway support all of the primary features of Tags: scaling, alarming, history, and
role-based permissions. These Tags run in the Gateway, and the values of the Tags are shared among
all running sessions and clients. They are identical in their configurations, apart from defining how the
value is generated. As of release 8.1, each Tag Type has its own icon in the Tag browser.

Icon Tag type

Memory Tag

OPC Tag

Expression Tag

Query Tag

Reference Tag

Derived Tag

System Client Tags, Vision Client Tags

On this page ...

OPC Tags
Memory Tags
Expression Tags
Query Tags
Reference Tags
Derived Tags

Changing the Source
User Defined Types (UDTs)
System Tags
Vision Client Tags

OPC Tags

An OPC Tag is driven by an OPC Item Path and OPC server. The OPC Item Path is a string path to a particular device connection. The exact
path is defined by the driver and OPC server used to communicate with the device. Many drivers support browsing, allowing you to automatically
create OPC Tags by dragging-and-dropping from the OPC Browser. However, in cases where browsing isn't supported, OPC Tags can manually be
created. In the

In the , double click on any existing OPC Tag, to see the the name and . Tag Browser OPC Server Item Path

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Tags

Memory Tags

Memory Tags are simple Tags, that do not automatically poll or update their value. They hold the
same value until some other user-created mechanism (most likely a script or binding) changes their
value. They're useful in situations where a value must be stored outside of a PLC or database.

The state of memory tags are stored inside the gateway's internal database. This allows the tag and its
value to be retained across gateway restarts. Memory Tags

Watch the Video

https://www.inductiveuniversity.com/videos/memory-tags/8.0/8.1

Expression Tags

Expression Tags are driven by an , allowing their values to be determined from a expression
calculation.

The property on Expression Tags determines their value. The expression can reference Expression
values and properties on other Gateway scoped Tag values. However, due to scoping, they can not
reference property values on Vision Client and Perspective Session components.

The expression on an Expression Tag executes based off of the . More information on Execution Mode
Execution Mode can be found on the page. Tag Properties

Note: It may be helpful when troubleshooting or testing Expression tags to increase the default
threadpool count. Refer to the for more Gateway Configuration File Reference - Threadpool Counts
information.

Expression Tags

Watch the Video

Query Tags

A Query Tag executes a SQL Query; the result of that query is returned to the value on the Tag.
Query Tags can reference other Gateway-scoped Tags to build dynamic queries. The property Query
dictates the query that will execute, and the determines how often the query will run. Execution Mode
Furthermore, the property determines which database connection the query will execute Datasource
against.

Query Tags

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Gateway+and+Gateway+Network+Parameters#GatewayandGatewayNetworkParameters-ThreadpoolCounts
https://www.inductiveuniversity.com/videos/expression-tags/8.0/8.1
https://www.inductiveuniversity.com/videos/query-tags/8.0/8.1

Note: It may be helpful when troubleshooting or testing Query tags to increase the default threadpool
count. Refer to the for more information.Gateway Configuration File Reference - Threadpool Counts

Reference Tags

A Reference Tag simply refers to an existing Tag, using the property to determine Source Tag Path
which other Tag to reference. Writes targeting the Reference Tag will send a write request to the source
Tag.

Reference Tags

Watch the Video

Derived Tags

A Derived Tag is an abstracted Tag that refers to another Tag. They are similar conceptually to
Reference Tags in that that value is dependent on the property, but Derived Tags have Source Tag Path
some additional functionality. Namely, they can apply expressions to the referenced value with the Read

 property, allowing the value on the Derived Tag to differ from the source Tag. Expression

In addition, The property will apply an expression to the value of any write requests Write Expression
targeting the Derived Tag, allowing the expression to modify the value of the incoming write before it's
applied back to the source Tag.

Derived Tags

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Gateway+and+Gateway+Network+Parameters#GatewayandGatewayNetworkParameters-ThreadpoolCounts
https://www.inductiveuniversity.com/videos/reference-tags/8.0/8.1
https://www.inductiveuniversity.com/videos/derived-tags/8.0/8.1

Read Expression Determines what value should appear on the Derived Tag.

The current value of the source Tag may be referenced with the reference.{source}

Write Expression When writing to the Derived Tag, this expression determines what value should be written to the source Tag.

The current value of the source Tag may be referenced with the reference.{source}

The raw value passed to the Derived Tag may be referenced with the reference.{value}

This interface provides an opportunity to scale the written and read value. For example, if the source Tag was in Fahrenheit, and the derived Tag
should be Celsius, we could use the following expressions:

//Read Expression
({source}-32)*(5/9)

//Write Expression
{value}*(9/5) + 32

Changing the Source

Aside from editing the Tag from the Designer, the source Tag path on a Derived Tag may be modified by writing directly to the propertSourceTagPath
y on the Tag, or using a Tag Binding on a Vision component.

Additionally, the property may be changed through scripting: SourceTagPath

#Example of writing to the SourceTagPath attribute via Python Script
system.tag.writeBlocking(["Derived Example/Derived Tag.SourceTagPath"], ["[.]Folder/New Source Tag"])

User Defined Types (UDTs)

UDTs are created out of standard Tag types, but they offer a variety of additional features. You can think of them as a way to create "data templates",
where a particular structure of Tags is defined, and can then be created as if it were a single Tag. This UDT example shows two Motor instances, the
data type Motor, and all the Parameters and Tags that make up the structure (i.e., Amps and HOA). For more information, see User Defined Types -

.UDTs

System Tags

System Tags provide status about the system. They're generally not interactable, but provide use information about how the system is Ignition
performing.

More information can be found on the page. System Tags

Vision Client Tags

Within the Vision module, you can also have Vision Client Tags that are specific to a Vision Client. Their values are isolated to
a Client runtime. For more information, see .Vision Client Tags

Related Topics ...

System Tags
User Defined Types - UDTs

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Tags

System Tags

System Tags provide status about the Ignition system, such as memory
usage, performance metrics, and so on. System Tags cannot be deleted or
modified. To view the System Tags in the Tag Browser, go to the Tag
Provider Selector and select . System

The System Tags folders are displayed: and . The scope for each is slightly different. Client Gateway

On this page ...

System Client Tags (Vision Only)
Gateway System Tags

System Tags

Watch the Video

System Client Tags (Vision Only)

Client-scoped System Tags provide status information about the client's system. They can be used with the Vision module for any Vision
Client. Every individual client is going to have their own values, such as IP address, host name, username, and more. There are three folders within
the System > Client folder: , , and . You cannot modify Client System Tags. Network System User

https://www.inductiveuniversity.com/videos/system-tags/8.0/8.1

Vision System Client Tags

Tag Description Data
Type

Network Folder

GatewayAddre
ss

Gateway URL address. string

GatewayRedun
dancyRole

Redundancy State of the Gateway that the client is connected to. Independent, Master, Backup. string

Hostname Hostname (name) of the computer that the Client is running on. string

IPAddress IP Address of the computer that the Client is running on. string

MACAddress MAC Address of the computer that the Client is running on. string

System Folder

CurrentDateTi
me

Current system date and time. Format is yyyy-MM-dd hh:mm:ss a. DateTime

DefaultDatabase Name of the default database connection used by the project. string

DefaultTagProv
ider

Name of the default Tag Provider used by the project. string

FPMIVersion Current Ignition version in use. string

JavaVersion Current Java version in use by the client. string

LastProjectUpd
ate

Date of the last received update notification. DateTime

OperatingSystem Operating system of the computer that the Client is running on. string

ProjectName Name field for the current project. string

ProjectTitle Title field for the current project. string

ProjectUpdateA
vailable

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

boolean

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Whether or not there is a project update available for the currently open Vision Client project. Intended to be used
alongside the option in .None Vision's Project Properties

SystemFlags A byte array of for the current state of the Client.flags integer

UserSource Name of the user source for the current Client. string

User Folder

Country Two letter country code according to operating system. for example: US. string

CurrentWindow The current main window open in the project (top most Floating, Maximized window). string

DateFormatFull Full date format according to the operating system. Format: EEEE, MMMM d, y. string

DateFormatLong Long date format: MMMM d, y. string

DateFormatMe
dium

Medium date format: MMM d, y. string

DateFormatSh
ort

Short date format: M/d/yy. string

DateTimeForm
atFull

Full date and time format: EEEE, MMMM d, y 'at' h:mm:ss a zzzz. string

DateTimeForm
atLong

Long date and time format: MMMM d, y 'at' h:mm:ss a. string

DateTimeForm
atMedium

Medium date and time format: MMM d, y, h:mm:ss a zzzz. string

DateTimeForm
atShort

Short date and time format: M/d/y, h:mm a. string

HomeFolder Home folder according to OS. For example: C:\Users\psmith. string

Language Language according to OS. For example: "en" for English. string

OSUsername OS user name, for example: PSmith. string

RolesDataSet Dataset with Roles for currently logged in user. For example: Dataset[2R x 1C]. dataset

RolesString Comma separated string with Roles for currently logged in user. For example: Administrator, Operator. string

TimeFormatFull Full time format according to the operating system. Format: h:mm:ss a zzzz. string

TimeFormatLo
ng

Long time format: h:mm:ss a z. string

TimeFormatMe
dium

Medium time format: h:mm:ss a. string

TimeFormatSh
ort

Sort time format: h:mm a. string

Timezone Current timezone, for example, America/Los Angeles. string

Username Currently logged in username, for example, PSmith. string

Gateway System Tags

Gateway System Tags exist in the Gateway scope. There are several folders within the Gateway Tags folder which report metrics on various gateway
level systems.

https://docs.inductiveautomation.com/display/DOC81/Vision+Project+Properties#VisionProjectProperties-VisionGeneralProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getSystemFlags

The following Gateway-scoped System Tags are available.

Tag Description Data
Type

Curre
ntDat
eTime

Current system date and time. Format is yyyy-mm-dd hh:mm:ss a. DateTi
me

Licen
seSta
te The following feature is new in Ignition version 8.1.15

 to check out the other new featuresClick here

Returns the license state of the Gateway. If a valid license is applied, the tag will return "Activated". This includes Emergency Activation
mode and Maker licensing.

For any other license state, the tag will return "Trial".

String

Syste
mNa
me

Returns the name of the system where the Ignition Gateway is installed. String

Timez
one

Timezone on the Gateway computer. For example, America/Los Angeles. String

Uptim
eSec
onds

Number of seconds since Ignition was started. Long

Alarming

Active
and
Acked

Number of alarms currently active and acknowledged. Integer

Active
and

Number of alarms currently active and unacknowledged. Integer

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.15

Unac
ked

Clear
and
Acked

Number of alarms cleared and acknowledged. Integer

Clear
and
Unac
ked

Number of alarms cleared and unacknowledged. Integer

Database

Note: There will be a subfolder for each database connection, or none if there are no connections. Each subfolder will have the following Tags.

Active
Conn
ections

Number of active connections in the pool to this database connection. Integer

Availa
ble

Indicates whether this datasource is available. Boolean

Availa
bleTh
rough
Failov
er

Indicates if any database along the failover chain attached to this data source can be reached. Boolean

AvgQ
ueryT
ime

Average time, in seconds, that it is taking database queries to run. Integer

Conn
ection
Satur
ation

Percentage of possible query throughput that is being used (ratio of currently active connections to maximum possible connections). Double

Queri
esPer
Seco
nd

Number of queries running per second. Integer

Devices

Note: For each device configuration on the gateway, a separate subfolder will exist. The contents of each subfolder are listed below.

Descr
iption

Description of the device connection as configured on the device connection on the Gateway. String

Enabl
ed

Boolean representing whether or not the device connection is enabled. Boolean

Name Name of the device connection. String

Status Status of the connection. String

EAM

Note: System Tags are created on the Controller for each agent, allowing you to build EAM monitoring clients, set alarms on individual Tags, and many
other Tag-related operations. A Tag folder is created for each agent. As with other system Tag values, all EAM system Tag values are read-only.

Metric
s
Folder

D
a
t
a
b
a

Note: There will be a subfolder for each database connection, or none if there are no connections. Each subfolder will
have the following Tags.

s
e
F
ol
d
er

Tag Description Data
Type

Active Connections Number of active connections in the pool to this database connection. Integer

Active Queries Number of active queries. Integer

Active Query Duration Average time, in seconds, that it is taking database queries to run. Integer

Average Throughput Per
Second

Number of records forwarded to the data sink per second. Throughput will
be -1 if idle.

Integer

L
o
g
gi
n
g
F
ol
d
er

Tag Description Data Type

Errors Per Hour Number of errors logged per hour. Integer

Errors Per Minute Number of errors logged per minute. Integer

S
e
s
si
o
n
s
F
ol
d
er

Tag Description Data
Type

Clients Number of currently running Vision clients. Long

Desig
ners

Number of currently running Designers. Long

Persp
ective
Sessi
ons

The following feature is new in Ignition version 8.1.16
 to check out the other new featuresClick here

Number of currently running Perspective sessions.

Long

S
y
st
e
m
F
ol
d
er

Tag Description Data Type

CPU Usage CPU Utilization as reported to the Java Virtual Machine. Float

Memory Usage Amount of RAM currently in use by the Gateway, in whole percentages from 0-100. Float

Agent
Group

Name of the group that the Agent belongs to. String

Agent
Name

Name of the Agent. String

Brow
serU
RL

Agent Gateway URL address. String

IsApp
roved

Whether this network connection has been approved. Boolean

IsCon
nected

Whether the Gateway Network connection is active. Boolean

IsRun
ning

Whether the Agent Gateway is considered "healthy". Healthy Agent Gateways may not be connected to the Controller, but not enough
time has passed to consider the Agent Gateway as "down".

Boolean

LastC
omm
unicat
ion

A timestamp representing the last known communication received from the Gateway. DateTi
me

Licen
seKey

Returns the license key of the Gateway. String

Node Role of the connected Agent. String

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16

Role Independent - Redundancy is not enabled and this Ignition system runs as an independent node.
Master - This is the Master node, who listens for a connection from the Backup node, and is in charge of managing system
synchronization.
Backup - This is the Backup node, who will connect to the Master and receive system updates.

Platfo
rmEdi
tion

Ignition Edition running on the Agent Gateway. Values include , , and .standard edge maker String

Runni
ngSta
te

String representation of the Running State. Possible values for RunningState are: , , , Disconnected Running Warned Errored String

Runni
ngSta
teInt

Integer representation of the Running State. Integer

Serve
rId

ID of the Agent Gateway. String

Versi
on

Version of Ignition software running on the Agent Gateway. String

Gateway Network

Note:

Each system connected over the gateway network receives a special folder designated by the following nomenclature:

Independent Gateways: 0:0
Redundant Master Gateway: 0:1
Redundant Backup Gateway: 0:2
"Virtual" route aliased to either the Master or Backup Gateways: 0:0

Each folder contains the following Tags:

IsAvai
lable

Whether the remote gateway is available or not. Boolean

LastC
omm

A timestamp representing the last known communication received from the remote Gateway. DateTi
me

Licenses

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

Note: This Tag folder will only appear if your Gateway is using a . Leased License For each leased license on the Gateway, a separate subfolder will
exist. The contents of each subfolder are listed below.

Cons
ecutiv
eErro
rCount

Rolling counter for how many times the license tried to renew itself, if failed. Long

Error
Code

Displays an error code if the license failed to renew. Integer

Expir
ation

Time when the session expires. DateTi
me

Expir
esInS
econds

Amount of time left before the current lease period expires, in seconds. Long

Next
Check

Time when the license will attempt to renew. DateTi
me

Probl Description of why the license failed to renew or activate. String

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://legacy-docs.inductiveautomation.com/display/DOC81/Licensing+and+Activation#LicensingandActivation-LeasedLicenses(Eight-characterkeys)

em

Status Current status of the leased license. String

OPC

Note: There will be a subfolder for each OPC UA Server. Each subfolder will have the following Tags.

Conn
ected

Whether the OPC UA server is connected to Ignition. Boolean

Enabl
ed

Whether the OPC UA server connection is enabled. Boolean

State The state name of the connection. For example: Connected, Faulted, Connecting. String

Performance

Availa
ble
Disk
Spac
e
(MB)

Available disk space on the computer Ignition is installed on, in megabytes. Long

CPU
Usage

CPU Utilization as reported to the Java Virtual Machine. Double

Disk
Utiliza
tion

Percentage of hard disk that is in use. Double

Max
Mem
ory

Maximum amount of RAM the Gateway can use, in megabytes. Long

Mem
ory
Usage

Amount of RAM currently in use by the Gateway, in megabytes. Long

Mem
ory
Utiliza
tion

Current memory usage/maximum memory usage. Double

Redundancy

Conn
ection
, Is
Conn
ected

Whether this Gateway is connected to another for redundancy. Boolean

Conn
ection
,
PeerId

The ID of the Gateway connected to, empty string if not connected. String

Activit
yLevel

Indicates where the Gateway is in the redundant state. Can be undecided, cold, warm, or active. String

IsActi
ve

Whether the Gateway is running. Boolean

IsMas
ter

Whether the Gateway is the master. False if the backup is in control. Boolean

Role Named role of the Gateway. Options: Independent, Master, Backup. String

Sessions

Sessi
onCo
unt

Number of active sessions on this Gateway. Note this value does not account for Perspective Client Sessions. Integer

Store and Forward

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

The Store and Forward System Tags were added in version 8.1.2

Note: There will be a subfolder for each database connection, or none if there are no connections. Each subfolder will have the following Tags.

Database Storage

Availa
ble

Indicates whether Database Storage is available for this Store and Forward engine. Boolean

isStore Indicates if the data storage sink is able to store records. This data store is used for the optimization of the records before they are
forwarded to the database and no data is technically stored in it. For this reason, this tag's value will always be false.

Boolean

Local Cache

Forw
ardM
etrics
Folder

Tag Description Data Type

AverageDuration The average duration for records to be forwarded to the data sink from the local cache. Double

MaxDuration The maximum duration for records to be forwarded to the data sink from the local cache. Double

MinDuration The minimum duration for records to be forwarded to the data sink from the local cache. Double

Throughput Number of records forwarded to the data sink per second. Throughput will be -1 if idle. Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records forwarded to the data sink from the local cache. Long

Stora
geMe
trics
Folder

Tag Description Data Type

AverageDuration The average duration for records to be forwarded to the data sink from the local cache. Double

MaxDuration The maximum duration for records to be forwarded to the data sink from the local cache. Double

MinDuration The minimum duration for records to be forwarded to the data sink from the local cache. Double

Throughput Number of records forwarded to the data sink per second. Throughput will be -1 if idle. Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records forwarded to the data sink from the local cache. Long

Take
Metric
s
Folder

Tag Description Data Type

AverageDuration The average duration to read a record from the local cache. Double

MaxDuration The maximum duration to read a record from the local cache. Double

MinDuration The minimum duration to read a record from the local cache. Double

Throughput The number of records read from the local cache per second. Throughput will be -1 if idle. Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records read from the local cache. Long

Availa
ble

Indicates if the local cache for this Store and Forward engine is available. Boolean

CanQ
uaran
tine

Indicates if this local cache can quarantine records. If the local cache cannot quarantine a record, the record will be dropped and lost
forever.

Boolean

Dropp
edRe
cords

Indicates the number of dropped records for this local cache. A record is considered dropped if it can not be added to one of the
buffers, (i.e., when a buffer is full and the engine can no longer accept new records).Store and Forward

Integer

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

IsStore Indicates if the local cache is able to store records. Boolean

MaxR
ecords

Maximum number of records this local cache can accept. Integer

Pendi
ngRe
cords

Number of pending records for this local cache. Integer

Quar
antine
dRec
ords

Number of quarantined records in this local cache. Quarantined data is data that has erred-out multiple times during attempts to
forward it, or data that could not be stored because of some configuration issues.

Integer

Memory Buffer

Forw
ardM
etrics
Folder

Tag Description Data Type

AverageDuration The average duration for records to be forwarded to the data sink from the memory buffer. Double

MaxDuration The maximum duration for records to be forwarded to the data sink from the memory buffer. Double

MinDuration The minimum duration for records to be forwarded to the data sink from the memory buffer. Double

Throughput Number of records forwarded to the data sink per second. Throughput will be -1 if idle. Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records forwarded to the data sink from the memory buffer. Long

Stora
geMe
trics
Folder

Tag Description Data
Type

AverageDuration The average duration to store and record into the memory buffer. Double

MaxDuration The maximum duration to store a record into the memory buffer. Double

MinDuration The minimum duration to store a record into the memory buffer. Double

Throughput The number of records that go through the memory buffer per second. Throughput will be -1 if
idle.

Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records stored in the memory buffer. Long

Take
Metric
s
Folder

Tag Description Data
Type

AverageDuration The average duration to read a record from the memory buffer. Double

MaxDuration The maximum duration to read a record from the memory buffer. Double

MinDuration The minimum duration to read a record from the memory buffer. Double

Throughput The number of records read from the memory buffer per second. Throughput will be -1 if
idle.

Double

TimeUnit Unit of time for this variable. The unit of time for this variable is seconds. String

Total Total number of records read from the memory buffer. Long

Availa
ble

Indicates if the memory buffer for this Stored and Forward engine is available. Boolean

CanQ
uaran
tine

Indicates if this memory buffer can quarantine records. The memory buffer cannot quarantine records so this will always be false. Boolean

Dropp
edRe
cords

Indicates the number of dropped records for this memory buffer. A record is considered dropped if it can not be added to one of the
buffers, (i.e., when a buffer is full and the Store and Forward engine can no longer accept new records).

Integer

IsStore Indicates if the memory buffer is able to store records. Boolean

MaxR Maximum number of records this memory buffer can accept. Integer

ecords

Pendi
ngRe
cords

Number of pending records for this memory buffer. Integer

Quar
antine
dRec
ords

Number of quarantined records for this memory buffer. Quarantined data is data that has erred-out multiple times during attempts to
forward it, or data that could not be stored because of some configuration issues.

Integer

Availa
ble

Indicates if this database engine is available. Boolean

Dropp
ed

Number of quarantined records for this Store and Forward engine. Integer

Quar
antine

Number of quarantined records for this Store and Forward engine. Integer

Related Topics ...

Vision Client Tags
Types of Tags

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Tags

1.

Creating Tags

Tags are created in the Designer in one of two ways; either using the Connected Devices window or
creating Tags manually in the Tag Browser.

The Connected Devices window allows you to browse your connected devices and drag OPC Tags into
your Tag Provider, as well as create folders and other Tags manually. You can also make immediate
changes to the Tag properties in the Connected Devices window.

Or you can manually create Tags in the Tag Browser. The Tag Browser allows you to choose from a list
of these standard Tag types and change the Tag properties directly in the Tag Editor.

This page describes both methods for creating Tags.

Connected Devices Window

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

The Connected Devices window lets you browse all your connected devices and OPC Servers for
datapoints. When the Tag you're interested in is not available for browsing, you can manually add a
Tag and change any Tag properties directly in the Connected Devices interface. This approach is
common for devices like Modbus and Siemens where memory addresses aren't browsable. This

Note that theinterface allows you to create any standard type of Tag. Connected Devices window is not
available when the or providers are selected.System Vision Client Tags

On this page ...

Connected Devices Window
Creating Tags

Creating Tags in the Tag Browser
Editing Tags

Edit a Tag
Rename a Tag
Cut, Paste, or Copy a Tag

Addressing Bits
Address an Individual Bit in a
Micrologix

Creating OPC Tags

Watch the Video

Tags that are grayed out in the area are Tags that already exist in your Tag Browser. The Tag Provider represented here is dependent For Provider
on the Provider selected by the Tag Browser before the Connected Devices window was opened.

New Tags added by the Connected Devices window will appear in black font. These new Tags are effectively in a "staging" area, meaning they won't

be added to the Tag Provider until you press or . In the Connected Devices window, you can also select the Preview icon to see a OK Apply
summary of new Tags you are adding.

You have the option of editing your new Tags in the Connected Devices interface by selecting the Tag you want to edit in the area and For Provider
double clicking or clicking on the edit (pencil) icon on the right. The Connected Devices edit window will open. Here you can edit any properties of the
Tag. When you're finished, click to accept your changes. When you are done adding Tags, click the or buttons in the lower right Commit OK Apply
corner to add your Tags to the Tag Browser.

Creating Tags

The example below describes creating Tags using the Connected Devices browser.

Note: In order to have any items appear under the OPC Browser tree, you must have a .device connection

In the Tag Browser, choose a Tag Provider from the dropdown list where you want to place your new Tags. The project's default provider will
appear in bold.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://www.inductiveuniversity.com/videos/creating-opc-tags/8.1
https://legacy-docs.inductiveautomation.com/display/DOC79/OPC-UA+and+Device+Connections

1.

2.

3.
a.
b.

c.

In the Tag Browser, click the Add icon to open the context menu. Here you can Browse Devices to add OPC Tags, or simply create a
Tag or folder. Select Browse Devices...

The Connected Devices window will open where you can either add an OPC Tag or create a new standard Tag. To add an OPC Tag:
Browse the OPC Tags area to find Tags that you're interested in.
Select the folder(s) or Tag(s) you want to add. To unselect a row, click out on a blank area, thus clearing any selected row.

3.

c.

d.
e.

Move the selected OPC Tags into your selected For provider area by clicking the Right Arrow icon or dragging them into the
right panel.

Note:

The following characters are invalid and will be replaced by an underscore when dragging and dropping an OPC item into the Tag
Browser: ! @ # $ ^ & * + []

Parentheses are valid characters but are not valid as a first character in a tag name. If an OPC item name starts with a
parenthesis, the tag name will be prefixed with an underscore:

To create a New Standard Tag:

Click the Add icon.
Click New Standard Tag. A new blank Tag will appear in the For provider area in the currently selected folder (if one is selected), or
at the bottom of the Tag list.

3.

e.

4.

5.

You have the choice of editing your Tags in the Connected Devices window or editing them in your Tag Browser. To edit Tags in the

Connected Devices window, select a Tag and click on the Edit icon. Here you can change the Data Type, Item Path, set alarms or store
history, and anything else that you can do to modify a Tag.
Click the Commit button to submit your changes.

5.

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

As of 8.1.2, the For Provider area now features a right-click menu that also has Edit, Rename, and Delete options.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

5.

6.

1.

When finished, click the Apply button to add your new Tags to the Tag Browser. As soon as the Tags are in the Tag Browser, the values will
start updating automatically.

Creating Tags in the Tag Browser

Tags can be created manually in the Tag Browser. You can create any of the Standard or a Data Type Instance. Tag Types This example creates a
Memory Tag.

1.

2.

3.

You can create Tags in two different ways: click on the icon to open the context menu and select New Standard Tag and choose Add
the Tag type, or right click any where in the Tag Browser and select New Tag and choose the Tag type.

The Tag Editor will open to edit the Tag's properties.

Set the properties as follows:

Name: My Memory Tag
Value Source: Memory
Data Type: String
Value: Hello Ignition

3.

4.

1.

When finished, click OK. Your new Tag will be placed in the Tag column of the Tag Browser. Since this is a Memory Tag, its value will not
change unless you write to it.

Editing Tags

The Tag Editor is a powerful tool used when creating Tags and for editing them. The properties displayed
in the Tag Editor are custom to the type of Tag you've selected. You can find additional information on
Understanding Tags and the Tag right click menu .here

The Tag Editor

Watch the Video

Edit a Tag

To edit an existing Tag, right-click on the , and select the Tag Edit Tag icon .

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Browser#TagBrowser-TagRightClickMenu
https://www.inductiveuniversity.com/videos/the-tag-editor/8.0/8.1

1.

2.

1.

Once in the Tag Editor, you can update the Tag properties. For example, if you want to change the to a different type – such as from Tag OPC
 to Expression – go to the Value Source property, click the icon, and choose the type of Tag (OPC, Memory, Expression, Expand

Query, Reference, or Derived) that you want.

Rename a Tag

Tags names are flexible. For naming conventions, see .Tag Browser

To rename an existing Tag, right click on the Tag in the Tag Browser and select the option. Rename

1.

2.

The cursor will now blink inside the Tag name and you can type the new name.

Cut, Paste, or Copy a Tag

You can also cut, paste, and copy Tags within the Tag Browser. Right click on the Tag in the Tag Browser. Choose the command you want.

Delete: Completely removes the Tag.
Cut: Delete the Tag from the current location, but leave it in the clipboard to be pasted elsewhere in the browser.
Copy: Make a copy of the Tag and leaves it in the clipboard to be pasted elsewhere in the browser.
Paste: Pastes the Tag you've cut or copied into the currently selected location in the Tag Browser.

Addressing Bits

In bindings and scripting there are ways to read a single bit of a word, but you can also have a Tag to
read and write to a single bit. In order to address individual bits in Ignition, you must create a separate
OPC Tag pointing directly to the specific bit in the PLC.

When the integer values that come from the OPC Tags are a series of binary bits, it is then possible to
address each bit. For example, an integer value can have a 16-bit binary representation as shown here:

Integer Bit level representation How it works

4096 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 2 = 409612

1025 1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 2 + 2 = 10250 10

Note:

Addressing bits may work differently depending on the type of device you are addressing. Most
commonly you will either use /<bit> like /0 or /1, or [<bit>] like [0] or [1], or will use a . like .0 or .1. IE:

Micrologix: [device]N7:1/0
ControlLogix: [device]Folder/Tag.0
Siemens: [device]I0.0

Address an Individual Bit in a Micrologix

Addressing Bits

Watch the Video

https://www.inductiveuniversity.com/videos/addressing-bits/8.0/8.1

1.

2.

3.

4.

In this example, we want to address bits from a known integer value: 1025. This is represented as above,
with the first (0) and eleventh (10) bits true and all others false. Our Gateway is connected to a
MicroLogix PLC named MLX. To address an individual bit, do the following:

From the window, create an OPC Tag to have a specific value:Tag Browser
Data Type: Integer
OPC Item Path: [MLX]B3:0

Once created, set the Tag value to .1025

Then create another new OPC Tag to show only the value of the first bit of our previous Tag:
Data Type: Boolean
OPC Item Path: [MLX]B3:0/0 (for Micrologic, you can specify the bit as: 0

 /0 or 0.0. That is, with a slash/ or a period.)
 has a value of "1" or a Boolean value of "True" because the first bit is true [MLX]B3:0/0

 (integer value is odd).

You can create a Tag for any of the other individual bits. For example, create a new OPC Tag
with a Boolean value to the second bit of the original Tag as follows:
D ata Type: Boolean

 O PC Item Path: [MLX]B3:0/1
has a value of "0" or a Boolean value of "False" because the second bit is false. [MLX]B3:0/1

Once you have your Tags created, try changing the boolean values and see the Integer Tag change.

User Defined Types - UDTs

What Is a UDT?

UDTs (User Defined Types), also referred to as Complex Tags, offer the ability to leverage object-
oriented data design principles in Ignition. UDTs are extremely important in Ignition. With UDTs, you can
dramatically reduce the amount of work necessary to create robust systems by essentially creating
parameterized "data templates".

By defining UDTs and using these “data templates”, you can generate Tag instances to rapidly build
complex screens. A change to the type definition is then inherited by , drastically saving time all instances
when making routine changes.

The UDT data types are fully supported by , which means you can configure templates Vision Templates
for your custom data types and take advantage of drag-and-drop binding to rapidly build complex
screens.

Primary UDT Features

Object Oriented - Use small or large groups of Tags to create a single object. Create objects
that match your real world devices or the existing structures in your PLCs.
Central Definition - Once you define your data type, you can then create instances of it. If at
a later time you want to change some aspect of the type, you can simply edit the type definition,
and all instances of it are automatically updated.
Parameterized Settings - Define custom parameters on your data type, and then reference
them inside some or all of your member Tags. When it comes time to create instances, you can
simply modify their parameter values in order to change where the underlying data comes from.
Extendable - Data types can inherit from other data types in order to add additional members
or override settings. Instances can also override settings, allowing for flexibility when dealing
with irregularities and corner cases.

On this page ...

What Is a UDT?
Primary UDT Features
UDT Terminology
Creating a UDT Definition and
Instance

Creating a Definition
Creating a Data Type from
Existing Tags
Creating an Instance
Override Instance Properties
Make Changes to the
Definition

UDT Root Node Properties
Assigning Colors to UDTs
Binding to UDTs

Understanding
UDTs

Watch the Video

UDT Terminology

Many terms are frequently used when discussing UDTs:

Definition
A Definition represents the structure of a UDT. Definitions don't run, so Tags inside of a Definition won't poll or subscribe to anything. Rather they
represent a Tag structure which Instances will inherit from. Changes made to a Definition are automatically applied to any Instances of that Definition.

In the Tag Browser, UDT Definitions are always located under the tab. UDT Definitions

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Templates
https://www.inductiveuniversity.com/videos/understanding-udts/8.0/8.1

Instances
Instances are running copies of a Definition. All Instances have a "Parent Type", which is the definition that the Instance is inheriting from. The
structure of an Instance is defined by its parent Definition, so you can not add new Members to an Instance. However, you can override the values on
properties in any Member.

In the Tag Browser, UDT Instances can be found under the Tags tab, and are signified by either a plain white Tag icon, or a Tag icon with a
vertical stripe. Furthermore, you can expand the UDT Instance and find the members (other Tags) in the UDT.

Parameters
Parameters are user created properties that can be used to create parameterized data templates. Parameters are configured on Definitions, and their
values can be overridden on individual Instances. You can replace values on a member in a UDT with a reference to a parameter, allowing for For
example, if a data type consists of three OPC Tags that only differ by a number in the path, you can use a parameter for the "base address", allowing
instances to be created with only one setting.

Root Node
The top level item in a UDT.

Members
Members are the Tags inside of a data type or instance. Members are always under a Root Node. Members can be standard Tag types or an instance
of another UDT.

1.

Override
Instances are copies of a Definition, but in some cases you may wish to change the value of a property on a particular member (Tag) in a UDT
instance. This is called Overriding the property, allowing the property to have a value that deviates from the Definition.

Creating a UDT Definition and Instance

In these series of examples, we will create a very simple UDT Definition, make an instance of it, and
make some additional configuration changes.

Creating a Definition

In this example, we'll demonstrate how to create a UDT Definition.

To create a UDT Definition, first switch click on the tab in the Tag Browser. UDT Definitions
This is the only section where you can make UDT Definitions.

Creating UDT
Definitions

Watch the Video

https://www.inductiveuniversity.com/videos/creating-udt-definitions/8.0/8.1

1.

2.

3.

Next click the icon, and select from the dropdown. Add New Data Type

The Tag Editor will open, allowing you to create a new UDT Definition. To start, enter a name
into the property. (For this example we used "My Definition".) This name is how the UDT Name
will be identified by the rest of the system.

Note: Names can be changed later, but doing so after you've already made instances will
create what's called an "orphaned UDT instance:" an instance that is no longer associated with
a definition. It's generally advised to avoid changing the name of a definition unless you're also
willing to update any of the instances.

3.

4.

5.

6.

7.

We'll keep this demonstration simple, and only add two members. We'll create a Memory Tag

and add a Tag from a connected device. Let's create the Memory Tag first. Click the icoAdd
n, and select . Memory Tag

The Tag Editor will now add a memory Tag to the Type Structure tree and select it, allowing
the Properties table to show settings for the selected Tag.
Change the Name to , and set a Value of ."A Memory Tag" 123

Now, let's add a Tag from the OPC UA server. Click the Add icon, and a window will open
showing you your Connected Devices. Expand Ignition OPC UA

7.

8.

9.

, and select . Click . Server>Devices>Generic>Sine Sine0 Add

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

As of 8.1.1, you can browse OPC devices from within the Tag Editor in order to add OPC nodes
to UDT definitions.

Note: When adding Tag(s) from a device, it requires that you have some connected devices
such as the Ignition OPC UA Server as in this example.

You'll see that the Tag was added to the . Select the Tag and you'll Sine0 Type Structure Sine0
see all the property settings for that Tag.

Click OK. This will close the Tag Editor, and apply your changes. The Tag Browser will now
show your UDT Definition. You can expand the "My Definition" item to make the Memory and
Sine0 Tags visible.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

9.

Creating a Data Type from Existing Tags

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

In this example we will demonstrate how to create a data type from existing tags.

To create a data type from existing Tags, simply select the Tags or folders you wish to include, right-click
and select . The Tag Editor window is displayed with the selected tags Create Data Type from Selected
pre-populated as members. From here you can modify the Tags, add parameters, and so on. The
original Tags will not be affected.

Tip: If you select a single folder as the root to create the type from, its sub-members will be added, and
its name will be the basis for the type (that is, the folder itself won't be included in the structure).

Creating an Instance

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

1.

2.

3.

4.

Now that we have a UDT Definition, we can create a UDT Instance. You can use the Multi-Instance
 to make many instances quickly, but you can also create a single instance. Wizard

In the Tag Browser, switch back to the tab. This section of the Tag Browser is where you Tags
create UDT instances. Definitions can not be placed in this section.

Click the Add icon and hover the mouse cursor over . This will expand and Data Type Instance
show all of the UDT Definitions that exist within the active . Select the Definition Tag Provider
we created in the previous example.

Again, the will open. This time allowing you to edit an instance of the UDT. From Tag Editor
here you can name the Instance. In this case we'll use the name "New Instance".
If you select the member ("A Memory Tag"), you'll notice that many of the properties have a
grey dot. This signifies that the properties are inheriting their values from the definition.

4.

5.

1.

2.
3.

We won't make any changes here. Just click , which closes the Tag Editor and creates a OK
UDT instance.

Override Instance Properties

Instances inherit their structure and properties from the Definition, but property values can be overridden
on an instance.

Now that we have an instance, let's create another. You can use the same steps in the last
example, or just copy and paste from the Tag Browser's right-click menu.New Instance
Name the new instance "Another Instance".
If you need to make changes to a UDT Instance, you can open the by double Tag Editor
clicking on the Instance, or any of its members.

3.

4.

5.

6.

With both instances expanded, we can see that aside from the names, they're identical. Let's
change that. Double click on or any of its members to open the Tag Editor. Another Instance
With the Tag Editor open and focused on , select the memory Tag. Change Another Instance
the Data Type to a , and the Value to " ".String ABC
You'll notice that as you make changes to the properties, the grey dots become green signifying
that the property values now differs from the Definition. This concept is known as "Overriding" a
UDT member property.

Click to close the Tag Editor and apply your changes. You'll notice that the memory Tag in OK
the instance we edited now has an attribute icon, signifying that one or more properties on the
member are overridden.

6.

7.

1.
2.
3.

If you wish to remove the overrides, simply edit the Tag again, and click on the green dot. This
will remove the override and cause the property to revert to the value on the Definition.

Make Changes to the Definition

Now that we have some instances, we can make a modification to the Definition, which will propagate the
change down to the Instances.

Switch back to the tab in the Tag Browser.UDT Definition
Edit the UDT.My Definition
Use the and icons to add a new folder, and a member inside of Add Folder Add Standard Tag
that folder.

3.

4. Click to switch back to our instances,. You'll see they now both have new members. OK

UDT Root Node Properties

While editing a UDT Definition or Instance, the Tag Editor will show some unique properties on the Root Node.

Property JSON
Name

Description

Name name The name of the UDT Definition.

Parent
Data Type

typeId Both Instances and Definitions have this property, but the implications of the property are different.

On a Definition - The name of the UDT Definition that this Definition is inheriting from. If blank, then the UDT being
edited does not inherit from another UDT.

On an Instance - The name of the UDT Definition this UDT is an instance of. Changing the Parent Data Type of an
instance is not supported.

Document
ation

documen
tation

The following feature is new in Ignition version 8.1.17
 to check out the other new featuresClick here

A freeform text property for information about the Tag or UDT.

Tooltip tooltip

The following feature is new in Ignition version 8.1.17
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17

The tooltip provides a hint to visual components as to what should be displayed when the user hovers their mouse cursor
over the component that is being driven by the value of this Tag or UDT.

Parameters paramet
ers

A collection of configured on the Definition. Note that you can only add or remove parameters on Definitions. parameters

Type Color typeCol
or

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

A color that will be applied to the Definition and any Instances. This property is only cosmetic, but can be useful to have
certain UDTs stand out from others in the Tag Browser.

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

Assigning Colors to UDTs

UDTs can be color coded, which applies a color to the Root Node. This is purely a cosmetic change, but can be helpful in systems with a large
number of instances, as the colors can make certain UDTs stand out from one another.

Color is applied to the Definition, via the property. Type Color

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

Any instances of that type will apply the color to the Root Node.

Binding to UDTs

Both Perspective and Vision feature a "binding" system, that allows components in those modules to display live values on Tags. In regards to UDT
instances, component bindings can bind to members just like any standard Tag, but they can also bind directly to the UDT instance, which results in
the binding receiving live live values from all members of the UDT.

In the image below, a Perspective Markdown component has a Tag binding on its property. The binding is leading to the root of a UDT source
instance. As a result, the member values are shown on the component. They're also live values, so any value changes on any member will appear on
the Markdown component.

Related Topics ...

UDT Parameters

In This Section ...

UDT Parameters

Parameters effectively act as variables that can be referenced by properties on members. A common use
case for a parameters in UDTs is to make the OPC Item Path on OPC Tag members dynamic, allowing
you to replace parts of the OPC Item Path with the parameter's value. However, parameter values can
be referenced by other member properties, such as expressions on Expression Tags.

UDT Parameters are configured on UDT Definitions. Instances of a UDT can override the value of a
parameter, much like any other property on an Instance.

On this page ...

Pre-Defined Parameters
Adding a Parameter to a UDT

Referencing Parameters from
Member Properties

Data Type Parameters in
Expressions
Combining Parameters and Tag
References
Attribute Referencing and
Parameterized Types

Calculations and Numerical
Parameter Names
Nonexistent UDT Parameters
Null Values on Parameters

Pre-Defined Parameters

UDTs have a few parameters already defined to make things easier for you. They give you access to the name and various paths associated with a
UDT member Tag. These parameters can be accessed from anywhere in a Tag that a normal parameter can be used. Each of these parameters uses
that Tag it is in as a starting point for its path.

Parameter
Name

Description

{InstanceN
}ame

The name of the UDT Instance that this Tag is inside. In cases where UDTs are nested, this parameter will return the name of the
UDT the member belongs to. Thus referencing this parameter in a nested UDT will return the name of the nested UDT.

{ParentIns
tanceName}

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

1.

2.

3.

1.

The instance name of the parent UDT Instance. This is similar to InstanceName, except the name of parent UDT Instance will be
returned when binding from UDT Instance parameters.

{PathToPar
}entFolder

The full path to the folder that this Tag is in.

{TagName} The name of the Tag that is using this parameter.

{ }PathToTag The full path to the Tag using this parameter.

{RootInsta
nceName}

The following feature is new in Ignition version 8.1.13
 to check out the other new featuresClick here

Returns the top-most UDT Instance name.

Adding a Parameter to a UDT

In this example, our plant has multiple compressors. We created a Compressor UDT, but we want each instance of the Compressor UDT to reference
a different set of Tags. Our Compressor UDT has two OPC Tags: lineVoltage and motorAmps. These two Tags are pointing to a specific address in
the PLC. In order to reference a different set of Tags for each instance, we need to add a parameter to our Compressor UDT that we called "Compre
ssorNum."

In the Tag Browser, we clicked on the tab to find our Compressor UDT. UDT Definitions

Double click on the Compressor UDT to open it in the Tag Editor and click on the pencil icon next to the property. The Parameters
Parameters pane will open.

Click the Add icon to create a parameter. Enter the parameter and Data Type of . Name String

Referencing Parameters from Member Properties

Continuing with the example from above, this next example will show you how parameters are referenced from member properties.

In the Tag Editor, let's replace the Compressor Number for each Tag with the new parameter, CompressorNum. Select the lineVoltage Tag
and click on the binding icon
and click Edit.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.13

1.

2.

3.
4.
5.

6.

7.

8.

This opens the OPC Item Path window for editing the lineVoltage Tag. Place your cursor at the end of 'Compressor1', delete the '1', and en
ter '{CompressorNum}'. Click .Commit

This feature was changed in Ignition version :8.1.17

Starting in version 8.1.17, you may also edit tag paths inline in the Tag Editor rather than opening the OPC Item Path window. For this
example, you would highlight ' ' in the OPC Item Path and replace it with the new parameter, '1 {CompressorNum}'

Repeat Step 2 for the Tag. motorAmps
Both Tags will now show the parameter in the OPC Item Path. CompressorNum
Now, let's create an instance of the Compressor UDT using the CompressorNum parameter under the tab of the Tag Browser. To Tags
keep UDT instances organized, we created a Plant Compressors folder.
Right click on the Plant Compressors folder and select . New Tag > Data Type Instance > Compressor UDT

Enter a for the Instance (i.e., HVAC Compressor), then click on the pencil Name icon next to the Parameters property and enter a value
(i.e.,). Click to save the HVAC Compressor instance. 2 OK

 Under the tab, you'll see the HVAC Compressor was created showing the Parameter that was used and the values for the OPC Tags Tags
listed in the OPC Item Path.

8.

Data Type Parameters in Expressions

It is possible to use the value of data type parameters directly in expression bindings within a UDT. Parameter references can be quickly inserted into
an expression.

While a UDT member is selected in the Tag Editor, you can edit bindable properties, such as the Expression on Expression Tags by clicking the Edit

 icon next to the property.

This opens the Expression window. Click on the icon on the right of the expression area, select a parameter, then click UDT Parameters Commit
.

Combining Parameters and Tag References

Because parameter and Tag references differ in syntax, some consideration must be made when attempting to use both in the same expression. Tag
references must not be placed inside of quotes. After adding a string Tag to the Turbine UDT, a reference to the Tag can be added to Member
Location's expression. Single quotes were added to create a space between the Member's Location and the string value.

Here's what it looks like in the Tag Browser.

Attribute Referencing and Parameterized Types

As mentioned above, many properties in the member Tag configuration can reference the parameters
available in the data type. When instances are created, these references are replaced with the values
defined for the type. Parameter references also support basic offsets and numerical formatting, providing a
great deal of flexibility. To reference a parameter, use the syntax {ParameterName}.

To offset a value, use the form .{ParameterName+offset}
To format a value, use the form . The format pattern is the same as that used for the expression {ParameterName|format} numberFormat
function. In short, "0" can be used to require a digit, and "#" can be used for optional digits. ie: ##0

Example:

For this example, we'll assume that we're parameterizing the , and that the data type has an integer attribute named defOPC Item Path BaseAddress
ined. We'll pretend the provides Tags named like .OPC Server DataPoint1

Standard Referencing

OPC Item Path: DataPoint{BaseAddress}

Offset

Imagine that our data type had three fields, and these were laid out sequentially in the device.
Instead of specifying each address for each Tag, we can simply offset from the base address:

Member 1: DataPoint{BaseAddress+0}
Member 2: DataPoint{BaseAddress+1}
Member 3: DataPoint{BaseAddress+2}

Formatting

Continuing from the example above, imagine that our OPC server actually provided addresses in the form , in order to stay consistent DataPoint001
up to "DataPoint999". This can be accommodated
using number formatting in the reference:

Member 1: DataPoint{BaseAddress+0|000}
Member 2: DataPoint{BaseAddress+1|000}
Member 3: DataPoint{BaseAddress+2|000}

This format of three zeros means "three required digits". If our instance has a base address of 98, the resulting paths will be DataPoint098,
.DataPoint099, DataPoint100

Parameters support more mathematical operators in addition to offsets and formatting. There is a simple expression language available that can be
used in conjunction with formatting. The following table shows all available operators in their order of operations (they are evaluated starting at the top
of the table).

Operator Description Example

() Parenthesis. These operators are used for grouping any number of values. Also used to change the order of
operations.

{Baseaddress*
(2+3)}

^ Power. This operator is used to raise a number to a power. {BaseAddress^2}

- Negative. Used to create a negative value from one number. {BaseAddress*-2}

* Multiplication. Multiply two numbers. {BaseAddress*2}

/ Division. Dividing the first number by the second number. {BaseAddress/2}

% Modulus. This operator returns the remainder of a division operation. IE: 7/3 = 2 with a remainder of 1, so 7%3
= 1

{BaseAddress%2}

+ Addition. Add two numbers. {BaseAddress+2}

- Subtraction. Subtract two numbers {BaseAddress-2}

| Used to define a formatting pattern. Patterns are defined with 0 and # characters. {BaseAddress|##0.
00}

Example

This dynamic OPC Item path takes in three parameters to determine the tag path
ns=1;s=[DeviceName]Path/to/tag{BaseAddress+(ParamNum*Multiplier)|0000}

The OPC Item path resolves to the following assuming the following values:
BaseAddress = 5
ParamNum = 8
Multiplier = 2
ns=1;s=[DeviceName]Path/to/tag0021

Calculations and Numerical Parameter Names

If the parameter names are purely numerical values (we don't recommend this: it gets confusing), then quotation marks must encase the parameter to
run any sort of calculations on the value of the parameter.

For example, if a UDT contains a parameter named 0, and its value is 10:

// This will evaluate to 0, because it thinks you mean the integer 0, not the parameter named "0"
{0 * 1000}

// This will evaluate to 10000, because the quotation marks denote a parameter named "0"
{"0" * 1000}

Nonexistent UDT Parameters

This feature was changed in Ignition version :8.1.8

Parameter references in bindings that do not evaluate to an existing UDT instance parameter will be returned as a string.

For example, say a binding on a member used the following:

SomeText/{myParameter}

If the UDT definition does not contain a parameter named "myParameter", then the binding above would be treated as a string literal, returning a value
of "SomeText/{myParameter}".

Null Values on Parameters

This feature was changed in Ignition version :8.1.8

If the value of a UDT parameter is null, then any bindings that reference to the value of that parameter will instead return a string literal, similar to how
referencing nonexistent parameters works.

For example, say a UDT definition has the a parameter named "NullParameter". If the value of that parameter is null, then references to it would return
the string "{NullParameter}". Thus, if we had a binding that included the parameters:

SomeText/{NullParameter}

The binding would return a value of:

"SomeText/{NullParameter}"

1.

2.

UDT Multi-Instance Wizard

The Multi-Instance Wizard provides a powerful, but simple mechanism for rapidly generating many
instances of a UDT at the same time by specifying patterns for UDT parameters.

Value Patterns and Tag Names

Value Patterns

In order to define values for parameters (and the Tag names), you can use several different types
of patterns (and combinations of patterns):

Range number1-number2[/step]
A numeric range of values, such as . Optionally, a parameter can be included, in order to only 1-10 step
generate numbers at certain multiples. For example, would generate , and so on.0-100/10 0,10,20

Repeat value*count
A value (numerical or string), and the number of times to use it. For example, would North Area*10
use the parameter for items.North Area 10

List value1, value2, value3
A comma separated list of values (or other patterns) to use.

Examples:

1-10,21-30,31-40 Results in Tags being created, with the specified value ranges (so, for example, 30
there would be no parameter).15
A,B,C Results in Tags, with each of the values.3
0-100/5 Results in Tags (because range is inclusive), with values .21 0, 5, 10...100

As mentioned, the size of the pattern will dictate how many Tags will be created. If some patterns are
smaller than others, the last value will be repeated for the other Tags.

Tag Names

The names of the generated instances can be specified using a system similar to that of the parameter
patterns. If you just want to use sequential names, you don't need to specify a pattern, as values will be
generated automatically starting at one. You can also set the pattern to simply be the starting number to
generate sequential names from there.

Base Name
A string base for the Tag name. This can also be a list of names, in which case the names will be used
directly, and the name pattern won't be used.

Name Pattern
A pattern that will be used to generate values that will be appended to the base name.

At any time, you can use the button to view the Tag names and parameters that will be created. Preview
Once you are satisfied, click to generate the Tags under the selected folder in the Tag provider.OK

On this page ...

Value Patterns and Tag Names
Value Patterns
Tag Names

How to Make New Instances of a
UDT

UDT Multi-Instance
Wizard

Watch the Video

How to Make New Instances of a UDT

Once you have a UDT Definition created, you can make multiple instances of it with the Multi-instance Wizard.

In the Tag Browser, click the Add icon to create a new folder. We created one called Machine Motors.
You can create a single instance of the motor or use the Multi-instance Wizard to rapidly create many instances at the same time. In this
example, we will use the Multi-Instance Wizard.
 Right-click on the Machine Motors folder, and select Multi-instance Wizard to open the Instance Creation Wizard window.

https://www.inductiveuniversity.com/videos/udt-multi-instance-wizard/8.0/8.1

2.

3.
4.

In Step 1 - Select Data Type to Create, select a UDT (i.e., Motor) from the dropdown.
In Step 2 - Configure the Parameters, enter the following for your Motor:

Base Tag Name: " ." Note the space at the end. Without this space your Tag names will look like Motor1, Motor2, etc.Motor
Tag Name Pattern: This creates five Tags , , thru . 1-5 Motor 1 Motor 2 Motor 5
Parameter Patterns: the parameter is entered by default when we selected the data type to create in Step 1.MotorNumber
Pattern: is the pattern of the parameter so the Motor 1 Tag will have a parameter of 1, Motor 2 will have a parameter of 2, and 1-5
so on through Motor 5.

You'll notice that after you enter the Pattern, the number of Tags to create is updated. In this example, five Motor Tags will be
created. Click Preview.

4.

5.

6.

In Preview, you will see how the Base Tag Names and Parameter Values get created. Click to go back to the Instance Creation Wizard Back
window if you want to make an update. If you like what you see on the Preview window, click . OK

6. In the Tag Browser, expand Motor Tags 1-5 to see if all the members of the Motor UDT were created and are running.

Related Topics ...

UDT Parameters

Cannot Edit Existing Instances using the Multi-Instance Wizard

You cannot edit existing instances using the Mult-Instance Wizard. The Mult-Instance Wizard is only used for quickly creating many
instances of a UDT at the same time. If you want to make a change to all your instances, refer to .How to Edit an Existing UDT

https://legacy-docs.inductiveautomation.com/display/DOC81/UDT+Parameters#UDTParameters-HowtoEditanExistingUDT

1.

2.

UDT Inheritance

Once you have a single data type created, it is possible to set up UDT inheritance where data types
extend to other data types, to add additional members, or override default values. For example, you can
create a new data type and using the inheritance feature it will inherit all Tags from the parent data type
including the parameters. Then you can add additional Tags and/or override any settings in your new
data type. UDT Inheritance is a way to extend to a class of data types to add more functionality to that
class.

For example, you may have a simple motor and a complex motor. The complex motor can inherit from
the simple motor, which means all simple motor values will be in the complex motor and you can add
more.

Nesting (using one or more UDTs to make up a larger UDT) is different from inheritance and can be
found under .UDT Nesting

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in . Deprecated Ignition Features

On this page ...

Inheriting Property Values from
an Existing UDT
Creating the Data Type Instance
Overriding Properties of the
Parent UDT

UDT Inheritance Traits
UDT Hierarchy Tool

UDT Inheritance

Watch the Video

Inheriting Property Values from an Existing UDT

Let's use our data type Motor from the previous sections to create another data type. We'll set the parent to Motor so our new data type automatically
inherits all the properties of Motor.

In the Tag Browser, click on the tab and click the Add UDT Definitions icon to create a New Data Type.
The Tag Editor window will openon the.

In the field, enter name for your new UDT (i.e. Complex Motor). Under property go to the dropdown and select the Name Parent Data Type
 data type and click . Now your new Complex Motor UDT is inheriting from all the properties of the parent Motor UDT: Amps, HI Motor Apply

SP and HOA.

https://docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://www.inductiveuniversity.com/videos/udt-inheritance/8.0/8.1

2.

3.

4.

With the Tag Editor still open, let's add an to the Complex Motor UDT. Click on the OPC Tag Add Tag and select .OPC Tag

 Enter the following properties for your new Tag and click . You will see the new Tag was added to the Complex Motor UDT. Apply

: TempName
: OPCValue Source

: IntegerData Type
OPC : Server Click on the binding () icon and select Ignition OPC UA Server
OPC : Browse the Item Path OPC and find the Tag you want to use. This example uses a Temperature Tag from a Sensor in the Dairy
program.

4.

5.

6.

7.

In the image below the Temp Tag is pointing to a specific address in the PLC. Because we're creating a new Tag in our UDT, we don't want
to point to one specific set of Tags. We want each instance of the Complex Motor UDT to reference a different set of Tags. To 'Temp' 'Temp'
do that, we need to add a parameter to the Complex Motor data type that we will call 'SensorNumber'.

With the Complex Motor UDT open, let's create a new UDT parameter. Right click the icon next to the Tag Editor Edit Parameters
property. The Parameters pane will open.

Click the Add icon and add the new parameter, 'SensorNumber'

7.

8.

9.

With the Tag Editor still open, select the Tag. In the field, click the icon, select , and the "Temp' Item Path OPC binding Edit Temp > O
 window will open. Place your cursor at the end of delete the add a space, and enter . Don't Item PathPC 'Sensor1', '1', '{SensorNumber}'

forget the curly braces. Click to save your updates and go back to the previous window. Apply

This feature was changed in Ignition version :8.1.17

Starting in version 8.1.17, you may also edit tag paths inline in the Tag Editor rather than opening the OPC Item Path window. For this
example, you would highlight ' ' in the OPC Item Path and replace it with the new parameter, '1 {SensorNumber}'

In the window, click to save your UDT. In the Tag Browser, the new data type is now visible in the , "Complex Motor." You Tag Editor OK
can see all the inherited Tags from the Motor data type and the newly added Temp Tag.

9.

1.

2.

Creating the Data Type Instance

Now that our Complex Motor UDT is set up, let's create a data type instance of the Complex Motor.

Click on the tab, and from the context menu, select the Tag Data Type Instance > Complex Motor.

Enter the for the instance (i.e., Complex Motor 100). Click the icon next to the property and enter the parameter Name Edit Parameters
value of for and '2' MotorNumber SensorNumber.

2.

3. Click to create the instance. Now, you'll be able to see all the values for Complex Motor 100 including the Temp Tag that was added. OK

Overriding Properties of the Parent UDT

Another benefit of the UDT inheritance feature is it allows you to override some of the properties of the
parent. For example, since the Complex Motor has Motor as the parent, you can go to any of the Tags
and override any of the settings of that data type. Click the circle to the right of the property and enter a
new value, or change a property's value and the green circle changes to green automatically. This
overrides the property inherited from the parent.

Overriding
Properties in UDT
Instances

You can also turn on Alarming and History that wasn't initially turned on in the parent UDT by simply
using the override feature. Next to the Alarm property, click the green circle to change it to green, and

click the pencil () icon to configure the alarm if it is not already configured. If you want to turn on
History, click the green circle or change any of the History properties which will cause any of the green
circles to change from gray to green.

UDT Inheritance Traits

UDT instances that are inherited and have properties that override the parent properties have a visual
representation next to them.

Watch the Video

UDT Hierarchy Tool

https://www.inductiveuniversity.com/videos/overriding-properties-in-udt-instances/8.0/8.1

The following feature is new in Ignition version 8.1.23
 to check out the other new featuresClick here

The UDT Hierarchy Tool displays the relationships between connected UDT definitions and instances. It shows inheritance between UDT definitions, o
verrides of inherited properties, and instances directly related to selected definitions. Right click a UDT Definition or UDT Instance and select View
UDT Hierarchy to access the UDT Hierarchy Tool.

The Type Hierarchy panel shows the related definitions. When you have the Show Instance icon selected, you can sort instances by typing into

the filter bar and choose between grouping by folder path or name with the respective or icons. If you expand the Instances of folders,
you will see UDT instances that directly inherit the definition as a parent. Note, nested UDT Instances are not visible in this list.

If you need additional filtering for instances, such as specific overrides, right click the text for the specific UDT instances to open the Instances of Tag
 with the search pre-populated for that specific set. Report Tool

Information about member tags and overridden properties for the selected UDT Definition or UDT Instance are visible on the right side of the tool. As

shown in the example below, the inherited tag member types will be grayed out and followed by the Inherited icon.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.23
https://docs.inductiveautomation.com/display/DOC81/Tag+Report+Tool#TagReportTool-UDTMembersandDefinitions
https://docs.inductiveautomation.com/display/DOC81/Tag+Report+Tool#TagReportTool-UDTMembersandDefinitions

Related Topics ...

UDT Parameters
UDT Nesting

1.

2.

a.
b.

c.

d.

UDT Nesting

It's possible to set up UDT nesting in Ignition where you are putting one UDT inside of another UDT. The
UDT is nested as an instance within another UDT. It facilitates quicker development of projects since
you're able to piece together multiple UDT definitions as needed without having to build everything from
the ground up as with each UDT definition. This is particularly useful because it promotes rapid
development if you are expanding a plant or facility where all you have to do is make a few Tag changes
to existing parameters and property settings.

For example, you may have a production line that is built out of several different machines. You don't
need to re-create a motor for each line, instead you can create it once and use it in every line.

Inheritance (having simple and complex version of similar objects) is different from nesting UDTs, and
can be found under .UDT Inheritance

On this page ...

Set Up UDT Nesting

Nested UDTs

Watch the Video

Set Up UDT Nesting

In this example, let's use our Motor and Sensor data types that were created and used in previous sections of this manual. We are going to create a
third UDT called Area that will contain the Motor and Sensor data types inside of it.

In the Tag Browser, right click on and select . The Tag Editor window will open. Assign the new data Data Types New Tag > New Data Type
type a Name called .Area

Editor notes are only visible to logged in users
On 8.1.17 release, delete this screenshot

Inside of the data type, create two data type instances, one for Motor and the other for Sensor:Area

Click on the icon, select . Click .New UDT Instance New UDT Instance > Motor/Motor1 OK
Rename the new instance . Click .'Motor' Apply

Click on the icon, select . Click .New UDT Instance New UDT Instance > Sensors/Sensor OK

https://www.inductiveuniversity.com/videos/nested-udts/8.0/8.1

2.

d.

3.

Rename the new instance . Click .'Sensor' Apply

Editor notes are only visible to logged in users
On 8.1.17 release, replace this screenshot

With the Tag Editor still open, you'll notice that both the Motor and Sensor UDTs were added. For every UDT that you add inside another
UDT, those UDT instances have parameters that need to be specified. In this example, the Motor UDT has the parameter, 'MotorNumber'
and the Sensor UDT has the parameter. You must pass a value into the each of these UDTs (Motor and Sensor) from the 'SensorNumber'

3.

4.

5.

6.

7.

parent UDT (Area). To view the parameters for each UDT instance, select each UDT instance (Motor and Sensor) and click the icon. Edit

 Now that you know what parameters are in each UDT instance, go to the Area UDT, and click the icon next to the Edit Parameters
property. The Parameters window will open.

Click on the icon to add the 'MotorNumber' and 'SensorNumber' parameters, then click .Add Commit

Now we need to pass these values into the UDT instances by adding a reference. Select the UDT, and click the icon next to Motor Edit
the property.Parameters

7.

8.

9.

Enter the reference for MotorNumber: . Click .'{MotorNumber}' Commit

Do the same steps to add a reference to the UDT. Select the Sendor UDT and click the icon next to the propertSensor Edit Parameters
y. Enter the reference for SensorNumber: . Click .'{SensorNumber}' Commit
Click OK.

Related Topics ...

UDT Parameters
Data Type Parameters in Expressions

If Multiple Data Types use the same Parameter

In the event data types use the same parameter, you only need to enter it once in the new data type (i.e., Area).

https://legacy-docs.inductiveautomation.com/display/DOC81/UDT+Parameters#UDTParameters-DataTypeParametersinExpressions

Tag Groups

What Is a Tag Group?

Tag Groups dictate the rate of execution of Tags, and therefore play a crucial role in the design of large
and high-performance systems. Highly optimized systems generally use multiple Tag Groups which
allows for each data point to be polled only as fast as it needs to be. For example some Tags may need
to updated every 500ms, while others may only need to be updated every 30 seconds.

Creating different Tag Groups allows you to organize your Tags into groups that subscribe or poll at
different rates.

Tag Groups Modes

Tags are assigned to a Tag Group that determine how often they update. For example, how often an
OPC value is polled from the PLC, how often an Expression Tag calculates its expression, and how often
a Query Tag runs its query. It's easy to create Tag Groups in Ignition for just about any scenario you can
think of. Tag Groups are extremely powerful and flexible, and you can create them based entirely on your
individual business requirements.

There are three different Tag Group modes in Ignition that you can use. Each mode works a bit
differently.

Direct

Executes at one fixed rate, as determined by the property in milliseconds. This is the most simplistic Rate
option, as the rate of the group doesn't intentionally change between two different rates. The default tag
group on newly installed Ignition systems uses this mode. It's the simplest mode in that there is only a
single rate for this mode.

See the page on steps to add a Direct Tag Group.Direct Tag Group Example

On this page ...

What Is a Tag Group?
Tag Groups Modes

Direct
Driven
Leased

Adding and Editing Tag Groups
Setting a Tag Group on a Tag
Tag Group Properties

Tag Group
Overview

Watch the Video

Driven Tag Group

Watch the Video

Leased Tag Group

Watch the Video

https://www.inductiveuniversity.com/videos/tag-group-overview/8.1
https://www.inductiveuniversity.com/videos/driven-tag-group/8.1
https://www.inductiveuniversity.com/videos/leased-tag-group/8.1

Driven

Driven Tag Groups switch between two different rates based on a condition you configure directly onto
the Tag Group. The condition in this case is an on the property. The expression Driving Expression
result of the expression is then compared to the property. If the comparison of the Comparison Value
two values is equivalent, then the entire tag group executes at the in milliseconds, Leased/Driven Rate
otherwise it executes at the . Rate

Thus, you can have a tag group that switches between a fast and slow rate under certain conditions.

Furthermore, Driven Tag Groups have a property. When set to true, means the group only One Shot
executes every time the comparison is equivalent. Furthermore, it only executes once every time that
comparison transitions from false to true: this is sometimes called "a rising edge".

The One Shot property allows for more interesting tag executions. Instead of running at set rates, you
can trigger an execution for all tags on the group by incorporating a tag value as part (or all) of the driving
expression, allowing a single tag value change to cause many other tags to update.

See the page on steps to add a Driven Tag Group.Driven Tag Group Examples

Leased

Leased groups have two different execution rates, much like a Driven group. However Leased groups
don't rely on a comparison to determine rate. Instead, the driving mechanism is whether a Tag is being
displayed on an open window or view: generally via a Tag Binding of some sort.

Tags that are displayed (leased) will run at the , while those Tags on the same Leased/Driven Rate
group that aren't leased will run at the .Rate

Leased groups are unique in that Tags on the same group may execute at different rates while being in
the same group. For example, if Tags A and B are both on the same Leased group, and all Designer,
Vision Client, and Perspective Sessions are closed, then both tags execute using the value. If a Rate
user launches a Perspective Session and switches to a view where the value of A is displayed on a
component binding, then will switch to the A Leased/Driven Rate. However, since isn't displayed B
anywhere, it will continue to execute using the value. Rate

See the page on steps to add a Leased Tag Group. Leased Tag Group Example

1.

2.

Note: Viewing the Tag only in the Tag Browser will not cause the Tag Group to execute at the Leased
Rate.

Adding and Editing Tag Groups

Adding and editing Tag Groups is easy in the Designer once you understand how the different Tag Group modes work. It's just a matter of choosing
which Tag Group mode you want to use for your Tag, and entering the properties for your Tag Group.

In the Tag Browser, click on the icon under the Options Menu to open the Tag Group Editor window. Edit Tag Group

A list of already configured Tag Groups appear on the left side of the window and configuration settings on the right. To add a Tag Group,

click the icon. (Alternatively, you can click on an existing Tag Group to edit it.)Add

2.

1.

2.

When a Tag Group in the list is selected, the properties for the group will appear on the Properties Table. Each mode will have slightly different
settings that will need to be configured. You can find descriptions for those properties in the section below. Tag Group Properties

Setting a Tag Group on a Tag

The example below demonstrates how to find the Tag Group on a tag, and change it to something else.

In the , right-click on any Tag, and click the icon. The window opens. A list of Tag properties is Tag Browser Edit tag Tag Editor
displayed.
Under , on the right side of the property, click the dropdown list and a list of available Tag Groups will appear. Basic Properties Tag Group
Again, Tag Groups are configured per Tag Provider, so this list will only contain Tag Groups that are present in the Tag's Tag Provider.

2.

3. If you wish to change the Tag Group. Select the new option, and click or to apply the new Tag Group. The Tag will switch rates OK Apply
and start using the new Tag Group.

As a reminder, you can select multiple Tags in the Tag Browser by right clicking to edit the Tags. This opens the Tag Editor, and sets the Tag Group
for all the selected Tags at the same time.

Tag Group Properties

The following table lists the properties for Tag Groups. Note that some properties are available only for specific modes.

Property Description Applicable
Modes

Common

Name Unique name of the Tag Group. All

Driven
Mode

The rate of the Tag Group is based on the value of a driving . The condition is a simple comparison between a Tag Tag
 value and a number. If the condition is true, the will execute at the fast rate. If false, it will run at the slow Tag Group
rate. There are two exceptions to this: the operator, and mode. Using either of these Any Change One-shot
conditions will not run at a rate. Instead, it will be triggered by a change in the driving 's value. Keep in mind that Tag
the driving can be an that performs complex calculations and references other Tags. In this Tag Expression Tag
way, it's possible to create robust Tag Group triggering.

All

Rate Base update rate, specified in milliseconds, at which Tags will be executed.

Note: If the rate is set to 0, the Tag Group will not execute.

All

Leased
/Driven
Rate

Used by both the Leased and Driven Modes to determine when the Tag Group should run at the fast rate. Leased,
Driven

Driving
Expression

The Tag Group executes based on the condition set on the Driving Expression: Tag or Expression. Driven

Driving
Comparison

How the Comparison Value should be compared to the Driving 's value. If the comparison is true, then property Tag
the Fast Rate will be used by the Tag Group, otherwise, the Slow Rate will be used.

The operator works differently than the other operators: The will execute immediately Any Change Tag Group
whenever the driving changes value. Using the Any Change operator means that the no longer uses Tag Tag Group
the Slow Rate or Fast Rate properties.

Driven

Compariso
n Value

Used by the Driving Comparison to determine if the Tag Group should execute at the slow or fast rate. property Driven

One Shot One-shot will execute once when the comparison condition is true, and not again until the condition becomes false,
and subsequently true.

Driven

OPC Settings

Data Mode This mode dictates how values are obtained. The default mode, , is preferred because it is more OPC Subscribed
efficient than a read.

Subscribed
All Tags in the Tag Group will be subscribed according to the Tag Group rate. Values will come in OPC
asynchronously as they change.

Polled
Tags will not be subscribed, but will instead be synchronously read each time the Tag Group executes. This
operation is less efficient, but allows more precise control over when values are obtained. This mode is particularly
useful when collecting data over a slow or expensive connection for display. When combined with the execone-shot
ution mode above, and a static tied to a momentary button, it's easy to create a manual refresh button on a Tag
screen that pulls data .on-demand

All

Read After
Write

When enabled, a read request will be sent immediately after a write request. This means that the value on the wilTag
l be updated much quicker to reflect the latest written value.

Enabling this is less efficient as a single write to a becomes two separate requests. This is especially property Tag
helpful with slower Tag Groups as the Tags will show the latest value quicker than the normal execution would allow.

All

Optimistic
Writes

Optimistic Writes are only valid on Optimistic Writes set a newly written value in before OPC Tags . Tag Ignition
receiving confirmation of the write from the . This helps the operators see their newly entered value right away PLC
and is useful if you have slow a Group rate. A faster rate (1 second or quicker) will have less need to turn on Tag
Optimistic Writes.

If enabled, written values will be applied to the in Ignition immediately. Normally, the system must receive Tag
confirmation that a write was successful from the device before the value would change. The Tag in Ignition's
Optimistic Writes changes the behavior by assuming the write went through until the next read value or property
subscription update proves otherwise. Enabling this will make writes appear to execute much quicker.

Works in conjunction with the below. If the in Ignition does not receive Optimistic Write TimeoutOPC property Tag
confirmation that the new write was successful within the timeout, the will change back to the last known value. Tag
While in an ambiguous state, the with have a quality of " ".Tag Good (Provisional)

This setting can be paired with the : the Ignition will assume the newly written value, Read After WriteOPC Tag
while an asynchronous read request is quickly sent out to confirm the write went through.

While the write is pending, values received from subscription activities will override the current value. Assuming an
initial value of 0, if a write of 10 is applied to the Ignition , then the will show a value of 10 until the system Tag Tag
can confirm the new value. If a subscription update then returns a value of 5, the Ignition will change to 5.Tag

All

Optimistic
Write
Timeout
(MS)

The timeout period for Optimistic Writes. A value of 0 effectively disables the fallback functionality: the new value is
maintained on the until the next read or subscription activity.Tag

All

OPC UA

Publishing
Interval
(ms)

The rate at which data is delivered to the OPC-UA client.

A value of -1 means automatic, allowing the OPC-UA client to determine the rate.

All

Sampling
Interval
(ms) The following feature is new in Ignition version 8.1.24

 to check out the other new featuresClick here

Allows the Requested Sampling Interval column on the Gateway Status > OPC Connections > Clients > Nodes pa
ge to be requested independently of the Tag Group Rate . The default value for this is -1, which indicates that the

 value will be inherited from the Tag Group Rate value.

Note: Setting the Sampling Interval value to 0 against a driver that supports it will show the requested value on the
Gateway. Setting the value to 0 against a driver that doesn't support it will show a Revised Sampling
Interval of 500. Setting the value below 0 will show the the interval rate of the Tag Group setting in the Requested
/Revised Sampling Interval columns.

All

Queue
Size

The OPC-UA specifications states that in cases where the sampling interval (the rate as which the server checks the
data source for changes) is faster than the publishing interval (rate at which the the data is delivered to the client),
the samples may be queued or batched together before publishing. This setting determines the maximum size of that
queue. When the maximum is reached and a publish has not yet occurred, oldest samples are dropped first.

Currently, there are not many features in Ignition that utilize multiple entries in the queue, but 3rd party OPC-UA
clients may be able to take advantage of this setting.

Note that values on Ignition Tags will only ever show one value at a time, regardless of what this property is set to. (If
the value is 0, nothing will be queued.)

All

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-OPCTags
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Support for this feature is dictated by the driver.

DNP3 - See the page for details on how buffered data and Sequence of Events worksDNP3

Include
Timestamp
-Only
Changes

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

If true, allows the OPC-UA client to receive timestamp-only changes for tags in this group. By default, the OPC-UA
client only receives value and quality changes.

All

History

Min Time
Between
Samples

Minimum time between samples (integer). All

Min Time
Units

Minimum time in units is defined as: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and Years. All

Max Time
Between
Samples

Maximum time between samples (integer).

When a Tag uses the "Tag Group" sample mode, and is set to this Tag Group, it will ignore it's own Max Time
Between Settings setting (configured directly on the Tag), but only if this Max Time Between Samples setting (on the
Tag Group) is using non-default values. Defaults to 0.

All

Max Time
Units

Maximum time in units is defined as: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and Years. All

https://legacy-docs.inductiveautomation.com/display/DOC81/DNP3
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

1.

2.

a.
b.
c.

3.

4.

5.

6.

Direct Tag Group Example

Add a Direct Tag Group

In the Tag Browser, click on the icon to open the . Tag Groups Tag Group Editor

On the bottom left side, click the icon to create a new Tag Group, and enter the values Add
for the following properties:

Name - Enter a unique name for the Tag Group: Direct 5 Seconds
Select the Mode: Direct
Enter Rate: 5,000

Click to save. OK

Now that you have your Tag Group created, let's add multiple Tags to the Tag Group. Go to your
, find some Tags you want to add to the Tag Group. This example uses several Tag Browser

Ramp Tags. Right click on the selected Tags, and click on icon. Edit Tag

This opens the window. It also shows you that you have multiple Tags selected. Tag Editor
Select the Tag Group from the dropdown list. Direct 5 Seconds
Click . OK

On this page ...

Add a Direct Tag Group

6.

You created a new Direct 5 Second Tag Group and added your Tags. Just make sure you want
to poll the 5 second values all the time (24/7) when you use the Direct 5 Seconds Tag Group.

1.

2.

Driven Tag Group Examples

Driven Tag Group - Machine State

Driven Tag Groups that are based on a machine can be very important when you only want to poll values
differently based on machine state. A machine state Tag Group is when the Tags are polled at one rate
with the machine ON, and a different rate when the machine is OFF. You can easily see the rate change
in the the Tag Browser using this type of condition.

On this page ...

Driven Tag Group - Machine
State

Create a Machine State Tag
Add a Driven Tag Group
Based on the Machine State

Driven Tag Group - Time of Day
Add a Driven Tag Group
Based on the Time of Day

Create a Machine State Tag

First, you need to create a driving Tag if you don't already have one.

In the , right-click on the folder, then go to to .Tag Browser Tags New Tag > Memory Tag create a memory Tag
The Tag Editor window is displayed.

In , enter the following:Tag Editor
Name: Machine On
Tag Group: Default
Enabled: true
Data Type: Boolean
Value: false

https://legacy-docs.inductiveautomation.com/display/DOC80/Creating+Tags

3.

1.

2.
3.
4.

5.

6.

Click to add the Tag to the Tag Browser. OK Machine On

Add a Driven Tag Group Based on the Machine State

Once you have your driving Tag created, add a Driven Tag Group that updates the Tags based on when the machine is ON.

In the , click on the icon to open the Tag Group Editor.Tag Browser Edit Tag Groups

To create a new Tag Group, click Add icon.
Enter the name of the Tag Group. For example, you can name it , and set the to . Driven Machine State Mode Driven
Set the to 10,000 (10 seconds) and the to 1000 (1 second). Rate Leased/Driven Rate

This Tag Group executes based on the condition you set on the Driving Expression. Set the by clicking the Driving Expression Edit
icon.

5.

6.

7.
8.

9.

a.
b.

10.

This Tag Group executes based on the condition you set on the Driving Expression. Set the by clicking the Driving Expression Edit
icon.

Click the icon and choose the Tag you want to set the condition on (i.e., Machine On).Tag
Click on the popup and in the upper right of the Tag Group Editor. OK apply changes

While still in the Tag Group Editor, set the following values:

Driving Comparison: =
Comparison Value: 1

Click in the lower right of the Tag Group Editor.OK

10.

11.
12.
13.

14.

When the machine is on, it will use the Leased/Driven Rate (1 second). When the machine is off, it will use the Rate (10 seconds)
Next, select all the Tags for the Drive Machine State Tag Group. This example uses , and Tags. that you want to use Sine7, Sine8 Sine9
Right click on the selected Tags and choose .Edit Tag

The Tag Editor will open showing you are editing multiple Tags. From the Tag Group dropdown list, choose , and clickDrive Machine State
OK.

14.

15. Now let's turn the machine on. In the Tag Browser, mark the checkbox next to the Tag that we created earlier.Machine On
Now, when the machine is on, polling will be a at the 1 second rate for the Sine Tags. When the machine is off, polling will be at the 10
second rate for the Sine Tags. Test it by toggling the Machine On Tag on and off.

You can also set the (slow rate) to a value of 0, which means polling is stopped when the condition is false. So for example, when the Rate
machine is off, you will see the Tags stay at the last known value.

15.

Once the machine is turned back on, the Tags resume polling.

Driven Tag Group - Time of Day

Driven Tag Groups can be used as the polling rate for Tags to trigger at different rates at different times of the day. They can also be used as a one-
shot event at a specific time of the day. You can accomplish this by setting the condition of the Driven Tag Group to be true at certain times of the day,
and false at other times.

1.

2.
3.

4.

5.

Keep in mind, that if you use a Driven Tag Group based on the time of day with a 0 Slow Rate for history, the Tag will only store history during those
specified times.

Add a Driven Tag Group Based on the Time of Day

Let's add a Driven Tag Group that updates the Tags based on a time of day. We will use an Expression to drive the Tag Group. You can use the
functions that are in the expression language to poll the PLC during the hours of 8am to 5pm.

In the Tag Browser, click on the to open the Tag Group Editor.Tag Groups icon

To create a new Tag Group, click on the icon.Add
Enter the name for the Tag Group. In this example, we named it , and set the Mode to .Time Driven Driven
This Tag Group executes based on the condition of the . In this example, we'll use the Poll Time Tag we created above. Driving Expression
Set the to 60,000ms so it polls at a slow rate, and the to 1,000ms so it polls at a faster rate.Rate Leased/Driven Rate

Enter the Click on the icon, and copy and paste the following expression in the expression box, then click Driving Expression. Edit App
.ly Changes

5.

6.

a.
b.

7.

timeBetween and Machine On expression

timeBetween(now(0), "8:00:00 am", "5:00:00 pm")

While still in the Tag Group Editor, set the following values:

Driving Comparison: =
Comparison Value: 1

Click OK.

7.

8.

9.

Next, select all the Tags that you want to specify in the Tag Group (i.e., and). Pressure Temperature
Right click on the selected Tags, and choose . Edit Tag

The Editor will open showing you are editing multiple Tags. To change the Tag Group, choose Tag Time Driven from the dropdown, and click
 OK.

9.

10. In the Tag Browser you can look at the Tags to see they are updating at the correct rate. Try adjusting the time range in your expression to
change the rate of polling. When the driving conditions are true, that is the time between hours of 8am and 5pm, polling is at the Leased
/Driven Rate of 1000 ms. When not, polling is stopped, and the last known value is displayed.

1.
2.

3.

4.
5.

6.
a.

b.

7.

Leased Tag Group Example

Add a Leased Tag Group

Let's add a new Leased Tag Group that polls a Tag from the PLC at a 1 second rate when someone
needs to view that Tag in the Client. If the Client is closed the tags will not poll at all.

In the , click on the icon to open the . Tag Browser Tag Group Tag Group Editor
On the left side of the Tag Group Editor window, you can see all existing Tag Groups. Click on
the Add + icon on the lower left side of the window to add a new Tag Group.
Enter the name of the Tag Group. For example, you can name this new Tag Group , Leased
and set the to . Mode Leased
Set the to 10,000ms (10 seconds) and the to 1,000ms (1 second). Rate Leased/Driven Rate
Click . OK

Next, select the Tags you want to use on the new Leased Tag Group.

Go to your Tag Browser, and select some Tags you want to add to the Leased Tag
Group. This example uses three Sine Tags: Sine3, Sine4, and Sine5.
Right click on the selected Tags, and click on Edit tags.

The Editor will open showing you are editing multiple Tags. From the Tag Group dropdown Tag
list, choose , and clickLeased OK.

On this page ...

Add a Leased Tag Group

7.

You just created a new Leased Tag Group and added some Tags. These Tags are only polled quickly
when a component that is bound to it is showing in a Client, Session, or when the Tags are showing in
the Designer. For example, these three Sine Tags that are part of the Leased Tag Group are each bound
to an LED component.

Note: Remember that Tag History is stored based on the current Ignition Tag value. If your Leased Tag
Group has a 0 slow rate, you will not get updated data to store for history. Always make sure your Tag
Group slow speed is at least as fast as your History Tag Group speed.

Tag Providers

Tag Providers

At the highest level of Tag configuration is the Tag Provider. A provider is a Tag database (a collection of
Tags) and a name. An Ignition Gateway can have any number of Tag Providers, and therefore the name
is used to distinguish which provider a Tag comes from. Tag Providers can be set up with security or
even disabled independent of each other.

Every copy of Ignition has its own Tags, . With the remote Tag spread across one or more Tag Providers
Provider, Ignition can also see the Tags on another Gateway, as long as the two Gateways are
connected through a Gateway network.

All Tags reside in a Tag Provider and have realtime values. Additionally, there is the concept of Tag
, which can store and query historical data for Tags. Each Tag can optionally have a historian providers

historian provider assigned to it to whom it will report value changes for historical storage.

Realtime Provider Types

There are two types of Realtime Tag Providers that you can choose from:

Standard Tag Provider

Standard Tag Providers store all configuration and do any execution (read, write, history, alarms) through
the local Ignition Gateway. Every new Ignition installation automatically creates a Standard Tag Provider
named "default." You can add as many Standard Tag Providers as you want. This provider can be
exposed or hidden from other Gateways on the network through the Gateway's OPC UA settings.

Remote Tag Provider

Remote Tag Providers connect a remote installation of Ignition and access those Tags. The remote Tag
Provider works by creating a link from the local Gateway to a Tag provider on a remote Gateway using a
Gateway Network connection. The local Ignition may be allowed to read and write to the remote Tags,
but any execution is handled by the remote Gateway. So, things like writing to a PLC, alarms, and history
will still be handled by the remote Ignition.

Put another way, "tags" in a remote tag provider are simply representations of the tags as they exist on
the remote system. By default, a Remote Tag Provider will fall under the Default Security Zone and be

 read only.

Note: Due to iterative changes in the platform, UDT Definitions on 8.1+ Gateways can only be viewed
or edited remotely from 8.1+ Gateways configured with a remote tag provider.

On this page ...

Tag Providers
Realtime Provider Types

Standard Tag Provider
Remote Tag Provider

Configuring Realtime Providers
Standard Tag Provider
Remote Tag Provider

Tag Providers

Watch the Video

Remote Tag
Provider

Watch the Video

Configuring Realtime Providers

Realtime Tags providers are configured in the Gateway's Config section under . After installation, the Ignition Gateway will start with Tags > Realtime
a standard provider defined. You can edit its name and settings by selecting to the right of its entry in the table, or create new providers by edit
selecting below the table.Create new Realtime Tag Provider

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian
https://legacy-docs.inductiveautomation.com/display/DOC81/Security+Zones#SecurityZones-DefaultSecurityZone
https://www.inductiveuniversity.com/videos/tag-providers/8.0/8.1
https://www.inductiveuniversity.com/videos/remote-tag-provider/8.0/8.1

Note: When setting up your Realtime Tag Provider, naming your Provider the same name as the database connection is recommended. Doing not
so may cause no values to be returned when querying Tag data.

Standard Tag Provider

Tags are stored inside of Ignition and executed by the system.

Setting Description

Name The name of the provider.

Description The description of the provider.

Enabled If true, Tag provider is enabled. Default is true.

Default
Database

The default database connection to use for expression Tags that run SQL queries. All query Tags with default database providers
selected with run their queries against this database source.

Tag Read
Permissions

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

Any actor attempting to read any tag within this tag provider must have these permissions in addition to the target tag's
permissions. Multiple security level paths can be specified by separating them with commas. If blank, tag reads for this provider
will not be restricted by default.

For example:

Authenticated/Roles/Administrator, SecurityZones/MyZone

When multiple security levels are provided, the radio buttons determine if the user needs all of the listed security levels, or at
least one.

Read Only

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

If enabled, writes to any tag within this tag provider will be rejected, regardless of the target tag's permissions. Disabled by
default.

Tag Write
Permissions

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

Any actor attempting to write to any tag within this tag provider must have these permissions in addition to the target tag's
permissions. Multiple security level paths can be specified by separating them with commas. If blank, tag writes for this provider
will not be restricted by default.

See the example for Tag Read Permissions.

Tag Editing
Permissions

Determines the roles required to edit, create, or delete Tags in the provider. Expects a path to a Security Level. Multiple levels
can be specified, separated by a comma. For example:

Authenticated/Roles/Administrator, SecurityZones/MyZone

When multiple security levels are provided, the radio buttons determine if the user needs all of the listed security levels, or at
least one.

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

As of version 8.1.2, Edge Gateways now have access to the Tag Editing Permissions setting.

Advanced Properties

Allow Back-fill
Data

The following feature is new in Ignition version 8.1.4
 to check out the other new featuresClick here

If enabled, data will be allowed to arrive out of order from the source. Data from the past will be stored to history, but will not be
used for alarms, scripts, or subscriptions. If false (default behavior), each value will be processed fully as it arrives. Default is
false.

Enable Tag
Reference
Tracker Store The following feature is new in Ignition version 8.1.34

 to check out the other new featuresClick here

Enables the storing of Tag Reference entries to a database on the local Gateway for analysis in a Designer. Default is true.

Remote Tag Provider

Tag Provider from one Gateway is brought in to another Gateway.

Setting Description

Name The name of the provider.

Description The description of the provider

Gateway The name of the Gateway on the Gateway Network that this provider is coming from.

Provider The name of the provider as it is on the remote Gateway. This does not have to be the same as its name on the new Gateway.

History Access
Mode

This setting dictates how Tag history is queried for remote Tags. Ultimately determines where records are processed.

When set to , history requests will go through the Gateway Network. Meaning the remote gateway will query GatewayNetwork
records from it's database, process the records, then send the results over to the requesting gateway.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

When set to Database history requests will run against the database directly. In this scenario, the requesting gateway then
processes the data.

History
Datasource

The datasource to query when History Access Mode is set to Database.

History Driver If querying the directly, this is the Gateway name of the remote system. It is used to identify data from that system in database
the .database

History Provider If querying the database directly, this is the name of the Tag provider on the remote system. It is used along with driver name to
identify the correct Tags in the database.

Alarms Enabled If true, alarms configured on the remote Gateway will be enabled on the new Gateway.

Alarm Mode How state should be monitored. In 'queried', state will be queried through the Gateway when necessary. In alarm network
'subscribed', the state will be subscribed, and updates will be sent asynchronously. Subscribed provides better performance, but
uses more memory.

Advanced Properties

Allow Back-fill
Data

The following feature is new in Ignition version 8.1.4
 to check out the other new featuresClick here

If enabled, data will be allowed to arrive out of order from the source. Data from the past will be stored to history, but will not be
used for alarms, scripts, or subscriptions. If false (default behavior), each value will be processed fully as it arrives. Default is
false.

Enable Tag
Reference

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.4

Tracker Store The following feature is new in Ignition version 8.1.34
 to check out the other new featuresClick here

Enables the storing of Tag Reference entries to a database on the local Gateway for analysis in a Designer. Default is true.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34

Tag Event Scripts

Scripts can be attached to Tags. When you edit a Tag, you can navigate to the Tag Events section and

click on the Edit icon to see a list of all of the available events. Those events are

Value Changed
Quality Changed
Alarm Active
Alarm Cleared
Alarm Acknowledged

Because Tags are stored in the Gateway, they aren't scoped to a specific project. In these cases, some
system functions may require that you specify a project or other resource, such as a database for the syst

 function. em.db.runPrepUpdate

Note: Because these scripts are Gateway scoped, certain things like print statements will not print to
the Designer console, but will print instead to the wrapper log file in Ignition's installation directory. The
prefer approach to adding logging statements to tag event scripts is to use the system.util.getLogger
function, which will send the messages to the page. Gateway's Logs

This feature was changed in Ignition version :8.1.17
The Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer clicks
and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in Deprecated Ignition Features.

Note: It is not recommend to have long running scripts on Tag Events due to limited thread pool
availability.

On this page ...

Event Options
Value Changed
Quality Changed
Alarm Active
Alarm Cleared
Alarm Acknowledged

Using the Project Library in a Tag
Event Script
UDT Parameters in Tag Event
Scripts

Modern Approach
Legacy Approach

Tag Script Examples
Troubleshooting

Tag Event Scripts

Watch the Video

Event Options

Once an event has been selected, note that the top of the text area is . As a result, all code that should execute when this event defining a function
occurs should be indented at least once to be included in the definition.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://inductiveuniversity.com/video/tag-event-scripts/8.1

Value Changed

The Value Changed event is fired whenever the value of this particular Tag changes. Since Tags use a QualifiedValue, which include a value, quality,
and timestamp, this script will fire whenever any of those change. Refer to Scripting Object Reference for more information.

This event has a variety of arguments available for use in the script:

String tagPath - The full path to the Tag. Example: [tagProvider]Folder/Folder/Tag
Object previousValue - The previous value. This is a qualified value, so it has value, quality, and timestamp properties.
Object currentValue - The current value. This is a qualified value, so it has value, quality, and timestamp properties.
Boolean initialChange - A boolean flag indicating whether this event is due to the initial subscription or the first execution after a Tag update.
Boolean missedEvents - A flag indicating that some events have been skipped due to an event overflow.

Quality Changed

The Quality Changed event is fired whenever the quality of this particular Tag changes. This event has a variety of arguments available for use in the
script:

String tagPath - The full path to the Tag. Example: [tagProvider]Folder/Folder/Tag
Object previousValue - The previous value. This is a qualified value, so it has value, quality, and timestamp properties.
Object currentValue - The current value. This is a qualified value, so it has value, quality, and timestamp properties.
Boolean initialChange - A boolean flag indicating whether this event is due to the initial subscription or the first execution after a Tag update.
Boolean missedEvents - A flag indicating that some events have been skipped due to an event overflow.

The currentValue and previousValue arguments are qualified values: objects that contain a value, timestamp, and quality. This means that
to get to the value of the currentValue, your script would need to access currentValue.value

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue

Alarm Active

The Alarm Active event fires whenever a new active alarm event occurs. This event has a variety of arguments available for use in the script:

String tagPath - The full path to the Tag. Example: [tagProvider]Folder/Folder/Tag
String alarmName - The name of the alarm. This does not include the full alarm path.
Object alarmEvent - The full alarm event object. The properties available to this object are:

eventId
source
name
priority
displayPath
displayPathOrSource (the display path if it is set, otherwise the source)
state (the current state, active/cleared + acked/unacked)
eventState (the last transition, active, clear, acknowledged)
isClear (a boolean if the alarm is currently cleared)
isAcked (a boolean if the alarm is currently acknowledged)
isShelved (a boolean if the alarm is currently shelved)
notes

String alarmPath - The full alarm path.
Boolean missedEvents - A flag indicating that some events have been skipped due to an event overflow.

Alarm Cleared

The Alarm Cleared event fires whenever an alarm becomes cleared on the Tag.This event has a variety of arguments available for use in the script:

String tagPath - The full path to the Tag. Example: [tagProvider]Folder/Folder/Tag
String alarmName - The name of the alarm. This does not include the full alarm path.
Object alarmEvent - The full alarm event object. See the Alarm Active alarmEvent object for the full list of available properties.
String alarmPath - The full alarm path.
Boolean missedEvents - A flag indicating that some events have been skipped due to an event overflow.

Alarm Acknowledged

The Alarm Acknowledged event fires whenever an alarm event becomes acknowledged on the Tag. This event has a variety of arguments available
for use in the script:

String tagPath - The full path to the Tag. Example: [tagProvider]Folder/Folder/Tag
String alarmName - The name of the alarm. This does not include the full alarm path.
Object alarmEvent - The full alarm event object. See the Alarm Active alarmEvent object for the full list of available properties.
String alarmPath - The full alarm path.
String ackedBy - The full path to the user that acknowledged the alarm.
Boolean missedEvents - A flag indicating that some events have been skipped due to an event overflow.

Using the Project Library in a Tag Event Script

Scripts defined in a project script can be called from a Tag Event Script. However, only scripts defined in the Gateway Script Project may be used. For
more information on configuring the Gateway Scripting Project, please see the page. Project Library

UDT Parameters in Tag Event Scripts

Parameters on UDTs can be interacted with from Tag Event Scripts. There are two main approaches.

Modern Approach

Parameters values can be accessed as dictionary values. The benefit of this approach is that value changes to UDT parameters will be reflected in
subsequent calls. In most cases, this modern approach is preferable. Thus, if the script needs to access the most recent parameter values on a UDT,
and the parameters can change through a means other than editing the UDT (which would restart the tag), then this approach should be used.

If trying to access the value of a parameter named "myParam" from a Tag Event Script within the UDT, the script would look like:

Reminder: "tag" is a built-in argument on all Tag Event Scripts. Accessing the "parameters" key on the tag
argument will
provide access to all UDT parameters.
paramValue = tag['parameters']['myParam']

Legacy Approach

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-AccessingProjectScriptsfromtheGateway

In Ignition release 7.9 and prior, UDT parameters could be access in Tag Event Scripts with the familiar curly brackets approach. Thus, if trying to
access the value of a parameter named "myParam" from a Tag Event Script within the UDT, the script would look like:

paramValue = {myParam}

A large caveat with this approach is that value changes made to the parameter ("myParam", in the example above) would not be reflected in scripts
until the UDT was restarted. UDT parameters are pre-compiled, which in this case means value changes are mostly ignored until the UDT is restarted.

In all cases, the modern approach above is preferred.

Tag Script Examples

Printing all parameters

This script will fetch all of the possible parameters in the Tag Changed Script.
Note that this will not print out to the console, but it will print to the wrapper logs located on the
Gateway.

path = tagPath
prev = previousValue
cur = currentValue
init = initialChange
missed = missedEvents
print path, prev.value, cur.quality, init, missed

Automatic Reset

This code can be used on a Value Changed script, and will automatically reset the value of the tag to 0
after it goes above 3000.
This can be useful for counter tags.
if currentValue.value > 3000:
 system.tag.writeBlocking(["[default]IntegerCounterTag"], [0])

Copy to another Tag

This code can be used on a Value Changed script, and will record the highest value of the current tag onto
another memory tag.
This can be useful for recording the highest temperature.
highestRecordedTemp = system.tag.readBlocking(["[default]HighestTempTag"])[0].value
if currentValue.value > highestRecordedTemp:
 system.tag.writeBlocking(["[default]HighestTempTag"], [currentValue.value])

Troubleshooting

It may be helpful when troubleshooting or testing Tag Event Scripts to increase the default threadpool count. Refer to the Gateway Configuration File
 for more information.Reference - Threadpool Counts

https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+and+Gateway+Network+Parameters#GatewayandGatewayNetworkParameters-ThreadpoolCounts
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+and+Gateway+Network+Parameters#GatewayandGatewayNetworkParameters-ThreadpoolCounts

Tag Properties

Tags are points of data and may have static values or dynamic values that come from an OPC address,
an Expression, or a SQL query. The values can be used on screens and in Transaction Groups.
Additionally, Tags offer a core set of features above and beyond simple values, such as scaling,
alarming, and history logging. Depending on the specific , even more options are available. In type of Tag
general, Tags provide a common interface for tying together many types of data in Ignition.

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in Deprecated Ignition Features.

Tag Configuration in the Designer

Tags are managed in the Tag Editor. To configure a Tag, right-click on it and select Or create a Edit Tag.
new Tag by right-clicking on the Tags folder in the Tag Browser and use the option to select a New Tag
new Tag type.

Once the window is displayed you can set the properties for that Tag. The windowTag Editor Tag Editor
has the following sections depending on the type of Tag you are creating:

Basic Properties
Value
Numeric Properties
Meta Data Properties
Security
Scripting
Alarms
History

On this page ...

Tag Configuration in the Designer
Tag Object Types
Standard Tag Properties Table

Runtime Properties
Custom Tag Properties
Vision Client Tags

https://docs.inductiveautomation.com/display/DEP/Deprecated+Pages

Tag Object Types

Some features, such as , can access the Object Type of the tag (sometimes called "tagType"). Below is a table representing the system.tag.browse
possible types.

Tag
Object

Type

Property A single value underneath an node.

Node An entity that may have a value and may have children. "Node" is a generic term for other objects in this table, such as a Folder or
AtomicTag.

Folder Represented by a folder in the Tag Browser. Folders generally have child nodes, but don't have values or other properties that make up
a tag.

AtomicT
ag

A "normal" type of tag. Objects with this type can be one of the following (based on the Value Source property):

OPC Tag
Query Tag
Expression Tag
Derived Tag
Reference Tag
Memory Tag

UdtInst
ance

An instance of a complex tag instance (UDT Instance). It's important to note that UdtInstances contain other nodes, so this type is
generally only seen at the root of a UDT instance.

Thus, nodes under a UdtInstance are not considered to have a type of "UdtInstance", unless the child node is actually a UdtInstance: in
other words, a nested UDT instance.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.browse

UdtType Represents the root of a complex tag definition (UDT Definition). Similar to UdtInstance, nodes under a UdtType have their own object
type, so a UdtType represents the root of a complex tag.

Provider Represents a Tag Provider.

Standard Tag Properties Table

This following table provides detail on each Tag Property, including the binding name, description, data type, and the Tag Types that use the property.

Property JSON
/Scripting
Name

Description Data
Type

Basic Properties

Name name How the Tag will be presented and referenced in the system. The Tag path will be the provider, the folder structure, and this name. String

Tag Group tagGroup The Tag Group that will execute the Tag. The Tag Group dictates the rate and conditions on which the Tag will be evaluated. For more
details, see Tag Groups.

String

Enabled enabled Whether the Tag will be evaluated by the Tag Group. If false, the Tag will still be present, but will have a bad quality. Boolean

Value

Tag Type
(unlisted)

tagType The type of the node. See the table for more information. Tag Object Types

Note: This property does not appear in the Tag Editor, but is accessible via scripting.

String

Type ID (unlilsted) typeId Returns a path representing which UDT this node is derived from. If the node is not a UDT, then this property will return a object. None

Note: This property does not appear in the Tag Editor, but is accessible via scripting.

String

Value Source valueSource Specifies how the determines its value. In other words, sets the type of the (Memory, OPC, Expression, etc).Tag Tag

Value Source JSON Name

Derived derived

Expression expr

Memory memory

OPC opc

Query db

Reference reference

String

Data Type dataType The data type of the Tag. It is important that this be set as correctly as possible with regards to the Tag's underlying data source. The
Tag system will attempt to coerce any raw incoming value (for example, from OPC or a SQL query) into the desired type. For detailed
information, see .Tag Data Types

Data Type String Value Integer Value

Byte Int1 0

Short Int2 1

Integer Int4 2

Long Int8 3

Float Float4 4

Double Float8 5

Boolean Boolean 6

String

String String 7

DateTime DateTime 8

Text Text 10

Byte Array Int1Array 17

Short Array Int2Array 18

Integer Array Int4Array 11

Long Array Int8Array 12

Float Array Float4Array 19

Double Array Float8Array 13

Boolean Array BooleanArray 14

String Array StringArray 15

DateTime Array DateTimeArray 16

Binary Data ByteArray 20

Dataset DataSet 9

Document Document 29

Note: Regarding Array data types, Alarming, Scaling, and Historical settings applied to an array Tag are propagated down to
elements in the array.

Value value The value of the Tag. Can only be modified if the Tag allows value writing and the user has sufficient privileges. Object
(depends
on the data
type of the
Tag)

OPC Server opcServer Only present The server against which to subscribe the data point. for OPC Tags. String

OPC Item Path opcItemPath Only The path to subscribe to on the server. The point will be subscribed at the rate dictated by the Tag Group.present for OPC Tags.

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

It's possible to escape curly braces {} in the item path by using additional curly braces. For example:

 {{device_name}} would evaluate to , allowing you to include braces in the Item Path. {<device_name value>}

String

Source Tag Path sourceTagPath The path to the Tag that this Tag is referencing. Only for Reference and Derived Tags.present String

Execution Mode executionMode Only present for Query and Expression Tags . Determines how when the Tag executes.

Event Driven - Updates when something happens (i.e., value event or alarm event) within the expression.
Fixed Rate - Tag will be executed at the set or fixed rate. Adds the Execution Rate property, which determines how often the
Tag executes in milliseconds.
Tag Group - Tags are executed by , which dictate the rate of execution.Tag Groups

Execution Mode JSON Name

Event Driven EventDriven

Fixed Rate FixedRate

Tag Group TagGroupRate

String

Expression expression The expression the Tag will use to determine its value. String

Read Expression deriveExpressio
nGetter

The expression that determines how the value on the Derived is displayed.Tag String

Query query The SQL query to be run, which drives the tag's value. Queries doing database reads and writes are possible, see the Query Type pr
operty description for details.

Write Expression The expression that determines how the value on the Derived is displayed.Tag String

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

deriveExpressio
nSetter

Datasource datasource The database connection that the query will execute against.Tag String

Query Type queryType

The following feature is new in Ignition version 8.1.3
 to check out the other new featuresClick here

Defines whether the query is executing a database read or a database write. Important for determining the behavior of the Tag.value

Possible values are:

AutoDetect - Query type is determined from the query itself.
Select - Dictates that the query is reading data from the database. The query result set will be stored on the Tag's value.
Update - Dictates that the query is writing data to the database (but does not require an UPDATE statement in the query,
specifically). The value on the query Tag will be the number of affected rows.

String

Numeric Properties

Deadband deadband A numerical value used to prevent unnecessary updates for Tags whose values change by small amounts. Numeric

Deadband Mode deadbandMode Defines how the value is used.deadband

Absolute - The setting is considered to be an absolute value.deadband
Percent - The actual is calculated as a percent of the 's engineering unit span.deadband Tag

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Off - The deadband setting is the equivalent to a value of 0.0, so that all values pass through if their timestamp has changed.

Valid values are as follows:

Deadband Mode JSON Name

Absolute Absolute

Percent Percent

Off Off

String

Scale Mode scaleMode If and how the Tag value will be scaled between the source, and what is reported for the Tag.

Valid values are as follows:

Mode JSON Name Int Value

Off Off 0

Linear Linear 1

Square Root SquareRoot 2

Exponential Filter ExponentialFilter 3

Bit Inversion BitInversion 4

String

Raw Low rawLow Start of the "raw" value range. Only present if Scale Mode is set to or .Linear Square Root Numeric

Raw High rawHigh End of the "raw" value range. Only present if Scale Mode is set to or .Linear Square Root Numeric

Scaled Low scaledLow Start of "scaled" value range. Raw low will map to Scaled low for the Tag. Only present if Scale Mode is set to or .Linear Square Root Numeric

Scaled High scaledHigh End of "scaled" value range. Raw high will map to Scaled high for the . Tag Only present if is set to or .Scale Mode Linear Square Root Numeric

Clamp Mode clampMode How values that fall outside of the ranges will be treated. "Clamped" values will be adjusted to the low/high scaled value as
appropriate. Only present if is set to or .Scale Mode Linear Square Root

Valid values are as follows:

Clamp Mode JSON Name Int Value

String

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

No_Clamp No_Clamp 0

Clamp_Low Clamp_Low 1

Clamp_High Clamp_High 2

Clamp_Both Clamp_Both 3

Scale Factor scaleFactor For single parameter modes (currently only Exponential Filter), the factor parameter for the equation. Used when the Scale Mode prop
erty is set to Exponential Filter

Numeric

Engineering Units engUnit The engineering units of the value. String

Engineering LLow
imit

engLow The lowest expected value of the Tag. Numeric

Engineering High
Limit

engHigh The highest expected value of the Tag. Numeric

Engineering Limit
Mode

engLimitMode Dictates how the engineering range should be enforced on the Tag. If not "Off", the Tag will change to bad quality ("limit exceeded"),
when the value falls outside the specified range.

Valid values are as follows:

Limit Enforcement JSON Name Int Value

No_Clamp No_Clamp 0

Clamp_Low Clamp_Low 1

Clamp_High Clamp_High 2

Clamp_Both Clamp_Both 3

Numeric

Format String formatString How the value should be formatted when converted to a string (only applies to numerical data types). Uses and characters to # 0
describe the format.

 # : If the number in this position is non-zero, then do not show the position. Otherwise, show the number. Useful when you only want to
show a decimal position if the value is non-zero.

 0 : If the number in this position is non-zero, then show that number. Otherwise, show a zero. Useful to add leading and trailing zeros
to a value.

See .Data Type Formatting Reference

String

Meta Data Properties

Tooltip tooltip The tooltip provides a hint to visual components as to what should be displayed when the user hovers their mouse cursor over the
component that is being driven by the value of this Tag.

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

Hovering over the Tag itself in the will also display this hint.Tag Browser

String

https://legacy-docs.inductiveautomation.com/display/DOC81/Data+Type+Formatting+Reference
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18
https://docs.inductiveautomation.com/display/DOC81/Tag+Browser

Documentation documentation A freeform text property for information about the Tag. String

Security

Read Permissions readPermissions Defines the security levels required in order to read values from a Tag. For more information, see . Contains Tag Security Properties
the following elements:

Name JSON
Name

Description

Type type Represents the selected radio button on the security level UI, determining if all of the elements in the
securityLevels array are required, or if any of the elements are allowed. Possible values are:

AnyOf
AllOf

Security
Levels

securityL
evels

Represents allowed security levels for this permission. Each level is represented as a JSON object,
containing a "name" value that represents the name of a security level, and a "children" array which
represents any levels under the current. The actual "selected" levels are any levels that have an empty
"children" object. See the example below for more information.

The JSON in this example uses the configuration shown in the image below. Permission is granted if the security levels on the request
are from either an "Administrator" user, or if the request originated from the "Zone A" Security Zone.

JSON
Object

https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties

"readPermissions": {
 "type": "AnyOf",
 "securityLevels": [
 {
 "name": "Authenticated",
 "children": [
 {
 "name": "Roles",
 "children": [
 {
 "name": "Administrator",
 "children": []
 }
]
 }
]
 },
 {
 "name": "SecurityZones",
 "children": [
 {
 "name": "Zone A",
 "children": []
 }
]
 }
]
 }

Read Only readOnly Defines whether a Tag is read-only or writeable. For more information, see Tag Security Properties . value:
boolean

Write
Permissions

writePermissions Defines the security levels required in order to read values from a Tag. For more information, see . Contains Tag Security Properties
the following elements:

Name JSON
Name

Description

Type type

JSON
Object

https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties
https://docs.inductiveautomation.com/display/DOC81/Tag+Security+Properties

Represents the selected radio button on the security level UI, determining if all of the elements in the
securityLevels array are required, or if any of the elements are allowed. Possible values are:

AnyOf
AllOf

Security
Levels

securit
yLevels

Represents allowed security levels for this permission. Each level is represented as a JSON object,
containing a "name" value that represents the name of a security level, and a "children" array which
represents any levels under the current. The actual "selected" levels are any levels that have an empty
"children" object. See the example below for more information.

The JSON in this example uses the configuration shown in the image below. Permission is granted if the security levels on the request
are from either an "Administrator" user, or if the request originated from the "Zone A" Security Zone.

"writePermissions": {
 "type": "AnyOf",
 "securityLevels": [
 {
 "name": "Authenticated",
 "children": [
 {
 "name": "Roles",
 "children": [
 {
 "name": "Administrator",
 "children": []
 }
]
 }
]
 },
 {
 "name": "SecurityZones",
 "children": [
 {
 "name": "Zone A",
 "children": []
 }
]
 }
]
 }

Scripting

Tag Event Scripts eventScripts Each Tag has the option to have Tag Event Scripts on it. When you edit a Tag, you can navigate to the Tag Events screen to see a list
of all of the Tag scripts. You can then select which event you would like to write a script for. You can even write a script for multiple
events if you like. For detailed information, see Tag Event Scripts .

When interacting with a from a script, the Tag Event Scripts are represented as an array of JSON objects. Each JSON object is Tag
described in the expandable area below:

Key Description

Key Description

eventid A value representing the type of event script

script A value representing the content of the script

Possible eventid values

Event Script eventid value

Quality Changed qualityChanged

Value Changed valueChanged

Alarm Active alarmActive

Alarm Cleared alarmCleared

Alarm Acknowledged alarmAcked

JSON Array

Alarms

Alarms alarms Tags have the ability to define any number of alarms. Each alarm is a condition that will be evaluated when the value of the Tag
changes. When the condition becomes true, the alarm is said to be active. When it becomes false, the alarm is said to be cleared.

For detailed information, see .Alarm PropertiesTag

JSON
Array of
JSON
objects.
For
detailed
information,
see Tag
Alarm

 Properties .

Alarm Eval
Enabled

alarmEvalEnabled Determines if alarms will be evaluated on this tag. Boolean

History

History Enabled historyEnabled Whether the Tag will report its history to the Tags Historian system. Boolean

Storage Provider historyProvider Which Tag Historian data store the Tag will target. A particular Tag can only target one history store. For more information, refer to Hist
 on the Tag History Gateway Settings page.ory Providers

Note: The Storage Provider dropdown displays the provider names as they are written at the time of tag configuration. If the Storage
Provider name is updated later, this setting will need to be adjusted to match the new Storage Provider name.

String

Deadband Style historicalDeadb
andStyle

There are three styles to choose from: Auto, Analog, or Discrete.

When set to Auto, this setting will automatically pick from Analog or Discrete, based on the data type of the .Tag

If the data type of the is set to a float or double, then Auto will use the Analog StyleTag
If the data type of the is any other type, then the Discrete style will be used.Tag

More information on the Analog and Discrete types can be found on the page.Configuring Tag History

Valid values are as follows:

Deadband Style JSON Name

Auto Auto

Analog Analog_Compressed

Discrete Discrete

String

Deadband Mode historicalDeadb
andMode

Defines how the value is used.deadband String

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-DatasourceHistoryProviders
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-DatasourceHistoryProviders
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History

Absolute - The setting is considered to be an absolute value.deadband
Percent - The actual is calculated as a percent of the 's engineering unit span.deadband Tag

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Off - The deadband setting is the equivalent to a value of 0.0.

Deadband Mode JSON Name

Absolute Absolute

Percent Percent

Off Off

Historical
Deadband

historicalDeadb
and

A deadband that applies only to historical evaluation. Numeric

Sample Mode sampleMode Determines how often a historical record should be collected.

On Change - Collects a record whenever the value on the changes.Tag
Periodic - Collects a record based on the and properties.Sample Rate Sample Rate Units
Tag Group - Collects a record based on the Tag Group specified under the property.Historical Tag Group

Valid values are as follows:

Max Time Between Records Mode JSON Name

On Change OnChange

Periodic Periodic

Tag Group TagGroup

String

Sample Rate historySampleRa
te

When the property is set to "Periodic", this property (working in conjunction with the property) Sample Mode Sample Rate Units
determines how often a record should be collected.

Numeric

Sample Rate
Units

historySampleRa
teUnits

When the Sample Mode property is set to "Periodic", this property (working in conjunction with the Sample Rate property) determines
the unit of time that will be use in record collection.

Unit of Time JSON Name

Milliseconds MS

Seconds SEC

Minutes MIN

Hour HOUR

Day DAY

Week WEEK

Month MONTH

Year YEAR

String

Historical Tag
Group

historyTagGroup When the property is set to "Tag Group", this property determines which will be used to collect records.Sample Mode Tag Group String

Min Time
Between Samples

historyTimeDead
band

Minimum time between records. Useful in restricting the number of records collected when the is set to "Tag Change". Sample Mode
Prevents multiple consecutive Tag changes from triggering consecutive record collections. Works in conjunctions with the Min Time

 property. Units The Value is calculated off of the value timestamp.

Integer

Min Time Units historyTimeDead
bandUnits

Units of time to use with the property.Min Time Between Samples

Unit of Time JSON Name

Milliseconds MS

Seconds SEC

Minutes MIN

Hour HOUR

String

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

Day DAY

Week WEEK

Month MONTH

Year YEAR

Max Time
Between Samples

 historyMaxAge Maximum time between samples. Works in conjunction with the property. If a sample has not been collected by the Max Time Units
time range specified by these two properties, then a record will be collected on the next sample interval. Setting this value to 0 will
disable automatic record collection. Default is 0.

Note: This setting will be ignored if the Sample Mode is set to Tag Group, and the targeted Tag Group is using non-default values for
its Max Time Between Samples setting. The implication being that non-default values on the Tag Group settings take precedence
over this setting.

Integer

Max Time Units historyMaxAgeUn
its

Maximum time in units is defined as: Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, and Years.

Unit of Time JSON Name

Milliseconds MS

Seconds SEC

Minutes MIN

Hour HOUR

Day DAY

Week WEEK

Month MONTH

Year YEAR

String

Runtime Properties

In addition to properties listed in the Tag Editor, some properties are exposed as runtime properties in the Tag Browser. These properties are valid
targets for component bindings and tag reads/writes.

1.

2.

Most runtime properties are representations of properties that can be configured in the Tag Editor. However there are some properties only listed in
the Tag Browser:

Property Description

CanRead

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

A read-only property that represents whether or not this tag can be read from the current security context. This is determined by
looking at the read permission settings on the tag and the tag provider's permission settings.

CanWrite

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

A read-only property that represents whether or not this tag can be written to from the current security context. This is determined by
looking at the write permission settings on the tag, the Read Only property, and the tag provider's permission settings.

Custom Tag Properties

Custom Tag properties allow application designers to configure their own properties on Tags to store
unique values on any Tag. Once added, a custom property can be referenced like any other Tag property
via bindings, expressions, and scripts.

Both the Perspective and Vision visualization systems can bind to custom properties. In the following
example, we already have Array Tag. Now let's add a custom property.

Open an existing Tag and select the Custom properties category.

Click on the Add icon in the Tag Editor. This will open the Custom Property dialog box.

Custom Tag
Properties

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://www.inductiveuniversity.com/videos/custom-tag-properties/8.1

3.

4.

Enter a for your property, select the , and click Name Data Type OK.

When you open your Tag Browser and expand the My Array Tag, you'll see your Custom
Property.

Vision Client Tags

Client Tags have the ability to be used as either Expression or SQL Query Tags. There is an page in the Tag editor that allows you Expression/SQL
to select what type it is.

Query/Expression Attributes

Property Binding
/Scripting
Name

Description Data Type Applicable
Tag Type

OPC Server OPCWriteBackS
erver

The server against which to subscribe the data point. String Query, Expression

OPC Item Path OPCWriteBackIt
emPath

The path to subscribe to on the server. String Query, Expression

Query Expression Text area to build your query or expression. String

This is the code used by the Tag: either a SQL
Query for Query Tags, or an Expression for
Expression Tags.

Query, Expression

Query Type QueryType When the TagType property is set to 1, this property
determines if the Tag should be a Memory,
Expression, or Query Tag.

Integer

Tag Type Integer Value

Query,
Expression,
Memory

Memory Tag 0

Expression Tag 1

Query Tag 2

Datasource SQLBindingData
source

The default data source of the Tag provider. String Query

Tag Alarm Properties

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in Deprecated Ignition Features.

Alarm Property Reference

The table in this section provides a description of alarm properties.

Alarms in Scripting

When interacting with the tags system in via scripting, such as with the function, system.tag.configure
alarms are represented as a JSON array of JSON objects, where each object contains the configurations
for a single alarm. Thus, any scripting names here are assumed to exist under the alarms array.

On this page ...

Alarm Property Reference
Alarms in Scripting
Reference Table

Runtime Alarm Metric Properties
Runtime Alarm Metrics for
Individual Alarms

Binding

Reference Table

The descriptions of these properties can also be viewed in the Tag Editor > Alarms popup by selecting the Show/Hide Description Area icon
available above the property list.

Property
Name

JSON
/Scripting
Name

Description Datatype

Main

Name name Identifier of the alarm. Combined with the location of the alarm, this will be the unique alarm ID. For dynamic values, used Label or Display Path. String

Enabled enabled This boolean determines whether or not the alarm will be evaluated. A disabled alarm's condition will not be evaluated, and thus will not generate any
alarm events.

Boolean

Priority priority The priority or severity of this alarm. Alarm priorities can be examined by many other systems in Ignition, including the visualization modules, pipelines,
and even scripting.

String

Priority

Diagnostic

Low

Medium

High

Critical

Timestamp Source timestampSource Indicates where the timestamp for the alarm event should come from: the system time of when the event was generated (i.e., the Gateway's time), or the
timestamp of the value that triggered the the event (i.e., the timestamp of the value from the OPC server).

String

Timestamp
Source

System

Value

Label label An optional name that will be used for display purposes. Provides a dynamic alternative to the static property. If left blank, the will be used.name name String

Display Path displayPath Optional text that will be used for display and browsing purposes. If this is blank, this property will show the path to the Tag and the name of the alarm
instead.

String

Ack Mode ackMode Dictates how acknowledgement works for the alarm. String

https://docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.configure

Unused - Any alarm event that is generated will automatically be marked as acknowledged.
Auto - The alarm is acknowledged automatically when the alarm becomes cleared.
Manual - The alarm is never set to be acknowledged by the system, and it is up to the user to manually acknowledge alarms.

Ack
Mode

Unused

Auto

Manual

Notes notes A place for any free-form documentation about the alarm that can be displayed to users. String

Ack Notes Required ackNotesReqd If this setting is true, the operators will be required to provide some explanation when the alarm is acknowledged. Boolean

Shelving Allowed shelvingAllowed If this setting is false, the shelving feature will be unavailable for this alarm. Boolean

Alarm Mode Settings

Mode mode This setting controls what condition this alarm is evaluating. The available modes are as follows:

Equal - Active when the Tag's value equals the alarm's setpoint.
Not Equal - Active when the Tag's value does not equal the alarm's setpoint.
Above Setpoint - Active when the Tag's value is above the alarm's setpoint.
Below Setpoint - Active when the Tag's value is below the alarm's setpoint.
Between Setpoints - Active when the Tag's value is between the low and high setpoints. If any change is true, an event will be generated for each
value change between the setpoints.
Outside Setpoints - Active when the Tag's value falls outside the low and high setpoints. If any change is true, an event will be generated for each
value change outside the setpoints.
Out of Range - The same as Outside Setpoints, but uses the Tag's Engineering High and Engineering Low as the high and low setpoints.
Bad Quality - Active if the Tag value becomes a bad quality, for example, on communication loss.
Any Change - An alarm event is generated every time the Tag value changes.

Note: This alarm will never be "active" because each active event is paired with a matching clear event, instantly.

Bit State - This alarm mode is used to alarm when a specific bit out of an integer Tag becomes high. You must specify which bit position to use,
with zero being the least significant bit. The On Zero property is used to invert the logic and alarm when the bit is low.
On Condition - This free-form alarm mode is used for when you want to specify the condition using an expression or another Tag. To do this, bind
the "Is Active" property to an appropriate expression or Tag.

String

Mode

Equal

Not Equal

Above Setpoint

Below Setpoint

Between Setpoints

Outside Setpoints

Out of Range

Bad Quality

Any Change

Bit State

On Condition

Setpoint/Low
Setpoint

setpointA Used to determine if the alarm is active by comparing this value to the the tag value.

Some modes under the property allow for multiple setpoints (i.e., a low setpoint and a high setpoint). In these cases, this property is considered to Mode
be the Low setpoint.

Note: Setpoints must be numerical values, not string representations of numbers. If a string is passed to a setpoint then it will be converted to a numeric
value of 0.

Numeric

Inclusive inclusiveA If true, the value is used inclusively for the condition to .Setpoint alarm Boolean

High Setpoint setpointB The high value used to initiate an when the mode calls for two setpoints. Available for modes: Between Setpoint, Outside Setpoints. alarm alarm

Note: Setpoints must be numerical values, not string representations of numbers. If a string is passed to a setpoint then it will be converted to a numeric
value of 0.

Numeric

High Inclusive inclusiveB If true, the High value is used inclusively for the condition to . Available for modes: Between Setpoint, Outside Setpoints.Setpoint alarm Boolean

Any Change anyChange If true, will on each value change given the mode conditions are met. alarm alarm

Note: This alarm will never be "active" because each active event is paired with a matching clear event, instantly. Available for modes: Above Setpoint,
Below Setpoint, Between Setpoints, and Outside Setpoints.

Boolean

On Zero bitOnZero If true, will alarm when the specified bit is not high (when the bit is 0). Boolean

Bit Position bitPosition The position of the bit, starting at 0 that will be watched. Available for modes: Bit State. Numeric

Is Active activeCondition When this property is active, the alarm will be active. Typically has a binding of some sort that will be used to determine when the alarm goes active. If the
expression evaluates to True, the alarm is active. If the expression evaluates to False, the alarm is not active.

Boolean

Deadbands and Time Delays

Deadband deadband The value for the deadband, interpreted according to the Deadband mode.

Note: All alarms are only evaluated after the Tag's value changes, which means that the Tag's own deadband will be considered first.

When the deadband is positive, an active alarm condition needs to clear its setpoint(s) by the amount of the deadband for the alarm to clear. For example,
suppose you had a Between Setpoints alarm with a low setpoint of 50 and a high setpoint of 70, and with a deadband of 2. The alarm will go active if the
value is between 50 and 70, but will only clear if the value falls below 48 or rises above 72.

Numeric

Deadband Mode deadbandMode Defines how the deadband value is used.

Absolute - The deadband setting is considered to be an absolute value.
Percent - The actual deadband is calculated as a percent of the Tag's engineering unit span.

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Off - The deadband setting is the equivalent to a value of 0.0.

Numeric

Alarming Deadband
Mode

Absolute

Percent

Off

Active Delay timeOnDelaySeconds The time, in seconds, before the alarm will be considered active after the alarm's condition becomes true. Also known as a "rising edge time deadband." Numeric

Clear Delay timeOffDelaySecon
ds

The time, in seconds, before an active alarm will be considered clear after the alarm's condition becomes false. Also known as a "falling edge time
deadband."

Numeric

Notification Properties

Active Pipeline activePipeline The name of an alarm notification pipeline to put this alarm into when it becomes active in order to send out active alarm messages. Many alarms may
share a single pipeline.

String

Clear Pipeline clearPipeline The name of an alarm notification pipeline to put this alarm into when it becomes cleared in order to send out cleared messages. String

Ack Pipeline ackPipeline The name of the alarm notification pipeline to put this alarm into when the alarm has been acknowledged. String

Phone Call Settings

Custom Message voip.
customMessage

The voice message you want to play when sending the Alarm. See for more information on custom phone messages.Configuring Messages String

Email Notification Properties

Custom Subject CustomEmailSubject A string that will be used as the subject line of an email notification message. If blank, the message settings defined on the notification block that sent the
email out will be used instead.

String

Custom Message CustomEmailMessage A string that will be used as the body of this alarm's email notification message. If blank, the message settings defined on the notification block that sent
the email out will be used instead. Supports HTML tags such as <html>, <body>, <h1>, etc.

String

SMS Notification Properties

Custom Message CustomSmsMessage If specified, will be used for the SMS message. If blank, the message defined in the notification block will be used. String

Associated Data

User Defined Data Associated Data are custom alarm properties that can be added to any alarm. These properties will often be bound to other Tags that represent
associated contextual data that may be related to the alarm. A snapshot of the values of these properties will be taken when the alarm becomes active.
These values will be attached to the alarm event as it moves through the rest of the alarming system, meaning that the values will be available from the
alarm status system, the alarm journal system, and in the alarm notification system.

String

Runtime Alarm Metric Properties

The Alarms property under a tag in the Tag Browser contains properties that report the current state of alarms on the tag.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2
https://docs.inductiveautomation.com/display/DOC81/Voice+Notification+Profile#VoiceNotificationProfile-ConfiguringMessages

Property Name Description

ActiveAckCount The number of alarms on the Tag that are both active and acknowledged.

ActiveUnackCount The number of alarms on the Tag that are both active and unacknowledged.

ClearUnackCount The number of alarms on the Tag that are both clear and unacknowledged.

HasActive True, if the Tag has at least one active alarm. False, if there are zero alarms.

HasUnacknowledged True, if the Tag has at least one unacknowledged alarm. False, if there are zero unacknowledged alarms.

HighestAckedName The Name of the highest acknowledged alarm, ranked by Priority.

HighestAckedPriority The highest Priority of all acknowledged alarms on the Tag.

HighestActiveName The Name of the highest active alarm, ranked by Priority.

HighestActivePriority The highest Priority of all active alarms on the Tag.

HighestUnackedName The Name of the highest unacknowledged alarm, ranked by Priority.

HighestUnackedPriority The highest Priority of all unacknowledged alarms on the Tag.

LastActiveTime A timestamp representing the last time an alarm went active on the Tag.

ShelvedCount The number of currently shelved alarms on the Tag.

Runtime Alarm Metrics for Individual Alarms

In addition to the metrics above, each alarm configured on a tag has further properties that are available. These properties are located after ShelvedC
. For each alarm on a tag, additional expandable items will be visible in the property editor. The name on these items will match the name of their ount

associated alarm.

In the image below, the parent tag has two alarms configured, one named , the other named . Because the High Setpoint Alarm Low Setpoint Alarm
tag has two alarms, we see two expandable entries towards the bottom of the image, with names that match the names of the alarms.

f

Expanding these items will reveal additional properties, as listed in the table below.

Property
Name

Description

AckTime If the most recent alarm event for this alarm has been acknowledged, then this property will show a timestamp representing when
acknowledgement occurred. If the most recent alarm event has not yet been acknowledged, the value of this property will be null.

AckUser If the most recent alarm event for this alarm has been acknowledged, then this property will show the username that acknowledged
the alarm event. Otherwise the value of this property we be null. If the alarm event was acknowledged by the system, such as when
the Alarm Mode is set to Auto, then the property will show a null value.

If the user that acknowledged the alarm event was authenticated via a User Source, then the value will follow the pattern below,
where is the name of the User Source, and is the name of the user. X Y

usr-prov:X:/usr:Y

If the user that acknowledged the alarm event was authenticate via an Identity Provider, then the value will follow the pattern below,
where is the name of the user. Y

usr:Y

AckUserNa
me

If the most recent alarm event for this alarm has been acknowledged, then this property will show the username that acknowledged
the alarm event. Otherwise the value of this property we be an empty string.

If the alarm event was acknowledged by the system, such as when the Alarm Mode is set to Auto, then the property will show an
empty string.

This property is effectively a simplified version of AckUser, containing only the username.

ActiveTime Shows a timestamp representing when the most recent alarm event became active.

ClearTime Shows a timestamp representing when the most recent alarm event transitioned from an active state to a clear state.

DisplayPath Represents the value of the Display Path property on the alarm.

DisplayPath
OrSource

Shows the display path if one has been configured. Otherwise shows the source path.

1.

Enabled Represent whether or not this alarm is enabled.

EventState Represents the most recent state transition. Values and their numerical state are listed below:

Value State

0 Active

1 Clear

2 Acknowledged

EventTime A timestamp representing when the event last changed state.

EventValue Represents the last value that made the alarm event transition to either active or cleared.

IsAcked A boolean representing whether or not the most recent alarm event has been acknowledged.

IsActive A boolean representing whether or not the most recent alarm event is active.

IsClear A boolean representing whether or not the most recent alarm event is cleared.

IsShelved A boolean representing whether or not the alarm has been shelved.

Label A string representing the Label property on the alarm. Shows a null value if a Label wasn't defined.

Name The name of the alarm.

Priority The priority of the alarm.

Value Priority

0 Diagnostic

1 Low

2 Medium

3 High

4 Critical

SetpointA When the Mode property on the alarm has a single setpoint, this property shows the setpoint value.

When the Mode property has multiple setpoints, this represents the Low Setpoint property.

SetpointB When the Mode property on the alarm has a single setpoint, this property is hidden.

When the Mode property has multiple setpoints, this represents the High Setpoint property.

Source The source path of the alarm.

State The state of the alarm.

Value State

0 Clear and Unacked

1 Clear and Acked

2 Active and Unacked

3 Active and Acked

Binding

Many alarm properties are bindable, which means they can be bound to other tags in the system, or expressions. For example, you might bind the
enabled property to another tag which represents whether or not your process is running, thereby, disabling the alarm when production is stopped.
Another example is you might bind the setpoint of an alarm to a tag that operators can manipulate, thereby, letting the setpoint be changed at runtime.
For more information, see .Configuring Alarms

To bind an alarm property of a tag:

Click on the icon. An Alarm Binding popup window will appear.binding

1.

2.

3.

From this window, you can select a Binding Type to configure a Tag or an Expression binding. For this example, let's select Expression. Bindi
ng to an Expression can reference many useful values such as the tag's value and other settings of the alarm.

Now, enter your expression, using the Operators , Functions , Tags , and Alarm Properties selections as needed.

Note: The alarm properties that can be selected using the Alarm Properties icon are the properties included in the > Tag Editor Alar
 window or under the tag in the Tag Browser. See the and the for descriptions of ms Reference Table Runtime Alarm Metric Properties

these properties. The State properties will only be available to view after alarming is enabled on the tag.

https://docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties#TagAlarmProperties-ReferenceTable
https://docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties#TagAlarmProperties-RuntimeAlarmMetricProperties

3.

4. When you configured the binding to your liking, click Apply.

Tag Scaling Properties

Configuring a Tag's scaling will condition the data for use within the Ignition Designer. Scaling will take
the raw PLC value driving a Tag, do some math, and use the resulting value as the value of that Tag.
Scaling works both ways. When you write to that Tag, Ignition will scale it in the opposite direction before
writing to the PLC.

For example, if the capacity of a tank is 5250 gallons, but the tank's fill level is better represented in the
Designer as percentage of 0 through 100, configuring the Tag's scaling property, will result in the Tag
displaying 0 through 100, while the actual tank fill moving is between 0 and 5250 gallons. For this
example, you can double-click on the Tag to open the , and expand to coTag Editor Numeric Properties
nfigure the scaling of the Tag. When scaling between a Raw Low and and High, and Scaled Low and
High, select the Scale Mode. So what Ignition is actually doing, is setting up the calculations Linear
behind the scenes to scale the value appropriately.

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts.

Pages detailing features of the previous Tag Editor can be found in Deprecated Ignition Features.

On this page ...

Linear Scaling
Square Root Scaling
Exponential Filter Scaling
Bit Inversion Scaling
Scaling Examples

Simple Divide by Ten
4-20 Milliamp Signal to
Percent
4-20 Milliamp Signal to
Gallons

Tag Scaling

Watch the Video

Scaling is not available on Memory Tags: Memory Tags are not driven by an external source such as a PLC or SQL query, so scaling will never be
applied. In these scenarios, it is recommended to scale the mechanism that is writing to the Memory Tag instead. Numerical properties of Tags can be
scaled allowing automatic bi-directional conversion outside of the PLC. Scaling types include scaling, scaling, and Linear Square Root Exponential

 scaling. . For a Filter The numerical properties are available to , , , and Tags whose data types are numericOPC Expression Database Client
complete list of all of the Tag Scaling properties, see .Tag Properties

Linear Scaling

The value will be scaled linearly between the low and high values, and clamped as appropriate.
The linear equation is:

ScaledValue = S * (Value-RL)/R + SL

Where:

If you are using scaling...

The numbers and units don't have to match-up. Scaling is straight from one number to another number. It doesn't matter what the units are,
and it doesn't matter what the conversion is. What is important, is that the data type of the Tag must match the data type of the scale value
(i.e., dividing an integer in the PLC by 10 probably means your Ignition Tag should be a float).

https://legacy-docs.inductiveautomation.com/display/DEP/Deprecated+Pages
https://www.inductiveuniversity.com/videos/tag-scaling/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties#TagProperties-NumericProperties

S = (ScaledHigh-ScaledLow)
R = (RawHigh - RawLow)
RL = RawLow
SL = ScaledLow

Square Root Scaling

The equation for square root scaling is:

ScaledValue = (S * (Value-RL)/R) + SL

Where:

S = (ScaledHigh-ScaledLow)
R = (RawHigh - RawLow)
RL = RawLow
SL = ScaledLow

Exponential Filter Scaling

This mode implements a simple linear recursive filter to smooth values. The scale factor corresponds to the weight of the smoothing effect, and is a
value between 0.0 and 1.0. The smaller the factor, the greater the degree of smoothing.

The equation for the filter is:

y(t) = (1-f)*y(t-1)+f*x(t)

Where:

y(t) = the output at time t
y(t-1) = the previous output
x(t) = the input value (current value)
f = the scale factor, with 0.0<=f<=1.0

Note: Only quality values are considered for the filter. quality values are ignored.good Bad

Bit Inversion Scaling

This simple scaling mode will generate the complement of a binary value. If the current value is coming in as 0001_0101 (21), this will return a
1110_1010 (-22) instead. A popular use for this scale mode is that it can be used to invert modbus values if your device stores them in reverse bit
order. Note that Bit Inversion Scaling uses a little-endian format.

Scaling Examples

Simple Divide by Ten

This is common when storing a single decimal point of precision as an Integer in the PLC. This is to save space by not using a Float type.

Raw Low: 0.0
: 100.0Raw High

: 0.0Scaled Low
: 10.0Scaled High

4-20 Milliamp Signal to Percent

This is common when using a simple pressure sensor. The sensor is calibrated to send 4 milliamps (minimum value) when the tank is empty, and 20
milliamps (maximum value) when the tank is full.

Raw Low: 4.0
: 20.0Raw High

: 0.0Scaled Low
: 100.0Scaled High

4-20 Milliamp Signal to Gallons

This is common when using a simple pressure sensor. The sensor is calibrated to send 4 milliamps (minimum value) when the tank is empty, and 20
milliamps (maximum value) when the tank is full (5000 gallons).

 There is no direct conversion between amps and gallons. In scaling it doesn't matter.Note:

Raw Low: 4.0

Raw High: 20.0
: 0.0Scaled Low
: 5000.0Scaled High

Related Topics ...

Exporting and Importing Tags

Tag Security Properties

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer
clicks and keeps relevant tag information visible while modifying bindings, alarms, and event scripts. Addit
ional improvements include the following:

Only expression bindings now require opening the dialog to change. Tag and Parameter
bindings can be edited in-line within the tag editor and are not shortened.
Sorting in UDT Editor now sorts folders first, then tags.
Users can add tags in the UDT Editor without having to click the root of the UDT/folder.
UDT Parameters now show when they are overridden.
The Tag Editor uses the entire width allowed to display content.
UDT properties are added in-line to bindings now rather than clearing out the content.
Property values are now all left-aligned.
The Expression editor now accepts drag and drops from the UDT Editor or Tag Browser.

Pages detailing features of the previous Tag Editor can be found in .Deprecated Ignition Features

Tag security is often the best way to configure security for data access. By defining security on a Tag,
you affect the Tag across wherever it is used, as opposed to configuring component security on each
component that displays or controls that Tag.

There are three properties on Tags that can restrict access.

Read Permissions: Defines the security levels required in order to read values from a Tag
Read Only: Defines whether a Tag is read-only or writable
Write Permissions: Defines the security levels required in order to write values to a Tag

Users with specific roles and zones can be given read/write access to a Tag, while other users with other
roles are excluded from modifying the Tag.

If a user opens a Perspective view or a Vision client window that has components that are bound to a
Tag they do not have permissions for, the user will see an overlay on top of the component. For more
information, see . The following example shows a tank displayed in a Quality Codes and Overlays
session, but the user does not have read permission for the Tag it is bound to.

On this page ...

Read Only Security
Read and Write Permissions

Read Permissions
Write Permissions

Using Security Zones

Read Only Security

 When a Tag is set to read only, a icon is displayed next to the Tag in the Tag Browser.Lock

https://legacy-docs.inductiveautomation.com/display/DEP/Deprecated+Pages

1.
2.
3.

4.
5.

Read and Write Permissions

Instead of making a tag Read Only for all users, you can conditionally provide read and write access based on . Doing so involves a Security Levels
adjusting the security settings on the tag in question. The checkbox tree you are presented with will show you all of the security levels configured in
the Gateway Config > Security > page.Security Levels

Read Permissions

Read permissions define the security levels required in order to read values from a Tag. By default, Tags have Read Permissions set to
"Public". You can change the Read security using the Tag Browser in the Designer.

In the Tag Browser, right-click on the , and select the icon. Tag Edit
Select the Security section.
On the screen, choose the security levels you want to have Read permissions for this Tag. In this example, only users with role of "Driver"
will be able to see the Tag value.

Click Commit to accept the settings.
Click to save the changes to the Tag.OK

6.

1.
2.

If you are logged in as a user other than Driver, you will now see the "Bad_AccessDenied" in the Tag Browser instead of the Tag's value.

Write Permissions

Write permissions define the security levels required in order to write values a Tag. By default, Tags have Write Permissions set to "Public". You can
change the Write security using the Tag Browser in the Designer.

In the Tag Browser, right-click on the , and select the Tag Edit icon.
Select the Security section.

3. On the screen, choose the security levels you want to have write permissions for this Tag. In this example, only users with role of
Administrator will be able to write to the Tag value.

Note:

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

If any security levels under the Read Permissions or Write Permissions sections are deleted from the Gateway, they will appear grayed-out with a

red warning underline. A warning indicator icon will also appear in the upper right-hand corner with the number of selected security levels that no
longer exist. If you follow the security levels tree up to the parent levels, you'll notice affected levels now include a dotted underline.

The deleted security level and all warning indications are removed when the deleted security level is unchecked and new settings are saved.

Using Security Zones

In addition to setting up security on individual Tags, you can set up security policies specific to Security Zones. This is useful in cases where you want
to make all tags in a provider Read Only from network locations. See the page for more details about Tag Access options. Security Zones

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

Tag Data Types

This page details the different data types that can be applied to standard tags.

The data type of a tag is determined by the Data Type property, which is accessible from the Tag Editor.
The tags system will attempt to coerce any raw incoming value (for example, from OPC or a SQL query)
into the desired type.

On this page ...

Array and Dataset Data Types
Array Tags
Dataset Tags
Dataset Tag Example

Document Type

Array and Dataset
Tags

Watch the Video

The following table lists all the data types available for tags in Ignition.

Data Type String
Value

Integer
Value

Byte Int1 0

Short Int2 1

Integer Int4 2

Long Int8 3

Float Float4 4

Double Float8 5

Boolean Boolean 6

String String 7

DateTime

Note:

The Siemens driver does not support Ignition tag's DateTime type. In these cases it is recommended to extract each byte
in the Siemens DATE_AND_TIME value item, storing each into a separate Ignition tag. Then use an expression tag to
combine each byte into a human readable datetime.

Example

// The following assumes each byte of the DATE_AND_TIME value is under a tag named
like "BASIC_DATA_AND_TIME", and that each tag is a String type.

DateTi
me

8

https://www.inductiveuniversity.com/video/array-and-dataset-tags/8.1

"20" + //First part of the year, assuming in 21st century
toHex({[.]BASIC_DATE_AND_TIME[0]}) + “-” +
//Second part of the year, reading from an Ignition tag.
numberFormat(toHex({[.]BASIC_DATE_AND_TIME[1]}), “00”) + “-” + //Month
numberFormat(toHex({[.]BASIC_DATE_AND_TIME[2]}), “00”) + “-” + //Day
numberFormat(toHex({[.]BASIC_DATE_AND_TIME[3]}), “00”) + “:” + //Hours
numberFormat(toHex({[.]BASIC_DATE_AND_TIME[4]}), “00”) + “:” + //Minutes
numberFormat(toHex({[.]BASIC_DATE_AND_TIME[5]}), “00”) + “:” + //Seconds
numberFormat(fromBinary(left(numberFormat(toBinary({[.]BASIC_DATE_AND_TIME[6]} + {[.]
BASIC_DATE_AND_TIME[7]}), “0000000000000000”), 12)), “000”) + " " + //Milliseconds, it
includes the first 4 bits of byte 7
case(//Day of the week, last 4 bits of byte 7
right(numberFormat(toBinary({[.]BASIC_DATE_AND_TIME[7]}), “00000000”), 4),
“0000”, “Sunday”,
“0001”, “Monday”,
“0010”, “Tueday”,
“0011”, “Wednesday”,
“0100”, “Thursday”,
“0101”, “Friday”,
“0111”, “Saturday”,
“Error - No Day Found”)

This feature was changed in Ignition version :8.1.29

The Siemens driver supports DateTime data types for the following Siemens devices:

S7-300
S7-400
S7-1500

Text

This feature was changed in Ignition version :8.1.8
The Text data type on tags was deprecated

Text 10

Byte Array Int1Ar
ray

17

Short Array Int2Ar
ray

18

Integer Array Int4Ar
ray

11

Long Array Int8Ar
ray

12

Float Array Float4
Array

19

Double Array Float8
Array

13

Boolean Array Boolea
nArray

14

String Array String
Array

15

DateTime Array DateTim
eArray

16

Binary Data ByteArray 20

Dataset DataSet 9

Document (JSON Document) Docume
nt

29

Array and Dataset Data Types

The Array and Dataset data types available on tags allow for multiple data points to be stored in a single tag. Configuring a tag as an array or dataset
is as easy as changing the data type in the Tag Editor.

Note: Most OPC device drivers do not support array and dataset data types. These types work best when used on query tags or memory tags. When
working with arrays via our OPC UA device drivers, it is recommended to create Ignition tags for each array element instead of using an array data
type tag.

Array Tags

For OPC servers and drivers that support array type tags, each element in the array can easily be represented with the array data types in Ignition.
Because the core data type of each element in the array is the same, it is possible to apply Tag History, Alarming, or Scaling configurations onto the
array, and these configurations will be inherited by each element.

The following feature is new in Ignition version 8.1.33
 to check out the other new featuresClick here

The array tag type will now accept and coerce JSON array types, allowing methods such as .jsonGet

Array Tag Write-Back

OPC Array tags support writing back to the device. How this is done can vary, depending on the type of OPC Server in use. Some OPC Servers
support writes to individual array elements, where a write would occur just like any other tag write. However, some OPC Servers do not support
individual element writes, which means the whole array will need to be written back to the array tag, even if only a single element is changing.

Dataset Tags

Dataset tags allow multiple rows and columns worth of data to be stored in a tag. Each column is exposed as a separate folder in the tag (i.e., the
"name" folder in the image below). Dataset tags can be driven by a query, so it's possible to query for multiple columns on a row in a single tag. This is
more efficient than using multiple query tags (and thus multiple queries) to retrieve the same data.

While dataset tags are convenient, note that the Tag History system and Alarm system do not support tags with dataset types.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.33

1.

Valid data types that can be stored in dataset tags include the following:

Float
Short
Long
Date
Integer
Boolean
String
Color
Double
Timestamp

The following feature is new in Ignition version 8.1.20
 to check out the other new featuresClick here

Byte Arrays are now supported as of 8.1.20

Dataset Tag Example

The following example will create a dataset memory tag and display the contents in a Table component.

Create a new . Name it , and change the data type to . The Dataset will be empty by default.Memory Tag Dataset Dataset

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.20

1.

2.

3.
4.

5.

Click the icon next to . The Value screen is displayed. For this example, we created a simple dataset with four columns Edit Value
and five rows.

Click the icon. Name the first column and set type to be .Add Column City String
Click .Add Column

Repeat adding columns as follows:

Column Name: Type: Population Integer
Column Name: Type: TimeZone String

5.

6.

7.
8.

Column Name: Type: GMTOffset Integer

Click the icon. Add the row information as follows: Add Row

New York 8368710 EST -5

Los Angeles 3833995 PST -8

Chicago 2853114 CST -6

Houston 2242193 CST -6

Phoenix 1567924 MST -7

Click the button.Commit
Click to save the tag.OK

The tag will now contain rows, columns, and values based on the configurations you made earlier in this example. Now you have a tag with a
dataset value that can be bound to by components in Vision and Perspective.

Document Type

The document type allows a tag to have a JSON document as a value. Note that the Tag History system does not support tags with a document type.

Note: Most OPC device drivers do not support the document data type. This type works best when used on query tags or memory tags.

The following feature is new in Ignition version 8.1.27
 to check out the other new featuresClick here

The document tag type now supports writing to OPC tags containing DocumentArray values.

Setting a tag to this type will cause the value field to display an icon.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27

Clicking the icon will transition the Tag Editor into a JSON Editor, allowing you to manually write JSON directly to the value.

Click the + icon to add new members to the object. When finished, press .Commit

When saved, the value of the tag will render as a JSON document in the Tag Browser.

The following feature is new in Ignition version 8.1.32
 to check out the other new featuresClick here

The document tag type will now accept and coerce PyDictionary types.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.32

Tag Paths

Tags and their properties can be referenced by a string-based path in many areas of Ignition, such as exp
and . Each Tag has a unique absolute path and often has many equivalent relative paths ressions scripts

when referenced from other Tags. In most cases these paths are generated automatically via helper
buttons. However, it's a good idea to understand how Tag paths work, particularly if you need to
configure an Indirect Tag Binding, or access a Tag from an expression, or script.

A Tag path looks something like this: [Tag Provider]folder/path/tag.property

The portion of the path may contain the following:folder/path/tag.property

A Tag
Any number of nested folders followed by a Tag, separated by forward slashes (/)
A period (.) followed by a property name after the Tag. Omitting this is equivalent to using the .
value property

The portion surrounded by square braces can have the following options:[Tag Provider]

Source
Option

Meaning

[Tag
Provider
Name]

The name of the Tag provider that hosts the Tag.

[] or not
specified

The default Tag provider for the current project. If used in the Gateway scope, this
notation can (generally) result in an invalid path, as the Gateway doesn't have a default
Tag provider.

[.] Relative to the folder of the Tag that is being bound. This is especially useful in UDT
definitions.

[~] Relative to the Tag provider of the Tag that is being bound (root node).

[Client] Refers to the provider, which contains only Vision Client Tags. Vision Client Tag

[System] Refers to a System Tag.

On this page ...

Using Relative Tag Paths
Tag Path Manipulation
Array Type Tag Paths
Document Type Tag Paths

Writing to Document Type tags
Using the {this} Keyword

Using {this} in Alarms

Using Relative Tag Paths

Tag paths that begin with [.] or [~] are known as . They are used inside Tags that bind to other Tags, and they are relative to the host relative paths
Tag's path. Using the relative path syntax helps to avoid problems caused by moving Tags and renaming providers.

[.] refers to the Tag's current folder. By using [.], Tags can be moved from folder to folder without problem (provided that all of the applicable
Tags are moved together). Additionally, you can use " " (two periods) to go back one folder from the current relative position, for example [.]../....
/tag allows you to reference a Tag that is two folders up.

[~] refers to the Tag's provider root. It replaces an explicit provider name and thus protects the Tag path from "breaking" if the provider is
renamed or if the Tag is imported/exported/moved between different providers.

Tag Path Manipulation

Ignition provides a great deal of flexibility for Tag addressing since Tag paths and Tag properties are string-based. The underlying strings that
compose a valid Tag path can be assembled from many different parts in which the eventual construction results in a valid Tag path.

The following scripting demonstrates this concept. Suppose there was a Tag path to a level indicator in a tank. In this case it is the default Tag
provider, Tanks folder, Tank 1 Folder, and the Level Tag.

tagPath = "[default]Tanks/Tank 1/Level"

But suppose that there was more than just Tank 1 and instead there was Tank 2, Tank 3, Tank 4, etc. Dynamically changing the Tag paths is simple
because Ignition's Tag paths are string representations. The following takes the tank number and inserts it into a new Tag path. The tankNumber
variable changes the eventual creation of the tagPath. Using this method in scripting or in an expression binding will look slightly different.

Python Dynamic Tag Path

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Client+Tags

tankNumber = 2
tagPath = "[default]Tanks/Tank %i/Level" % tankNumber

Expression Dynamic Tag Path

tag("[default]Tanks/Tank "+{Root Container.tankNumber}+"/Level")

The result of the tagPath variable will be which is a valid Tag path to the the level sensor for Tank 2.[default]Tanks/Tank 2/Level

Array Type Tag Paths

When a path leads to an array type tag, individual elements can be accessed using square brackets, and the index offset.

[default]Folder/myArrayTag[0]

Document Type Tag Paths

The following feature is new in Ignition version 8.1.0
 to check out the other new featuresClick here

When a path leads to a document type tag, individual objects within the tag's value can be accessed by using square brackets wrapped around a set
of quotations marks that lead to the object.

For example, say we have a documentation tag with the following value:

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.0

The following would return " ", which is in the first element of the " " array:one key

[default]myDocumentTag['key[0]']

JSON Values are references with a '.' character, so the following would retrieve the value of "two" inside of the "sub-object":

[default]myDocumentTag['sub-object.greetings']

For more complex structures, you can continue adding to the JSON string. The following would return " " from the key in " ": three deep-object

[default]myDocumentTag['sub-object.deep-object.key']

Writing to Document Type tags

The paths above aren't only for reading. Using the same addressing mentioned above on a bi-directional component binding would allow the binding
to write back to the specific JSON object in the document.

Using the {this} Keyword

Tags have a built-in "this" keyword, that can be used as a reference to the Tag. The keyword is useful in cases where an expression is being
configured on a Tag property and you want to reference the value of another property.

// The expression below always returns the name of the Tag
{this.name}

Using {this} in Alarms

The "this" keyword is also available for use on expressions on alarms. However when used like this, the keyword still refers to the Tag, not the alarm.
Thus, " " on an alarm property expression would return the name of the Tag, not the name of the alarm. this.name

For more information on Ignition 's Expression language, see Expression Overview and Syntax .

Related Topics ...

Tag Event Scripts

http://this.name
https://docs.inductiveautomation.com/display/DOC80/Expression+Overview+and+Syntax

Quality Codes and Overlays

A Quality Code represents a level of confidence in a value. Quality codes
are made up of a level (Good, Bad, Error, or Uncertain) and an integer. If a
value's quality is not Good, the value generally should not be trusted.

Tag Quality in the Designer

In the Tag Browser, find your Tag, expand it, and scroll down to the meta property called . Here, Quality
you can check the quality of the Tag. This example shows a Good Quality Tag, meaning the Tag can be
trusted.

One obvious indicator if the Tag is of bad quality is if there is a red error message next to the Tag in the
Value column. Hover over the error message to see if there is any additional information about the error.
You can also expand the Tag to see the quality issue. This example shows the Query Tag with with a
Error Expression Evaluation which helps you resolve the issue promptly.

On this page ...

Tag Quality in the Designer
Component Overlays

Quality Code Reference Table
Perspective Component
Overlays
Vision Component Overlays
Template Overlay

Tag Quality and Referenced Tags
Overlay Opt-Out

Tag Quality and
Overlays

Watch the Video

Component Overlays

https://www.inductiveuniversity.com/videos/tag-quality-and-overlays/8.0/8.1

HMI screens allow users to quickly gauge the health and accuracy of what is displayed at a glance. In a
highly distributed system like Ignition, it is especially important as the client may be located at quite a
distance (maybe across the world) from the physical process it is monitoring and controlling.

For these reasons, Perspective and Vision components display visual overlays for various reasons to
indicate that the data they are displaying is not good, or pending a reply from the device. Each data
binding that drives a component is evaluated for quality. If any of these qualities becomes poor, the
Perspective or Vision component will show an overlay. The different overlays can mean different things,
denoting their underlying cause. What they indicate is based on the Quality properties of Tags.

Component overlays appear in the Designer workspace, Perspective Session, and Vision Client to let
designers and operators know when there is a problem with one of the bindings on a component. What is
cool about component overlays is that they not only tell you that there is a problem, but they also help
diagnose the problem. Vision and Perspective overlay systems are similar, but each look a little bit
different.

The sections below describe in detail Perspective and Vision overlays. Each module has its own Tag
Quality Code Reference Table displaying the error codes and what they mean.

Component
Overlays

Watch the Video

Quality Code Reference Table

There are four primary quality codes which quickly inform the user of the quality of the Tag: Good, Uncertain, Bad, and Error.

Note: For users who have upgraded from 7.9, be aware that old code values have been adapted to match the quality codes below. Because the
quality the old values are adapted, tag history quality results and bindings can still be trusted in your upgraded versions. However, it is important to
check areas where manual entry may prevent adapted values from populating correctly such as scripts for live checks of tag quality.

The following feature is new in Ignition version 8.1.27
 to check out the other new featuresClick here

Note: OPC UA clients are now allowed to write to exposed Tags, which include a StatusCode. This StatusCode is converted to its Qualitycode
equivalent, while the write value is passed to the Tag system as a QualifiedValue.

Each quality code has a range of subcodes that provide more specific information about the value of the Tag. The following tables outline the primary
data qualities. Quality codes are broken up into several ranges. Note that not every value within a range has a code: the space is there for future
codes to be added.

0-225: Good quality. The value is generally considered reliable.
256 - 511 : Uncertain quality. Generally represents a value that good, but the reliability is somewhat questionable. These are generally was
used when the system hasn't received a new value in a timely manner.
512 - 767: Bad quality. There's a problem with the value, but it's an "expected" or well recognized type of the problem is. For example, the
trial expired or read access was explicitly denied.
768 - 1023: Error quality. There is a problem with the value, and the problem was completely unexpected. For example, a query on a query
tag couldn't execute, but the Tag doesn't know why. More details on such errors are usually sent to a console somewhere, such as the
Gateway's console.

Good
Quality

Subcodes

0-225

Meaning

Good_Unspecif
ied

0 A generic "good" code. Generally used in conjunction with a matching good quality subcode, (1,2, or 192).

Good_WritePe
nding

2 Used when a write is in progress. Generally, values use this code until the system knows the write through
successfully, which would then result in a 192 code.

Good 192 This data has met all criteria for being considered reliable.

Good_Provisio
nal

200 Good data that should not be considered valid long-term.

Good_Initial 201 Indicates that the value is an initial/seed value for a system that is starting up.

Good_Overload 202

The following feature is new in Ignition version 8.1.2
 to check out the other new featuresClick here

Represents good data that is being sampled slower than requested due to a resource limitation.

Good_Backfill 203 Used to indicate good quality values that have arrived out of order. Different systems can choose to process them

https://www.inductiveuniversity.com/videos/component-overlays/8.0/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.27
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.2

accordingly.

Uncertain
Quality

Subcodes
256 - 511 Meaning

Uncertain 256 An unspecified degree of uncertainty exists in this value.

Uncertain_Last
KnownValue

257 The current value is unavailable and represents the last known value.

Uncertain_Initi
alValue

258 Indicates that a subscription has been made and a good value should be arriving shortly.

Uncertain_Dat
aSubNormal

259 Insufficient good-quality sources required for the derivation of this value.

Uncertain_Engi
neeringUnitsEx
ceeded

260 Indicates that a value has gone beyond its configured engineering units.

Uncertain_Inco
mpleteOperation

261 An asynchronous operation is currently pending and its result is unknown.

Bad Quality
Subcodes
512 - 767 Meaning

Bad 512 General code for a bad value.

Bad_Unauthori
zed

513 An unauthorized request was made for data that requires authorization.

Bad_AccessDe
nied

514 Data requested that requires not held by the requesting user.credentials

Bad_Disabled 515 Data source is currently not enabled.

Bad_Stale 516 Data is out-of-date based upon the requested refresh interval.

Bad_TrialExpir
ed

517 The Trial Mode's timer expired.

Bad_LicenseE
xceeded

518 The limit has been exceeded.license

Bad_NotFound 519 Object requested was not found.

Bad_Referenc
eNotFound

520 Derived or referenced value required an object which was not found.

Bad_Aggregat
eNotFound

521 Requested aggregate was not found.

Bad_NotConne
cted

522 A connection required for this value is not currently connected.

Bad_Gateway
CommOff

523 Connection to the is currently turned off. See . Ignition Gateway General Designer Interface

Bad_OutofRan
ge

524 This value exceeded its allowed range.

Bad_Database
NotConnected

525 A connection required for this value is not connected.database

Bad_ReadOnly 526 A write was attempted on a read only target.

Bad_Failure 527 A "failure" code was received from the underlying system. Additional details may be in the diagnostic message.
This generally does not indicate an exception, which would be handled by Error_Exception, but instead a simple
failure from a system that can return success or failure.

Bad_Unsuppor
ted

528 The operation is not supported by the target.

Error
Quality

Subcodes
768 -
1023

Meaning

Error 768 An unexpected error occurred while retrieving or calculating this value.

https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-CommMode

Error_Configur
ation

769 The source of this value is not configured correctly.

Error_Expressi
onEval

770 The source expression was unable to be executed.

Error_TagExec
ution

771 The source could not be executed.Tag

Error_TypeCon
version

772 The actual value was not able to be coerced into the configured data type for the source of this value.

Error_Databas
eQuery

773 A query required for this value caused an error upon execution.database

Error_IO 774 An input/output error occurred while attempting to retrieve or calculate this value.

Error_Timeout
Expired

775 An asynchronous operation failed due to a timeout.

Error_Exception 776 An exception was caught, and logged in the relevant system.

Error_InvalidPa
thSyntax

777 A path (i.e., path, path, etc.,) was not able to be parsed because the syntax is invalid.Tag property

Error_Formatti
ng

778 Attempted formatting (i.e., numeric, date formatting) failed.

Error_ScriptEv
al

779 A script needed to create this value failed to execute.

Error_CycleDet
ected

780 Calculating the value involved an execution cycle.

Perspective Component Overlays

Component properties may show a quality overlay if the source of data has a certain code. In Perspective, there are three types of quality overlays,
each with a large and small variant.

The Pending overlay is displayed for Good quality, subcode 2 only
The Unknown overlay is displayed for any Uncertain quality subcode
The Error overlay is shown for any Bad and Error quality, regardless of subcode

For any large overlay, clicking the icon in the upper right will yield diagnostic information.

For the smaller overlays, clicking on the dot will show the diagnostic information.

Vision Component Overlays

An overlay on a Vision component lets the operator know that they could be looking at a bad value for that Tag. When the overlay goes away and the
values start coming in again, the operator knows that it's a valid Tag, and the values can be trusted.

Component Overlays in Designer Mode

In the following example, you see a red overlay with an icon in the top left corner of the selected LED Display component. The icon gives you a clue to
the source of the problem. In this example, it is an SQL Database error. In the Vision Property Editor, the Quality property is highlighted and you'll
notice there is a "Error_DatabaseQuery" error message.

The overlays table in the next section show all the possible Vision overlays and what they mean.

Component Overlays in Preview Mode

Let's switch from the Designer mode to the Preview Mode. To put your active view in press the Preview / Designer mode icon in Preview Mode,
the top menubar. Components that have a problem will have a red overlay and an icon in the top left of the component overlay to indicate the problem.
The overlay is identical to the overlay that is displayed in the Designer, but the component cannot be selected.

Component Overlays in the Vision Client

Component overlays in a Vision Client work the same way as they do in Preview Mode of the Designer. You have to look at the icon on the overlay to
help you diagnose the problem. Go back to the Designer to correct the problem.

Vision Component Overlay Chart

For legacy reasons, Vision has different subcodes. Possible subcodes are listed below.

Template Overlay

In addition, there is a quality overlay for an unknown template. This can occur when the Template Path property on a template instance does not
resolve to an existing template. This can happen due to a name change on the template definition, or if a project import file was recently imported, and
included usages of a template instance but not the definition.

Tag Quality and Referenced Tags

When Tags reference other Tags, such as in expressions, they will often pass the worst sub-quality up as their own. For example, even though a
particular Tag's expression executes without problem, if the expression references a Tag whose quality is "Bad", the expression Tag will also report
"Bad."

Overlay Opt-Out

Choosing the Overlay Opt-Out option will ignore the quality of the chosen Tag, making it have no effect on the component's quality overlay. The
Overlay Opt-Out option is located in the Tag bindings for both Perspective and Vision components. If this option is enabled, the operator will not see
any overlays and will have no indication that the underlying Tag quality is something other than good. A word of caution when you use the Opt-Out
option because you always want to give the operator some indication that the values they are seeing on the screen can be trusted, and by opting out,
you are removing that indicator for the operator.

Related Topics ...

Tag Scaling Properties
Tag Properties
Bindings in Perspective
Tag Bindings in Vision
Indirect Tag Bindings in Vision

https://legacy-docs.inductiveautomation.com/display/DOC81/Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Indirect+Tag+Bindings+in+Vision

1.

2.

3.

Exporting and Importing Tags

Ignition can export and import tag configurations to and from the (JavaScript Object Notation) JSON
format. You can import (Extensible Markup Language) or (Comma Separated Value) file XML CSV
formats as well, but Ignition will convert them to format while in a Tag Provider. Tag export files JSON
can be edited directly in any text editor, allowing you to make bulk edits to tags before importing them
back into a Tag Provider.

Export Tags

In the , go to the , and select the tags tab to export all your tags. You can Designer Tag Browser
also select an individual folder that contains tags you want to export. You can even export
individual tags as long the individual tags are in the same folder.

Exporting UDTs and UDT Instances
If you select a UDT instance to export, the UDT definition is not automatically included. You
must export the definition as a separate file by clicking on the UDT Definitions tab.

When later importing these UDTs, it is recommended to import UDT definitions before
importing any instances.

On the toolbar, click the More Options menu to open the Tag Browser
dropdown. Select .Export Tags

The Save window will open. Specify the folder where you want to save your exported tag files,
and then click . Ignition will export tags by default to a file.Save .json

On this page ...

Export Tags
Import Tags

Advanced Tag Import
Tag File Formats

CSV Format
Property Values in the CSV
Import
Tag Properties

JSON Example
XML Example

Importing and
Exporting Tags

Watch the Video

Import Tags

You can import tags to an individual folder or under the Tags tab. To import tags under the Tags tab, you can click the Tags tab or the empty space at
the bottom of the Tag Browser below all your tags. When importing tags, you need to tell Ignition how to handle duplicate tags. If any of the tags being
imported already exist in the folder you specify, Ignition can abort the import, overwrite the tags, rename them, ignore them, or merge them. This is
called a collision policy.

https://www.inductiveuniversity.com/video/importing-and-exporting-tags/8.1

1.

2.
3.
4.

5.

Collision Policy Options Table

Policy Description

Abort Aborts the import if duplicate tags are found.

Overwrite Overwrites any tags in the folder that have the same name as tags being imported. Note this a complete overwrite of the tag.

This feature was changed in Ignition version :8.1.8
As of 8.1.8, importing UDT definitions with this collision policy will remove any members that are
not included in the import file.

Rename Renames any duplicate tags.

Ignore Ignores duplicate tags and imports only those that are unique.

MergeOverwrite Overwrites the tag with the exception of any properties that aren't defined in the import folder. Those properties will be merged.

To import tags, do the steps that follow.

In the Tag Browser toolbar, right click on your folder and s elect Import Tags.

This feature was changed in Ignition version :8.1.15
In version 8.1.15 and newer, right click on your folder and s > elect Import Tags Direct.

Specify the folder you want to import your Tags from, and choose a previously exported file either .json , .xml , or . csv file type.
Choose a Collision Policy, which indicates how Ignition will deal with duplicate tags.
Click to import the tags.Open

The tags now appear in the Tag Browser in the folder you indicated for the import.

5.

Advanced Tag Import

The following feature is new in Ignition version 8.1.15
 to check out the other new featuresClick here

The Advanced Tag Import tool allows users to edit tag properties in the Designer before import. It combines the functionality of the basic Import Tags
tool with the window.Tag Editor

Interface Element Description

Adds the selected tag, folder, or UDT to the Staging Area.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.15

1.
2.

3.

4.
5.

6.
7.

Adds all tags, folders, and UDTs in the Selection Pane to the Staging Area.

Creates a new folder or tag at the selected node in the Staging Area, or the root if a node is not selected.

Opens a Tag Editor window for the selected tag or UDT.

Deletes the selected tag or UDT from the Staging Area.

From the Tag Browser, click the menu and select .More Options Import Tags > Interactive
Select the or file to import..json, .xml, .csv

Move the desired tags and UDTs from the Selection Pane to the Staging Area using the or buttons.Add Add All

Edit tags in the Staging Area by selecting a tag and clicking Edit
If any collisions are detected, you will be prompted to select a from the dropdown menu.Collision Policy

Note: Unlike the basic Import Tags tool, you may only choose to or duplicate tags imported via the Advanced Tag Import Overwrite Ignore
tool.

Click to import the tags and UDTsOK
The tags now appear in the Tag Browser.

Note: If your tags are not appearing as expected for a large tag import, the Designer's memory allocation may need to be increased. Access your
Gateway and navigate to the > > to adjust memory limitations. The default size is 1.0 GB, with Config Gateway Settings Designer Memory
available dropdown options from MB128 to 4.0 GB.

Tag File Formats

Tags can be imported from CSV, JSON, and XML. tags can only be exported in XML or JSON. There are many configuration settings for tags than
what is displayed in a JSON or XML export file. The tag export feature only exports the configuration properties that have been edited in at least one
of the tags in the selected export folder. Therefore, to ensure the desired configuration setting is available in the export file, at least one tag within the
selected export folder must have that configuration property changed

CSV Format

Importing

Ignition supports importing tags from a CSV format. Details of the format are below, if you expand "CSV Example Format". This format can contain tag
types, OPC paths, and most tag properties. One difference between the CSV format and the XML and JSON format is that the CSV format does not
include support for alarm configurations. Alarms can certainly be added to tags in the Ignition Designer after tags have been imported from CSV, but
alarms cannot be defined directly in the CSV.

Below is an example of the legacy CSV format, which contains a couple of different tag types, purely for demonstrative purposes. It contains:

An OPC Tag
A Folder
An OPC Tag located in a folder
A Derived Tag
An Expression Tag
A Memory Tag
A Query Tag

https://docs.inductiveautomation.com/display/DOC81/Gateway+Settings

Path,Name,Owner,TagType,DataType,Value,Enabled,AccessRights,OPCServer,OPCItemPath,ScanClass,DriverName,
ScaleMode,RawLow,RawHigh,ScaledLow,ScaledHigh,ClampMode,ScaleFactor,Deadband,DeadbandMode,FormatString,
EngUnit,EngLow,EngHigh,EngLimitMode,Tooltip,Documentation,ExpressionType,Expression,OPCWriteBackServer,
OPCWriteBackItemPath,SQLBindingDatasource,HistoryEnabled,PrimaryHistoryProvider,HistoricalScanclass,
HistoricalDeadband,HistoricalDeadbandMode,InterpolationMode,HistoryMaxAgeMode,HistoryMaxAge,
HistoryTimestampSource,UDTParentType,PersistValue,SourceDataType,SourceTagPath,SQLBindingPollRate,Permissions
version=1,,,
,_types_,,6,2,,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,0,,,,,FALSE,,
Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
,A Folder,,6,2,,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,0,,,,,FALSE,,
Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
A Folder/,OPC in a folder,,0,2,,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,
0,,,,,FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
,Derived Tag,,13,2,100,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,0,,,,,
FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,[~]Expression Tag,,
,Expression Tag,,1,2,100,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,1,"
//This is an expression
100",,,,FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
,Memory Tag,,1,7,I'm a memory Tag,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,
0,100,0,,,0,,,,,FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
,OPC Tag,,0,2,,TRUE,Read_Write,Ignition OPC-UA Server,[devicename]folder/path,Default,,0,0,100,0,10,0,0,1.00
E-04,0,"#,##0.##",,0,100,0,,,0,,,,,FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,,,
,Query Tag,,1,2,,TRUE,Read_Write,,,Default,,0,0,100,0,10,0,0,1.00E-04,0,"#,##0.##",,0,100,0,,,2,"/*Some
Query*/
SELECT 100",,,,FALSE,,Default Historical,0.01,0,3,0,1,0,,FALSE,,,,

Property Values in the CSV Import

The following table shows the configuration property names and values contained in legacy CSV tag import files. Tags were overhauled in Ignition 8.0,
so the properties listed here are not the same as tags export from an Ignition 8.0+ system. For modern tag properties, see the page.Tag Properties

Tag Properties

Property
Name

Type Values (if
applicable)

Description

Value The value of the tag, dependent on the data type.

Data Type Int 0 - Int1
1 - Int2
2 - Int4
3 - Int8
4 - Float4
5 - Float8
6 - Boolean
7 - String
8 - DateTime
9 - DataSet

 Enabled Boolean true/false

 Tagtype Int 0 - OPC Tag
1 - DB Tag (see
ExpressionType)
2 - Client Tag
6 - Folder
10 - UDT Instance
13 - Derived Tag

Determines the type of the tag.

A value of one is a "DB Tag", which is either a Memory Tag, Query Tag, or Expression Tag, depending on the
value of the ExpressionType field.

ExpressionType Int 0 - None
1 - Expression
2 - SQL Query

Used in conjunction when the TagType is set to 1 (DB Tag), otherwise this field is ignored.

 AccessRights Int 0 - Read Only
1 - Read/Write
2 - Custom

If custom, will be defined by a P Tag.ermissions

 OPCServer String

 OPCItemPath String

 OPCWriteBack
Server

String Write back target for expression Tags.

 OPCWriteBack
ItemPath

String

 ScaleMode Int 0 - Off
1 - Linear
2 - Square Root
3 - Exponential
Filter

ScaleFactor Float For exponential filter.

RawLow Float Defines scale range.

RawHigh Float

ScaledLow Float

ScaledHigh Float

ClampMode Int 0 - None
1 - Low
2 - High
3 - Both

Deadband Float

DeadbandMode Int 0 - Absolute
1 - Percentage

FormatString String

EngUnit String

EngLow Float

EngHigh Float

EngLimitMode Int 0 - None
1 - Low
2 - High
3 - Both

Tooltip String

Documentation String

DriverName String Used for external tags.

ScanClass String The export will only include the name of the Scanclass, not the configuration of the Scanclass itself. A Scanclass
with the same name needs to already exist on the Gateway that the tags are being imported to, prior to importing
them.

HistoryEnabled Boolean true/false

PrimaryHistory
Provider

String The history provider to use if storing history.

HistoricalDeadb
and

Float

HistoricalDeadb
andMode

Int 0 - Absolute
1 - Percentage

HistoricalScancl
ass

String

InterpolationMo
de

Int 0 - Discrete
2 - Analog
(deadband)
3 - Analog
(compressed)

How values are interpolated. 2 exists for backwards compatibility (and is equivalent to 1), but only 0 or 3 should
be used in the future.

HistoryTimesta
mpSource

Int 0 - System
1 - Value

HistoryMaxAge
Mode

Int 0 - Unlimited
1 - Limited

HistoryMaxAge Int Max cycles between storage.

UDTParentType String The path to the parent UDT type. Used by sub-types and instances.

Exporting

Although Ignition can import tags from a CSV format, Ignition does not export tags to a CSV format. Since multiple alarms can be configured per tag,
the XML or JSON formats provide a much better format to allow for the tree structures needed to fully represent Ignition tags.

JSON Example

In this example, we exported three tags from the Motor UDT in JSON format.

Amps - Expression tag with an Alarm and History enabled
HI SP - Memory tag which is bound to a parameter to an OPC tag
HOA - OPC tag

The following exported tag file is in JSON format. As you browse through the JSON file, you will see the tag properties and configuration settings for
each of the three tags listed above.

Below is an example of a JSON format tag export. Descriptions on the various properties can be found on the page.Tag Properties

Exported Tags in JSON Format

{
 "tags": [
 {
 "opcItemPath": {
 "bindType": "parameter",
 "binding": "ns\u003d1;s\u003d[Dairy]_Meta:Overview/Motor {MotorNumber}/Amps"
 },
 "valueSource": "opc",
 "historyProvider": "MySQL",
 "alarms": [
 {
 "mode": "BelowValue",
 "setpointA": 25.0,
 "name": "Low Amps",
 "priority": "Critical",
 "displayPath": {
 "bindType": "Expression",
 "value": "Motor{MotorNumber}"
 }
 },
 {
 "mode": "AboveValue",
 "name": "High Amps",
 "priority": "Critical",
 "setpointA": {
 "bindType": "Expression",
 "value": "{[.]HI SP}"
 }
 }
],
 "name": "Amps",
 "historyEnabled": true,
 "tagType": "AtomicTag",

 "opcServer": "Ignition OPC UA Server"
 },
 {
 "valueSource": "memory",
 "name": "HI SP",
 "value": 90,
 "tagType": "AtomicTag"
 },
 {
 "opcItemPath": {
 "bindType": "parameter",
 "binding": "ns\u003d1;s\u003d[Dairy]_Meta:Overview/Motor {MotorNumber}/HOA"
 },
 "valueSource": "opc",
 "name": "HOA",
 "tagType": "AtomicTag",
 "opcServer": "Ignition OPC UA Server"
 }
]
}

XML Example

In this example, we exported the same three tags from our Tag Browser, that were also used in the JSON example, in XML format. As you browse
through the XML file, you will see the tag properties and configuration settings for each of the same three tags.

Below is an example of an XML format tag export. Descriptions on the various properties can be found on the page.Tag Properties

Exported Tags in XML Format

<Tags MinVersion="8.0.0" locale="en_US">
 <Tag name="Amps" type="AtomicTag">
 <Property name="opcItemPath" boundValueType="parameter">ns=1;s=[Dairy]_Meta:Overview/Motor
{MotorNumber}/Amps</Property>
 <Property name="valueSource">opc</Property>
 <Property name="historyProvider" datatype="String">MySQL</Property>
 <CompoundProperty name="alarms">
 <PropertySet>
 <Property name="mode">3</Property>
 <Property name="setpointA">25</Property>
 <Property name="name">Low Amps</Property>
 <Property name="priority">4</Property>
 <Property name="displayPath" bindtype="Expression">Motor{MotorNumber}</Property>
 </PropertySet>
 <PropertySet>
 <Property name="mode">2</Property>
 <Property name="name">High Amps</Property>
 <Property name="priority">4</Property>
 <Property name="setpointA" bindtype="Expression">{[.]HI SP}</Property>
 </PropertySet>
 </CompoundProperty>
 <Property name="historyEnabled" datatype="Boolean">true</Property>
 <Property name="opcServer">Ignition OPC UA Server</Property>
 </Tag>
 <Tag name="HI SP" type="AtomicTag">
 <Property name="valueSource">memory</Property>
 <Property name="value">90</Property>
 </Tag>
 <Tag name="HOA" type="AtomicTag">
 <Property name="opcItemPath" boundValueType="parameter">ns=1;s=[Dairy]_Meta:Overview/Motor
{MotorNumber}/HOA</Property>
 <Property name="valueSource">opc</Property>
 <Property name="opcServer">Ignition OPC UA Server</Property>
 </Tag>

</Tags>

Related Topics ...

Tag Data Types
Tag Properties

Tag Editor

This feature was changed in Ignition version :8.1.17

In 8.1.17, the Tag Editor was redesigned to improve usability. The new Tag Editor now requires fewer clicks and keeps relevant tag information visible
while modifying bindings, alarms, and event scripts. Additional improvements include the following:

Only expression bindings now require opening the dialog to change. Tag and Parameter bindings can be edited in-line within the tag editor
and are not shortened.
Sorting in UDT Editor now sorts folders first, then tags.
Users can add tags in the UDT Editor without having to click the root of the UDT/folder.
UDT Parameters now show when they are overridden.
The Tag Editor uses the entire width allowed to display content.
UDT properties are added in-line to bindings now rather than clearing out the content.
Property values are now all left-aligned.
The Expression editor now accepts drag and drops from the UDT Editor or Tag Browser.

This feature was changed in Ignition version :8.1.34

In 8.1.34, data was removed from the Tag Editor and now is displayed it's own window.Tag Diagnostics

Pages detailing features of the previous Tag Editor can be found in .Deprecated Ignition Features

The Tag Editor is a robust interface that contains all the properties that can be configured for Tags. In the Tag Editor, you set the Tag's name, value,
numeric and meta data properties, security, alarming, history, and more. For information an explanation on all possible tag configurations, see Tag

.Properties

https://docs.inductiveautomation.com/display/DOC81/Tag+Diagnostics
https://legacy-docs.inductiveautomation.com/display/DEP/Deprecated+Pages

Diagnostics, Documentation, and Refresh icons are included on the upper right-hand side of the Tag Editor to access more tag information:

The Diagnostics icon opens the Tag Diagnostics window.

The Documentation icon displays a Documentation pane at the bottom of the Tag Editor.

The icon refreshes the editor with the current definition of the tag from the Gateway.Refresh

https://docs.inductiveautomation.com/display/DOC81/Tag+Diagnostics

Tag Report Tool

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

The Tag Report Tool allows users to search for tags by multiple criteria, including Tag Path, Quality,
and values on specific . Type, Traits, Properties

The Tag Report Tool is accessible through the menu on the Tag Browser. Select More Options

the Tag Provider you wish to search, then click the icon and select to begin Tag Report Tool
configuring your report.

Note: The Tag Report Tool can only search within one Tag Provider at a time. To search within a
different Tag Provider, exit the Tag Report Tool and select a new Tag Provider from the drop-down
menu.

Configure, Save, and Copy Reports

Save your query as a Saved Report to easily repeat searches with complex criteria. Saved reports are
accessible to all users and all designers on the same Gateway, and can be reused to generate reports
for different Tag Providers.

You can also a report as either a JSON object or as a script. Copying a report as a Copy

JSON object allows you to the same query into the Tag Report Tool on a separate Paste
Gateway. Copying a report as a Script will allow you to paste a script anywhere in system.tag.query()
Ignition where scripting can be used.

On this page ...

Configure, Save, and Copy
Reports
Export Reports
View Tags in Context

Interface Elements
Configure Tag Report

Tag Path
Quality
Types
Traits
Ancestor
UDT Members and Definitions
Properties

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.query

Export Reports

Export reports as CSV files to analyze data in Excel or other platforms outside of Ignition. Configure
Report Columns to add, remove, reorder, or assign aliases to columns displayed in the report.

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

New columns are now available for export:

Property Description

Overrides Lists all overridden properties on the tag.

Timestamp A timestamp representing when the stored value was seen by the system. This property
can also be used to .filter reports

View Tags in Context

Right-click on any tag in the Selection Pane to view additional options, such as or Edit, Delete, Copy
. Choose to highlight the selected tag in the Tag Browser. Path Select in Tag Browser

Changes made within the Tag Report Tool will edit tags directly. Deleting a tag in the Tag
Report Tool will also delete the tag from the Tag Browser, not just from the generated report.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21
https://docs.inductiveautomation.com/display/DOC81/Tag+Report+Tool#Properties

Interface Elements

Icon Interface
Element

Description

Copy Query Allows the user to copy the configured query:

Copy query as JSON - Copies the query as a JSON object that can be pasted into the Tag Report Tool in another
Gateway.
Copy as Script - Copies the query as a script ()system.tag.query

Paste
JSON
Query

Paste a JSON query into the Tag Report Tool.

Download
Tag Report

Exports the Tag Report as a CSV file.

Configure
Report
Columns

Add, remove, reorder, or assign aliases to columns displayed in the report.

Edit tag Opens the for the selected tag.Tag Editor

Clear Clears the configured query.

Save Save options for the configured query:

Changes made within the Tag Report Tool will edit tags directly. Deleting a tag in the Tag Report Tool will also
delete the tag from the Tag Browser, not just from the generated report.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.query

Save - Saves changes to an existing saved report.
Save As - Save as a new saved report.
Manage saved reports - Opens a new window

Load
Saved
Report

Select and load a previously saved report. Saved reports are accessible to all users and all designers on the same Gateway.

Configure Tag Report

Configure a search query using the criteria on the left-hand panel and click Search to generate a new report.

Tag Path

Search for tags by full or partial Tag Path. The Tag Path accepts (*) as a wildcard anywhere in the search string.

Quality

Search for tags by Quality. You may search by or narrow your search down to specific qualities like or Good, Bad, Error, Uncertain Good_Initial Bad
. For more information on tag qualities, see ._Stale Quality Codes and Overlays

Types

Search for tags by their value source.

Traits

Search for tags by specific traits. Searchable traits include the following:

Event Script Configured
Value Scaling Applied
Alarm(s) Configured
History Enabled
Overrides Parent Properties
Custom Security Permissions
Tag Disabled

Note: Trait searches configured in the Tag Report Tool are AND queries. Selecting multiple criteria will return a report including only tags that match
all selected criteria.

Ancestor

Search for tags by UDT Parent types.

UDT Members and Definitions

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

The Tag Report Tool provides the option to include UDT Members or UDT Definitions in the query's search results.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21

Properties

Search for Tags by values on specific properties. All tag properties are available to query on using the following operators:

Note:

Properties contained within a set or properties that are a set require wildcards around search terms when using and Like Not Like. These properties
are listed below.

Alarms (Only returns results when searching for alarm names)
Parameters
Qualified Value
Read Permissions
Tag Event Scripts
Value (If the value data type is a set)
Write Permissions

Operator Description

Has Has been configured to a value other than the default value.

Has Not Has not been configured.

Overridden Value of this property has been overridden from the parent property.

Like Is like. This argument accepts a wildcard (*) in the search string.

Not Like

The following feature is new in Ignition version 8.1.21
 to check out the other new featuresClick here

Is not like. This argument accepts a wildcard (*) in the search string.

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equals

!= Does not equal

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.21

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

You can search for multiple Tags with different properties using the operator. Additionally, you can nest multiple operators within an Or And Or
operator.

Note: You will not be able to use the operator to query a remote Tag Provider that is from an older Gateway, since Gateways before version Or
8.1.28 will not have operator functionality.Or

You can also use the operator for specific system functions that use JSON queries. The following is a list of system functions that can use :Or Or

system.alarm.queryJournal
system.alarm.queryStatus
system.tag.query

See the system function pages above on examples of how to use the operator.Or

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28
https://legacy-docs.inductiveautomation.com/display/DOC81/system.alarm.queryJournal
https://legacy-docs.inductiveautomation.com/display/DOC81/system.alarm.queryStatus
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.query

Tag Diagnostics

This feature was changed in Ignition version :8.1.34

In 8.1.34, the Tag Diagnostics popup window was added to maintain quick access to relevant tag
information and introduce the Tag Reference Tracker. Note that with this change the Tag Editor no
longer displays tag diagnostics information. Pages detailing features of the previous Tag Editor can be
found in Deprecated Ignition Features.

On this page ...

Accessing the Tag Diagnostics
Window
Tag Diagnostic Values
Active Subscriptions
Tag Reference Tracker

Enabling/Disabling the Tag
Reference Store
Collecting Data Backups

Accessing the Tag Diagnostics Window

To access Tag Diagnostics for a specified tag, right-click on the tag in the Tag Browser and select View Tag Diagnostics. This will open the Tag
Diagnostics window, which contains a Diagnostics, Active Subscriptions, and Reference Logs tabs.

https://docs.inductiveautomation.com/display/DEP/Deprecated+Pages

Tag Diagnostic Values

The Diagnostics tab provides detailed metrics about the specified tag including:

Current value, quality and timestamp information
Error messages
Status of dependent datasources

Note: The diagnostic values do not update while the Tag Diagnostics window is open. The displayed information is collected when opened and will
remain static until the window is closed and opened again.

Name Description

Alarm* A subcategory for details pertaining to alarms configured on the tag. Each alarm on a tag will receive its own subcategory.

Name Description

Last State Displays the last of the alarm. state

Live Event
Count

The number of active or unacknowledged events for the alarm. The maximum count is determined by the Gateway's
. Live Event Limit setting

Deadba
nd

A subcategory for details pertaining to the deadband settings on the tag. These metrics are only available when the Numeric category's D
 is set to a value larger than 0. eadband

Name Description

Last value
The following feature is new in Ignition version 8.1.11

to check out the other new featuresClick here

The last value on that tag, as recognized by the deadband. Numeric

Limit
The following feature is new in Ignition version 8.1.11

to check out the other new featuresClick here

The deadband value on the tag. Numeric

History A subcategory for details pertaining to the history settings on the tag.

https://docs.inductiveautomation.com/display/DOC81/Alarming#Alarming-AlarmEventStates
https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Alarm+Properties#GatewayGeneralAlarmProperties-GatewayGeneralAlarmProperties
https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Alarm+Properties#GatewayGeneralAlarmProperties-GatewayGeneralAlarmProperties
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11

Name Description

Deadba
nd
(Analog) The following feature is new in Ignition version 8.1.11

 to check out the other new featuresClick here

A subcategory of diagnostic metrics that are only available when the History category's Deadband Style is set to Analog.

Name Description

Current
Lower
Slope and
Current
Upper
Slope

These properties represent the slope for each window.

These values are calculated every time the tag evaluates, based upon the tag's sample mode. The
resulting numbers are then compared to these current slopes. If the new upper slope is less than the
Current Lower Slope, or the new lower slope exceeds the Current Upper Slope, then the new value is
stored. In either case, the new slope values replace the value on these Current Slope properties.

See for more Deadband and Analog Compression information.

Last
Stored
Time

Represents the previously stored timestamp, after the most recent timestamp. Works in a similar manner to
except this stores the time of the storage, instead of the value. Last Stored Value

Last
Stored
Value

Represents the value stored before the most recently stored value.

For example, say a historian system stores the following for a single tag, in order:

1000
1100
1200

The most recently stored value would be 1200. The value of this metric would be 1100, Last Stored Value
since that was the previously stored value.

Last value Represents the last on the tag, regardless of whether or not that value was stored. In other QualifiedValue
words, the value most recently written to the tag.

Mode The Historic category's used by the tag. Useful in cases where a style of "Auto" is used, Deadband Style
as this diagnostic metric will display which option was selected by the system.

Tolerance The tolerance used to calculate each new slope. The value of this metric is determined by the History
category's setting on the tag. Deadband

Deadba
nd
(Discret
e)

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

A subcategory of diagnostic metrics that are only available when the History category's is set to . Deadband Style Discrete

Name Description

Last
Value

The last value on that tag, as recognized by the History category's property. Deadband

Limit The value on the tag. Historical Deadband

Mode The Historic category's used by the tag. Useful in cases where a style of "Auto" is used, as Deadband Style
this diagnostic value will display which option was selected by the system.

Min
/Max
Age The following feature is new in Ignition version 8.1.11

 to check out the other new featuresClick here

Name Description

Max Age Limit (ms) A milliseconds representation of the Max Time Between Samples and Max Time Units pr
operties.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/Configuring+Tag+History#ConfiguringTagHistory-DeadbandandAnalogCompression
https://docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11

Minimum Age Limit (ms) A milliseconds representation of the Min Time Between Samples and Min Time Units pro
perties.

Pending Value Represents one or more pending values that can't yet be written to the tag due to the Mini
mum Age Limit.

System Time of Last
Storage

A date representing the the last time a historical record value was stored for this tag.

Timestamp of Last Stored
Value

A date representing the timestamp associated with the last collected historical record.

Stored
Value
Count
(since
startup)

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

The total number of historical records collected for the tag since history on the tag was enabled.

OPC A subcategory for details pertaining to OPC details on the tag. These diagnostic values are only available when is set to Value Source O
.PC

Name Description

Last Subscription Value A qualified value representing the last subscribed value. The value on this setting ignores the deadband.

Server Name The name of the OPC server the tag is subscribing to.

Subscription Name The name of the subscription, used by the OPC server.

Valid Tag Group? States whether or not the tag group the tag is configured to use is valid.

Alarm
Acknow
ledged

Displays any errors from the tag event script. Only visible if a script is defined on the corresponding . Alarm Acknowledged tag event

Alarm
Active

Displays any errors from the tag event script. Only visible if a script is defined on the corresponding . Alarm Active tag event

Alarm
Cleared

Displays any errors from the tag event script. Only visible if a script is defined on the corresponding . Alarm Cleared tag event

Dataso
urce
Status

States which datasource is configured for the tag. Only available when is set to . Value Source Query

Is
Leased

If true, indicates that the tag is using a , and is currently executing at the leased rate. leased tag group

Is
Scaled

If true, indicates that has been enabled. Scale Mode

Last
publish
ed
value

Represents the last value on the tag when the diagnostics tab was last updated.

Range

The following feature is new in Ignition version 8.1.11
 to check out the other new featuresClick here

When is set to , indicates the range of values between the and Deadband Mode Percent Engineering Low Limit Engineering High
. Limit

Quality
Changed

Displays any errors from the tag event script. Only visible if a script is defined on the corresponding . Quality Changed tag event

Quality
Diagnos
tics

Reports any quality errors about the tag. This is typically only present when there is a configuration issue with the tag, such as when Valu
is set to and a value has not been set. e Source Query Datasource

Tag
Definitio
n Valid?

A flag that indicates whether or not a tag configuration is valid.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/Tag+Event+Scripts
https://docs.inductiveautomation.com/display/DOC81/Tag+Event+Scripts
https://docs.inductiveautomation.com/display/DOC81/Tag+Event+Scripts
https://docs.inductiveautomation.com/display/DOC81/Tag+Groups#TagGroups-Leased
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.11
https://docs.inductiveautomation.com/display/DOC81/Tag+Event+Scripts

Tag id A unique identifier for the tag. Used by the tag system to distinguish one tag from another.

Value
Changed

Displays any errors from the tag event script. Only visible if a script is defined on the corresponding . Value Changed tag event

Active Subscriptions

The Active Subscriptions tab displays real-time tracking of a tag subscription by sharing the following information:

Subscriptions: Displays the path to a resource that is currently subscribed to the selected tag.
First Referenced: Displays the first logged time a tag subscription at the given location was created. The logged time is reflective of the first
subscription for the current grouping of a specific subscription.
Totals: Displays the number of currently active subscriptions from the referenced location. For example, if there are multiple Perspective
Sessions with the same View bound to the selected tag loaded, this number would increase.

Additionally, Use the Collapse All the Reference Browser on the left-hand side lists all locations where the tag has an active subscription. and

Expand All icons to adjust how much information is displayed. You can also update the active subscription information by clicking the Refresh

 icon. The Designer icon is available to show/hide references to the specified tag from the Designer, including in the tag browser and Vision
components when in Preview mode.

Tag Reference Tracker

The following feature is new in Ignition version 8.1.34
 to check out the other new featuresClick here

The Reference Log tab shows the data stored in the Tag Reference Tracker Store as a way to find where
tags are being used in a project. The Tag Reference Tracker Store provides visibility to the areas that
rely on any given tag as it displays what resources have subscribed, read, written to or configured
specified tags.

Tag Diagnostics -
Tag Reference
Tracker

Watch the Video

The Reference Log can only show references that are in use or have been in use since the
reference tracking began. It will miss potential references that haven't been active since
tracking started. The longer is it in use, the more reliable the tracker becomes as the history
will grow and continue to log with each new session that is opened.

https://docs.inductiveautomation.com/display/DOC81/Tag+Event+Scripts
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.34
https://inductiveuniversity.com/video/tag-diagnostics---tag-reference-tracker/8.1/8.1

The bulk of the Tag Reference Tracker information includes:

References: The tag path to display where the tag was used.
Usage: The type of reference to this tag. The usage type listed will match the tracking type
recorded in the Ignition database file. The four tracking types for tag usage include reads,
writes, subscriptions, and configuration changes.

Configuration: Resource made a configuration change to the tag definition.
Subscription: Resource subscribed to the tag to display information on a particular
property.
Read: A read event occurred to a property on the tag.
Write: A write event occurred to a property on the tag.

Last Referenced: The timestamp for when the reference was last updated.
Updates: The number of times a reference with a specific usage type occurred.

Note: Double-clicking on a reference line will open the tag reference root location or the Tag Editor
depending on the reference type. If it is in a Tag Value Change Script or an Expression used within the
Tag definition, it will open the Tag Editor.

Like the Active Subscriptions tab, the Reference Browser on the left-hand side will show where the tag is used in any project. You can use the

reference tree or Collapse All and Expand All icons to locate where in the Designer a tag is used for each project, the Designer icon

to show/hide Designer references, and the Refresh icon to refresh the browser list. Refer to the Trace Details section at the bottom for more
information that might be helpful in understanding tag usage. Raw tracking logs can also be found by right-clicking on the Reference Log tab and

selecting The Raw Tag Logs Browser will now be visible on the Tag Diagnostics window. Clicking the Export icon to download the Show Raw.
raw logs.

Enabling/Disabling the Tag Reference Store

The Tag Reference Store is enabled by default on new installations and disabled by default on upgrades from Ignition versions 8.1.33 and earlier.
There are two options to enable or disable the Tag Reference Store depending on the provider type.

For Realtime Tag Providers, standard and remote: Navigate to the > > on the Gateway to access the Config Tags Realtime Realtime Tag
 page. Select for the provider you want to enable/disable and expand the section. If the Providers edit Show advanced properties Enable

 property is checked, it is enabled. Tag Reference Tracker Store

https://docs.inductiveautomation.com/display/DOC81/Tag+Providers#TagProviders-RealtimeProviderTypes
https://docs.inductiveautomation.com/display/DOC81/Tag+Providers#TagProviders-RealtimeProviderTypes

For managed providers, like third party modules and the system provider: Navigate to the > > on the Config System Gateway Settings
Gateway to access the page. If the property is checked, it is enabled. Be prepared System Settings Enable Tag Reference Tracker Store
that this setting impacts all managed providers throughout the Gateway, so a large number of third party modules can result in large data
collections.

Note: Disabling the Tag Reference Tracker will not impact the Diagnostics or Active Subscriptions tabs, but the Reference Log will no longer track
tag information.

Collecting Data Backups

Gateway backups do not include Tag Reference Store data. This information is saved instead in a database that creates a new Diagnostics folder
within the Data directory of an Ignition installation. Make sure to collect and add the reference data from this folder to any backups so no information is
lost.

The default folder location for each operating system are listed below:

Windows

C:\Program Files\Inductive Automation\Ignition\data\diagnostics\tags

MacOS

/usr/local/ignition/data/diagnostics/tags

Linux

https://docs.inductiveautomation.com/display/DOC81/Gateway+Settings#GatewaySettings-GatewaySettingsPropertyReference

/usr/local/bin/ignition/data/diagnostics/tags

Alarming

Alarms are always configured on a Tag, excluding Vision client tags. Every
time a Tag with a configured alarm receives an updated value, the
configured alarm will examine the new value. If the new value on the Tag
meets some criteria, as defined by the alarms mode settings, then the
alarm generates a new alarm event.

Alarms are monitored by the gateway, and are considered gateway scoped. However, some module
features and functions can be used to . monitor the live status of alarm events

Alarm Events

Each alarm event contains several attributes that store metadata about the source Tag at the time the
alarm event was created. Alarm events are effectively a "snapshot" of several parameters when the
alarm went active. Tags can have multiple alarms configured on them, meaning that it's possible for
multiple alarm events to be created from a single value change on a Tag.

Alarm Events and Their States

The state of an alarm event is determined by two conditions

Active Condition

Determines if the alarm is active, or "live".

All alarm events start with an Active condition, and then move to a Cleared condition. Alarm events never
transition from Cleared to Active. Instead, a new alarm event would be created should the value on a tag
meet the setpoint criteria.

Active - The alarm event is still active. Meaning, the value on the source tag still meets the
setpoint configured on the alarm. If the alarm is used to signal that there's a problem, then the
active condition means the problem is still active.
Cleared - The alarm event is no longer active. The value on the source tag no longer meets the
setpoint configured on the alarm.

Acknowledged Condition

Alarms feature an Acknowledgement functionality. Acknowledgement is simply a flag that can be marked
on an alarm event. Commonly the acknowledged condition is used as a way for users to signal to other
users that an alarm is being handled.

Imagine a scenario where multiple operators are monitoring any alarm events that occur.
Acknowledgement allows an operator to "claim" an alarm, signaling to the others that the event is being
handled by someone.

Alarm event acknowledgement is generally handled by either the Vision or Perspective Alarm Status
Table components, or the function. system.alarm.acknowledge

Unacknowledged (Unacked) - The alarm event has not yet been flagged as "acknowledged".
Acknowledged (Acked) - The alarm event has been flagged as "acknowledged".

Alarm Event States

The two conditions above are combined form the state of an event. The four possible states are:

Active and Unacknowledged
Active and Acknowledged
Cleared and Unacknowledged
Cleared and Acknowledged

On this page ...

Alarm Events
Alarm Events and Their States

Alarm Shelving
Alarms in Transaction Groups
Configuring Alarms
Monitoring Alarm Status
Alarm Count Tags
Viewing Alarm History
Alarm Notifications

On-Call Rosters
Alarm Notification Pipelines

Alarm Shelving

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418611#Alarming-MonitoringAlarmStatus
https://legacy-docs.inductiveautomation.com/display/DOC81/system.alarm.acknowledge

Shelving an alarm tells the alarm system that it should ignore the alarm, preventing new alarm events from being created. Shelving always has a
duration associated it. At the end of the shelving period, the alarm will evaluate it's source tag, potentially creating a new alarm event. Shelving is
useful to temporarily ignore an alarm for a period of time, such as maintenance periods.

Shelved alarms will not generate alarm notifications. In addition, shelving an alarm will hide all alarm event for that alarm from the Vision and
Perspective Alarm Status Table components.

Alarms in Transaction Groups

OPC items in Transaction groups can also have alarms configured on them, similar to tags. This functionality exists mostly for legacy reasons, and
offers no real benefit over configuring alarms on a Tag instead.

Configuring Alarms

Alarm configuration in Ignition is flexible and highly customizable to your needs. You can configure alarms with one alarm on a Tag or multiple alarms
on a Tag. You can add alarms in UDTs so every instance of that Tag will automatically have alarms configured when a new instance of your Tag is
created. You can use the alarm settings to create alarms that equal or don't equal a setpoint, above or below a setpoint, between setpoints, outside
setpoints, dynamic setpoints, out of range, bad quality, etc. Alarms can be configured for any alarm condition imaginable.

More information about configuring alarms can be found in and pages.Alarming Properties Configuring Alarms

The image below shows an alarm configured on an OPC Tag. You can see that an alarm has quite a few properties including alarm mode settings
where you can set specific alarm attibute values.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Properties#TagProperties-AlarmingProperties

Monitoring Alarm Status

Alarms can be monitored from and using their respective Alarm Status Table components. In addition, the Vision Perspective system.alarm.
 function can be used to retrieve realtime alarm status. queryStatus

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/system.alarm.queryStatus
https://legacy-docs.inductiveautomation.com/display/DOC81/system.alarm.queryStatus

Alarm Count Tags

Ignition provides a set of to view information about the Ignition server which includes four Tags that count the number of alarms in each System Tags
state. A quick way to see if any alarms are currently active and get an alarm count is to add a Label component on the Navigation window. The four
system alarm states are:

Active and Unacknowledged
Active and Acknowledged
Clear and Acknowledged
Clear and Unacknowledged

In the of the Designer, scroll down to the folder. Tag Browser System > Gateway > Alarming These system Tags can easily be used to visualize all
alarms in the system.

Viewing Alarm History

The stores historical information about alarms in a database. It stores basic data about alarms that have occurred, such as their source Alarm Journal
and timestamp, associated data on an alarm, and the values of an alarm's properties at the time the event occurred. It captures all status changes for
each alarm to an external SQL database of your choosing. To begin viewing alarm history, all you need to do is create an in the Alarm Journal Profile
Gateway webpage.

Like the Alarm Status Table, both and have components that can be used to view entries in an Alarm Journal. Vision Perspective

Alarm Notifications

Alarms can also generate notifications that are delivered to users allowing Ignition to immediately communicate events and problems to your users.
Alarm Notification Pipelines control how and when notifications are sent to users. You can select the delivery channel for how alarms are sent: , Email S

, or . The notification system has access to Ignition's Authentication Profiles so users can easily be added to notification . MS Voice On-Call Rosters Sch
 can be created allowing users to receive notifications only when on-schedule, so there is no need to worry about notifying a supervisor or edules

manager when they are not on-site, or if it's in the middle of the night. Pipelines coupled with on-call rosters and schedules allow you to build your own
custom alarm notification process.

On-Call Rosters

The On-Call Roster is a collection of users that are notified when an occurs. When an is triggered, a notification is sent to a designated alarm alarm On
 where it evaluates the users schedules, and only notifies those users that have an active schedule. -Call Roster

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Journal#AlarmJournal-ToCreateaNewAlarmJournalProfile
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Email+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/SMS+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/SMS+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/Voice+Notification+Profile
https://legacy-docs.inductiveautomation.com/display/DOC81/On-Call+Rosters
https://legacy-docs.inductiveautomation.com/display/DOC81/On-Call+Rosters

Roster Management from the Vision Client Window

Alarm Notification Pipelines

The feature is an innovative tool that lets you easily create routes for your alarms. By designing your own alarm notification Alarm Notification Pipeline
routing, you have control of what happens when an alarm goes active, when an alarm is sent out, and who receives the alarm notification.

The alarm notification pipeline has a simple drag-and-drop interface so you can build various types of alarm logic. Alarm notification pipelines can be
very simple to very complex. In this simple notification pipeline, when an alarm is triggered, the people listed in the On-call Roster are notified via
Email. If no one acknowledges the alarm in 20 seconds, the alarm notification is routed back to the same users listed in the On-Call Roster.

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines
https://legacy-docs.inductiveautomation.com/display/DOC81/On-Call+Rosters

In this more complex alarm notification pipeline, if an operator doesn't respond to the alarm after three attempts, the pipeline jumps it to another
pipeline (possibly an escalation pipeline).

 To learn more about building your own pipelines, go to .Alarm Notification Pipelines

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification+Pipelines

1.
2.
3.

Alarm Journal

By default, current alarm data is only stored in memory, and a finite number of events are retained for
each alarm. Fortunately, Ignition can easily be configured to store alarm data into a SQL database with
an Alarm Journal Profile. The journal can store basic data about alarms that have occurred, such as their
source and timestamp, associated data on the alarm, and the values of the alarm's properties at the time
the event occurred. The Alarm Journal is used by the component, and can be Alarm Journal Table
accessed through scripting functions and direct database queries.

The Gateway can have more than one Alarm Journal. Alarm Journals have options to filter which Alarms
are stored in the journal, therefore, by having more than one alarm journal configured on the Gateway, it
is possible to store some alarms in one journal, and different alarms in another journal. Once configured,
the journal can be accessed by the component, scripting functions, or direct Alarm Journal Table
database queries.

Alarm Journals can store data in one of three ways, and store data indefinitely unless a Data Pruning
value is set:

In a database, using an existing database connection from the Gateway
Remotely, using another Ignition Gateway's Alarm Journal profile
Internally, storing alarm information into the Ignition install directory

It is strongly encouraged to set a Data Pruning value for Internal Alarm Journal Profiles. Otherwise, it
could cause your computer to run out of hard drive space.

Note: You must have an Alarm Journal Profile created and have a valid connectiondatabase to use the
Alarm Journal Table.

Creating an Alarm Journal Profile

In Ignition, an Alarm Journal stores historical information about alarms in a database. It can store basic
data about alarms that have occurred, such as source and timestamp, along with associated data on the
alarm, and the values of the alarm's properties at the time the event occurred. You can choose to store
your alarm data on an external database or automatically send it to a remote gateway's Alarm Journal to
be logged. Both options are described in the sections below.

Create a single Alarm Journal Profile to store all of your alarms, or create multiple journals to store
alarms across multiple databases. Each journal stores alarms based on the filters you set up and can
prune data automatically after a set time limit.

On this page ...

Creating an Alarm Journal Profile
Create an Alarm Journal to
Log Events to an External
Database

Remote Alarm Journal Profile
Creating a Remote Alarm
Journal Profile
Create an Internal Alarm
Journal to Log Events Locally

Alarm Journal Component
Journal Properties

Table Definitions

Create Alarm
Journal Profile

Watch the Video

Create an Alarm Journal to Log Events to an External Database

Go to the section of the Gateway webpage.Config
Choose from the menu on the left. Alarming > Journal
Look for the blue arrow and click on . The Alarm Journal Profiles screen will be displayed.Create new Alarm Journal Profile...

https://docs.inductiveautomation.com/display/DOC81/Database+Connections
https://www.inductiveuniversity.com/videos/create-alarm-journal-profile/8.0/8.1

3.

4.

5.

You have the option of logging alarm journal events to an external database, logging locally, or sending them to a remote gateway's Alarm
Journal. In this example, select , and click Database Next.

Enter the of your alarm journal profile. The default name is 'Journal.' Most of the fields have default settings. Refer to the Name journal
 below for setting descriptions, and update as necessary. Click the button at the bottom properties table Create New Alarm Journal Profile

of the page. Once completed, the tables will be created for you once an alarm event occurs.

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418173#AlarmJournal-JournalProperties
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418173#AlarmJournal-JournalProperties

5.

1.

Note: If you only have one journal specified on your , then you do not need to specify the journal name on the Journal Name alarm Gateway
property. Ignition will set this for you. If you have more than one alarm journal created, then you need to provide the name of the journal
you'd like to query in the Journal Name component property of the Property Editor.

Remote Alarm Journal Profile

Utilizing the gateway network, remote alarm journal profiles allow one Ignition gateway to sent local alarm events to a remote gateway for journal
logging. This type of profile is useful in cases where alarm events need to be recorded by multiple alarm journal profiles. In addition, this type of profile
is useful in as it allows the hub to record the alarm events from each spoke.Hub and Spoke architectures

Creating a Remote Alarm Journal Profile

Just like configuring alarm journal events to be logged into a database, it is done from the Gateway Webpage, .Config > Alarming > Journal

https://legacy-docs.inductiveautomation.com/display/DOC81/Hub+and+Spoke+Architecture

1.

2.

3.

4.

To have your alarm journal events automatically sent to a remote gateway's alarm journal, select Remote, and click Next.

A list of known Gateways will be displayed. If you don't see a gateway that you expected to see, check your Gateway Network settings to
verify that the connections are valid. You also have the option to specify a gateway manually. This example selects a valid gateway. Click Next
.

If an Alarm Journal exists on the remote gateway, the fields will automatically populate. The name of the gateway and the Alarm Journal
Profile name will appear in the Name field prefaced with the alarm journal profile name,(i.e., Ignition_Test_Journal), as shown in the following
example. Click Create New Alarm Journal Profile.

You will receive a successful message stating your new Alarm Journal Profile was created.

Remote Gateway Alarm Journal Properties Table

1.
2.

3.

Main

Name The default name, is the name of the Remote Gateway and Alarm Journal.

Enabled By default. The journal profile is enabled.

Description Description of the journal profile. Optional

Query Only

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

If set to true, allows the alarm journal to opt out of being used for storage. When set to true, all alarm events will be discarded by
the given journal.

Remote Gateway

Gateway Name Name of the Remote Gateway.

Alarm Journal Name of the Alarm Journal on the Remote Gateway.

Advanced

Use Store and
Forward

The following feature is new in Ignition version 8.1.23
 to check out the other new featuresClick here

If enabled, alarm journal events will be stored through the Store and Forward system. If not enabled, they will be stored directly
against the remote Gateway. Default is true.

Create an Internal Alarm Journal to Log Events Locally

Ignition Gateways can now create an Internal Alarm Journal Profile that stores Journal entries locally. Go to the Gateway webpage, Config >
Alarming > Journal to create the Internal alarm journal profile.

Click on the the Create new Alarm Journal Profile... link.
Select to have your alarm journal events logged locally. Internal

Enter the name of your alarm journal profile and update any settings as required, then click . Next

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.23

3.

4. You will receive a successful message stating your new Alarm Journal Profile was created.

Internal Alarm Journal Properties Table

Main

Name The default name, is the name of the Remote Gateway and Alarm Journal.

Minimum Priority Only events equal to or greater than the specified priority will be stored.

Description Description of the journal profile. Optional

Stored Shelved Events If enabled, events generated by "shelved" alarms will still be written to the journal system. Default is false.

Enabled By default. The journal profile is enabled.

Alarm Journal Component

The Vision and Perspective modules feature built-in components that can automatically retrieve events recorded in an Alarm Journal. See Vision -
 and for more information.Alarm Journal Table Perspective - Alarm Journal Table

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+-+Alarm+Journal+Table

Journal Properties

Main

Name The default name is Journal.

Datasour
ce

Events are stored to this datasource. (Only available on Database type profiles)

Enabled By default. the journal profile is enabled.

Descripti
on

Description of the journal profile.

Query
Only

When enabled, the alarm journal will not store alarm events.

Use
Store
and
Forward

Enabled by default, which means the alarm journaled events will be stored through the . If not enabled, Store and Forward system
they will be stored directly against the database. This system protects data from being lost due to temporary database
connectivity issues. (Only available on Database type profiles)

Events

Minimum
Priority

Only events equal to or greater than the specified priority will be stored. The default is Low. You can set the priority to be:
Diagnostic, Low, Medium, High, and Critical.

Store
Shelved
Events

Not enabled by default. If enabled, events generated by "shelved" alarms will still be written to the journal system.

Store
Enabled
&
Disabled
Events

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

When enabled, events generated by enabling or disabling alarms will be stored in the journal. This includes cases where the Ena
bled property on an alarm is toggled, as well as cases where a Tag's Alarm Eval Enabled property is changed. This property
additionally relies on setting the Perspective/Vision Alarm Journal Table properties for the enabled and disabled events.

Event Data

Static
Config

By default, it is not selected. If selected, will store the values of static alarm configuration. That is, the alarm properties that are not
 bound. These do not change during evaluation, only when a user modifies them in the Designer, and so they are not stored by
default.

Dynamic
Config

If selected, will store the values of dynamically bound alarm configuration properties. The value of these properties can change at
any time, and the values at the time of the alarm are captured on the alarm event.

Static
Associat
ed Data

If selected, will store the values of non-bound associated data (properties created by the user) properties on alarm that do not
change during execution.

Dynamic
Associat
ed Data

If selected, will store the values of dynamically bound associated data (properties created by the user) properties.

Data Filters

Note:

The following three properties interact via logical AND, meaning an alarm must meet the criteria for all three for it to be logged in the Journal.
Thus, if you supply values for all three Data Filter properties, then an alarm must match the , , and Filter by Alarm Source Filter by Display Path F

properties.ilter by Display Path or Source

Example: If a journal has values for all three properties, and an alarm only meets the requirements for and Filter by Alarm Source Filter by
, but not , then the alarm will not be logged to the Journal.Display Path or Source Filter by Display Path

If you want to filter on both the Display Path and Source Path, you would want to use only one of the two following approaches:

Filter by Alarm Source and Filter by Display Path
Only use Filter by Display Path or Source

It is recommended to avoid using all three properties simultaneously on the same Journal.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

Filter by
Alarm
Source

Only events matching the source will be stored. Multiple sources to match can be comma separated. Leave blank to store events
from all sources.

Filter by
Display
Path

Only events matching the display path will be stored. Multiple display paths to match can be comma separated. Leave blank to
store events from all display paths.

Filter by
Display
Path or
Source

Only events matching the display path, if defined, will be stored. Multiple matches can be comma separated. If no display path is
defined, only events matching the source will be stored. Leave blank to store all events.

Data Pruning

Enable
Data
Pruning

If selected, data will be deleted after the specified time period as set by the Prune Age and Units below. Default is false.

Note:
Since the data is stored directly in a database, an administrator is free to manually delete data at any time.

Prune
Age

The number of Prune Age Units to store data for. i.e., 1 year, 5 hours, etc. The default is 1.

Prune
Age
Units

The type of Prune Age Unit. Default is Years. You can choose the unit to be Milliseconds, Seconds, Minutes, Hours, Days,
Weeks, Months, or Years.

Advanced

These settings let you specify your own table names. This is especially useful when trying to use multiple alarm profiles
within a single database (not common, but can happen, especially with multiple systems sharing a single database).

Table
Name

The table name for the core event table. The default is .alarm_events

Event
Data
Table
Name

The table name for event data associated with alarms. The default is .alarm_event_data

Table Definitions

The Alarm Journal system will automatically create the necessary tables for you, and scripting functions can be used to query the system without
having to know about the table structure. However, understanding the structure of the Alarm Journal tables can be useful for accessing the data
in situations where SQL queries are more convenient.

Alarm Events ()alarm_events

This table stores the core data for each event that occurs. An event is a transition for an alarm between active, cleared, or acknowledged. Additionally,
other events may be stored in this table that aren't directly related to an alarm, such as a system shutdown event. This table defines a primary key
"id", that is used as a foreign key by the Alarm Event Data table, which stores additional information for each event.

Column
Name

Data
Type

Description

id integer A unique integer id for each event entry event

eventid string The UUID of the alarm event.

source string The qualified path of the entity that generated the alarm event. See below for more information about qualified paths.

display path string The value set for the "Display Path" of the alarm. Generally a user defined, friendlier version of the source.

priority integer The priority or severity of the alarm:

0: Diagnostic
1: Low
2: Medium
3: High
4: Critical

eventtype integer The type of transition represented by this event:

0: Active
1: Clear
2: Acknowledgement

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

The following values were added in 8.1.8

4: An alarm was enabled
5: An alarm was disabled

eventflags integer A numeric bitmask flag field providing additional information about the event.

Bit 0: System Event - One of the designated system events. (System Startup, System Shutdown)
Bit 1: Shelved Event - The alarm was "shelved" at the time that the event occurred. Shelving alarms does not prevent
execution, so if the journal is configured to store shelved events, they will be stored even if they're not sent to the
notification system, or shown to users.
Bit 2: System Acknowledgement - When the "live event limit" (defined in general alarm settings) is exceeded, the system
will automatically acknowledge overflow events, and the acknowledgment event will have this flag set.
Bit 3: Acknowledge Event - The event was acknowledged at the time of the event. For events that are cleared after being
acknowledged.
Bit 4: Cleared Event - The event was cleared at the time of the event. For alarms that are acknowledged after being
cleared.

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

The following bit was added in version 8.1.8:

Bit 5: Enabled - Signifies that the enabled state on the alarm was changed.

eventtime datetime The time of the event.

Alarm Event Data (alarm_event_data)

This table stores the properties associated with an alarm event. The individual event is referenced through the column, against the alarm event ID
table.

Column
Name

Data
Type

Description

id integer The id that corresponds to the alarm event in the alarm_events table.

propname string The name of the property. May be one of the common alarm properties (a configuration setting), or the name of an
associated data property.

dtype integer The data type of the property, indicating which data column should be used:
0: Integer
1: Float
2: String

intvalue,
floatvalue,
strvalue

integer,
float
(double),
string

The corresponding value columns for the property. Unused columns will
receive "null" values.

Qualified Paths

A qualified path in Ignition is a path to an object, described by various annotated components. Each component has a type identifier and a value,
separated by a colon (), and each component is separated by colon-forward slash (). For example, an alarm is identified by . : :/ alm:Alarm Name
It usually exists under a Tag, in which case, its fuller path would be . Paths can be built up further depending tag:Path/To/Tag:/alm:Alarm Name
on the level of specificity required by the situation.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

Configuring Alarms

Alarms are conditions that are evaluated when the value of the Tag changes. When the condition
becomes true, the alarm is said to be . When it becomes false, the alarm is said to be . active clear
Alarms may also be . This flags the alarm in Ignition so the acknowledgement state of acknowledged
each alarm can be made visible throughout Ignition.

Alarms can be configured on Tags or OPC items in . You can also put SQL Bridge (Transaction Groups)
alarms on that Ignition inherently provides such as the Gateway Performance and CPU System Tags
Usage.

Note: Dataset type tags are not supported by the Tag History system.

Alarm Names and Forward Slashes

Alarm names can make use of forward slashes ("/"). However the alarm name property throughout
Ignition is designed to only show characters after the rightmost forward slash. Assume you name an
alarm with the following:

one/two/three

The alarm name property (as seen on the various alarm table components, Tag Browser, and various
alarm scripting functions) will omit "one" and "two", leaving the alarm name as:

three

This behavior can be confusing, but is easily avoided by not using forward slashes in alarm names.

Alarm Properties

Similar in concept to properties on Vision components, alarm settings, also known as alarm properties,
allow you to modify the behavior of each alarm. Each alarm will have its own alarm properties such as a
unique Name, Priority, Display Path, Notes, and many other properties, some of which are
optional. Descriptions of each alarm property can be found on the page.Tag Alarm Properties

Aside from viewing alarm properties from the Tag Editor, you can also examine them from the Tag
Browser. If you expand a tag that has an alarm on it, you'll find an item:Alarms

On this page ...

Alarm Names and Forward
Slashes
Alarm Properties

Alarm Modes and Setpoints
Alarming on Individual Bits
Deadband and Time Delays
Associated Data

Configuring Alarms
Configuring an Alarm on a
Memory Tag
Configuring Alarms on Tags in
a UDT
Configuring Multiple Alarms
on a Single Tag

Alarm Property Bindings
Alarms in Transaction Groups

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58597803

From here we can expand the item. We'll find several data points that represent the state of any Alarms
alarms on the Tag. In addition, can find runtime information for each alarm on the Tag. In the image
below, the Tag has an alarm named " ". We can expand that tag to learn more about that Ramp high
alarm.

These sub properties are simply attributes on a tag, so Tag Bindings can be used to retrieve their
realtime value. In the image below, we see a Perspective Tag Binding pointing to the attribute of an State
alarm.

The following feature is new in Ignition version 8.1.5
 to check out the other new featuresClick here

Alarm setpoint properties and the Enabled property can now be modified directly from their attributes on
the tag. This means component property bindings and scripts can change the setpoint or enabled state of
an alarm during runtime.

Alarm Modes and Setpoints

There are many different conditions that can be set up on an alarm. Alarm Mode Settings is where you
define the actual conditions when the alarm goes 'true.' Some of the various Alarm Modes are shown in
the image below.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.5

1.

2.

3.
4.

5.

Each alarm is configured with one mode, and usually one or more Setpoints. determine the Modes
method in which alarm activity is evaluated, while Setpoints are the thresholds or limits that determine
when a Tag is within the alarm state. Both properties work in together to determine when alarms become
active, as well as when they are cleared.

For example, when Mode is set to "Above Setpoint", the Setpoint attribute is compared to the Tag's
value. When the Tag value is above the the Setpoint value, the alarm becomes active. Once the value of
the Tag is less than the Setpoint value, the alarm will transition to a cleared state.

For a complete list of Alarm Modes and their descriptions, refer to the on the Tag Alarm Reference Table
Properties page.

Alarming on Individual Bits

Additionally, alarms can become active by bit state. A common practice for PLC programming is to store
alarm conditions as series of bits inside the PLC and expose them to the world as an integer value. Each
bit is essentially a binary value. A series of 8 bits, for example, could be represented as an 8-bit integer.
This integer value can be monitored by Ignition's OPC-UA server as an integer value as a Tag. This Tag
can then have as many alarms as the integer has bits by monitoring the integer's bit state. Using the Bit
Position Mode, multiple alarms in Ignition can be configured to monitor the state of each bit.

The following table shows binary and decimal equivalents:

Binary Decimal

10001110 142

In this case, the Tag would be an integer with a value of 142. This Tag would have eight alarms. Each
one of these alarms become active in accordance with its Boolean value.

Create Alarms on an Integer Tag Value

Edit a Tag that has an integer value.

Scroll down to Alarms, and next to click on the icon to create an alarm.'No alarms,' Edit

Click the icon to add a new alarm to the Tag.Add
Fill in the appropriate properties, for example, enter the , and other properties as Name, Priority
appropriate.
From the section dropdown, select and enter a value for the . Mode Bit State Bit Position

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties#TagAlarmProperties-ReferenceTable

6. Click to save the alarm. Repeat the same process for the remainder of the bits.Commit

Deadband and Time Delays

The value for the deadband is interpreted by the Deadband Mode. All alarms are only evaluated the after
's value changes, which means that the 's own will be considered first. When the Tag Tag deadband deadb
 is positive, an active condition needs to clear its setpoint(s) by the amount of the for and alarm deadband

the to clear.alarm

For example, suppose we have a "Between Setpoints" with a Low Setpoint of 45 and a High alarm
Setpoint of 65, and with a D of 3. The will go active if the value is between 45 and 65, but eadband alarm
will only clear if the value falls below 42 or rises above 68.

In other situations, a Tag may frequently enter and leave an alarm state, but only for a brief moment.
Normally an alarm would be generated each time the alarm condition was met, but the attriActive Delay
bute will prevent any alarms from being generated until the value on the Tag has stayed in an alarm state
for a set period of time.

To learn more about deadband and time delays, refer to the on the Tag Alarm Reference Table
Properties page.

Associated Data

You can extend the list of alarm properties by adding your own or custom properties to an alarm you already have configured. These Associated Data
values can be static or dynamic. Static properties are excellent for filtering alarms. Dynamic properties can be driven by another Tag, or evaluated with
an expression. Regardless of the type, the Associated Data property values will be attached to the alarm event, viewed in , and recorded in real-time
the system. Alarm Journal

Configuring Alarms

Alarms can be configured on any Tag type: Memory Tag, Query Tag, Expression Tag, as well as Tags
inside of a UDT.

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Alarm+Properties#TagAlarmProperties-ReferenceTable
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarming#Alarming-HowtoMonitorAlarmStatus

1.

2.

3.

4.

5.

6.

7.

Configuring an Alarm on a Memory Tag

Let's use a simple Memory Tag with an Integer data type and create an alarm.

In the Tag Browser, double click a memory Tag (i.e. Level) to open the . Tag Editor

Scroll down to Alarms, and next to click on the icon to create an alarm, 'No alarms,' Edit
and the alarm UI will slide in from the right.

Click the icon in the bottom left corner of the window, or double click item tAdd New Alarm
o add a new alarm to the Tag.
Configure the following alarm settings:
Name: Fault Levels
Priority: Critical
Alarm Mode: Outside Setpoints
Low Setpoint: (when the Low Setpoint is below 20, an alarm is triggered)20
Low Inclusive: (alarm is triggered when the low setpoint is equal to 20 or below)true
High Setpoint: (when the High Setpoint is above 85, an alarm is triggered)85
High Inclusive: (when the High Setpoint is equal to or above 85, an alarm is triggered)true

Click to save your alarm, or to cancel.Commit Revert

Click to save your Tag edits.OK

Ignition will start monitoring the alarm immediately. Notice that the Alarm icon will appear in
the column of the Tag Browser next to the name of the Tag. This means that at least one Traits
alarm is configured on this Tag.

Configure an Alarm

Watch the Video

https://www.inductiveuniversity.com/videos/configure-an-alarm/8.0/8.1

7.

1.
2.

3.

4.
5.

6.

7.

Configuring Alarms on Tags in a UDT

Alarms can be configured on Tags inside a UDT so when you create instances of that UDT, the alarms
will automatically be configured.

In this example, we have a Motor UDT that contains two Tags: Amps and HOA. Let's configure an alarm
on the Amps Tag.

In the , double click on a UDT (i.e., Motor) to open the . Tag Browser Tag Editor
In the Type Structure area, click on a Tag (i.e., Amps).

Scroll down to Alarms, and next to click on the icon to create an alarm.No alarms, Edit

Click the icon.Add
For this example, we entered the following:
Name: Low Amps
Priority: High
Alarm Mode: Below Setpoint
Setpoint: 30
Inclusive: (an alarm is triggered when the low setpoint is equal to 30 or below)true

Click to save your alarm.Commit

Click to save the UDT. Now you're ready to create instancesOK of the UDT. Once you create
your UDT instances, Ignition will start monitoring the alarm immediately.

Note: The Alarm icon will appear in the column of the Tag Browser next to the name Traits
of the Tag in the UDT instance. (Notice how you see the name of the Motor UDT next to the
Amps Tag of the Motor 6 instance.)

Updates to the UDT and Overriding Alarm Settings

If the alarm in the UDT is updated, the instance will automatically receive the updates and be refreshed.
It's not uncommon that you may need to make alarm attribute values unique for particular instances, in
which case, you can override alarm settings. Click the override button on the alarm UI of the Tag Editor
making it green and edit the alarm properties and/or their values To learn more, refer to Overriding
Properties in UDT Instances.

Configure Alarm in
UDT

Watch the Video

https://www.inductiveuniversity.com/videos/configure-alarm-in-udt/8.0/8.1

1.

2.

3.
4.

5.

6.

Configuring Multiple Alarms on a Single Tag

Tags can have multiple alarms configured, each with unique setpoints and other configurations. The number of alarms that you can configure is
virtually unlimited and will never exceed the bounds of reasonable design consideration. Adding additional alarms is just as easy as adding the first

alarm. Simply click on the icon in the alarm UI and start configuring the new alarm. This way separate alarms can monitor different setpoints, Add
so Tags can have alarms for high setpoints and low setpoints.

Alarm Property Bindings

Many alarm properties are bindable, which means they can be bound to other Tags in the system, expressions and even a UDT parameter. For
example, you might bind the Enabled property to another Tag which represents whether or not your process is running, thereby disabling the alarm
when production is stopped. Or, you might bind the setpoint of an alarm to a Tag that operators can manipulate, thereby letting the setpoint be
changed at runtime.

This example shows how to bind an alarm property from the Tag Browser in Perspective.

Double click on your Tag to open the .Tag Editor

Click on the icon next to to see your configured alarms. (If you don't have any alarms, create an alarm using Edit Configured Alarms
the steps in the .)Configuring an Alarm on a Tag
Select the alarm and the screen will refresh with all the alarm properties.
From here, find the alarm property you want to add a binding to and click on the binding icon. The binding UI will slide in from the right.

Select the binding type (, , , or , if applicable). The image below shows an example of an No Binding Tag Expression UDT Parameter
Expression binding. Notice that the expression can reference many useful values such as the Tag's value and other settings of the alarm.
Enter your expression.
Once you configured the binding to your liking, click , or if you decide to cancel.Commit Revert

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418815#ConfiguringAlarms-ConfiguringanAlarmonaMemoryTag

6.

7. Click to save the changes to the Tag.OK

For more information on property bindings see, and .Property Bindings in Perspective Property Bindings in Vision

Alarms in Transaction Groups

Alarms can also be added to OPC items in Transaction Groups. This means alarms can be used without ever creating a Tag in Ignition. Simply edit an
OPC item, and an Alarming section will appear in the Tag Editor window. From here, adding an alarm to the item is similar to adding an alarm to an
Ignition Tag.

https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Vision

1.

2.

3.
4.

5.
6.

7.

8.
9.

10.

Dynamic Alarm Attributes

Dynamic Setpoints

You can configure alarms with dynamic setpoints inside of a Tag definition. It is similar to configuring an
alarm, however, configuring an alarm with a dynamic setpoint requires additional Tags to serve as these
setpoints. A good example of this is when an operator changes a high or low setpoint, it also changes
how the alarm is evaluated.

To Configure Dynamic Setpoints on an Alarm

Suppose you want to alarm a Tank Level if it goes above or below a certain setpoint. Rather than
hardcoding a value in the high and low Setpoint properties, you can bind them to either a Tag in the
system or an Expression to make them dynamic. This example uses an OPC Tag called Tank Level, and
two Memory Tags called High SP and Low SP. The Tank Level will use the values in the Memory Tags
as the high and low setpoints. Let's alarm the tank level when the setpoint goes above 85 and below 20.

Create two Memory Tags calling one with value of 85, and another one called High SP Low SP
with a value of 20.
Use an OPC Tag and rename it to . Click on the Tag to open the .Tank Level Tag Editor

Scroll down to Alarms, and click on the icon next to your alarm to open the Alarm UI.Edit
If you don't have a configured alarm, you will need to create one. Select the configured alarm
that you want associate a high setpoint with. (This examples uses the alarm).High SP
Under Alarm Mode Settings, set the Mode to .Above Setpoint
Click on the icon for the property. You can select a or . binding Setpoint Tag Expression
(This examples binds the property to a Memory Tag that was created called). Setpoint High SP
Click the to commit your changes.Commit

Now let's configure the low setpoint. Create another alarm to associate with the low setpoint if
you don't have one.
Under Alarm Mode Settings, set the Mode to .Below Setpoint
Click on the icon for the property. You can select a or . binding Setpoint Tag Expression
(This examples binds the property to a Memory Tag that was created called). Setpoint Low SP
Click the to commit your changes. Commit
Click . Now, the tank alarm will be evaluated based upon the high and low setpoints of each OK
Tag.

On this page ...

Dynamic Setpoints
To Configure Dynamic
Setpoints on an Alarm

Dynamic Enabling and Disabling
Enabling Based on Machine
State
Enabling Based on Time of
Day

UDT Alarm
Dynamic Setpoints

Watch the Video

https://www.inductiveuniversity.com/videos/udt-alarm-dynamic-setpoints/8.0/8.1

11.

1.

2.

To test it, change the value of the Tank Level to 99, and you'll notice it actives the alarm.

Dynamic Enabling and Disabling

Enabling Based on Machine State

Allowing a dynamic condition to determine if an alarm is enabled or disabled is possible inside the
alarm's properties, like whether or not a machine is on. This example uses two Tags: one for the Alarm,
and one to determine the running state of the machine. Two conditions must be true for the alarm to
become active. The value on the alarm Tag must match the setpoint ('true' in the example below), and
the property must evaluate to 'true' driven by the value of the 'Machine On' Tag. Enabled

Select a that has the alarm you want to configure.Tag

To access the alarm properties, click on the icon next to your alarm to open the Alarm Edit
UI. Select an alarm or create a alarm if one doesn't exist. The alarm in this example is called
Machine 100 Alarm.

3. Click the icon for the property and bind it to a or an that evaluates a 'true' or 'false' binding Enabled Boolean Tag Expression
condition. This example uses a Tag called Machine On. Enter the to and the to Click .Mode 'Equal' Setpoint '1.' Commit

While you can configure dynamic values on any property that is showing the binding icon on
the right, some other properties (like Name) may also accept dynamic properties using
the {myParam} notation. We recommend against using Dynamic setpoints on these static
alarm properties because they will only evaluate on startup, not while the Gateway is running.

4. Click to save your changes. Now, the alarm will only be evaluated based upon the state of the Machine On Tag. Set the Machine to Commit
 or On 'true.'

5. In the Tag Browser, expand your Tag (i.e., Machine 100 Alarm), and you'll notice the is now active. As you can see, making the 'IsAlert'
Enable property dynamic based on another Tag in the system is extremely easy.

1.

2.

3.

4.

Enabling Based on Time of Day

There are occasions when you only want alarms to be evaluated at certain times of the day. In Ignition,
you can automatically enable and disable alarms for specific times of the day. This is typically achieved
by binding the alarm's Enabled property to a Tag or an Expression. (This example uses an Expression).

From the , select the on which you want to configure the alarm.Tag Browser Tag

To access the alarm properties, click on the icon next to your alarm to open the Alarm Edit
UI.
Select an alarm you want to place the binding on, or create a alarm if one doesn't exist. The
alarm in this example is called Machine 100 Alarm.
Bind the property to an expression that evaluates a 'true' or 'false' condition based Enabled
upon the current time. Click the binding button to the right of the Enabled property, and click on

tab on the top right of the screen, and enter your expression or copy and paste Expression
from the code block below, then click . Commit

In the expression language, there are various functions for dates that can be used. For
example, the following expression would return 'true' if the time is between the hours of 5pm
and 12pm, and return 'false' if it is not.

4.

5.

timeBetween(now(0), "5:00:00 pm", "12:00:00 pm")

Click again to save your edits. The alarm will only be evaluated when the system clock Commit
falls between the specified time.

1.

2.

3.

4.
5.

Alarms in UDTs

Configuring an Alarm on a UDT Member

The great thing about UDTs is that you configure it in one place, inside of the UDT definition, and every
instance of that UDT will automatically inherit that same configuration. The same concept works for
alarms on a UDT. If an alarm is configured inside a UDT, every instance of that UDT will automatically
have that same alarm configuration. Even if a new instance is created, it will automatically get that same
alarm configuration.

Configuring an Alarm on a UDT

This example uses a Motor UDT. The Motor UDT contains two OPC Tags: Amps and HOA. Let's
configure an alarm on the Motor UDT when the Amps setpoint goes under 25.

In the , go to the folder, and double click on a UDT (i.e., Motor UDT) Tag Browser Data Types
to edit the definition.

Select a Tag (i.e., Amps) and scroll down to Alarms, and click on the icon next to your Edit a
 to open the Alarm UI.larm

Click on the icon on the lower left side of the screen to create a new alarm. Enter an Add Al
, , , and . UDT configurations are set up the arm Name, Display Path Priority Mode Setpoint

same way as the normal .alarm configuration on a Tag

Click to save your alarm edits. Commit
Click to save your Motor UDT edits. Now, all instances of the UDT will have a similar alarm OK
setup, but each alarm can be unique to that UDT instance by changing the Below Setpoint
value.

On this page ...

Configuring an Alarm on a UDT
Member

Configuring an Alarm on a
UDT

Dynamic Setpoints in UDTs
Configuring Dynamic
Setpoints Inside a UDT

Configure Alarm in
UDT

Watch the Video

Display Path

Since you have multiple instances of a Motor, as in this example, you need to make
sure that the Display Path is unique for every instance, otherwise, every instance of
the UDT will have the same Display Path name, and the operator won't know which
Motor alarm to respond too. There are a couple of ways to address this. You can
leave the Display Path blank, in which case, Ignition will use the full Display Path to
the instance of that Tag, or you can bind a property to an expression involving a UDT
parameter (i.e., "Motor" + {MotorNumber}).

https://www.inductiveuniversity.com/videos/configure-alarm-in-udt/8.0/8.1

5.

1.

2.

3.

Dynamic Setpoints in UDTs

Instead of using a hardcoded setpoint, you can configure alarms with dynamic setpoints inside of a UDT
definition. It is similar to configuring a UDT alarm, however, configuring a UDT alarm with a dynamic
setpoint requires additional Tags to serve as these setpoints in all the deployed UDTs.

Configuring Dynamic Setpoints Inside a UDT

In the this example, we'll use the Motor UDT in the above section to create a inside the Memory Tag
UDT definition to serve as the setpoint.

In the , go to the folder, and click on your UDT to edit the definition. Tag Browser Data Types

Click the icon and select from the dropdown.Add Tag New Standard Tag > Memory Tag

Enter the of the Tag (i.e., HI SP) and a (i.e., 90). Click Name Value Apply.

UDT Alarm
Dynamic Setpoints

Watch the Video

https://www.inductiveuniversity.com/videos/udt-alarm-dynamic-setpoints/8.0/8.1

3.

4.

5.
6.
7.

8.

9.
10.

11.

In the area, select the Tag you want to associate with the dynamic setpoint (i.Type Structure
e., Amps)

Under Properties, scroll down to Alarms. Click on the icon next to Alarms.Edit
Click on the Add icon to create a new alarm for the high setpoint and call it "HI Amps".
Set the as and the as Click . Priority Critical, Alarm Mode Above Setpoint. Commit

Bind the property to the new UDT Memory Tag (i.e., HI SP). Click on the Setpoint binding
icon and you can either create an expression or use the UDT Tag Tab to select the Memory Tag
(i.e., HI SP). This example uses an expression as shown in the image below.
Click to save the expression. Commit
Click again to save your alarm edits.Commit

10.

11.

12.

Click to save all your UDT updates. Now you're ready to create instances of your UDT. OK All
of the UDT instances will now have Memory Tags that serve as alarm setpoints.
Test it out by dragging an Alarm Status Table component in a window and locating your alarm.

Related Topics ...

Configuring Alarms
Dynamic Alarm Attributes
UDT Multi-Instance Wizard

1.

2.

3.

Alarm Associated Data

What is Alarm Associated Data

Every alarm in Ignition has alarm properties associated with it as it moves throughout the system, like
active time, clear time, who acknowledged the alarm, time the alarm was acknowledged, priority, and
display path. You can extend the list of alarm properties by adding your own associated data or custom
properties to an alarm you already configured. Values can either be static or dynamic. Static properties
are great for filtering alarms. Dynamic properties will often be bound to other Tags or an expression.
Regardless of the whether a value is static or dynamic, these values will be attached to the alarm event
as it moves through the system, and the values will be available from the system, the Alarm Status Alarm

 system, and the system. Journal Alarm Notification

Note: Associated Data values are always saved as strings. You can typecast these values to any other
data type using bindings or through .Expression Scripting

It's easy to go back to an existing alarm and add associated data.

On this page ...

What is Alarm Associated Data
Creating Associated Data for
both Static and Dynamic
Properties

Alarm Grouping
Creating an Alarm Grouping

Creating Associated Data for both Static and Dynamic Properties

For this example you can use an existing alarm you already configured or if you don't have one. create a new alarm

Right-click on your Tag and select . This example uses a WriteableInteger OPC Tag, but any alarm-capable Tag will suffice. Edit Tag

In the , scroll down to Alarms, and next to 'No alarms,' click on the icon and click on your alarm. The Tag below already Tag Editor Edit
has an alarm named ' Low Tank Level.' Select the alarm to open the Alarm UI.

Click the icon above the alarm properties to add new associated data for the alarm. Scroll to the bottom of the property list, and Add
you'll see a new associated data property was added. By default, the new property name is called Double-click the property 'New Data.'
name to rename it to something more meaningful. In this example, make the associated data property a static value. We renamed ours to 'Sta

with a value of and press enter to submit.ticData' 'Folsom Plant'

https://legacy-docs.inductiveautomation.com/display/DOC81/Alarming#Alarming-HowtoMonitorAlarmStatus
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification
https://legacy-docs.inductiveautomation.com/display/DOC81/Type+Casting
https://legacy-docs.inductiveautomation.com/display/DOC81/Built-In+Functions#BuiltInFunctions-TypeCastingFunctions

3.

4.
5.

6.

Now, let's create another Associated Data property with a dynamic value. Click the icon above the alarm properties. Add
Scroll down to the bottom of the property list and rename your property to and bind it to a Tag using the 'New Data' 'DynamicData' binding

icon on the right side of the window. This example uses a Ramp0 OPC Tag.
Click the to submit the Tag selection, and then click to save your Tag edits. 'Commit' OK

7.

1.

2.

3.

4.

5.

When the alarm goes active, Ignition stores the values of the associated data with the alarm. You can view the details of the alarm in the Alar
 along with the new associated data properties. To view the of the alarm, check the box of the alarm you want to m Status Component Details

see, and click on the magnifying glass at the bottom of the window to open the Details window.

Alarm Grouping

Grouping alarms in Ignition is an important concept. Instead of seeing every alarm in a single view, often
times, you may want to view alarms for a particular area of your plant, or for a specific set of alarms.

There are a several ways to group alarms. One way is to use a folder structure which requires you to
organize your Tags into a hierarchy. Another way is to use the Display Path field in the alarm
configuration. The third way, and the most recommended way, is to use associated data. It's a common
design practice to associate alarm groupings on the associated data of the alarm.

Creating an Alarm Grouping

This example uses the WriteableInteger Tag that we used in the example above.

Use an existing alarm that you already configured. If you don't have one, . create a new alarm

Right-click on your and select . In the scroll down to Alarms, and Tag Edit Tags Tag Editor,

next to 'No alarms,' click on the icon and click on your alarm. Click the icon aboEdit Add
ve the alarm properties to add new associated data for the alarm.

Scroll to the bottom of the property list, and you'll see a new associated data property was
added. In this example, make the associated data property a static value, and rename 'New

 to with a value that represents your Group (i.e., Production). Data' 'Group'

Click to save your alarm edits, and then press . The alarm will now always have the Commit OK '

 designation associated with it. This can be used for filtering or part of your alarm Group'
pipeline notifications.

Before you can use the Alarm Journal to filter on your new associated data property, edit the 'filt

 Extension Function to include your new associated data property by selecting the erAlarm' Alar
, and right clicking on . Under the folderm Journal component Scripting Extension Functions

Alarm Grouping

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Status+Table
https://www.inductiveuniversity.com/videos/alarm-grouping/8.0/8.1

5.

6.

, click on , then click on the checkbox to enable the script. Edit the script to filterAlarm Enabled
add your new associated property and property value. You can copy the new code below to add

 to your filterAlarm script.

filterAlarm scripting function

group = alarmEvent.get("Group")
if group == "Production":
 return True
return False

Now, you're good to go! Open the component and filter on your associated data. Alarm Journal
The Alarm Journal Table shown below displays all the alarms that are associated with the
group, Production.

Related Topics ...

Configuring Alarms
Extension Functions
Alarm Status Table
Alarm Journal Table

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Journal+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Extension+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Status+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Alarm+Journal+Table

Gateway General Alarm Properties

The alarm system has several settings available on the Gateway's web interface. These properties can be found under the Config > Alarming >
General

Note: The General Alarm Settings page is not available on Edge gateways.

Alarm Evaluation

Live Event
Limit

Default is 5. The number of "live" events (active or unacknowledged) that can exist for a single alarm at a given time. When
surpassed, older events will be acknowledged automatically by the system. This means as an alarm cycles on and off, Ignition will
keep track of the last five times the alarm event happened until the user acknowledges them. This does not store history for those
events.

Event Suppression

Continuous
Event
Detection
Window
(min)

Default is 10. The amount of time to store events before shutdown to prevent new duplicate events from being created on startup.
This setting prevents unacknowledged active events from being generated due to reboot. If set to 0, will not be used.

Notify Initial
Events

Default is false. If false, active alarms caused by the "initial state" (that is, the first value checked after being created, or after the
enabled state changes) won't be sent to the notification system. This means if you add an alarm to a Tag, a notification won't be
immediately sent when the new state is created.

1.

2.

3.
4.

Alarming Schedules

The alarm notification system uses schedules to determine which users should be notified about an
active alarm by looking at the users defined in the notification block. This means that notification
messages are sent only to active users based on the defined schedules.

You can set a schedule for each user in the alarm notification system and utilize to create on-call rosters
user groups. For example, suppose you have alarms that should be sent to all supervisors. You can put
all of the supervisors in one on-call roster and the scheduling system will automatically only notify those
supervisors who are on-shift (based on their individually set schedules) when the alarm goes active.

Define a New Schedule

Go to the tab of the Gateway Webpage and scroll down to Config Alarming > Schedules.

The Schedule Management page is displayed. Here you can see an Always and an Example
schedule.

The Schedule is a built-in schedule that is always available: 24/7/365.Always
The Schedule is an example of a M-F 8am-5pm schedule with a lunch break. Clicking Example

 will access the detailed settings.edit

Click on .Create new Schedule
For our example, we'll set up a new Standard schedule. Enter a schedule name, description,
and set the hours:
Name: Weekend Basic
Description: Regular Weekend schedule, no holidays
Observe Holidays: (Unselect this option)No
All days: (Unselect this option)No
Weekdays: (Unselect this option)No
Saturday: (Select this option)Yes
Sunday: (Select this option)Yes

On this page ...

Define a New Schedule
Manage User Schedules from
the Vision Client

User Schedules

Watch the Video

https://docs.inductiveautomation.com/display/DOC81/Notification+Block
https://docs.inductiveautomation.com/display/DOC81/On-Call+Rosters
https://www.inductiveuniversity.com/videos/user-schedules/8.0/8.1

4.

5. Click .Add Schedule

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

Note: If you want to ensure users are unable to log in when their assigned schedule is not active, you
can select the Schedule Restricted option for the user's corresponding User Source. The user will then
be denied any login access for attempts made outside active hours.

Manage User Schedules from the Vision Client

There are a few ways to manage user schedules from the Vision client. The first is to use the component on a window. This Schedule Management
component allows you to quickly and easily manage the schedules from the Vision client.

For more granular control, you may instead want to use scripting to manage the schedules. This may offer a more granular control at the click of a
button. There are a number of system functions that allow you to create, read, edit, and delete schedules or holidays from a user source using

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25
https://docs.inductiveautomation.com/display/DOC81/Classic+Authentication+Strategy#ClassicAuthenticationStrategy-MainProperties
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Schedule+Management

scripting. (i.e., system.user.addSchedule, system.user.getHoliday, etc.). To learn what system functions are available for user scheduling and holiday
scripting, refer to the System Functions in the Appendix.

This code creates a new schedule by using an old schedule but setting observe holidays to true.
mySchedule = system.user.getSchedule("WeeklySchedule")
if mySchedule != None and mySchedule.getType() == "basic schedule":
 mySchedule.setObserveHolidays(True)
 mySchedule.setName("NewWeeklySchedule")
 system.user.addSchedule(mySchedule)

Related Topics ...

On-Call Rosters
User Notifications

https://docs.inductiveautomation.com/display/DOC81/system.user.addSchedule
https://docs.inductiveautomation.com/display/DOC81/system.user.getHoliday
https://docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/On-Call+Rosters
https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Contact+Info

Localization and Languages

Translating Ignition

Localization allows you to translate text into multiple languages in a project for display on client screens.
The localization feature allows users located in different countries to set their default language so client
screens can be displayed in their native language. The user can easily choose which language their
Client displays with a click of a button! Text contained in components, that have their properties correctly
mapped with localization, will change to reflect the language the user has selected. There is a special Lan

 dropdown list that displays the available translation mapping options for these guage Selector
translations.

On this page ...

Translating Ignition
Translation Manager
Translation Database and Term
Lookup

Quickly Identify Fields to
Translatable Terms

Previewing Translations

Translation Manager

All translations are stored centrally in the Gateway and are distributed to each Client and Designer. All projects share the same translations, and those
translations can be used in other locations, such as Gateway scripts, and alarm messages. The full translation database can be viewed and edited in
the tool located on the Tools menu the Designer. Translation Manager

You can add new terms and phrases to the Translation Manager. Make your phrases as long or short as you like with single words or whole
paragraphs. It allows users to easily translatable components and share them across projects and with other users. It also has the import and export
ability to define new languages.

A central term database and support are automatically built in to all component text properties, as well as other text-based properties, such as alarm
messages. Aside from defining translations for terms, there is usually no other work needed to take advantage of the translation system.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector

Translation Database and Term Lookup

Terms are referenced in the translation database using direct string comparison. Ignition has special term that are used to identify when to Keys
translate text. The base term may be a user-readable string such as "Start", or any special code you want such as "START_COMMAND" or "#start",
which would have an alternate translation for English defined as "Start." This way you can quickly identify which terms will be translated when working
in the Designer. To keep things simple, the English key is automatically used if no match is found for the requested language.

Quickly Identify Fields to Translatable Terms

You can quickly and easily identify, and translate all terms by selecting a container from your Project Browser and opening the Translatable Terms
panel.

Note: If you don't see the Translatable Terms panel, go to the menubar and select View > Panels and check Translatable Terms. Here, you can
see all terms for each component in the container, and if each term has an associated translation for the requested language.

Previewing Translations

You can easily preview your translations in the Designer. To change the preferred language for Preview Mode, use the menu Preview Language
item under the menu in the Designer. When you put the Designer into Preview Mode, everything on your windows will be automatically Project
translated. Using the Language Selector Component or scripting can temporarily change the current language, and the language will revert back any
time Preview Mode is disabled. The Designer will remember your choice, even when the Designer is restarted.

In This Section ...

1.

2.

Creating Translation Lists

Project Translation Overview

Project translation is also known as Client localization. This is how the user can choose their language-of-
choice for the project they are working with. When the user selects a language, the Client will change its
text in accordance with the project's translation settings. Translations work with all components (i.e.,
Labels, Charts, or Multi-State Buttons).

The Translation Manager allows you to view all the terms from all your projects in the global translation
database. You can add, edit, and remove terms, and provide translations, as well as allow users to easily
import and export translatable components. The translation database shares terms across all projects
and with other users.

Setting up New Languages, Terms, and Translations

Setting up new languages and adding terms for translation is pretty easy. For every element of text on
the screen, you can provide a translation in the desired language. When a user logs into a project, they
can choose their preferred language, and all the text will be displayed in their preferred language. They
can also have their preferred language defined in so when a user logs into the Client, their user settings
preferred language is automatically enabled.

Component vs Global Terms

There are two types of terms used in the translation system: Component and Global. Both behave a little
differently, and it's important to know the difference.

Component Terms - Component level terms are specific to that one component, and
translations are added to the translation system using the Translatable Terms Panel. Any
component level translation will automatically take precedence in the event there is a matching
global term.

Global Terms - Global terms and translations are available in both the Translatable Terms
Panel and in the Translation Manager's global database. The global translation database
provides language translations on all components, in all windows, and on all projects. You can
set up global translations so that anywhere a term is used within your project, it will get replaced
with that global translation. Although, there are times, when a component might have a different
context than the global translation. For this reason, you may want to create a component level
translation to take precedence over the global translation. For example, some users may work
in a specific window of a project, and what is typically called a 'Tank,' this group of users refer to
it as a 'Barrel.' You can create a component level translation for 'Barrel' to take precedence on
the root container of a window. This way the users see the term in the context that is familiar to
them.

On this page ...

Project Translation Overview
Setting up New Languages,
Terms, and Translations

Component vs Global Terms
Add a New Language
Add Global Translation Terms
Add Component Level
Translation Terms

Translation List Import and Export
Export Terms from a Window
Import Terms

Introduction to
Project Translation

Watch the Video

Add a New Language

In Designer right click in your workspace and select from the dropdown. The Translatable Terms window will open., Translations

Select the icon, and click . By default, the English language is defined. Earth Add Language

Translation Notes

Text within Vision Table components (those under the) can not be "Table" group
translated. However the Vision Alarm Status Table and Vision Alarm Journal Table
components do support translations.
For Text elements that have bindings, the translation occurs after the binding is
evaluated.

https://www.inductiveuniversity.com/video/introduction-to-project-translation/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Tables+Palette

2.

3.

1.
2.

3.

Select a new language from the dropdown.

Add Global Translation Terms

Creating global translations is always a good first choice over the component level translation because most of your translated terms will be used
across all projects unless you want one particular term to be different from the global translated term.

There are a couple of ways to add terms to the Translation Manager. You can add new terms directly to the Translation Manager or by selecting terms
from the Translation Terms Panel.
Let's add some terms directly to the Translation Manager.

From the menu bar at the top, go to .Tools > Translation Manager
The Translation Manager window will open, and you can view all the translatable terms. This example has terms that were already added
and translated.
On the right side of the window, there is a list of icons where you can add, delete, import, export, and edit the Translation settings.

3.

4.
5.

6.

To add a new global term, click on the icon. Enter the term (Tanks), and click .Add Save
Double click on the row of the new term, and under Spanish translation, enter the word " ." Click . Deposito Save

To view all the global terms added to a project, go to If you want to provide a translation to a term that has Tools > Translation Manager.
not been translated, double click on the row of the term, enter the translation, and click . Save

6.

7. Now test it out. Drag a component to your window. Go into and toggle the languages. You will see the Language Selector Preview Mode,
languages for the text switch between English and Spanish for these two components.

Add Component Level Translation Terms

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Language+Selector

1.

2.

What's nice about adding component translation terms is that the Translatable Terms panel provides all the terms for that component on the
window. All you have to do is add the translations. The Translatable Terms Panel is a central place to manage all the translations associated with a
specific component. One important reason to use a component level term is if it is going to be different from the global term. Just remember, that
because a term is translated at the component level doesn't mean that other components get to use it. Typically, it is used for that component only.

In , drag a from the Component Palette in to your workspace. Designer Multi-State Indicator

Right click on the component and scroll down to . The Translatable Terms panel will open and display all the terms for the Translations
specific component. Alternatively, you can right-click on the Root Container of a window and select . The Translations Translatable Terms P

 will display all the terms for all the components on the window. anel

You'll see below, all the terms for the Multi-State Button, and none of the terms have translations added. If you don't see the language you

want your terms translated to, click the Earth icon , and select the language (i.e., Spanish). You will then see a column for your
component translation and global translation.

Component level translation terms are only available in Vision.

Translatable Term Options

In the Translatable Terms Panel, you have the option of adding your translation to the Component, Translation Manager global
database, or marking it for translation at a later time. You'll notice under the Component Terms section of the Translatable Terms
window that there are four columns; Component Description, Key, Component translation, and Global translation.

2.

3.

4.

To add translations for your component terms, double click the row of your term (i.e. ON). In the , enter the Spanish Component box
translation (i.e, EN). You also have the option of creating a global translation on the Translatable Terms Panel as well. Then, click the liBack
nk, and repeat this step for all your terms.

Once you entered the translations for all your terms, you will see them on the Translatable Terms Panel in the Spanish (Component) column.
If a term doesn't have a translation, you can select the term and mark it for translation by clicking the . This Earth with a green plus icon
adds the term(s) to the translation database for someone else to add the translation.

In this example, you'll notice several things about each of the terms so look closely at them. You'll find examples of both component and
global level terms, a component level term, a global term, a component term that overrides a global term, and terms marked for translation.

4.

5.

1.

To test it out, drag a component from the Component Palette to your workspace. Go to , select Spanish Language Selector Preview Mode
from the dropdown to see the text change from English to Spanish for these two components.

Translation List Import and Export

The ability to import and export terms and translations can be extremely important particularly to a large
project. It allows you disseminate terms and translations rapidly, send them to a third party for translation,
and keeps all related projects up-to-date.

Export Terms from a Window

Let's export some terms from the Translation Manager. In this example, you can see all the terms that
were added to the Translation Manager. You can export selected terms, or all terms from the Translation
Manager.

Go to Tools > Translation Manager. Select all terms or only specific terms to export. Click on the
 icon on the right side of the window.Export Terms Translation Manager

Import and Export
Translations

Watch the Video

https://inductiveuniversity.com/video/import-and-export-translations/8.1

1.

2.

a.
b.
c.

d.

e.

f.

The Exported Terms window will open. Enter the following information:

Select the location where you want to put your exported terms. Folder
Enter the . (File name of your exported terms).Base file name
Select the appropriate . You can have multiple languages selected Languages
depending on the number of language translations you are using (i.e., English,
Spanish, and French). This example exports two files: one for the English translation,
and one for the Spanish translation.
From the dropdown list, select either or . Both formats Format PROPERTIES XML
behave the same, the only difference is that the XML format supports UTF-8 encoding
directly. A person can now translate the XML file directly and import it back into
Ignition's Translation Manager.
From the dropdown list, choose either or . Terms Selected All

Click .OK

For Specific Terms

If you want to select specific terms to export, choose otherwise, 'Selected,' '
 terms will be exported from the dropdown list at the bottom of the All'

window.

2.

f.

3.

1.

Go to the folder location and check to see if your exported files are there. You will see one file
. Open the English exported file and verify that all the terms exported file for each language

you intended to export are there.

Import Terms

Go to Tools > Translation Manager, and select the icon from the right side of the Translation Manager window.Import Terms

1.

2.

3.

Navigate to the folder where your exported files reside, and choose the English file from the window, and click . Open Open

You have the option of importing selected terms or all terms. Click either or depending on what terms you want Import All Import Selected
to import.

Repeat this step to import each translation file. This example imports the Spanish translation file.

Imported Terms Overwrite Existing Terms

Be aware that existing terms will be overwritten by the imported term.

3.

4. Check to see that all your terms were imported into the Translation Manager by going to Tools > Translation Manager.

Related Topics ...

Switching the Current Language
Localization Best Practices

Switching the Current Language

Language Selection

Because Ignition has multiple visualization systems, each system has separate ways to switch the
current language.

Vision

In Vision, the language can be selected using the language selector dropdown before logging in to the
client, or can be added to the client in the form of the language selector component.

Perspective

In Perspective, the language is selected by changing the locale of the session by modifying the session.
props.locale. This can be written to using a script when the session first opens, or something can be
bound to it that the user can change.

Expression and Scripting Functions

You can look up translations using the following functions:

Expression Function
translate()

Scripting Functions
system.util.translate()
system.util.modifyTranslation() scripting functions.

Translations are matched by looking for the base language value in the translation database. This is
especially useful for message boxes and other warnings or errors that you show in your scripts.

On this page ...

Language Selection
Vision
Perspective

Expression and Scripting
Functions
System Considerations During
Translation

System Considerations During Translation

The inherent operating system may affect Ignition's ability to provide a complete translation in certain circumstances.

For example, suppose a user selected the Spanish option from their Language Selector component. An English to Spanish translation term exist for
the word "Information" as well as "Start." The message box script takes two parameters: one for the content while the other parameter is optional. If
the second parameter is not included in the function then the resulting title of the message box will include the English word "Information." The
following code is executed on a button clicked event handler.

message = system.util.translate("Start")
system.gui.messageBox(message)

What results is a message box with a translated content while the title remains in English. In addition, the accept button is translated as well even
though the English word for "OK" does not exist in the Translation manager. This is due to the system level translations that exist
for inherent language support.

A similar occurrence exist with the file open dialog window. The following code is executed on a button clicked event handler.

system.file.openFile()

The result is a translation for the title as well as the open and cancel buttons while the references to the "File Name" and the "Files of Type" remain in
the operating system's language and thus are beyond the scope of Ignition's ability to translate.

Similar occurrences will appear in print and error dialog boxes.

Localization Best Practices

Best Practices

Before you begin using multiple languages in your projects, we thought we would start you off with a few
best practices for using project terms and translations.

As you already know, there are global level translations which are available to all components and text
elements in both the Translatable Terms Panel and the global database, and component level
translations that are only specific to the component and only available in the Translatable Terms
Panel. It's good to understand a little about their behavior before investing a lot of manpower setting up
your translations only to find out down the road that you might set them up differently after you become
more familiar with them.

Global vs Component Terms

We recommend using global terms over component level terms because this way you will only have to
add your term once since global terms are shared across all windows and projects. This will save you a
little time from having to add the same term again if you discover that a component level term should
extend beyond the specific component and shared across all projects. The only time you would want to
use a component level term, is if you want it to be different from the global level term. This ensures that
the component level term will override the global term.

On this page ...

Best Practices
Global vs Component Terms
Using Codes
Using HTML for Text
Wrapping

Using Codes

It's a good idea to use codes for the Key field of your Terms for any descriptions that you want to translate.(i.e: #introduction or
#welcome_screen_info) so your global term won't ever accidentally translate on another window or component. (The is just for convention, and is '#'
not a special character). Using codes works particularly well for long text strings such as introduction paragraphs. One thing to be very careful of is if
you edit the codes in a minor way, it could potentially break the translation.

Here are a couple of examples:

The first example is of a Label component with a Key field of You'll notice the Label has global translation of and a component "#Barrel." "Tanque"
level translation of By using the the component level translation of was not overwritten by the global translation of by "Barril." "#," "Barril" "Tanque"
using the Here is what the translation looks like in and "#." Design Mode Preview Mode.

Where the component level term takes precedence

The always takes precedence when there is a matching global term.component level term

https://legacy-docs.inductiveautomation.com/display/DOC81/Creating+Translation+Lists#CreatingTranslationLists-ComponentvsGlobalTerms

The can also be used on components for text that you don't want accidentally translated. "#" This example uses the Multi-State Button
 component. The only way to change the states / words on the buttons (i.e., Hand, Off, Auto) is to use the Multi-State Button Customizer. Add the "#"

to the text on each of the three Keys so they don't get translated by global terms that have already been set up.

 Here's what the translations look like in and Design Mode Preview Mode.

1.

Using HTML for Text Wrapping

Another good practice is to use HTML to wrap text within your component's buttons, labels, etc.,. You can use it with translating terms that contain lots
of text. HTML is just a good way to wrap text to fit within a label and button components.

In the of a Label component, go to the property and give the Text a unique name (i.e., #Mytext).Property Editor Text

1.

2. Right click on the component, and click on . Double click on the row for Mytext. Enter the text as shown below for both Label Translations
the and English . Make sure you precede your text with Click the link. Spanish Global Global translations "<HTML>." Back

Mytext

#English
<html>This is some long text and I want to wrap it

#Spanish
<html>Este es un texto largo y quiero que se envuelva

2.

3.

Once in , your long text will be wrapped!Preview Mode

1.

2.

3.
4.

1.

Translating Built-in Terms

There are several built-in terms used by Ignition that are translatable. This
page contains the Keys that can be used to translate these terms.

Built-in Access Denied

When are configured on a window, the only restriction is , which prevents Security Settings Do Not Open
the window from opening based on User Roles. The text in this message box is not normally
configurable, but can be altered via translations using the following steps.

On this page ...

Built-in Access Denied
Screen Locked Message

Go to the top menubar in the Designer and select . This opens the Translation Manager window.Tools > Translation Manager

Copy the from the code block below, click the plus icon and paste it in the field. Click Key Add Item OK and you'll notice the code will be
displayed in the Key field.

The line below should be used as the Key.

Access Violation - Key

<HTML><P>ACCESS VIOLATION.<P>You do not have the privileges to open window '%
s'

Save your project.
When a user without the proper permission attempts to access the popup from the client, they will get the following message.

Using the same example from above, we modified a version of the text that appeared in the message box. We used the English (Alternate) as the
language where the name of the window is passed into the message box via the '%s' substring.

Copy the new message from the code block below.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+and+Window+Security

1.

2.

3.

1.

2.

Access Violation - Translated Term

<HTML><P>ACCESS VIOLATION.<P>Sorry! You're not allowed to access '%s

So sorry!'

 In the Transaction Manager window, double click the row for the and paste it in the field. Click .Key English (Alternate) Save

Save your project.

Now, our message box appears as the following when a user does not have the proper access.

Screen Locked Message

The built-in function in a can be used to lock the screen. In ssystem.security.lockScreen client timer script ome cases, you may wish to change the text
on the Screen Locked window. Use the following steps to change the text.

Open the Transaction Manger window.

Copy the from the code block below. Click the plus icon and paste it in the field. Click and you'll notice the code will be Key Add Item OK
displayed in the field. Key

Screen Locked - Key

<HTML><CENTER>This screen has been locked by
<u>%s</u>

https://legacy-docs.inductiveautomation.com/display/DOC81/system.security.lockScreen
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts

2.

3.

1.

2.

3.

Save your project. Now the Screen Locked window will appear as follows.

Building on the previous example, we can use the following key to translate the message on the Screen Locked window. The ' ' substring will %s
reference the username of the user currently logged in. In this example, we added a few line breaks, which will make the Screen Locked window
appear taller.

Copy the updated text from the code block below:

Screen Locked - Translated Term

<HTML><CENTER>This screen is now locked!

Either logout or type in the
password for :
<u>%s</u>

In the Transaction Manager window, click the row for the and paste it in the field. Click .Key English (Alternate) Save

3. Save your project. Now, the message on the Screen Locked window appears as follows.

Expression Language and Syntax

Expression Language

The language is used to define dynamic values for component properties and expression tagsexpression
. s often involve one or more other values that are used to calculate a final value. In most Expression
cases, expressions only return a value.

The classic example for an is to change a temperature that is stored in Celsius to Fahrenheit expression
in order to display it. Suppose you had a Temperature tag that was in Celsius. If you wanted to display
that tag in Fahrenheit on a Label, you would use an binding on the label's text property using expression
the following :expression

1.8 * {My Temperature Tag} + 32

Every time that the Temperature tag changes, the expression will re-calculate the value and push it into
the Label's text property. Now lets say that you wanted to append to the end of the label so that the °F
user knew the units of the temperature. You could simply use some string concatenation in your expressi
on, like this:

(1.8 * {Some Folder/Some Tag} + 32) + " °F"

For more information see Expression Bindings in Vision or Expression Bindings in Perspective.

On this page ...

Expression Language
Syntax

Literal Values
Operators
Bound Values
Dataset Access
Collection and Mapping
access
Expression Functions
Whitespace and Comments
Tag Paths

Additional Examples
String Concatenation
Celsius to Fahrenheit
Format Date
Date Manipulations
Bit Functions
Switch
Checking Conditions
Tag History

Syntax

As its name suggests, everything in the expression language is an "expression". This means that everything returns a value: 5 is an expression, so is 5
+1, and so are {MyTags/TankLevel} and {MyTags/TankLevel}+1. Expressions can be combined in many powerful ways. Lets take a look at how
expressions are written.

More formally, an expression is any one of the following:

Number
Boolean
String
Bound Tag
Bound property
Function call
Dataset access
Equation involving any of these

Literal Values

Literal values are things like numbers, booleans, and strings that are represented directly in the language. In the expression language, numbers can
by typed in directly as integers, floating point values, or using hexadecimal notation with a 0x prefix. Examples:

42
8.456
0xFFC2

Strings are represented by surrounding them with double or single quotes. You can use the backslash character to escape quotes that you want to be
included in the string. Examples:

"This is a regular string"
'This one uses single quotes'
"This string uses \"escaping\" to include quotes inside the string"

In addition, the following escape characters are available:

https://docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-ExpressionTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Binding+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Bindings+in+Perspective

Character Description

\n New line

\t Tab

\r Carriage return

// The words "Hello" and "User" will be placed on separate lines
"Hello\nUser"

// Each "\t" will inject a tab
"Lots\tOf\tSpace"

Boolean values are represented with and (without quotation marks). Note that boolean values are case insensitive, so is the same True False true
as . For simplicity, we recommend writing and , since Python uses similar casing for boolean values. True True False

// Multiple ways to specify a true boolean value.
True
true
tRuE
TRUE

Operators

You can use these arithmetic, logical, and bit-shifting operators to combine expressions.

Operator Name Description

// Comments Allows for comments following this operator.

- Unary Minus
or Subtraction

If both preceded by a number, then returns a value by subtracting the operand right from the operand on the left of
the operator:

If preceded by anything else (or nothing, such as the start of the expression) and is followed by a number, this
operator will negate the number.

// This will return 6.
10 - 4

// This will return -10.
- (15 - 5)

! Not Logical opposite of a boolean.

^ Power Raises a number to the power of another number.

% Modulus Modulus or remainder of two numbers. a%b is the remainder of a÷b.

* Multiply Multiplies the number on the left of the operator by the number on the right of the operator.

/ Divide Divides the number on the left of the operator by the number on the right of the operator.

+ Add or
Concatenation

If both operands are numbers, this will add them together. Otherwise treats arguments as strings and performs
concatenation.

// This will return 10.
4 + 6

// This will return 'FirstSecond'.
'First' + 'Second'

// This will return '2Alarms'.
2 + 'Alarms'

- Subtraction Subtracts the number on the right of the operator from the number on the left of the operator.

~ Bitwise NOT Examines the bits of an operand, and performs performs logical negation: bits with a value of 0 become 1, and vice
versa.

& Bitwise AND Examines the bits of two operands, and performs a logical AND to each set, comparing the bits in each position
from both sets. Returns true for any position where the bits being compared are true.

// 0101
// AND 0011
// = 0001

// Performs the bitwise operation above, resulting in the decimal 1.
5 & 3

| Bitwise OR Examines the bits of two operands, and performs a logical OR to each set, comparing the bits in each position from
both sets. Returns true for any position where either bit being compared is true.

// 0101
// OR 0011
// = 0111

// Performs the bitwise operation above, resulting in the decimal 7.
5 | 3

xor Bitwise XOR Examines the bits of two operands, and performs a logical exclusive OR to each set, comparing the bits in each
position from both sets. Returns true for any position where only one of the bits are true.

// 0101
// XOR 0011
// = 0110

// Performs the bitwise operation above, resulting in the decimal 6.
5 xor 3

<< Left Shift A signed bitwise left shift.

>> Right Shift A signed bitwise right shift.

> Greater Than Logical greater-than test between two numbers. Returns a boolean.

< Less Than Logical less-than test between two numbers. Returns a boolean.

>= Greater Than
or Equal To

Tests if the operand on the left is greater or equal to the operand on the right. Returns a boolean.

<= Less Than or
Equal To

Tests if the operand on the left is less than or equal to the operand on the right. Returns a boolean.

= Equal Tests for equality between two operands.

!= Not Equal Tests for equality, returning true when not equal.

&& Logical AND Returns true when both operands are true. Anything non-zero is considered true.

|| Logical OR Returns true when either operand is true. Anything non-zero is considered true.

like Fuzzy String
Matching

Compares the left-hand value with the pattern on the right side. The pattern may consist of %,*, and ? wildcards.

Bound Values

Bound values are paths to other values enclosed in braces. These will appear red in the expression editor. When you are writing an expression for a E
xpression Binding in Vision, you can reference Tag values and property values using the brace notation. When you are writing an expression for an ex

pression Tag, you can only reference other Tag values. You can use the icon Insert Property and icon Insert Tag to build these references
for you.

Dataset Access

If you have an expression that returns a dataset, you can pull a value out of the datatset using the dataset access notation, which takes one of these
forms:

Dataset_Expression ["Column_Name"] //Returns the value from the first row at the given column name.
Dataset_Expression [Column_Index] //Returns the value from the given column at the first row.
Dataset_Expression [Row_Index, "Column_Name"] //Returns the value from the given row at the given column
name.
Dataset_Expression [Row_Index, Column_Index] //Returns the value from the given row at the given column
index.

For example, this expression would pull a value out of a Table at row 6 for column "ProductCode":

{Root Container.Table.data}[6, "ProductCode"]

Note that you'll often have to convince the expression system that what you're doing is safe. The expression language can't tell what the datatype will
be for a given column, so you may have to use a type-casting function to convince the expression language to accept your expression, like this:

toInt({Root Container.Table.data}[6, "ProductCode"])

Collection and Mapping access

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

When working with collections such as sequences or arrays, individual elements can be addressed with square brackets and the index of the desired
element.

// Returns the third elements in the array
{An Array}[2]

Keys in maps ("dictionaries and JSON objects") can be access with square brackets and string name of the desired key:

// Returns the value of "myKey"
{A Map}["myKey"]

Expression Functions

The expression language's functions are where much of the real power lies. A function may take various arguments, all of which can themselves be
any arbitrary expression. This means that you can use the results of one function as the argument to another function. In general, the syntax for a
function call is:

functionName(expression1, expression2, ...)

Whitespace and Comments

Whitespace, such as spaces, tabs and newlines, are largely ignored in the expression language. It is often helpful to break your expression up onto
multiple lines for clarity. Comments are delimited by two forward slashes. This will make the rest of that line be ignored. This example shows an if functi
on spread over four lines with comments annotating the arguments.

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Binding+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Binding+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

1.
2.
3.

if({Root Container.UseTagValueOption.selected},
 {MyTags/SomeValue}, // Use the Tag value.
 "Not Selected" // Use default value if the user doesn't check the box.
)

Tag Paths

While referencing a tag path in expressions, you may see some special notation, such as "~" and "[.]". More information on this notation can be found
on the page. Tag Paths

Additional Examples

The following headings demonstrate many simple examples that better demonstrate the expression
language's syntax.

String Concatenation

You can use an expression binding to concatenate strings resulting in a new string that reflects the
concatenation of different strings.

The function starts with and inside the function is a list of strings. They can be manually typed CONCAT()
like or they can come from Tags or properties."42"

Example 1

concat("The answer is: ", "42") //returns "The answer is: 42"

Example 2

You have a date, and need to extract the year, and concatenate the word "Vintage" to the end for a label
display. Bind a label's text property to:

 dateExtract({Root Container.VintageDate}, 'year') + ' Vintage'

Expression Binding
– Concat Strings

Watch the Video

Celsius to Fahrenheit

Use an expression binding to convert a temperature from Celsius to Fahrenheit. This is an example of
how an expression binding can handle calculations.

{celsiusTemp} * 9/5 + 32

The reference to the Celsius temperature can come from a property or a Tag. As the property or the Tag
changes, so does the expression binding.

Expression Binding
- Celsius to
Farenheit

Watch the Video

Format Date

You can format a date in an expression binding by using the and functions.dateFormat now

To make a label that updates to show the current time:

Drag a component onto the window.Label
Select the label's property binding icon and select binding.Text Expression
Enter the following code into the expression, and click .OK

dateFormat(now(1000), "MMM d, yyyy hh:mm:s a")

Expression Binding
– Format Date

https://inductiveuniversity.com/video/expression-binding-concat-strings/8.1
https://www.inductiveuniversity.com/video/expression-binding-celsius-to-fahrenheit/8.1

3.

The function takes two arguments. The first argument is any date type variable. dateFormat
This can include another function (like now) that returns a date type. The second argument
refers to the date format that you want returned. The function returns the current time and now
in this case it will update every second.
For more information on the date formatting expression, see the .Appendix

Watch the Video

Date Manipulations

You can manipulate dates in expression bindings such as a date addition/subtraction with the dateArit
 function. This is important when you want to use the expression bindings to select a date that is hmetic

offset by a certain amount.

The following example will return the time 15 minutes ago by using the dateArithmetic expression
function:

 dateArithmetic(now(), -15, "minute")
Expression Binding
– Date
Manipulations

Watch the Video

Bit Functions

You can use various bit functions in expression bindings like to return individual bits of a word.getBit

Example 1

Assuming a Tag path 'Folder/BitTag', the following would return the binary representation of the Tag's
value at the 0 position

getBit({Folder/BitTag}, 0)

For more details on the getBit function, please see the in the Appendix. getBit page

Example 2

You have 3 bits in a PLC, only one of which will be on at a time. You want to turn these 3 bits into a
single integer (0,1,2) to drive a component's Styles. Bind a custom integer property to:

binEnum({MyTags/Bit1}, {MyTags/Bit2}, {MyTags/Bit3})

Expression Binding
- Bit Functions

Watch the Video

Switch

You can use the switch function in expression bindings to evaluate conditional statements. This function
acts like the switch statement in C-like programming languages. It takes the value argument and
compares it to each of the case1 through caseN expressions.

The following example returns the string when it is given the value of . Its options are , , "Running" 1 0 1
and . And when comparing the value to the options the switch statement returns one of the 2
corresponding results. If a result cannot be found, a fail-over option is returned.

switch(
1,
0, 1, 2,
"Off","Running","Fault",
forceQuality("!BAD STATE!",0))

Expression Binding
– Switch

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/dateFormat
https://inductiveuniversity.com/video/expression-binding-format-date/8.1
https://inductiveuniversity.com/video/expression-binding-date-manipulations/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/getBit
https://www.inductiveuniversity.com/video/expression-binding-bit-functions/8.1
https://inductiveuniversity.com/video/expression-binding-switch/8.1

1.
2.

3.
4.
5.

Checking Conditions

You can use expression bindings to return true or false based on different conditions.

Example 1

Consider the following expression that references the Tag with a path of 'Folder/Machine State':

{Folder/Machine State} = 0

The above expression simply tests the value of the Machine State Tag. If the value of the Machine State
Tag is ever equal to 0 then the above expression would return true. In every case where Machine State
is not equal to 0, then the expression would return false.

Example 2

It is possible to check for multiple conditions in the same expression. If you have two boolean Tags and
you only want the expression to return true if both Tags are true then the binding would look like:

{boolTag1}=True && {boolTag2}=True

Expression Binding
- Checking
Conditions

Watch the Video

Tag History

You can use expression tags to display tag history data that is stored in a database. The example below demonstrates how to pull a single tag’s
average history on an expression tag using a Project Library script and the runScript function. The expression used here can be altered to incorporate
multiple tag values if desired. The tag history used for this example is from the Sine0 tag in the Quick Start configuration. This was enabled in our
project by accessing the default Tag Provider in Tag Browser dropdown, selecting Browse Devices to import the Sine0 tag, and selecting History > H
istory Enabled > true and a Storage Provider in the Sine0 Tag Editor.

In your Project Browser, expand the Scripting dropdown.
Right-click Project Library and select New Script.

In the name field, enter TagHistory.
Select Create Script.
Paste the following script:

Since this method uses both project library scripting and requires access to tag data, make sure your project name is defined in the Gatewa
 property on your Gateway Webpage. y Scripting Project

https://www.inductiveuniversity.com/video/expression-binding-checking-conditions/8.1
https://docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-GatewayScriptingProject
https://docs.inductiveautomation.com/display/DOC81/Project+Library#ProjectLibrary-GatewayScriptingProject

5.

6.

7.
8.

9.

10.
11.
12.

def tagHistory(tagpath):
 results = system.tag.queryTagCalculations(paths=[tagpath], calculations=
['Average'], noInterpolation=False)
 return results.getValueAt(0,1)

Note: See the system.tag.queryTagCalculations page for more information on the function.

Save your project.

Navigate to the Tag Browser and select the Add Tag icon.
Select New Standard Tag > Expression Tag.

Click the Expression Edit icon and paste the following expression into the pop-up field:

runScript("TagHistory.tagHistory('[default]sine0')", 0)

Note: See the page for more information on the function.runScript

Click Apply.
Change the Execution Mode to Fixed Rate.
Click OK.

https://docs.inductiveautomation.com/display/DOC81/system.tag.queryTagCalculations
https://docs.inductiveautomation.com/display/DOC81/runScript

SQL in Ignition

Leveraging Databases

In addition to all the normal HMI functionality you would expect, Ignition has the ability to connect to
databases, and this can greatly increase the functionality available to you! You can use databases to
store history, create easy to search lists and configurations, and retrieve data from ERP or other
systems. When you start using SQL, you can expand your project from a simple HMI to a project that
brings your whole process together. The best part is that Ignition connects to as many databases as you
want, all from one central location. Because the database lives outside of Ignition, we don't maintain any
control or rules over what you can do with your data.

Displaying Data

You can easily display information from your databases on a window along with anything else in Ignition.
You can show parts lists, step sequences, , add the ability to search for realtime or historical charts
inventory, or anything else you can think of.

On this page ...

Leveraging Databases
Displaying Data

What is SQL?
SQL Queries
Database Connections
Using SQL in Ignition

Queries in Bindings
Queries in Scripting
Queries in Tags
Queries in Reports
Queries in Transaction Groups
Database Query Browser

Auto Generated Queries

What is SQL?

SQL stands for "Structured Query Language" and is the backbone of most modern relational databases. It's often referred to as "S.Q.L." or "Sequel,"
but both are correct and widely recognized. This language (different than the) allows you to write out requests or "queries" Python Scripting Language
against the existing data to the information you want in a simple format.view, add, edit, or remove

Everything in a relational database is based around tables. Tables store the basic information for any system and can be combined together to make
very efficient queries to retrieve your data.

SQL Queries

SQL queries are crucial to Ignition's database-centric model. Queries can or , and some companies show what is available alter data in the databases
have positions just dedicated to running databases and creating queries. Anywhere Ignition is fetching data, you can choose to use your own custom
queries to get exactly what you want out of the database. You can make your queries as simple or complex as you like. If your database is large, you
might have a whole team dedicated to creating these queries for you and Ignition will happily execute them.

https://legacy-docs.inductiveautomation.com/display/DOC81/Using+the+Vision+Easy+Chart

SQL - Select Statement - Select Data from a Table

SELECT * FROM mytable

SQL - Inner Join Statement - Selects Records that have Matching Values

SELECT users.id, users.firstname, users.lastname, roles.name as 'rolename'
FROM users
INNER JOIN mapping ON users.id = mapping.userid
INNER JOIN roles ON mapping.roleid = roles.id
WHERE roles.name = 'Administrator'

Database Connections

Any SQL query you use needs a , but Ignition simplifies all that by creating database connections in the Gateway instead of in Database connection
the clients. This means from one central location you can manage all your database connections, and you don't have to worry about planning around
adding clients in the future. Any special rules or connection restrictions are taken care of in the Gateway.

Using SQL in Ignition

There are many types of queries, and many ways to use them in Ignition. Some provide an easy to use
builder to automatically store or fetch data, and some allow you to completely customize your queries.

Queries in Bindings

Ignition's binding system offers a lot of flexibility in how database data can be used in a binding. The Nam
 binding allows you to select one of the Named Queries that were previously built for that ed Query

project, offering a very secure method of pulling data from the database. The builder DB Browse
provides an interface that will build the query based on the data in the table that was selected. This
allows even users with little SQL knowledge to pull data from the database. Finally, the optionSQL Query
will accept a straight query, so that a query specific to that binding can be written directly in the
binding. When binding to a basic (non-dataset) data type, you can use the Writeback feature directly to
send any changes back to the database.

Querying Data from
Database

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/DB+Browse+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://inductiveuniversity.com/video/querying-data-from-database/8.1

Queries in Scripting

Ignition offers a number of built-in scripting functions for you to use to query your databases. This makes it very simple to view data, create dynamic
scripts that use real data, and more. You can pull individual pieces of information, return whole tables of data, or update your database
directly. Depending on the type of query and the sort of results you want, you will use different functions. The following functions are the ones you will
use most, and all of them can use a special placeholder (?) to allow for dynamic building.query

Scripting
Function

Description

system.db.
runNamedQuery()

Used to run a previously set up from within a script.Named Query

system.db.runPrepQuery()

Used to run basic SELECT queries to fetch whole datasets. This can be used to populate tables, or to sift through the
data to do your own calculations.

system.db.
runPrepUpdate()

Used to run queries that change the data in the database. Usually used on input form windows to update your
database records.

system.db.
runScalarPrepQuery()

Used when you want only one value from your results. Perfect for fetching a single value like the highest ID, or first
timestamp of a result set.

Each of the different functions takes in different arguments (values) and provides slightly different options and functionality. For example, the
runPrepUpdate() can return the auto-generated key from insert queries. This can be extremely helpful and eliminate the need to hit the database
multiple times if you are using linked tables.

You can find examples of each of these and all the other database functions in the section of the appendix.system.db

Queries in Tags

Ignition offers Query Tags, which can run queries and return the result as a Tag value, giving all of the projects in the Gateway access to the same
Database values.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runScalarPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runScalarPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db

Queries in Reports

You can leverage queries to access data from all database connections to , from simple data logging to complex reports with create rich reports
grouped charts and datasets.

https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting

Queries in Transaction Groups

While are great at storing Tag data to a Database automatically, the built-in can execute a SQL Query within the Transaction Groups Expression Items
Transaction Group.

https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups#UnderstandingTransactionGroups-CreatingaTransactionGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Item+Types

Database Query Browser

The offers an easy to use environment to run queries in for testing. Here, queries can be tested to figure out what values get Database Query Browser
returned, or data can be updated through raw queries, or the Database Query Browsers easy to use GUI editor.

Auto Generated Queries

Many systems within Ignition utilize a database connection, but the queries that are executed are constructed automatically by the system and do not
require you to build the queries manually. These systems such as the , the , or the are very easy to Tag Historian Alarm Journal Database User Source
set up and use since each system will automatically generate the necessary tables in the database, insert the relevant data, and even has prebuilt
tools to extract the data. However, it is important to note that while these systems can automatically generate queries for you using the various
components, these systems are simply storing data in a database which you can manually query out by building your own SQL queries.

Related Topics ...

Database Connections
Connecting to Databases
Scripting

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+Historian

Writing SQL Queries

SQL Tables

The foundation of every database system is a table. Every database consists of one or more
tables, which store the database’s data/information. Each table is identified by a name (for example Cust

or and consists of column definitions and rows of data. omers Orders),

The database table columns have their own unique names and have pre-defined data types.
Table columns can have various attributes defining the column functionality (such as the primary key,
index, default value, and so on).

While table columns describe the data types, the table rows contain the actual data for the columns.

Current common databases are almost all Relational Databases. This means that their tables can relate
to each other by including an ID in one table that matches the key of another. These are called foreign
keys.

On this page ...

SQL Tables
Primary Key
Index
Foreign Key
Null Value
Comments

SQL Queries
Select Command

Select Examples
Where Clause

Where Examples
Insert Into Command

Insert Examples
Update Command

Update Examples
Delete Command

Delete Examples

Primary Key

A primary key is a way to uniquely identify each row in a table. While it is possible to create a database table without a primary key, it is highly
recommended to configure one for each table. A primary key is comprised of either a single column, or set of columns. When multiple columns are
specified as a primary key, this is known as a . No two distinct rows in a table can have the same value (or combination of composite primary key
values) in those columns.

While Primary Keys can be configured in several ways, they meet the following criteria:typically

Integer Data Type: The data type of the key column is typically an integer, and not a varchar. The primary key is only an identifier to a
specific row in a table, so an integer data type can easily be used. Some databases support a UID or a UUID (Universally Unique IDentifier)
that looks like a character string, but is something specially made for primary keys.
Automatically Incrementing: The value of the primary key increments as rows are added. The key is usually configured to automatically
increment in the database so that external applications (such as Ignition) don't have to figure out the next available value when inserting a
new row.

: Any row that is inserted must fill in these value(s) without creating duplicates. Configuring the primary key Statically Defined
as automatically incrementing means that the database will automatically handle this criteria.

: NULL (empty) values should not be present in the primary key. This column (or columns) will usually not allow NULL values.Non-NULL

Index

Indexes speed up the querying process by providing swift access to rows in the data tables, similarly to the way a book’s index helps you find
information quickly within that book. Indexes are extremely important when querying large sets of data. You should create an index for the set of
columns you use commonly in a clause. For example, you should add an index on the timestamp column of a historical table when querying WHERE

the table by a start and end date. Ignition does this automatically when it creates tables for Tag History or Transaction Groups.

Foreign Key

A Foreign Key is a referential constraint between two tables. The foreign key identifies a column or a set of columns in one (referencing) table that
refers to a column or set of columns in another (referenced) table. The columns in the referencing table must be the primary key in the referenced
table. For example, you might have a list of suppliers with an integer ID column. Then your invoices would use the supplier's ID instead of the name.
These linked tables can save a lot of space because you don't have to include everything about the supplier in each invoice.

Example

Supplier (, Name, Address, Type) SupplierNumber
Invoices (InvoiceNumber, , Text, Cost)SupplierNumber

For information about databases and how to get connected, see the Database Connections
section.

Null Value

NULL is a special marker used in SQL to indicate that a data value does not exist in the database. This way it is clear that there is no data, instead of
guessing if a value of 0 is correct or just missing data. By definition, NULL is not equal to anything, even other NULL values. Every database has a
function to identify if a value is NULL, usually called isNULL() or something similar.

Comments

Comments can be added to any SQL query just like with scripting. Single line comments are done with two dashes and a space: '-- '

SQL - Single Line Comment

-- This is a single line comment in a SQL query.
SELECT * FROM my_table

You can also do multi line comments by wrapping text within a forward slash and an asterisk: /* text */

SQL - Multi Line Comment

/* A multi line comment
can span multiple lines. The
comment will stop when it is closed
with another asterisk and forward slash.*/

SQL Queries

SQL queries (or statements) are used to create, maintain, and view relational databases like MySQL, SQLServer, Oracle, etc. They follow a specific
format and use just key words to determine the structure of the query. Unlike most coding languages, SQL does not rely on newlines or start/end
markers for it's format, each query is a single line of code. You will often see SQL queries split over several lines, but that is just to make them easier
to read.

Select Command

The SELECT statement is used to select data from a database. The result is returned as a data set, called the result set. This is true even if there is
only one value returned. The syntax for a SELECT statement is as follows:

SQL - The Select Command

SELECT myColumn FROM myTable

Select Examples

The "*" character can be used to specify all columns from a database table. While this is the easiest way to retrieve results from a table, this is not the
recommended approach.

SQL - Selecting All Columns

SELECT * FROM Customers

The recommended approach is to instead specify only the columns that are required for a query. There are several reasons for this, but performance
would be the main one: less columns in a statement means less work for the database, and the resulting data set in Ignition will use less memory.

You might notice a lot of CAPITALIZED words in SQL queries. While these key words are not case sensitive, it is still common practice for
people to capitalize them in a query. Things like SELECT, FROM, WHERE (and a few others) are almost always capitalized because they
have a special meaning. Try not to have table or column names that use any of these special words. You will see this capitalization format
in examples throughout this user manual and other online references.

SQL - Selecting a Single Column

SELECT Name FROM Customers

SQL - Selecting Multiple Columns

SELECT Name, Address FROM Customers

Where Clause

The WHERE clause is used in conjunction with other commands to extract only those records that fulfill a specified criterion. The WHERE clause
usually goes near the end of the query followed by a condition that the values must meet to be returned.

Pseudocode - Where Clause

SELECT myColumn FROM myTable WHERE condition

The WHERE clause can use various operators for its condition, with the basic operators being:

Operator Description

= Equal to.

<> Not equal to.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

Where Examples

Only return customers from CA.

SQL - Simple Where Clause

SELECT * FROM Customers WHERE State = 'CA'

Only return users over a specified age.

SQL - Select Users over 25

SELECT * FROM Users WHERE Age > 25

Insert Into Command

The INSERT INTO statement is used to insert a new row in a table. If any columns have default values or are auto-incrementing, they can be omitted
from the INSERT query.

Pseudocode - The Insert Command

INSERT INTO myTable (column1, column2)
VALUES ('Value1', 'Value2')

Insert Examples

SQL - Insert Values into Columns

INSERT INTO Customers (Name, Address, City, State, Zip, Country, Phone)
VALUES ('Inductive Automation', '90 Blue Ravine', 'Folsom', 'CA', '95630', United States, '1-800-266-7798')

If inserting a value into every column of the table, the columns do not need to be listed on the INSERT INTO statement. The values just need to be
listed in the same order as the columns in the table. The table in the query below has four columns: id, first name, last name, and title.

SQL - Inserting to all Columns

INSERT INTO Users
VALUES (5628, 'Bob', 'Smith', 'Project Manager')

Update Command

The UPDATE statement is used to update existing records in a table. If a WHERE clause is not used, . As a all rows in the table will be updated
result, the UPDATE statement should be used in conjunction with a WHERE clause in most cases. Many official management tools like SQLServer's
Management studio will not allow UPDATE commands without a WHERE clause.

Pseudocode - The Update Command

UPDATE myTable SET myColumn = 'myValue'

Update Examples

SQL - Updating All Rows in a Single Column

UPDATE Customers SET Name = 'Inductive Automation'

SQL - Updating a Single Column for a Single Row

UPDATE Customers SET Address = '2110 21st Street' WHERE ID = 1

Delete Command

The DELETE statement is used to delete records in a table. run a delete command without a WHERE clause. It will delete records from NEVER ALL
that table. Many official management tools like SQLServer's Management studio will not allow DELETE commands without a WHERE clause.

Pseudocode - The Delete Command

DELETE FROM myTable WHERE myColumn = value

Delete Examples

SQL - Deleting Based on Column Value

DELETE FROM Customers WHERE Name = 'Inductive Automation'

SQL - Deleting Rows Based on an ID Column

DELETE FROM Customers WHERE id < 538

Related Topics ...

Inserting Data into a Database
Named Queries
Query Builder
Database Query Browser

In This Section ...

SQL Select Statements

While the SELECT command in its basic form can be very simple to use, the SELECT statement can be
used with other statements or in certain ways that allow you to bring in exactly the data you need.

Selecting Static Values

Static values can be inserted into a resultset returned from a SELECT query as another column. Simply
use the static value as a column to select, and the query will return a column where the name of the
column is the static value, and every row in that column will return that same static value.

Pseudocode - Selecting Two Columns From a Table, and a Third Column with a Value of 10 for

every row

SELECT column1, column2, 10 FROM table

On this page ...

Selecting Static Values
Select Distinct Command
Order By Clause
Limiting Rows Returned
Aliases
Union Command

Select Distinct Command

The SELECT DISTINCT statement works much like a SELECT statement works, in that it selects data from a database. However, SELECT DISTINCT
will only return distinct or different values, not duplicates.

Pseudocode - The Select Distinct Command

SELECT DISTINCT column FROM table

Examples

This can be useful for getting a better idea of the range of values in a particular column.

SQL - Select Distinct Countries

SELECT DISTINCT country FROM Customers

Order By Clause

The ORDER BY keyword is used to sort the result-set by a specified column set of column. The ORDER BY keyword sorts the records in ascending
(ASC) order by default. If you want to sort the records in a descending order, you can use the DESC keyword.

Pseudocode - Order By Clause

SELECT column1, column2 FROM table ORDER BY column2 DESC

Examples

SQL - Ordering by One Column

SELECT * FROM Customers ORDER BY Name ASC

You can use multiple columns to sort, this will sort by state first, and for each state the rows will be sorted by name.

SQL - Ordering by Multiple Columns

SELECT * FROM Customers ORDER BY State ASC, Name DESC

Limiting Rows Returned

SELECT commands can have the number of rows that the query returns limited using a special keyword. The keyword differs between database
providers but the effect is the same, limiting the number of rows returned to a value that you specify.

Database Keyword Example

MS SQL Server/
MS Access

SELECT TOP
value/percent

Note that the SELECT TOP command is unique in that you can also specify a percentage value instead
of an exact number of records.

SELECT TOP 200 column1, column2 FROM table

SELECT TOP 10 PERCENT column1, column2 FROM table

MySQL Limit value
SELECT column1, column2 FROM table LIMIT 200

Oracle DB ROWNUM <=
value

Note that the ROWNUM command is unique in that you can use it to identify the row number for any
reason, not just limiting the number of rows returned.

SELECT column1, column2 FROM table WHERE ROWNUM <= 200

Aliases

In a SQL query, aliases are used to give columns or even tables a temporary name for that query. Simply place the keyword AS after a column or
table, followed by the alias name. If the alias is two words, it needs to be encapsulated in single quotes.

Pseudocode - Aliasing Columns and the Table

SELECT column1 AS a, column2 AS 'b c' FROM table AS t

Example

This can be really useful when the table has complex column names.

SQL - Aliasing Complex Column Names

SELECT id AS 'Badge Number', name AS 'Employee Name', dob AS Birthday FROM employees

This can also be useful when using multiple tables in a query, such as with a .JOIN

SQL - Joining Columns from Two Tables with Aliases

SELECT * FROM Contacts AS co JOIN Customers AS cu ON cu.ID = co.CustomerID

Union Command

The UNION operator is used to combine the results of two different SELECT statements. This differs from a JOIN in that there does not have to be a
relationship between columns. However, both SELECT statements need to select the same number of columns with similar data types in a similar
order. So if my first statement selects an int column and then a string column, the second statement needs to do the same. The name of the columns
in the resultset will take the name of the columns from the first SELECT in the UNION.

Pseudocode - Union Two Tables

SELECT stringCol, intCol FROM table1
UNION
SELECT stringCol, intCol FROM table2

Examples

By default, the UNION operator will only select distinct values between the two tables.

SQL - Union of Users and Customers

SELECT username FROM users
UNION
SELECT name FROM customers

To select all values from both tables, we can use UNION ALL instead.

SQL - Union All

SELECT jobTitle FROM jobs
UNION ALL
SELECT position FROM employees

Static values can be used in a UNION to help differentiate the rows from each table.

SQL - Differentiating Between Users and Customers

SELECT 'User' AS Type, username FROM users
UNION
SELECT 'Customer', name FROM customers

Related Topics ...

Writing SQL Queries

SQL Where Clauses

Overview

The SQL WHERE clause is utilized to restrict the number of rows impacted by a query. A WHERE clause
is commonly utilized in two scenarios:

In conjunction with a SELECT statement to filter the number of rows returned.
As part of an UPDATE or DELETE statements to restrict which rows are manipulated by the
query.

In either scenario, the syntax of a WHERE clause is used the same, and can have multiple predicates:

Pseudocode - Where Clause Syntax

SELECT * FROM table WHERE column = value

Where-Clauses and Data Manipulation

In most cases, statements that modify the content of a database table via UPDATE or DELETE should
include a WHERE clause: otherwise the manipulation will be applied to every row. To demonstrate, you
typically want to avoid queries that look like the following

Pseudocode - Never do this!

UPDATE table SET column = 'This was a horrible mistake'

When manually modifying a database table, a good habit to develop involves first writing a SELECT
statement. If you can successfully write a WHERE clause that only returns the results you need to
modify, then you can simply change the rest of your query to manipulate the table. Thus, we could write a
query like the following:

Pseudocode - Select-Statement with a Where Clause

SELECT * FROM table WHERE id in (100,101,150,174)

If we receive only the results we need to modify in the query above, we can make a simple modification
to our query to now delete just the rows we want.

Pseudocode - Delete-Statement with a Where Clause

DELETE FROM table WHERE id in (100,101,150,174)

Another common use of the WHERE clause is is to search through records and return the ones during a
particular time frame. Timestamp columns can use the < and > operators to compare to each other, and
certain string formats can be compared to timestamps like this query:

Pseudocode - Where Clause with a Timestamp

SELECT * FROM table WHERE t_stamp > '1984-01-25 16:35:55'

On this page ...

Overview
Where-Clauses and Data
Manipulation

And Operator
Or Operator
Not Condition
Between Operator
Like Condition
In Condition
Combining Multiple Operators

And Operator

The AND operator allows you to specify two or more conditions in a WHERE clause, where each condition must be true for the row to be returned.

Pseudocode - Using And to Specify Multiple Conditions

SELECT column1, column2, column3 FROM table WHERE column1 > value AND column2 < value AND column3 = value

Example

This helps to narrow down the result set even further by adding in additional conditions that must be met. This will only return rows for customers from
Germany who are also over 20 years old.

SQL - Customers from Germany Over 20

SELECT * FROM customers WHERE country = 'Germany' AND age > 20

Or Operator

The OR operator allows you to specify two or more conditions in a WHERE clause, but only one of the conditions need to be true for the row to be
returned.

Pseudocode - Using Or to Specify Multiple Conditions

SELECT column1, column2, column3 FROM table WHERE column1 > value OR column2 < value OR column3 = value

Example

The OR operator can help pull in data from two different subsets in the table. This will only return rows for customers from Germany or customers who
are over 20 years old.

SQL - Customers from Germany or Customers Over 20

SELECT * FROM customers WHERE country = 'Germany' OR age > 20

Not Condition

The NOT condition allows you to specify a condition that must not be met for the row to be returned.

Pseudocode - Using Not to Specify a Condition that Shouldn't be met

SELECT column1, column2, column3 FROM table WHERE NOT column1 = value

Example

This can be useful for finding all data other than a certain subset. This will return all customers who are not from Germany.

SQL - Customers that are not from Germany

SELECT * FROM customers WHERE NOT country = 'Germany'

Between Operator

The BETWEEN condition allows you to specify a range of values separated by an AND that the value must be in for a condition to be true. The value
can be numbers, text or dates and is inclusive of the first and last values in the range.

Pseudocode - Using Between to Specify a Range of Values

SELECT column1, column2, column3 FROM table WHERE column1 BETWEEN value1 AND value2

Examples

SQL - Customers that are Between the Ages of 20 and 40

SELECT * FROM customers WHERE age BETWEEN 20 AND 40

Note that the BETWEEN operator would work similarly to using a greater than or equal condition and a less than or equal condition.

SQL - Customers that are Between the Ages of 20 and 40 with no Between Operator

SELECT * FROM customers WHERE age >= 20 AND age <= 40

Timestamps can also use the BETWEEN operator to check for a given start time and end time.

SQL - Customers that are Between the Ages of 20 and 40 with no Between Operator

SELECT * FROM customers WHERE start_time BETWEEN '1984-01-25 00:00:00' AND '1984-01-25 16:35:55'

Like Condition

The LIKE condition allows you to specify a condition that must meet a certain pattern. Typically used to compare to string values, the pattern can be
built using a combination of characters and the two wildcard values.

% - Used to specify any number of any characters including zero characters.
_ - Used to specify exactly one character.

Pattern Examples

Pattern Meaning Possible Matches

'%a%' Values that have an 'a' in them. 'a', 'Inductive Automation', 'almost', 'create'

'_a_' Values that have an 'a' with exactly one character before and after the 'a'. 'bat', 'cat', 'can'

'_a%' Values that have an 'a' as the second character. 'da', 'saw', 'catcher'

'a%t' Values that start with 'a' and end with 't'. 'about', 'at'

'%a%_%_%_' Values that contain an 'a' with at least 3 other characters after it. 'trains', 'airplane', 'canteen'

'%a%a%' Values that contain at least two 'a' characters in them. 'Inductive Automation', 'separate', 'apart'

Once the pattern has been constructed, it can be used with the LIKE operator to find values that match the specified pattern.

Pseudocode - Using Like to Specify a Pattern of Values

SELECT column1, column2, column3 FROM table WHERE column1 LIKE '%a%'

Example

The LIKE operator can be used to find all values that match a criteria, such as all countries with 'land' in that name

SQL - Customers that are not from Countries with 'land' in the Name

SELECT * FROM customers WHERE country LIKE '%land%'

In Condition

The IN operator allows you to specify a subset of values, with the condition that the return match at least one of them. Using an IN operator is similar
to using multiple OR operators for the same column.

Pseudocode - Using IN to Specify Multiple Values

SELECT column1, column2, column3 FROM table WHERE column1 IN (value1, value2, value3)

Examples

The IN can be used as a shorthand way of writing out multiple conditions for the same column separated by OR operators. This would select all values
where the country is either Germany, France, or USA.

SQL - Customers from Germany or France or USA

SELECT * FROM customers WHERE country IN ('Germany', 'France', 'USA')

This would be similar to doing something like this.

SQL - Customers from Germany or France or USA

SELECT * FROM customers WHERE country = 'Germany' OR country = 'France' OR country = 'USA'

The real power of the IN operator is that instead of specifying static values, an entirely new query can be run to compare values against.

SQL - Customers from Countries that users are also in

SELECT * FROM customers WHERE country IN (SELECT country FROM users)

Combining Multiple Operators

Multiple AND and OR operators can be combined to specify multiple different conditions that need to be met in order for a particular row to be
returned. Additionally, each condition can be simple using the mathematical operators or complex using the conditions listed above. When using AND
and OR operators in a WHERE clause, the AND will take precedence, evaluating first before the OR. In the pseudocode below, the row will be
returned if either both the first and second conditions are met, or the third condition is met.

Pseudocode - Using Multiple Where Clause Operators

SELECT column1, column2, column3 FROM table WHERE column1 > value AND column2 < value OR column3 = value

However, the order at which the operators get evaluated can change by placing parentheses around the conditions which should be evaluated first. In
the pseudocode below, the row will be returned if both the first condition is met, and either the second or third condition is met.

Pseudocode - Using Multiple Where Clause Operators with Parentheses

SELECT column1, column2, column3 FROM table WHERE column1 > value AND (column2 < value OR column3 = value)

Examples

We can use complex conditions with different operators to find all customers who are over the age of 50 in a country that has 'land' in the name, or
any customers in Germany or France.

SQL - Multiple Complex Conditions

SELECT * FROM customers WHERE country LIKE '%land%' AND age > 50 OR country IN ('Germany', 'France')

Using parentheses in the same query can drastically change what valid return conditions are. Here, the customer must both be from a country with
'land' in the name, as well as either over 50 or from Germany or France.

SQL - Multiple Complex Conditions

SELECT * FROM customers WHERE country LIKE '%land%' AND (age > 50 OR country IN ('Germany', 'France'))

Related Topics ...

Writing SQL Queries
system.db.runNamedQuery

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery

SQL Table Joins

Overview

The SQL JOIN allows you to run a single SELECT statement that references multiple tables. This can be
used for more advanced filtering, as well as combining data from multiple tables in a single result set.
The process of joining two tables involves stating both tables in the query, and then specifying that a
column from one table relates to another in some way.

Joins may look imposing at first, but they are simply SELECT statements that utilize columns from
multiple tables.

The JOIN keyword works in conjunction with a SELECT statement. However, there are some key
concepts that must be addressed when attempting to use the JOIN keyword.

Specifying Each Column

When listing column in a statement that uses the JOIN keyword, you must denote which table each
column is being retrieved from. You can do this by using an , or with the fully qualified column name. Alias
This prevents ambiguous columns in the context of the query, and makes it easier for you to use other
keywords in the statement: i.e., adding WHERE clauses that apply to multiple tables.

Pseudocode - Fully Qualified Column Name

table_name.column_name

Declare the Relation

After the JOIN keyword, you must state which columns from each table relate to each other. This is
accomplished by stating the name of the table, using the ON keyword, and then stating that a column on
the first table is equal to a column on the second table. The columns specified are typically primary keys
for their respective tables.

In the example below, we're stating that the values in on should be associated some_column tableA
with matching values in on .some_other_column tableB

On this page ...

Overview
Specifying Each Column
Declare the Relation
Combining the Concepts
Joins with Three or More
Tables

Join
Join in Action

Left Join
Left Join in Action

Right Join
Right Join in Action

Full Join
Full Join in Action
Full Joins in MySQL

Pseudocode - Using the Join Keyword

FROM
 TableA
JOIN tableB ON tableA.some_column = tableB.some_other_column

Note that the order you present the columns the ON clause does not matter: A = B is equivalent to saying B = A, so we could switch the columns after
listed with no distinguishable impact on the resulting query.

Combining the Concepts

Altogether, a basic JOIN looks like the following:

Pseudocode - Join Syntax

SELECT
 tableA.column,
 tableB.column
FROM
 tableA
JOIN tableB ON tableA.identity_column = tableB.identity_column

Joins with Three or More Tables

Joins can even be done between three or more tables. The syntax is similar, with each new table relation declared below the first.

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Select+Statements#SQLSelectStatements-Aliases
https://legacy-docs.inductiveautomation.com/display/DOC81/Writing+SQL+Queries#WritingSQLQueries-PrimaryKey

Pseudocode - Join Syntax

SELECT
 tableA.column,
 tableB.column,
 tableC.column
FROM
 tableA
JOIN tableB ON tableA.identity_column = tableB.identity_column
JOIN tableC ON tableA.identity_column = tableC.identity_column

Join

The standard JOIN, also referred to as INNER JOIN, will only return rows where the joined columns contain matching values. If one of the joined
columns contains a value that is not present in the in the other, then the row is not represented in the result set. You would use JOIN when you only
want results that are represented in both tables.

This section will demonstrate the various uses of the JOIN keyword. For the sake of clarity, the queries will run against tables that look like the
following:

Products Table

id product_name

1 Apples

2 Oranges

3 Grapes

4 Plums

Inventory Table

id product_id quantity product_vendor

1 1 15 Apple Corp

2 2 25 Orange Ya-Glad

3 3 56 Grape Escape

4 5 45 Banana Solutions

Join in Action

In this demonstration, only rows that pertain to Apples, Oranges, and Grapes are being returned. We're using a JOIN between and products.id invent
, so our results will only contain rows that have matching values from both of those columns. Our result set does not contain any ory.product_id

information on products with values of 4 or values of 5, because those values are not present in of the joined products.id inventory.product_id both
columns

SQL - Joining Products and Inventory

SELECT
 products.id
 ,inventory.product_id
 ,products.product_name
 ,inventory.product_vendor
 ,inventory.quantity
FROM
 products
JOIN inventory ON products.id = inventory.product_id

Example Results

id product_id product_name product_vendor quantity

1 1 Apples Apple Corp 15

2 2 Orange Orange Ya-Glad 25

3 3 Grapes Grape Escape 56

Left Join

Return all rows from the left-most table (in the diagram), even if there are no matches on the right-most table (). If there isn't a table A table B
matching record in the right table, then NULL values are returned.

Left Join in Action

Here we see all rows returned from our products table (since it is the left-most table in our query). In row 4, columns that are being populated via the
inventory table (, , and) contain NULL values, because there isn't a row on the inventory table that matches with product_id product_vendor quantity
a value of 4. The query must return something in this case, so it returns NULL for these columns. product_id

SQL - Left Joining Products and Inventory

SELECT
 products.id
 ,inventory.product_id
 ,products.product_name
 ,inventory.product_vendor
 ,inventory.quantity
FROM
 products
LEFT JOIN inventory ON products.id = inventory.product_id

Example Results

id product_id product_name product_vendor quantity

1 1 Apples Apple Corp 15

2 2 Orange Orange Ya-Glad 25

3 3 Grapes Grape Escape 56

4 NULL Plums NULL NULL

Right Join

Return all rows from the right-most table (), even if there are no matches on the left-most table (). If there isn't a matching record on the table B table A
left table, then NULL values are returned.

Right Join in Action

When using a RIGHT JOIN, all rows will be returned from the inventory table. The products table does not have a row that contains an value of 5, id
so the and columns will show NULL values in our result set. id product_name

SQL - Right Joining Products and Inventory

SELECT
 products.id
 ,inventory.product_id
 ,products.product_name
 ,inventory.product_vendor
 ,inventory.quantity
FROM
 products
RIGHT JOIN inventory ON products.id = inventory.product_id

Example Results

id product_id product_name product_vendor quantity

1 1 Apples Apple Corp 15

2 2 Orange Orange Ya-Glad 25

3 3 Grapes Grape Escape 56

NULL 5 NULL Banana Solutions 45

Full Join

The FULL JOIN returns all rows from both tables, regardless if there are matching values in the joined columns. You would use a FULL JOIN in cases
where you want to show all applicable records from both tables, and synchronize the data across both tables via the joining columns where possible.

Full Join in Action

Note that we're using the same query as the standard JOIN, but we've prepended "FULL" to the last line of the query. Note the NULL values returned
in cases where our product ID is not fully represented on both tables.

SQL - Full Joining Products and Inventory

SELECT
 products.id
 ,inventory.product_id
 ,products.product_name
 ,inventory.product_vendor
 ,inventory.quantity
FROM
 products
FULL JOIN inventory ON products.id = inventory.product_id

Example Results

id product_id product_name product_vendor quantity

1 1 Apples Apple Corp 15

2 2 Orange Orange Ya-Glad 25

3 3 Grapes Grape Escape 56

4 NULL Plums NULL NULL

NULL 5 NULL Banana Solutions 45

Full Joins in MySQL

MySQL does not have an equivalent FULL JOIN. However, you can emulate one by utilizing a LEFT JOIN, RIGHT JOIN, and the UNION keyword. For
the sake of simplicity, we will return all columns in the following example, but you would still want to specify individual columns in both SELECT query.

SQL - Full Join in MySQL using Left Join, Right Join, and Union Keyword

SELECT * FROM products
LEFT JOIN inventory ON products.id = inventory.product_id

UNION ALL

SELECT * FROM products
RIGHT JOIN inventory ON products.id = inventory.product_id
WHERE products.id IS NULL

Related Topics ...

Writing SQL Queries
SQL Query Data Source

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Data+Source

SQL Common Functions

Functions are available in most SQL databases, and can provide some helpful utility to any queries you
may be calling in Ignition.

This page contains some commonly used SQL functions that some databases contain. The exact
functions available and usage depends on the database, so always check your database's
documentation for a more complete list of available functions.

Using Column Values

It is important to understand that when calling these functions, you generally use a column name instead
of a static number. For the sake of simplicity, the tables below demonstrate how to use the functions with
static values, but they usually are switched for column names, ie:

Pseudocode - Passing a Column to a Function

SELECT SUM(downtime_duration) FROM downtime_events

Example Table

Some of the functions on this table are better demonstrated when used in conjunction with a table (i.e.,
using the AVG() function with a single value isn't too interesting). Thus, the following table contains
sample data that the functions on this page will utilize if necessary.

Products Table

id product_quantity product_name date_added date_updated origin_state

1 100 apples Mon Jan 29 00:00:
00 PST 2018

Mon Jan 29 12:00:
00 PST 2018

California

2 24 oranges Mon Feb 13 00:00:
00 PST 2017

Mon Feb 13 09:00:
00 PST 2017

Florida

3 56 grapes Mon Mar 07 00:00:
00 PST 2016

Mon Mar 07 05:00:
00 PST 2016

California

On this page ...

Using Column Values
Example Table

Numeric Functions
String Functions
Date Functions
Logic Functions
Group By Clause

Numeric Functions

Function Description Example Output

ABS(value) Returns the absolute value of the passed number or column.
SELECT ABS
(-3.5)

3.5

AVG()value Takes the values of a single numeric column, and returns an average. A WHERE clause may be used
in the same statement to filter out some of the rows on the table. SELECT

 AVG
(product_quant
ity)
FROM

products

60

CEILING()value Returns the next greatest integer value based on the argument provided. Thus, CEILING(10.1) would
return 11. SELECT

CEILING(10.1)

11

3

COUNT()value Returns a row count. Typically takes either a single column, *, or 1. Regardless of which row is passed,
the function will return the number of rows on the table that meet the criteria of any WHERE clauses.

SELECT
 COUNT
(*)
FROM

products

FLOOR()value Returns the next smallest integer value based on the argument provided. Thus, FLOOR(10.9) would
return 10. SELECT

 FLOOR
(10.9)

10

MAX()value Returns the largest value from the specified column.
SELECT
 MAX
(product_quant
ity)
FROM

products

100

MIN()value Returns the smallest value from the specified column.
SELECT
 MIN
(product_quant
ity)
FROM

products

24

ROUND(value,
)decimal_places

Returns a number rounded to a certain number of decimal places.

Takes two parameters. The first is the number to round to, and the second is the number of decimal
places to round to.

SELECT
 ROUND
(1.234, 1)

1.2

SUM()value Takes the value of a single numeric column, and returns the sum. A WHERE clause may be used in the
same statement to filter out some of the rows on the table. SELECT

 SUM
(product_quant
ity)
FROM

products

180

String Functions

String
Functions

Example Output

CONCAT
(value1,
valu2,....
valueN)

Concatenates multiple strings or values. Some databases may require you to
convert each value to a string before concatenating. SELECT

 CONCAT
(product_name, ':',
product_quantity)

FROM
 products

apples:
100
oranges:
24
grapes:56

LOWER
(value)

Converts a string to lowercase.
SELECT
 LOWER('MAKE Me
smALL')

make me
small

LTRIM()value Removes leading space from a string.
SELECTCT
 LTRIM(' Take
a little off the left')

Take a
little
off the
left

REPLACE
(orignal_strin
g,
target_string,
replacement_
string)

Searchings a string for a substring (target_string), and replaces the substring with
the replacement_string. SELECT

 REPLACE('Who is
awesome', 'Who is', 'You
are')

You are
awesome

RTRIM()value Removes leading space from a string
SELECT
 RTRIM('Take a
little off the right ')

Take a
little
off the
right

SUBSTRING
(orignal_strin
g,
character_ind
ex, [length])

Extracts a substring from another string based on character index. Takes two
parameters: the original string, and the character index to start at. An optional third
parameter can specify the number of characters to extract.

Character index is one-based, so the first character in the string rests at index 1.

SELECT
 SUBSTRING('This is
my string!' , 9, 9)

my string

TRIM()value Removes both leading and trailing space from a string.
SELECT
 TRIM(' Trim Both
Sides ')

Trim
Both
Sides

UPPER(value
)

Converts a string to uppercase.
SELECT
 UPPER('super size
me')

SUPER
SIZE ME

Date Functions

There are many date and time functions for each database (MySQL, MSSQL, Oracle, etc), but they all vary wildly. These examples work in most
databases:

Function Description Example Output

CURRENT_TIME
STAMP()

Returns the current date and time, as reported by the database.
SELECT
 CURRENT_TIMESTAMP()

Returns the
current time

TIMEDIFF(date1,
date2)

Returns a difference between two dates. Assumes thate date1
is the most recent datetime. SELECT

 TIMEDIFF
(date_updated, date_added)
FROM
 products
WHERE
 id =1

Thu Jan 01 12:00:
00 PST 1970

Logic Functions

Function Description Example Output

COALESCE
(value1, value2,...
valueN)

Returns the first non-null expression.
SELECT
 COALESCE
(NULL, 'Pick
me!')

Pick me!

ISNULL
(expression)

Returns true if an expression is NULL.
SELECT
 ISNULL
(NULL)

SELECT
 ISNULL
(14)

True

False

NULLIF
(expression1,
expression2)

Compares two expressions. If they are equal to each other, then the function returns a NULL. If
the two expressions are not equal, the first expression passed to NULLIF() is returned. SELECT

 NULLIF
(100, 100)

SELECT
 NULLIF
(100, 3)

NULL

100

Group By Clause

The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set by one or more columns. This way you can find
the MIN, MAX, Average, COUNT, etc., for each group of rows. Grouping can also be done for multiple columns, with precedence going in the order
that they are listed.

Pseudocode - Passing a Column to a Function

SELECT SUM(column1) FROM table GROUP BY column2

Example

Here, we are grabbing the sum of product quantity for each origin state.

SQL - Simple Group By

SELECT SUM(product_quantity), origin_state, FROM products_table GROUP BY origin_state

Related Topics ...

Writing SQL Queries

SQL Query Data Source
system.db.runNamedQuery

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery

SQL Stored Procedures

For the uninitiated, Stored Procedures are a series of predefined SQL statements that are configured and
stored in the database, and can be easily called from another application, such as Ignition, with a single
statement. Conceptually, they are very similar to a scripting function: parameters may be passed to them,
they can utilize looping and conditional logic, and can return a value.

Stored Procedure Syntax

Stored procedures are created and maintained in your database. As a result, the creation of a stored
procedure is outside the scope of the Ignition User Manual: the commands used to create a stored
procedure vary per database.

In regard to calling a Stored Procedure, the syntax can also differ.

SQL Server

The EXEC command is utilized to execute a stored procedure.

Pseudocode - Executing a Stored Procedure in SQL Server

EXEC dbo.myStoredProcedure

Parameters may be passed to the Stored Procedure. SQL Server's documentation has more details on
utilizing parameters with Stored Procedures.

Pseudocode - Executing a Stored Procedure in SQL Server with Parameters

EXEC dbo.myStoredProcedure @myParam = 100, @AnotherParameters = 'Hello'

MySQL

MySQL uses the CALL command to execute a Stored Procedure. Note the parentheses characters at the
end, as they must be present even when the Stored Procedure is not utilizing parameters.

Pseudocode - Executing a Stored Procedure in MySQL

CALL myStoredProcedure()

If parameters are defined, they can be passed via the parenthesis, similar to how functions work in
Python.

Pseudocode - Executing a Stored Procedure in MySQL with Multiple Parameters

CALL myStoredProcedure(100, 'Hello')

For information on the creation of a stored procedure, as well as proper SQL syntax to call a Stored
Procedure, reference your database's documentation. Alternatively, if you have a database administrator,
they can typically help with the creation and execution of a Stored Procedure.

On this page ...

Stored Procedure Syntax
SQL Server
MySQL

Calling Stored Procedures in
Ignition

SQL Query Bindings
Named Queries

Stored Procedure Groups
Stored Procedures in Python
Scripts

Using createSProcCall and
execSProcCall
Other System Functions

Calling Stored Procedures in Ignition

There are several locations in Ignition where Stored Procedures may be utilized from.

SQL Query Bindings

Instead of typing a query directly into a , a Stored Procedure may be executed instead. Assuming a MySQL database contains a SQL Query binding
Stored Procedure named 'return_all_bays', we can call the procedure on a binding with the following:

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision

SQL - Calling a Stored Procedure in MySQL

CALL return_all_bays()

As with all bindings, Tag and Property references may be utilized by clicking the appropriate icons in the binding window.

Named Queries

Named Queries support Stored Procedure calls. As mentioned under , the syntax is based entirely on how your database Stored Procedure Syntax
expects a Stored Procedure to be called. Be mindful of the , as it has to match what the stored procedure is doing: if it is returning a Query Type setting
result set, leave it set to Query, if it is modifying a record in the database, then set the type to Insert Query.

https://legacy-docs.inductiveautomation.com/display/DOC79/Named+Query+Workspace

Stored Procedure Groups

One of the easiest ways to utilize Tags with a Stored Procedure is to use the . Parameters can be easily assigned to each Stored Procedure Group
item in the group, and utilize all of the features of a , such as scheduled execution and triggers.Transaction Group

Each item in the group is linked to a specific parameter in the Stored Procedure. Any IN or INOUT parameters can write directly to the Tags, while
new values can be fed into OUT and INOUT parameters allowing you to easily move data from Tags into the database with the Stored Procedure.

Stored Procedures in Python Scripts

There are a few ways to call a Stored Procedure from a script in Ignition.

Using createSProcCall and execSProcCall

https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Groups#TypesofGroups-StoredProcedureGroup
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups

1.

2.

The recommended approach to calling a Stored Procedure from a Python script in Ignition typically involves two main steps:

Calling to create a call context, or object that effectively represents the impending stored procedure call. This system.db.createSProcCall
object can be used to specify parameter values that will be passed to the Stored Procedure.
Using to execute the Stored Procedure. system.db.execSProcCall

Once the Stored Procedure has been executed, the call context generated in step #1 can be used to reference any values that were returned.

Other System Functions

Technically, most other system functions in the "db" library, such as , can be used to call a Stored Procedure. We generally system.db.runPrepQuery
recommend against this, as and are better suited to work with Stored Procedures and have system.db.createSProcCall system.db.execSProcCall
some additional functionality not found in the other db functions.

Related Topics ...

SQL Query Bindings in Vision
Understanding Transaction Groups

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.createSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.execSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.createSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.execSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Understanding+Transaction+Groups

Query Builder

Crafting Queries with the Query Builder

Many places in Ignition that allow for SQL queries have a link to the SQL Query Builder tool. The Query
Builder is a powerful Drag-and-Drop query building GUI that allows you to make complex queries from
your connected databases. While a basic understanding of SQL helps make the most of the Query
Builder tool, most people will have no problem creating effective queries after a brief tutorial. Additionally,
the Query Builder does go over many advanced features of SQL that may be unfamiliar. We suggest
looking up how these work in your favorite SQL resource guide as this covers how to use them, not what
they do.

Builder Anatomy

Once opened, the Query Builder has the following items:

Building Area: Visualizes the table relationships of all tables included in the query. Tables are
typically dragged in from the .Table List
Columns Table: Shows which columns from all tables are referenced in the query.
Table List: Shows all database tables in the selected Database Connection.
Query Preview: Shows a preview of the query that will be created once the button has Apply
been pressed.

On this page ...

Crafting Queries with the Query
Builder

Builder Anatomy
Opening the Query Builder
Using the Syntax Parser
Using the Builder
Query Properties

Joining Tables in the Query
Builder

Joins Right-Click Menu
Join Properties

Columns Table
Right-Clicking on an Item
Field Description

Opening the Query Builder

The Builder can be accessed from several different resources in Ignition, notably when using and setting up . To use the Named Queries Report Data
Builder, click the button.Show Builder

Clicking this button will open the Builder workspace with an empty query. If a query was already written before the button was pressed, then the
Builder will attempt to load the query into the Builder's interface. For example, if the following query was typed before pressing the button:

SQL - Select Statement - Loading into the Builder's Workspace

SELECT 1

The following would be loaded into the Builder's workspace. Note that the is empty, because we're not querying from a table.Building Area

https://legacy-docs.inductiveautomation.com/display/DOC81/Report+Data

The Builder attempts to parse your query based on the .Syntax Parser

Using the Syntax Parser

When starting with a pre-existing query, the Syntax Parser tells the Builder which implementation of SQL your query's syntax is using. In most cases,
this can be left with the default value of . When set to a specific implementation of SQL, this allows the Builder to understand/accept Universal
implementation-specific keywords and syntax.

Syntax Parser in Action

In MySQL, query results may be limited with the keyword:LIMIT

SQL - Limit Statement

SELECT
 *
FROM
 myTable

LIMIT
 100

Attempting to open the Builder while using , and the Syntax Parser is configured to a syntax that does recognize the keyword, will result in LIMIT LIMIT
an error:

In these scenarios, you can switch to a syntax that supports the query, or remove the offending lines.

Using the Builder

Once the Builder is open, (and if you have tables in your database connection), you can start building a query by dragging and dropping a table from
the Table List into the Building Area. From here, you can select which columns on the Table Object you want to bring into the query, or drag and drop
them into the Columns Table below.

The option at the top of the table is special. If the character is selected, then all columns from the table will be included in the results just like a * *
"SELECT * " query.

Query Properties

Right clicking on the empty space in the Building Area and selecting properties will bring up the Query Properties window that allows you to customize
how the query works. How it looks and what it contains can vary, depending on what syntax parser you have selected.

MySQL Query Properties MSSQL Query Properties PostgreSQL Query Properties

Joining Tables in the Query Builder

Multiple tables may be added to the Building Area. Once there, the Builder can JOIN the two tables by dragging from one column in a table on to
another column on a different table.

Notice that "tagid" and "id" are now linked together. This means the resulting query will JOIN the two tables based on the linked columns. Much like a
SQL JOIN, the joining columns do not need to be selected to be utilized in the JOIN.

Joins Right-Click Menu

Right-clicking on the link will create a menu that allows you to remove the , as well as access properties of the JOIN.JOIN

Additionally, you can select all rows from one of the joining tables, which effectively creates a or , depending RIGHT OUTER JOIN LEFT OUTER JOIN
on which table you select.

Join Properties

Clicking on on the Right-Click Menu allows you to view the relation between each table, as well as apply or , as Properties LEFT RIGHT JOINs
mentioned above.

Columns Table

The Columns Table allows you to modify individual columns in the query. Typically, this allows you to add aggregates or aliases to each column from
the Builder. Each row represents an expression, or combination of functions, columns, variables, and constants that will ultimately be a single column
in the resulting query.

Right-Clicking on an Item

Right-clicking on a row of the Columns Table brings up a menu with the following options:

Option Description

Move up Moves the selected row up in the table. This means the column will appear in the query results prior to the other listed columns.

Move down Similar to move up, but moves the row down, or towards the end of the listed columns.

Delete item Removes the row from the Columns Table, effectively removing it from the resulting query.

Insert empty item Adds a new row to the Columns Table with blank values.

Field Description

Each column in the Columns Table allows you to modify the resulting query in some way. The following is a description of each column:

Name Desciption

Output Specifies if the row should appear in the resulting query. Disabling a row on the table removes the column from the results.

Express
ion

The column from one of the tables in the Building Area that this row represents. Left-clicking on this field will create a dropdown list of
possible rows.

Aggreg

ate Allows you to aggregate the expression. Blank by default (no aggreggate), configuring this column allows you to do things like sum
column, or return the average. Possible values are:

Blank (no aggregation will be performed)
Avg
Count
Max
Min
Sum

You can also add the Distinct keyword to any non-blank option. For example, you could enter "Sum Distinct" or "Count Distinct".

Alias Creates an Alias, or alternative name for the column. Effectively adds the SQL "AS" keyword to the column, which allows you to rename
the resulting column.

Sort
Type

Sorts the results based on this column. Enabling a Sort Type is similar to added an ORDER BY to your query. Possible values are:

Blank (no sorting on this column will be performed)
Ascending
Descending

Sort
Order

When a has been specified on multiple rows, this determines which row the query will sort on first.Sort Type

Grouping Allows you to group the results. Adds a GROUP BY statement to the resulting query. Enabling grouping on one of the columns makes
the column appear.Criteria for

Criteria
for

A dropdown list that sets how you want the Criteria column to apply to the grouping. Does not apply if both Grouping and the WHERE
clause Criteria are not being used.

For Values will place the WHERE clause specified in the Criteria column first, filtering out rows that don't apply, and then applying
the grouping.
For Groups will instead change the WHERE clause into a HAVING clause that is used to filter after the grouping has taken place.

Criteria Allows you to add a WHERE clause. Supports the use of both the and keywords for multiple conditions. Example: assuming a OR AND
column named "myColumn", we could limit the results of our query to rows where myColumn has a value greater than 10 AND less than
100:

Or... Allows you to add an additional condition to a WHERE clause. Will separate each grouped condition with "()" characters to maintain logic.

Note: The Query Builder is a third party tool that we brought into Ignition and while we go over how to use it here, you can also check out the Active
 for more information on how this feature works. Query Builder's documentation

Related Topics ...

Named Queries

http://www.activequerybuilder.com/hs15.html
http://www.activequerybuilder.com/hs15.html

Named Query Data Source

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Data+Source

Named Queries

What Are Named Queries?

Named Queries are preconfigured queries that may be invoked elsewhere in a project. Named Queries
are conceptually very similar to Project Scripts; defined in a single location, and then referenced in
multiple places throughout the project. When executing a Named Query, parameters may be passed to
return a dynamic result set. This way, a query may be written once, and then called from multiple
locations throughout the project.

The Named Queries Welcome tab allows you to create three types of named queries. Each one of the
named query types is basically a template to help you get started creating your own query. Once you
select a Named Query type, enter a name, and press 'create', and the specific named query template will
open. The Select Query and the Update Query will have some sample parameters and queries to help
you get started. The Named Queries Welcome tab will show you any recently modified named queries
along with the date it was modified and who modified it. You can even double click on a recently modified
query and open it.

The Named Queries Welcome tab provides a quick way to create a new query and update existing ones.

On this page ...

What Are Named Queries?
Secure Query Execution
Where Are Named Queries
Used?

Binding
Reporting
Scripting
Named Query File Location

Named Query
Overview

Watch the Video

Named Queries have their own in the Project Browser section of the Designer.workspace

https://inductiveuniversity.com/videos/named-query-introduction/8.1

Secure Query Execution

While clients may request data from a Named Query, the actual execution of the query always takes place on the Gateway. Clients simply specify
which query should run, and pass parameters that the Gateway will use. Additionally, the Gateway has an opportunity to to the query restrict access
based on Security Zone and/or User Role. This provides a single interface to restrict access to the queries, and better protect your data. Additionally,
queries cannot be modified by a Client other than by passing variables into it. This creates a very secure method to control what queries are being run
against your database.

Where Are Named Queries Used?

Named Queries may be used in multiple locations in Ignition. They are used in all the same places that a normal SQL query would be used. Here are
a few examples of locations in which named queries can be used. A more detailed example of a named query is provided . here

Binding

A type has been added to leverage named queries for any component property bindings. may be bound to Query Binding Named Query Parameters
Tags or other properties on the same window, allowing your users to modify the resulting dataset by manipulating other components similar to the

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Workspace#NamedQueryWorkspace-Settings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings

original SQL Query binding type. You can also select and update a query to simulate a bi-directional binding to the database.

Reporting

A has been added to Reports. Report Parameters may be used by the Named Query to generate dynamic reports.Named Query Data Source

Scripting

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Data+Source

The function may be used to called a Named Query from any Python script. This provides a secure method to execute a system.db.runNamedQuery
query from any location in Ignition.

Named Query File Location

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

The queries and metadata used by named queries are stored in SQL and JSON files respectively on the Gateway's file system.

%installationDirectory%\data\projects\PROJECTNAME\ignition\named-query\QUERYNAME

Where PROJECTNAME is the name of the project the Named Query resides in, and QUERYNAME is the name of the Named Query.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

Named Query Workspace

Named Query Workspace Overview

Named Queries have a dedicated workspace inside of the Project Section of the Designer. This
workspace allows for the creation and testing of Named Queries. Once created, the Named Query may
be called from another resource, such as a or a component using a datasource in a report Named Query

. Bindings

Named Queries are created by right-clicking the Named Query item in the Project Browser. Like other
resources in the Project Browser, Named Queries can be organized in folders, which creates a unique
path to the query and helps keep your queries organized.

Note: Named Queries are referenced by path, so renaming the Named Query or any parent folders will
require you to update the path on any other resources that are using it.

Also like other resources, multiple Named Queries may be opened in the same Designer session. Tabs
at the bottom of the Designer allow for easy swapping between Named Queries.

On this page ...

Named Query Workspace
Overview
Workspace Sections

Settings
Authoring
Testing

Workspace Sections

The Named Query workspace contains three tabs: Settings, Authoring, and Testing. A description of each section follows.

Settings

The Settings tab contains configuration properties and security for the selected Named Query.

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings

The following properties are available:

Item
Name

Description

Enabled Determines if the Named Query is enabled or disabled. A disabled Named Query may not be executed.

Security Specifies a combination of Security Zones and Roles that may call the Named Query. Only roles in the projects user source will be
available in the Role dropdown. Multiple rows may be configured to account for granular access restrictions (i.e., requests from Administ

roles originating from the security zone area could be allowed, while requests from same users in the zone could rator Office plant floor
be denied).

If the request does not match any of the specified zone and role combinations, then the query will not run. Additionally, if a ScalarQuery
type has a Fallback value configured, that Fallback value will not be returned either: the query will not execute due to security settings,
so there is never a chance for other errors to occur.

Either the Security Zone or the Role (but not both) may be left blank. This means it is available to all objects of that type (i.e., with a blank
Role and the "office" Security Zone, all roles in the "office" zone are valid).

Descript
ion

Allows you to give the Named Query a description.

Caching Allows the Gateway to cache the results of the query. See the page for more details.Named Query Caching

Authoring

The Authoring tab is where the query and parameters are created. There is also a Table Browser and that can be used to help you Query Builder
to create your query.

The following feature is new in Ignition version 8.1.24
 to check out the other new featuresClick here

Note: Starting in Ignition 8.1.24, switching to another tab from the Authoring tab will automatically commit any changes to the Named Query's
parameters.

Item
Name

Description

Databa
se
Connec
tion

The database connection the Named Query should run against. In addition to a list of the configured in the database connections
Gateway, this dropdown contains two unique values: and .<Default> <Parameter>

<Default>: The query will execute against the project's default database connection.
<Parameter>: The query expects the database connection name to be passed in as a parameter when called. This allows you to
use a dynamic database connection.

Note:

A parameter for the database connection does not need to be manually created in the Parameters section. Instead, the Named
Query will have a special "Database" type parameter available when called. Below is an image of a Named Query binding that is
utilizing the <Parameter> connection type.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.24

Query
Type

The type of query to execute. The following options are available:

Query: Allows SELECT Queries and returns a full dataset. This type should be selected when running a SELECT statement that
returns multiple rows or columns.
ScalarQuery: Allows SELECT queries and returns a single value. This type should be used when running SELECT statements that
only return a single value. The very first cell returned will be the only output.
This type is special in that a value may be defined. The Fallback value will be returned if the Named Query would return Fallback
an error. Note, the parameter will not be returned if the request does not meet the security requirements.Fallback
UpdateQuery: Allows all types of queries (querys that mutate or otherwise modify rows on a table) and rUPDATE eturns the

This type should be selected when modifying the database in some way, such as when number of rows affected by the query.
running an INSERT, UPDATE, or DELETE query.

Parame
ters

A table of the parameter names and types that will be used in the query. These parameters have three types, Value, QueryString, and
Database. Most commonly, the type is used and can be accessed by using the notation. More details on this field Value :paramName
may be found on the page.Named Query Parameters

Query The query that will execute when the Named Query is called. You can type directly into this field or use the Table Browser on the right to
get started. inside this field will cause a popup menu to appear:Right-Clicking

Most of the items on this menu are self-explanatory, but a few require special mention:

Parameterize: Contains two sub-menu items, which are detailed below. Note, that the sub-items will be unless you right-click disabled
on some text that does not reference a parameter, table name, or column name in the query.

Make Value: Turns the selected text into a value-type parameter. The new value-type parameter will appear in the Parameter
table above the query.
Make QueryString: Turns the selected text into a QueryString. The new QueryString will appear in the Parameter table above
the query. Note that QueryStrings are susceptible to SQL injection attacks. Because of this, the option is Make Value
recommend over this option.

: Quickly creates a reference to the selected parameter. This menu is an alternative to dragging-and-dropping from the Insert Parameter
Parameters table or typing the name of the parameter.

Table
Browser

Provides a list of the tables in the selected . Tables may be dragged into the Query field to quickly insert the name Database Connection
of the table. Additionally, on a table in the list will cause a popup menu to appear:right-clicking

Create SELECT Statement will populate the Query field with a SELECT statement targeting the selected table or selected row of
the table.
Refresh Tree will refresh the Table Browser.

Query
Builder

Opens the , which provides an easy way to create SQL queries using a drag-and-drop interface. This button will be Query Builder
disabled if the property is set to . This is the same Query Builder used in other places like the Database Connection <Parameter>
reporting data page.

Builder
Syntax

Specifies the syntax the should use. Contains syntax for many popular databases, and has a Universal selection that Query Builder
should work in most scenarios.

Testing

In the Testing tab, you can test your query without leaving the workspace. Fill in your values and click the button to see your Execute Query
results.

The following feature is new in Ignition version 8.1.28
 to check out the other new featuresClick here

If your Named Query is using a DateTime parameter, you can expand the DateTime picker to easily set a DateTime value.

Item
Name

Description

Test
Paramet
ers

Allows you to manually supply test values to the parameters to the queries. The table is populated by the field on the Parameters
Authoring section.

Use
Sample
Size
Limit

When checked, allows you to set the maximum number of rows the query will return while testing the Named Query. In addition this
This property is only enabled when the setting also limits the results of that named query called elsewhere in the Designer. Query Type

on the Authoring section is set to . Query

Execute
Query

Runs the Named Query using the parameter values listed above. The area will display any results returned by the query.Results

Export
to CSV

Exports the results of the query to a CSV file. The button becomes available after results are returned. Note that this will only return the
values shown, check the Sample Size Limit when using this button.

Results The results returned by the Named Query when testing. Populated by the button.Execute Query

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.28

Related Topics ...

Named Query Parameters
Named Query Conversions
Named Query Caching

Named Query Parameters

Parameters allow you to make Named Queries dynamic. They act as placeholders you can pass values
into when requesting the query to execute. Other resources in Ignition can then pass arguments into the
parameters. The exact implementation depends on what resource is requesting the Named Query, such
as a , a , or the function. Named Query Bindings Named Query Data Source system.db.runNamedQuery
Check out the page for a complete example on passing parameters into a named Named Query Example
query.

Types of Named Query Parameters

There are three types of Parameters in Named queries. Each varies in usage.

Value

The Value type should be used whenever a Named Query needs a dynamic WHERE clause. These act
like values passed to a prepared statement, meaning they can never be used to parameterize column or
table names. However, they are resilient to SQL injection attacks.

SQL Query - Using a Parameter

SELECT * FROM mytable
WHERE name = :myParam

On this page ...

Types of Named Query
Parameters

Value
QueryString
Database

Parameters while Authoring a
Named Query

Creating Parameters
Using Parameters in the Query

QueryString

QueryStrings are more flexible than the Value type in that they can be used to parameterize column and table names. However, their values are never
sanitized, which causes them to be more susceptible to SQL injection attacks. When using QueryStrings, it is best to avoid situations where the user
can manually type in the value that will be passed to the Name Query. Additionally, if you are using a QueryString for a string in the where clause, you
would need to provide quotation marks.

SQL Query - A Using QueryString

SELECT {myColumnName} FROM mytable
WHERE name = '{myName}'

Database

Database type parameters cannot be created manually. Instead, it is automatically created when the dropdown on the Database Connection Authori
 section is set to . Additionally, this parameter is not used in the body of the query. This type allows you to parameterize the database ng <Parameter>

connection when the Named Query is called. This way the Named Query can run against multiple database connections specified by the resource that
made the request.

Parameters while Authoring a Named Query

Creating Parameters

New parameters can be created in the Authoring section of a Named Query by clicking the Add icon next to the Parameters table.

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery

Each parameter has three properties represented by different columns in the table. These may be edited by double-clicking on the cell you wish to
modify:

Type: Changes the type between Value and QueryString.
Name: Determines the name of the parameter, and how it will appear in the query. Names are case-sensitive and must be unique. not
Additionally, they may only use letters, numbers, dashes and underscores.
Data Type: Specifies the datatype of the parameter. The Type of the parameter determines which data types are available. Note, that
QueryStrings may only be configured as strings, where as Value-type parameters have more types available.

Using Parameters in the Query

Once created, parameters can be inserted into the Query field by from the Parameter table onto the Query field, or by using the drag-and-drop right-
 in the Query field.click menu

Additionally, the parameters may be typed in manually, but the correct syntax must be used.

In Named Queries, Parameters are referenced by their name, so renaming the Parameter will require you to update it on any other
resources that are using it.

Related Topics ...

Named Query Bindings
system.db.runNamedQuery
Named Query Conversions
Using Named Queries - Example

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery

Named Query Caching

Overview

Named queries can opt-in to caching the results on the Gateway. This means if another request to the
same Named Query comes in, the Gateway can return the cached result instead of having the database
executing the query again. This will use more memory on the Gateway (to maintain the results), but could
result in less queries running against the database.

Named Query caching is disabled by default, but can be enabled on the section of each Named Settings
Query. If caching is enabled, the spinner and dropdown fields set the of the cache. Once the lifespan
lifespan expires, the cache is invalidated. After the cache is invalidated, the next request for the Named
Query will force the Gateway to re-execute the query and build a new cache.

Caching is especially useful for tables that are not updated often like recipe or inventory tables. Tables
that update often like historical storage tables are bad candidates.

When Caching is Disabled

Update queries are not allowed to cache their results. With UPDATE or DELETE statements, the work
will already have been performed after the first execution, and INSERT statements typically utilize
different parameters each execution. Thus if the Caching setting is disabled, then this typically means
that the in the tab is set to an .Query Type Authoring Update Query

On this page ...

Overview
When Caching is Disabled

Scenario
Considerations

Gateway Memory
How often the Database
Values are Updated
How often the Named Query
is Executed

Cached Query Updates and
Designer Values
Scripting Functions to Clear
Cache from a Named Query

Scenario

Consider the following:

A Named Query is created. This runs a query to fetch data from an arbitrary table.
A component in a project is configured to call the Named Query on a window.
Client_A navigates to the window, which triggers a request for the Named Query be executed.
Several seconds later, opens the same window, and needs the same results.Client_B

In this scenario, if caching was enabled on the Named Query, then would not cause another query execution (assuming both and passeClient_B A B
d the same values to the parameters). This would result in less network traffic between the Gateway and the Database, and less work for the
Database. An example with two clients isn't exciting, but the same scenario with ~50 clients would mean a huge potential performance boost,
especially if those requests were polling at a 5 second rate, and the cache period was configured to 5 seconds.

Considerations

The following are considerations that should determine whether or not caching the results of a Named Query is helpful.

Gateway Memory

Each time the Named Query is called, if the arguments passed differ from those used to create the current cache, a new cache is created. This means
Named Queries that are frequently called with varying parameter values will create multiple caches. If the results are large datasets, this can result in
a large amount of the Gateway Memory being tied up maintaining these caches. In this scenario, you will want to monitor the memory usage of the
Gateway.

This is especially important to consider when dealing with queries that accept a timestamp parameter that uses an expression like now() that will
return time to the current second. If 5 clients are opened with each one 1 second apart, they will all have different timestamps and create separate
cache entries.

How often the Database Values are Updated

Once a cache is created, the Named Query will not look for any changes made to the database table until the query next executes. This means
changes, such as adding a new row to the table, will not appear in the Named Query's results until the cache is invalidated. Data that changes often
may not be a good candidate for caching. In this case, the lifespan of the cache should be set to a short amount of time, depending on how often the
data may get updated.

How often the Named Query is Executed

If a Named Query is called frequently and there are not many updates to the table data, then there can be a huge performance benefit to caching the
results. Fewer calls to the database result in less network traffic and better overall performance.

Cached Query Updates and Designer Values

Cached query results have some notable interactions in the Designer. Specifically:

Named Queries results executed in the Designer never cache: This is because the Designer uses the live version of the query in the
Designer instead of the saved Gateway version. This also prevents bad results being stored in the cache, and then appearing in the Clients.
Making changes to a Named Query and saving will invalidate all caches for that Named Query: When a change is made to a Named
Query and saved, the new query is pushed to the Gateway, which means all current caches are immediately outdated.

Scripting Functions to Clear Cache from a Named Query

You can also clear the Named Query cache using the following scripting functions.

system.db.clearNamedQueryCache - Clears the cache of a single Named Query.
system.db.clearAllNamedQueryCaches - Clears the caches of all Named Queries.

Related Topics ...

Named Query Conversions
Using Named Queries - Example

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.clearNamedQueryCache
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.clearAllNamedQueryCaches

1.
2.
3.
4.

Named Query Conversions

Converting SQL Queries to Named Queries

If you have a SQL Query binding on a component, it is easy to convert it to a Named Query. Simply open
up the binding and click the button.Convert to Named Query

A popup appears where you can enter a path to the new Named Query.

On this page ...

Converting SQL Queries to
Named Queries
Converting with an Update Query
Modifying Converted Query to
Use Parameters

Named Query
Conversion
Example

Watch the Video

Converting with an Update Query

If your SQL Query binding is on an component property whose value can be updated and written back to the database (for example, input
components and button components), you have the option to create two Named Queries: one for the Select Query in the binding and a second for the
Update Query.

Enter the Select Query.
Click the Enabled checkbox for the Update Query.
Enter the Update Query.
Click OK.

https://inductiveuniversity.com/video/named-query-conversion-example/8.1

4.

5.
6.
7.
8.

In the popup, enter the path for the Select Query.
Click the Yes button next to Create Update Query,
Enter the path for the Update Query,
Click Save.

After confirming the conversion, the Window will show the query/queries. Click the button to save this change.OK

Warning for 7.9.5 and Prior

When converting a SQL Query Binding that contains an UPDATE Query in 7.9.5 and prior, an Update query will not be generated. Thus, it
was possible to lose the Update Query upon conversion.
If using these versions of Ignition, it is highly recommended to manually create the Update Named Query before pressing the Conversion
button. As of 7.9.6, this is no longer an issue, and the button may freely be used.Convert to Named Query

When converting in this manner, all parameters will be created at . It is highly recommended that you modify your new Named Queries QueryStrings
so that these values become instead, as mentioned later on this page.Value Parameters

Modifying Converted Query to Use Parameters

When converting a query to a Named Query, it is recommended that you go back into the query and convert the parameter from a strongly QueryStri
 type to a type. To do this, you first need to change all QueryString type parameters to the Parameter type. This is as simple as ng Parameter

selecting Parameter from the dropdown under Type.

Now that your parameter(s) types have been modified, the second thing you need to do is modify syntax in the query to use the parameter(s). The
Parameter and QueryString types are referenced differently in the query, so you will need to ensure that you modify how the parameter is referenced.
In addition because the Parameter type works like a prepared statement, it does not need any quotation marks around any string type parameters like
a QueryString would, so all quotation marks around parameters should be removed from the query. See the images below for an example.

From this: To this:

Once the syntax in the query has been modified, test it out in the section at the top to make sure everything works correctly. If so, then you Testing
have successfully converted to a Named Query.

Related Topics ...

Named Queries
Named Query Bindings
SQL Query Bindings in Vision

https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision

1.

2.

3.

Using Named Queries - Example

A Named Query Example

Here we will go over the steps necessary to put together a basic named query. This example will create a
Named Query that uses a single parameter to run a select query, and then add a Table to a window and
create a binding that uses our new Named Query.

We are going to be querying a table in the database that holds information about products stored in
storage bays. The database table is named "containers" and has the following structure.

id StorageBay ContainerType ItemName Weight Time

1 1 Jug Vanilla 25.2 2017-06-25 15:58:47

6 1 Mason Jar Chocolate 12.3 2017-06-26 16:05:27

18 2 Tray Swiss Cheese 88.8 2017-06-25 01:21:31

22 3 Tray Cheddar Cheese 54.7 2017-06-25 03:52:16

23 3 Basket Strawberry 36.8 2017-06-25 15:56:03

31 3 Jug Whole Milk 80.1 2017-06-27 09:51:31

32 3 Jug Fat Free Milk 76.9 2017-06-27 09:52:52

If you want to follow along with the example, feel free to make a database table that looks similar to this
one and add as many rows of data as you would like, otherwise, you can use your own and substitute in
the proper column names from your database.

On this page ...

A Named Query Example
Creating a Named Query and
Adding Security
Building the Query
Using the Query

Creating a Named Query and Adding Security

Start by opening up the Designer and .loading a project

Locate the Named Query section of the project browser, right click on it, and select the option.New Query

You should now have a fresh Named Query that you can rename whatever you want. We used in the exampleFirstNamedQuery .

https://legacy-docs.inductiveautomation.com/display/DOC81/Designer+Launcher

3.

4.

5.

1.
2.
3.

4.

To set up security on the Named Query, set required Security Zone and Role combinations in the Security table of the Settings tab. You can
leave this blank if you don't have or set up yet.roles zones

If multiple security combinations are required, use the Add icon to add additional rows.

Building the Query

Click on the tab. Here is where we do most of the work.Authoring
Under , we need to select a database connection that this named query will use. We selected .Database Connection <Default>
For the , we can decide what type of query this will be. For this example, we are running a select query that will return a dataset, Query Type
so we chose .Query

4.

5.
a.

b.
c.

1.
2.
3.

In the Parameters section, we can decide on a list of parameters that will be used in this query. This query is fairly simple and will only use a
single parameter.

Click the Add icon to add a new parameter and set the following values:
 ParameterType:

BayNumName:
Integer Data Type:

The Query section below is where we construct our query using the Table Browser.
Right click on the containers table in the Table Browser on the right, and click on . This will populate our Create SELECT Statement
query field with a basic select all statement.
Type into the field and add the following WHERE clause: " "Query WHERE StorageBay =
Now drag the parameter from the Parameters table to the end of the query you just typed. Notice " " will be BayNum :BayNum
added at the end of the query.

Using the Query

In the Project Browser, create or open a .Main Window
Drag a component onto the window.Dropdown List
The Dropdown List is where we will be able to select a Bay Number to use as our Named Query's BayNum Parameter. Use the Dataset

 to set the property of the Dropdown to look like this:Viewer Data

Value Label

1 Bay 1

2 Bay 2

3 Bay 3

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Windows
https://legacy-docs.inductiveautomation.com/display/DOC81/Dropdown+List+Example
https://legacy-docs.inductiveautomation.com/display/DOC81/Dropdown+List+Example

3.

4.

5.

6.

7.

8.

9.

Now drag a component onto the window. We can set up a Named Query binding on the Data property.Table

Click on the icon for the property and select the binding type.Binding data Named Query

Set the Path property by clicking on the icon and selecting your new Named Query from the list. For this Select Resource Path
example, it is . Alternately, you can type the name in.FirstNamedQuery

Highlight your Parameter (in the Parameters table) and click on the Insert Property icon. We want to select the BayNum Selected Value
property of our Dropdown List.
Finally, we want to ensure the Polling Mode is set to . This means the query will not run continuously, but will only run when it changes Off
such as when a new bay is selected from the dropdown.

Click the button to save your binding, and put your Designer into to test it. We can then make a selection (i.e., Bay 3) OK Preview Mode
with our Dropdown, and see the table populate with data.

Related Topics ...

Named Queries

Queries in Scripting

Overview

In addition to using a binding, queries can be called from a Python script. This typically involves using
one of Ignition's built-in . This page presents several approaches to interacting with a scripting functions
database from a Python Script. See the section for more information about using Python.Scripting

Named Queries

Named Queries may be called from a Python script using the function. system.db.runNamedQuery
Named Queries can execute as a Prepared Statement when not utilizing , so Query String parameters
they can offer a secure approach to calling a query from a script.

Additionally, Named Queries are incredibly easy to call from a script, since you only need to know their
name, and don't have to bother with SQL syntax in the script. This is another way to protect your
database from other users in the Designer, as you can .Protect Named Queries

Python - Calling a Named Query

namedQuery = "Add New Order"
parameters = {"accountId":123, "productName":"Bananas"}

system.db.runNamedQuery(namedQuery, parameters)

For more information, refer to the section. Named Queries

On this page ...

Overview
Named Queries
Prepared Statements vs
Standard Statements

Standard Statements vs
Prepared Statements
How do I Call a Prepared
Statement?
Standard Statements

Stored Procedures
Transactions

Prepared Statements vs Standard Statements

A prepared statement is a feature in a database that executes a parameterized query. One of the main reasons to utilize a prepared statement is
because they are resilient to SQL Injection Attacks. Because of this, we you utilize Prepared Statements over Standard highly recommend
Statements, but Named Queries are the most secure. Especially in cases where the users can type values that will be included in the query.

Prepared Statements typically involve passing two pieces of information to the database:

A query string that contains placeholders to represent where arguments will be passed in later. These are represented in the query as
question mark characters ("?")
A series of arguments to replace the placeholder characters in the static query.

Standard Statements vs Prepared Statements

Typical SQL insert queries look like the following:

SQL - Standard Statement

INSERT INTO orders (account_id, product_name) VALUES (123, 'Bananas')

A Prepared Statement instead looks like the following. Note, that the placeholders do not require quotation marks even when a string will be passed in.

SQL - Prepared Statement

INSERT INTO orders (account_id, product_name) VALUES (?, ?)

How do I Call a Prepared Statement?

Prepared Statements can be called from a script using specific functions. Typically, they contain "Prep" in the name such as , system.db.runPrepQuery
or . When in doubt, take a look at the sub pages in the section. system.db.runPrepUpdate system.db

There are typically two required parameters with these functions: a string literal that represents the query, and a list of parameters.

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runNamedQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Security+in+the+Designer#ProjectSecurityintheDesigner-ProtectingProjectResources
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db

1.

2.

Python - Calling an Insert Query as a Prepared Statement

query = "INSERT INTO orders (account_id, product_name) VALUES (?, ?)"
args = [123, "Bananas"]
system.db.runPrepUpdate(query, args)

Notable Prepared Statement Functions

system.db.runPrepQuery: Should be used when SELECT statements are used, as it returns a dataset containing the results. This function is
effectively "read-only", as it does not manipulate data in the database.
system.db.runPrepUpdate: Should be used when manipulating the database in some way. When executing a statement that utilize INSERT,
UPDATE, or DELETE, the runPrepUpdate function should be called. Note that it does return the number of rows affected, so the return value
can be used to keep track of how much of an impact the query had.
system.db.runScalarPrepQuery: Like runPrepQuery above, but only returns the first column of the first row: i.e. a single value is returned
instead of a full dataset. This is useful when using an aggregate function of some sort to return a count or total, as it saves your script the
work of extracting the value from the full dataset that runPrepQuery normally returns.

Standard Statements

Queries can be called as a Standard Statement (a statement that that isn't a Prepared Statement) by using the and system.db.runQuery system.db.
 functions. However, these are susceptible to , and should be avoided where possible: especially when users runUpdateQuery SQL Injection attacks

have access to a keyboard and can directly type values that will be used in the query.

Calling a Standard Statement involves building the entire query as a single string, and passing the string on to our Standard Statement functions.

Python - Calling an Insert Query as a Standard Statement

query = "INSERT INTO orders (account_id, product_name) VALUES (%i, '%s')" % (123, "Bananas")
system.db.run(query)

Notable Standard Statement Functions

system.db.runQuery: Executes a SELECT statement, returning a result set as a dataset.
system.db.runUpdateQuery: Executes a statement that manipulates the database in someway. Should be used with INSERT, UPDATE, and
DELETE statements.
system.db.runScalarPrepQuery: Similar to runQuery, except only a single value is returned: the first column of the first row. Generally used in
conjunction with SELECT statements that contain an aggregate function.

Stored Procedures

If your database administrator has already configured Stored Procedures for you to use, then they can easily be called from a Python Script. Using
Stored Procedures in a script typically involves two main steps:

A SProcCall object is created with the function. The SProcCall object contains several functions that can be used system.db.createSProcCall
to register parameters, and access the results set returned by the Stored Procedure after it has been executed.
The function must be used to execute the Stored Procedure. system.db.execSProcCall

Python - Creating and Executing a Stored Procedure

Create a SProcCall object, which will be used to configure parameters on the Stored Procedure, and then
executed.
myCall = system.db.createSProcCall("insert_new_order")

Register parameters on the SProcCall object.
myCall.registerInParam(1, system.db.INTEGER, 123)
myCall.registerInParam(2, system.db.VARCHAR, "Bananas")

Execute the Stored Procedure.
system.db.execSProcCall(myCall)

Take a look at the page for more details.SQL Stored Procedures

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runScalarPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runQuery
https://legacy-docs.inductiveautomation.com/display/DOC79/system.db.runUpdateQuery
https://legacy-docs.inductiveautomation.com/display/DOC79/system.db.runUpdateQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runUpdateQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runScalarPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.createSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.execSProcCall

1.

2.

3.

4.

Transactions

A SQL Transaction can also be executed from a script. For the unfamiliar, a Transaction is a batch of statements that will be executed together, and
either succeed or fail as a group. Note, that the statements executed in the Transaction are not visible by other connections in the database until you
commit them.

Transactions typically involve several steps:

Call . This returns a that can be used with other statements. Using this identifier is how system.db.beginTransaction transaction identifier
you specify that a statement should be included in the transaction.
Start calling other statements with other functions, such as . The function's "tx" parameter will be passed the system.db.runPrepUpdate transa

. ction identifier
Commit or Rollback the transaction. Use to commit, and to rollback. These system.db.commitTransaction system.db.rollbackTransaction
options are essentially the same as applying or canceling the results of the queries. Commiting will make the updated results available to
other database connections.
Close the Transaction once you're done, which can be accomplished with the function. This invalidates the system.db.closeTransaction trans

.action identifier

Python - The SQL Transaction Workflow

1) Begin the transaction. This returns a transaction identifier that we can use with other statements.
transactionId = system.db.beginTransaction(timeout = 5000)

2) Now we can execute statements. Because we want these to run as part of the transaction, we need to
include our identifier.
query = "INSERT INTO orders (account_id, product_name) VALUES (?, ?)"
args = [123, "Bananas"]
system.db.runPrepUpdate(query, args, tx = transactionId)

3) We can continue to add statements, but in this case we'll commit them. We could instead rollback if
there was an issue with our previous statement.
system.db.commitTransaction(transactionId)

4) We're done, so close the Transaction.
system.db.closeTransaction(transactionId)

Related Topics ...

Writing Basic SQL Queries
system.db.runPrepUpdate
Named Queries
SQL Stored Procedures

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.beginTransaction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.commitTransaction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.rollbackTransaction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.closeTransaction
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate

Common SQL Tasks

This section contains examples of items we identified as "common" tasks. When first starting out with SQ
, many users are looking for examples in order to grasp concepts, or examples to possibly L in Ignition

use in their projects. Additionally, this section aims to demystify some of the more complex or abstract
tasks that our users may encounter when working with SQL in Ignition.

The examples in this section document several types of SQL tasks that may also touch many other areas
of Ignition. While these examples are typically focused on a single concept or end result, they can easily
be expanded or modified. In essence, they serve as a great starting point for users new to Ignition, as
well as experienced users that need to get acquainted with a new or unfamiliar feature.

Below is a list of common SQL tasks related to using SQL in Ignition.

Filter Data in a Table

The section explains how using a simple Dropdown box and making some Filter Data in a Table
modifications to the SQL query can allow users to dynamically filter data coming into the table to only
show a specific subset of data, or all of the data. This section also includes variations of the SQL query,
thus returning different filtered results to the table.

On this page ...

Filter Data in a Table
Add Data to a Database
Edit Data in a Database
Refreshing SQL Data on a
Component
Editing Multi-Selected Rows from
Table
Storing PDF Files in a Database
Simple Database Editor

Add Data to a Database

A common method of from within a client is using a Button component that executes an SQL query. This section provides adding data to a database
an SQL script showing how to collect relevant properties and insert them into a database, as well as how to set up your components on a window.

Edit Data in a Database

Editing data in a database is very similar to how we add data to a database. Users can edit data within a table on the screen in realtime, and the
changes are then pushed back to the database table. This section goes over the different ways to edit data in the database depending if you're using
a Table component or Power Table component.

Refreshing SQL Data on a Component

Sometimes, it may be unnecessary to have a table constantly updating and requerying the database for data. By using the function, system.db.refresh
we can turn Polling "Off" on our query, and have a button that allows us to manually update the table with new data when the Button is pressed.
Alternatively, we can add the function at the end of a script to refresh the newly entered data automatically without pressing a system.db.refresh
button.

Editing Multi-Selected Rows from Table

Tables have the ability to select and at a time. Oftentimes, this can be used to manipulate multiple rows simultaneously, such as edit multiple rows
deleting all of the selected rows at once.

Storing PDF Files in a Database

The database is a powerful tool and can allow you to store files such as PDFs in a database table. The section Storing PDF Files in a Database
explores how we can take a PDF file and store it in the database table, as well as how to pull it back out and display it in the compVision - PDF Viewer
onent.

Simple Database Editor

It may be beneficial to have a frontend to a database table built right into an Ignition project that allows you to control the data in the table without
having to go into the database's built-in frontend, such as MySQL workbench. In the section, you will learn how to build a Simple Database Editor
simple database table editor on a window that can add, edit, and delete data from the database.

Related Topics ...

Writing SQL Queries
Scripting Examples
Common Reporting Tasks

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.refresh
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.refresh
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+PDF+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC81/Common+Reporting+Tasks

In This Section ...

Filter Rows in a Table

Creating the Components

Filtering table data by using a Dropdown box is possible if the component's property is bound Table Data
to a SQL query. We can create a dynamic clause that will allow us to select all the data or a WHERE
specific subset of it. To implement this solution, you must have a component and a Table Dropdown List
component on a window. With a Dropdown component, we can create an option for each way of filtering
the data, each with a unique value associated with it. An additional "all" entry can also be added, with its
own unique value.

We can then use the value of the Dropdown to drive the query. When you select a different option from
the Dropdown component the binding gets re-evaluated on the table's data binding resulting in the query
executing the clause with the new parameters. You may want to turn Polling Mode off on the WHERE
tables Data property binding in order to limit the periodic querying of the database.

Here we can use a value of 1 to show only entries which match that filter column value.

Pseudocode - Filtering for Area 1

SELECT * FROM table WHERE filterColumn = 1

While the following query will return everything, but will still evaluate the query's WHERE clause.

Pseudocode - Return All Rows

SELECT * FROM table WHERE 0=0

On this page ...

Creating the Components
Example - Filtering Data on an
Area Number

Filter Data in Table

Watch the Video

In this case 0=0 will always evaluate as true, therefore, the query will return every row.

We can combine the logic of each with an WHERE OR into a single query, and substitute in our Dropdown value. The SQL Query binding would then
look something like this:

SQL - Where Clause Combined with OR Condition

SELECT * FROM table WHERE filterColumn = {dropdown value} OR 0 = {dropdown value}

This way, the WHERE clause will only be true when the filter column matches with our selected option, or it will return all rows, if we set up our "all"
option to have a value of 0.

Example - Filtering Data on an Area Number

We can put together an easy example on how this might with data that stores what machines are in which areas. Our data table should look
something like this:

id machine_name area_number

1 Conveyor 1

2 Press 2

3 Tank 1

4 Packer 3

5 Loader 3

6 Oven 1 3

7 Oven 2 2

8 Wrapper 1

9 Mixer 3

https://inductiveuniversity.com/video/filter-data-in-table/8.1

1.

a.
b.

2.
a.

3.

a.
b.

10 Cold Storage 2

11 Dryer 2

We can then put together the query and components necessary to get this working:

Create a new Named Query. Set up security to fit your needs, and name it appropriately. For more information on creating Named Queries,
see .Using Named Queries - Example

Create a single Value type Parameter that is an Int2 data type. I called mine dropdownValue
Add in the combined query that we went over above, but use the machine table name and column names.

SQL - Selecting Values from a Table and Filtering on a Dropdown

SELECT * FROM machines WHERE area_number = :dropdownValue OR 0 = :dropdownValue

Create a new Main Window and add a Power Table component and a Dropdown component to the window.
On the Dropdown's property, create a dataset that looks like this:Data

Value Label

1 Area 1

2 Area 2

3 Area 3

0 All Areas

On the Power Table component, create a Named Query Binding on the property.Data

Select the Named Query that was created in step 1.
For the parameter, bind its value to the property of the Dropdown component, and the click the button.Selected Value OK

3.

b.

4. Put the Designer into mode and try out the Dropdown Filter. You will see that selecting a different value in the dropdown filters the Preview
data coming back so that only certain rows are shown.

Related Topics ...

Writing SQL Queries

1.

a.
b.

i.
ii.

c.

Inserting Data into a Database

Inserting Data on a Button Press

A common way to insert information into a database is to execute a SQL query after the user presses a
Button. The button can run a script to collect the information it needs and then execute a SQL INSERT

 A script executed on the Button's statement to push that data into the correct Database table. actionPerf
 event handler would collect the relevant properties and insert them into a database. The script ormed

would look like this:

Pseudocode - Collects Data and Insert into the Database

value1 = {component property reference}
value2 = {tag value}
value3 = {static value}

query = "INSERT INTO table (col1, col2, col3) VALUES (?,?,?)"
args = [value1, value2, value3]
system.db.runPrepUpdate(query, args)

Notice that the script isn't limited from taking values from any one place, grabbing tag values and
property values and inserting them into a table. It is important to note that using the runPrepUpdate
function will require that certain have been enabled.Client Permissions

On this page ...

Inserting Data on a Button Press
Example - Inserting Values

Add Data to
Database

Watch the Video

Example - Inserting Values

Say we have a table called machines in a database with three columns: an id column, a machine_name column, and an area_number column. We
can build a query and a script that will insert the data into the database:

Create a new Named Query. Set up security to fit your needs and name it appropriately. For more information on creating Named Queries,
see .Using Named Queries - Example

Set the Query Type to Update Query.
Create two Value type Parameters.

The first will be a string data type and will be for the name of the machine so it can be called machineName.
The second will be an Int2 data type and will be for the area number so it can be called areaNumber.

Create the insert query.

SQL - Inserting Values from Components on the Window

INSERT INTO machines (machine_name, area_number) VALUES (:machineName, :areaNumber)

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-PermissionsProperties
https://www.inductiveuniversity.com/video/add-data-to-database/8.1

1.

c.

2.

a.

b.

3.
a.

4.

On a Main Window, add a Button component, a Text Field component, and a Dropdown Component.

On the Dropdown's Data property, create a dataset that looks like this:

Value Label

1 Area 1

2 Area 2

3 Area 3

On the Button's Text property, change the value to something like "Submit"

Right Click on the Button and select Scripting. Navigate to the Script Editor tab on the actionPerformed Event Handler.
Copy in this script, which will pull in the value from the Dropdown and the Text Field and insert them into the table using the Named
Query we built in step 1.

Python - Insert Values into a Database Table

Grab the area number and machine name from the components we added to the window.
areaNum = event.source.parent.getComponent('Dropdown').selectedValue
machineName = event.source.parent.getComponent('Text Field').text

A call to our Named Query, inserting the two parameters using dictionary syntax.
system.db.runNamedQuery("Insert Data", {"machineName":machineName, "areaNumber":areaNum})

Test it out by selecting an area, entering in a machine name, and clicking the submit button. You can check out the new rows using the Datab
 to select the values from that table.ase Query Browser

Related Topics ...

Simple Database Editor

1.

2.

3.

4.

5.

Updating the Database through the Power Table

Updating Table Data

Table components can do more than show data from a database. A properly configured Table can make
the data of the Table accessible to the Client and allow the user to edit the data in realtime. This page
shows two examples using the Table and Power Table components editing data in a database in realtime.

Suppose your database had a Table like this:

id UserName FirstName LastName Notes

1 JS John Smith Likes bikes

2 LJ Luke Johnson Lives in town

3 PB Peter Burke Enjoys cooking

On this page ...

Updating Table Data
Using a Power Table Component
Using a Table Component

Edit Data in
Database

Watch the Video

Using a Power Table Component

Let's create a script on a Power Table component and the extension function that will write to the cell in the database.onCellEdited

Drag a Power Table component to your window, and bind the property of the Power Table using a SQL Query Binding Type and the Data
query below.

SQL - Selects All Records

SELECT * FROM users

Right-click on the and select .Power Table Customizers > Table Customizer

Select the checkbox for each of the columns that we want to edit (i.e., same as the above example). Note, the column should not Editable id
be editable. Click the button.OK

Right-click the and select .Power Table Scripting

Under the Extension Functions folder, select the function, and check the box. We can put a script in here that will grab onCellEdited Enable
the id column value of the row that we modify, and then use that and the new value that we entered to update the Database table. The
extension function makes this easy, because it provides variables for the column name of the row we are editing, the row number that was
edited, as well as the new value. Paste the following script in the scripting area.

Python - Writes to a Cell in the Database

Get the id of the row we edited.
id = self.data.getValueAt(rowIndex, 'id')

Create our query and arguments. The extension function gives us a colName variable,
which we can use in our query. The query will then take two arguments.
The value that we are updating and the id of the row we edited.
query = "UPDATE users SET %s = ? WHERE id = ?" % (colName)
args = [newValue, id]

This function will not work using default settings. The Legacy Database Access will need to be enabled for this to work.Client Permission

https://www.inductiveuniversity.com/video/edit-data-in-database/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-PermissionsProperties

5.

6.

1.

Run the query with the specified arguments.
system.db.runPrepUpdate(query, args)

Requery the database, so we can ensure it properly updated the table.
system.db.refresh(self, "data")

Now, let's test it out. Put the Designer in , select the cell you want to edit, hit enter to commit the change, or tab to the next cell Preview Mode
to make additional edits.

Using a Table Component

Let's create another script like the example above, but this time we'll use a Table component's event that will write to the cell in the cellEdited
database when we update it on the component. The script will be slightly different.

This function will not work using default settings. The Legacy Database Access will need to be enabled for this to work.Client Permission

https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-PermissionsProperties

1.

2.

3.

4.

5.

Drag a Table component to your window. With the Table component selected, bind the property of the Table using a SQL Query Data
Binding Type and the query below.

SQL - Select All Records

SELECT * FROM users

Right-click on the and select .Table Customizers > Table Customizer

Select the checkbox for each of the columns that we will want to edit. Note, the column should not be editable. Click the Editable id OK
button.

Right-click the and select .Table Scripting

Create a script in the event handler using the script provided below. In this script, we have variables that contain the row cell > cellEdited
number that was edited, the column number that was edited, and the new value. Because we do not have the name of the column that was
edited, we must first grab the list of columns using the system function. We can then use the column number that was getColumnHeaders()
edited to find the name of the column that changed and use it in the query.

Python - Writes to a Cell in the Database When Component is Updated

Get the id of the row we edited.
id = event.source.data.getValueAt(event.row, 'id')

Get the header names of the dataset.
headers = system.dataset.getColumnHeaders(event.source.data)

Build our Update query. The column name is substituted in from the column that was edited.

5.

6.

The query will take two arguments. The value we are updating and the id of the row we are editing.
query = "UPDATE users SET %s = ? WHERE id = ?" % (headers[event.column])
args = [event.newValue, id]

Run the query with the specified arguments.
system.db.runPrepUpdate(query, args)

Requery the database, so we can ensure it properly updated the table.
system.db.refresh(event.source, "data")

Now, you're ready to test it out! Put the Designer in , select the cell you want to edit, hit enter to commit the change, or tab to Preview Mode
the next cell to make additional edits.

Related Topics ...

Simple Database Editor

1.
a.

2.

3.
a.
b.

4.

Refreshing a SQL Query

Refreshing a Query in Vision

The SQL query that populates a property on a component will refresh its data periodically if the Polling
 is set to either Relative or Absolute. However, there are times when you want the data to query the Mode

database once when the window is opened, and then retain explicit control over each subsequent
refresh. The Table data can be requeried using . There are two main ways of doing system.db.refresh
this: either placing the script on a button, or at the end of some code.

Refresh After Edits

If edits are being made to the Table data, or additional rows are being added, it can be a good idea to
call the system.db.refresh() function after manipulating data. This way, the data in the Table will
automatically refresh with the newly entered data, saving the user the hassle of clicking a refresh button.

Pseudocode - Refreshing a Table after an Edit

doWork()

system.db.runPrepUpdate("INSERT INTO table")

system.db.refresh(component, "propertyName")

On this page ...

Refreshing a Query in Vision
Refresh After Edits
Refresh on a Button

Refreshing a Query in
Perspective

Refreshing SQL
Data on Component

Watch the Video

Refresh on a Button

We can use a Button component with a script on it to refresh the component with the query binding on it. Typically the button is placed close by the
query bound component, and will say something like "Refresh Data". The script is actually fairly simple, and can be placed on the evactionPerformed
ent of the Button.

Drag a component onto a window that has a Power Table or Table component querying a Database table.Button
Change the Button's Text property to say "Refresh."

On the Power Table component, open the property binding and set the polling mode to .data off

Right click on the Button and select .Scripting
Select the Event Handler and navigate to the Script Editor tab.actionPerformed
Add in this script, which will force the Table's data property to refresh.

Python - Refreshing the Database when the Button is Pressed

Will force the Power Table's Data property to run the query again.
system.db.refresh(event.source.parent.getComponent('Power Table'), "data")

Try it out by adding new data to the Database table and then clicking the Refresh Button.

Refreshing a Query in Perspective

The system.db.refresh() function does not work in Perspective. However, an additional component method has been added to handle the more
general task of refreshing a binding. The method is called refreshBinding(), and can be called on any Perspective component:

self.refreshBinding("props.data")

The function takes a string as a parameter, the path to the property to be refreshed. More info on the refreshBinding() function can be found at Perspec
.tive Component Methods

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision#SQLQueryBindingsinVision-BindingPropertiestoaSQLQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision#SQLQueryBindingsinVision-BindingPropertiestoaSQLQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.refresh
https://www.inductiveuniversity.com/video/refreshing-sql-data-on-component/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RefreshingBindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods#PerspectiveComponentMethods-RefreshingBindings

Related Topics ...

system.db.refresh
SQL Query Binding
DB Browse Binding
Named Query Bindings

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.refresh
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/DB+Browse+Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Named+Query+Bindings

1.

a.
b.

c.

2.

a.

Editing Multi-Selected Rows from a Table

Editing Multiple Table Rows

A common user experience is to select multiple rows of a table and then edit all of those rows from the
database at once, such as deleting all of them. When a user selects more than one row in a table, there
is a special function called getSelectedRows() available on both the Table and Power Table components
that returns the row indexes of the table as a Python list. This list can be iterated through in order to
delete the selected rows from the database.

Example - Deleting Selected Rows

We can use the list of selected rows to delete them from the database. Start with a table in the Database
table that looks like this:

id machine_name area_number

1 Conveyor 1

2 Press 2

3 Tank 1

4 Packer 3

5 Loader 3

6 Oven 1 3

7 Oven 2 2

8 Wrapper 1

9 Mixer 3

10 Cold Storage 2

11 Dryer 2

Create a new Named Query that will be used to delete rows of data. to fit your Set up Security
needs, and name it appropriately. For more information on creating Named Queries, see Using

.Named Queries - Example
Set the Query Type to .Update Query
Create a single Value type Parameter that is an Int4 data type. This will hold the id of
the row, so we can name it rowID.
Create the Delete Query.

SQL - Delete Row with Matching ID

DELETE FROM machines WHERE id = :rowID

Create a second Named Query as in step 1, but this one will be used to select the data into a
table.

Set the Query Type to Query, no parameters, and add a basic select query.

On this page ...

Editing Multiple Table Rows
Example - Deleting Selected
Rows

Deleting Multi-
Selected Rows
from Table

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Using+Named+Queries+-+Example#UsingNamedQueriesExample-CreatingaNamedQueryandAddingSecurity
https://www.inductiveuniversity.com/video/deleting-multi-selected-rows-from-table/8.1

2.

a.

3.

4.

a.

5.
a.
b.
c.

6.

SQL - Selecting from a Table

SELECT * FROM machine

On a new Main Window, add a Power Table component and a Button component.

On the Power Table's property, set up a Named Query binding to the Select Query that Data
was made in step 2.

Ensure that the Selection Mode property is set to .Multiple Interval

On the Button, change the Text property to say "Delete".
Right click on the Button and select Scripting.
Select the actionPerformed Event Handler and navigate to the Script Editor Tab.
Here we need to call the function on the Power Table to getSelectedRows()
determine what rows are selected, and then loop through those to grab the value of the
id column in each row and delete the row based on that id.

Python - Looping Through the Selected Rows and Deleting Them

Get the data from the table and assign it to the variable
called data.
data = event.source.parent.getComponent('Power Table').data

Get the rows of the data that the user has currently
highlighted.
rows = event.source.parent.getComponent('Power Table').
getSelectedRows()

Iterate through each row of the list that is associated
with the rows variable.
for row in rows:

 # Get the value associated with the current row and
the the column called "id".
 id = data.getValueAt(row, "id")

 # Run the query to delete from the database, where
tableName is the name of the database table.
 system.db.runNamedQuery("Delete Machine Rows",
{"rowID":id})

Refresh the table data.
system.db.refresh(event.source.parent.getComponent('Power
Table'), "data")

You can test it out by putting the Designer into Preview Mode, selecting a few rows, and then
clicking the Delete Button.

Related Topics ...

Updating the Database through the Power Table
Refreshing a SQL Query

1.

2.

3.
a.

Storing Files in a Database

Storing and Displaying Files in a Database

Ignition can store different types of files into a database by storing the raw file bytes into a special
database column. Ignition can also pull these file bytes out and display certain files within a Client.

Example - PDF File

One of the most common file types that is stored is PDF files. This allows you to store each PDF file
within the central database where each client will have access to it, instead of placing the file in a shared
drive that all Client computers have access to.

On this page ...

Storing and Displaying Files in a
Database
Example - PDF File

Uploading PDF Files to the
Database
Displaying PDF Files from the
Database

Storing Files in a
Database

Watch the Video

Uploading PDF Files to the Database

With a simple script on a Button component, we can store a PDF file into the database so that any user can view it later. This part does not use a
Named Query, because the Named Query Parameters do not have a data type that allows us to pass in the raw file bytes. We can instead use system.

 to call a query from the script.db.runPrepUpdate

This example requires that you have a table with a byte array column in it. For example: MySQL user the BLOB data type and MSSQL uses the
varbinary() data type.

Add a Button component to a new Main Window.

Change the Text property to say Add File.

Right click on the Button and select Scripting.
Navigate to the Script Editor Tab of the actionPerformed Event Handler. Here we can put a script that will grab the file bytes using
the file path and the function, and then insert that into the database, along with a user selected file system.file.readFileAsBytes
name.

Python - Uploads PDF Files to a Database Using a Button

Find the path to the PDF file.
path = system.file.openFile("pdf")

Check to ensure that the user actually selected a filepath.
if path != None:

 # Read the file as bytes.
 data = system.file.readFileAsBytes(path)

 # Ask the user to enter in a filename.
 # Will grab just the filename and extension from the path as a suggestion.

Each database has different column types that are used to store files, so it is important to
check with your database documentation to see which data type the column would need to be
set to for it to accept file bytes. For example, in MySQL, the data type that accepts PDF bytes
is a data type, so you will need to set the PDF Data column to the data LongBlob LongBlob
type. MS SQL accepts the data type, so you'll need to set the PDF Data column to Varbinary
a data type.Varbinary

This function will not work using default settings. The Legacy Database Access will need to be enabled for this to work.Client Permission

https://www.inductiveuniversity.com/video/storing-files-in-a-database/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.readFileAsBytes
https://legacy-docs.inductiveautomation.com/display/DOC81/Project+Properties#ProjectProperties-PermissionsProperties

3.
a.

4.
a.

b.

1.

a.

2.
a.
b.

 name = system.gui.inputBox("Enter a name for the file", path.split('\\')[-1])

 # Check to ensure that the user entered a name for the file.
 if name != None:

 # Insert the data and name into the database.
 system.db.runPrepUpdate("INSERT INTO files (fileName, fileBytes) VALUES
(?,?)", [name,data])

Test out the script by putting the Designer into Preview Mode and clicking the Button.
First, select the file to load.

Then enter in a file name.

Displaying PDF Files from the Database

Ignition can render a PDF document inside the component, which is a part of the . To view PDF files in the Vision - PDF Viewer Reporting Module
Client, your Ignition server must have the Reporting Module installed. Once the module is installed, you can load the bytes from the database into the
PDF Viewer component.

Create a new Named Query that will be used to select the file names and ids for a Dropdown selection. Set up security to fit your needs, and
name it appropriately. For more information on creating Named Queries, see .Using Named Queries - Example

With no Parameters, add a query to select all the files in our files table.

SQL - Selecting all Files

SELECT id, fileName FROM files

Create a second Named Query, same as in step 1. This will be used to grab the file name and bytes after the user has chosen a file.
Add a single Value type Parameter, "fileID" that will be an Int4 data type.
Add the query to select the file name and bytes based on the selected ID.

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+PDF+Viewer
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting+Module

2.

b.

3.

4.
a.
b.

5.
a.
b.

6.

SQL - Selecting a File based on an ID

SELECT fileName, fileBytes FROM files WHERE id = :fileID

On the Main Window, add a Dropdown List component and a PDF Viewer component.

On the Dropdown List component, add a Named Query binding to the Data property.
Set the binding to the Named Query that was made in step 1.
Place a small refresh Button next to the Dropdown that will refresh this query. See for more information for Refreshing a SQL Query
how to refresh on a button.

Right click on the Dropdown List component and select Scripting.
Select propertyChange and navigate to the Script Editor tab.
This script will take any new selected value and use it in the Named Query we made in step 2 to get the file name and bytes. We
can then load the bytes into the PDF Viewer.

Python - Displays PDF Files from a Database Using the PDF Viewer

Check to see if the property that changed was the Selected Value property.
if event.propertyName == "selectedRow":

 # Run the query to grab the file name and bytes using the new selected ID value.
 data = system.db.runNamedQuery("Read File", {"fileID":event.newValue})

 # Grab the file bytes and name from the same row.
 bytes = data.getValueAt(0, "fileBytes")
 name = data.getValueAt(0, "fileName")

 # Load the bytes into the PDF Viewer component.
 event.source.parent.getComponent('PDF Viewer').loadPDFBytes(bytes, name)

Place the Designer into Preview Mode, and try selecting one of the stored files.

Related Topics ...

 Vision - PDF Viewer

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+PDF+Viewer

1.
a.

b.

c.
d.

Simple Database Editor

Building a Database Table Editor

Building a Simple Database Table Editor in Ignition is actually quite easy. Using a few simple
components and some scripting, we can easily make a window that will allow users to add, edit, and
delete the data from a particular database table. Before we get started, there is a table that has already
been created in a database that is used for this example. You can either create this table and follow
along, or alter the example to fit your table.

The table is called , and it has four columns.trucks

id Name Description Operator

The column is our primary key, it is non null, and it auto incrementsid
All other columns are varchar(45)

That is it. There is no need to add any data, as we can add data when testing our tool!

On this page ...

Building a Database Table Editor
Adding the Components
Add a Truck
Delete a Truck
Populate Text Fields
Update Data

Adding the Components

This example consists of a Table component that will display the data, Button components to add and delete rows from the database table, Text
Fields where we can enter in new values, and an Update Details Button that will push those values to the database table.

Let's start off by going to the and adding the necessary components to the window.Designer

Add a component to the window.Power Table
We want to query the table in the database that we made earlier, so let's add a on the property of the SQL Query Binding Data
Table.
Add the following code under the area.SELECT Query

SQL - Selects all Trucks

SELECT * FROM trucks

Set the to and the to , so that it periodically updates if left open.Polling Mode Absolute Polling Rate 60 seconds
Since we want to use the secure Named Query system, click the convert to Named Query button under the polling mode, and call
the query "Truck Select"

1.

d.

e.

f.

g.

2.
a.
b.
c.
d.

3.
a.
b.

c.

With the Table still selected, open the by right clicking on the Power Table and going to Table Customizer Customizers > Table
.Customizer

Set the property of the column to . We don't need to show that column to our users. Click to close the Table Hide id true OK
Customizer.
In the , make sure the property of the Power Table is set to .Property Editor Selection Mode Multiple Interval

Add three components to the right of the .Button Table
Change the property on one Button to say " ."Text Add
Change the property of the second Button to say " ".Text Delete
Change the property of the final Button to say " "Text Update Details
Optionally, you can also add an image to the of each button such as a green plus and a red X, and resize them as Image Path
necessary.

Add three components and three components under the .Label Text Field Table
Pair up a Label with each Text Field.
Rename the Text Fields:
Truck Name, Truck Description, Truck Operator.
Change the property of each Label to match the name of their corresponding Text Fields.Text

1.

a.
b.

i.
ii.
iii.

c.

2.

a.

Now we have our window configured with all of the components we need. Next we can start adding scripts that will alter the components.

Add a Truck

First, we can add a script to our button that will allow us to add a row to the Table. We can use the Text Fields that we added so the user can Add
enter in values to insert into the table.

Create a new Named Query which we will use to insert new data. Set up to fit your needs and name it appropriately. For more security
information on creating Named Queries, see .Using Named Queries - Example

Set the Query Type to Update Query.
Create three Value type Parameters.

The first will be a string data type and will be used for the name of the truck so it can be called "truckName".
The second will be a string data type and will be used for the description of the truck so it can be called "truckDescription".
The third will also be a string data type and will be used for the operators name so it can be called "operName".

Create the insert query.

SQL - Adding a Truck

INSERT INTO trucks(Name, Description, Operator) VALUES(:truckName , :truckDescription , :
operName)

Back on our window with components, right click on the and select . Select the Event Handler and Add Button Scripting actionPerformed
navigate to the tab.Script Editor

Here we can add some code that will pull the values from the three Text Field components and then use those values in the Named
Query we made in step 1.

Python - Adds a New Blank Row and Refreshes the Table

https://legacy-docs.inductiveautomation.com/display/DOC81/Using+Named+Queries+-+Example#UsingNamedQueriesExample-CreatingaNamedQueryandAddingSecurity

2.

a.

3.

1.

a.
b.

i.
c.

Grab the values from the Text Fields.
name = event.source.parent.getComponent('Truck Name').text
description = event.source.parent.getComponent('Truck Description').text
operator = event.source.parent.getComponent('Truck Operator').text

Use those values in the Add Truck Named Query.
system.db.runNamedQuery("Add Truck", {"truckName":name, "truckDescription":description,
"operName":operator})

Refresh the table to immediately bring in the new row.
system.db.refresh(event.source.parent.getComponent("Power Table"), "data")

Now we can test out our script and query by putting the Designer into , adding some data to the , and clicking the Preview Mode Text Fields A
. You should see a row populate the table. Try adding a few rows to fill our table with data. Make sure you have the designer dd Button

Communication Mode set to Read/Write to test. Go back to before moving on.Design Mode

Delete a Truck

Now that we can add rows, let's add a script to our that will delete rows. Since our users can select multiple rows, our script needs to Delete button
take that into account, and delete all of the rows that the user selected. It will also have a popup if there are no rows selected, informing Message Box
the user that they need to select at least one row. We also want to add a confirmation before the rows actually get deleted.

Create a new Named Query which we will use to delete a row of data. Set up to fit your needs and name it appropriately. For more security
information on creating Named Queries, see .Using Named Queries - Example

Set the Query Type to Update Query.
Create one Value type Parameters.

It will be a Int4 data type and will be used for the id of row so it can be called "id".
Create the delete query.

SQL - Deleting a Truck

DELETE FROM trucks WHERE id = :id

https://legacy-docs.inductiveautomation.com/display/DOC81/Using+Named+Queries+-+Example#UsingNamedQueriesExample-CratingaNamedQueryandAddingSecurity

1.

c.

2.

a.

3.

Back on our window with components, right click on the and select . Navigate to the tab on the Delete Button Scripting Script Editor actionP
 Event Handler.erformed

Here we can add some code that will delete the user's selected rows. First we grab the Power Table's selected rows, and check to
make sure rows are actually selected. If there are selected rows, then we have a popup that confirms the user wants to delete rows,
and it shows the number of rows that will be deleted. Once the user confirms, the script will then loop through the selected rows and
delete each one.

Python - Deletes the Row or Rows

Get the selected row or rows.
selRows = event.source.parent.getComponent('Power Table').getSelectedRows()

Check to see that a row is actually selected.
if len(selRows) > 0:

 # If a row is selected, ask for confirmation before deleting the rows.
 if system.gui.confirm("Are you sure you want to delete " + str(len(selRows)) + " row
(s)?", "Are You Sure?", 0):

 # If the user gave confirmation, we need to loop through all of them.
 for row in selRows:

 # For each selected row, we need to get the value of the id column in
that row.
 id = event.source.parent.getComponent('Power Table').data.getValueAt
(row, "id")

 # Use the id of the row to delete it from the database table.
 system.db.runNamedQuery("Delete Truck", {"id":id})

 # Refresh the table after deleting all selected rows
 # to immediately remove the selected rows from the Power Table.
 system.db.refresh(event.source.parent.getComponent('Power Table'), "data")

 # If the user said no to the delete.
 else:
 system.gui.messageBox("User canceled the delete.", "Delete Canceled")

If no row is selected, have a popup message that asks the user to select a row.
else:
 system.gui.messageBox("Please select at least one row.", "Select A Row")

Now we can test our by putting the Designer into and clicking the . When one or more rows are Delete button Preview Mode Delete button
selected and the is pressed, a popup will confirm we want to delete the rows before deleting them. (You can select multiple Delete button
rows with or). When no rows are selected and the is pressed, a will pop up, Shift-Click Control-Click Delete button Message Box
informing the user to select a row first. You can deselect rows in the Table by clicking on the Table and pressing the key. Be sure to Escape
go back to Design Mode before moving on.

3.

1.
a.

2.

a.

Populate Text Fields

Now that we can add and delete rows from our Table, we need a way to edit the data contained in them. However, before we can create a script on
our , we first need to populate the Text Fields with the current values of the selected row. We can do this by adding a simple Update Details button
expression to each of the text fields.

On the Truck Name Text Field, add an expression binding to the Text property.
The expression will grab the dataset and will grab the value at the selected row of the Name column. The expression is wrapped in
a try so that if no rows are selected, it will return an empty string.

Expression - Grabbing the Selected Row's Name Value

try({Root Container.Power Table.data}[{Root Container.Power Table.selectedRow}, "Name"], "")

On the Truck Description Text Field, add an expression binding to the Text property.

2.

a.

3.

a.

4.

1.

a.
b.

i.
ii.
iii.
iv.

c.

The expression will grab the dataset and will grab the value at the selected row of the Description column. The expression is
wrapped in a try so that if no rows are selected, it will return an empty string.

Expression - Grabbing the Selected Row's Description Value

try({Root Container.Power Table.data}[{Root Container.Power Table.selectedRow},
"Description"], "")

On the Truck Operator Text Field, add an expression binding to the Text property.

The expression will grab the dataset and will grab the value at the selected row of the Operator column. The expression is wrapped
in a try so that if no rows are selected, it will return an empty string.

Expression - Grabbing the Selected Row's Operator Value

try({Root Container.Power Table.data}[{Root Container.Power Table.selectedRow}, "Operator"],
"")

Click on a row to see the fields below populate. Press the ESC key to empty the selection.

Update Data

The last part of setting up this window is to add a script to the that will pull the data from the Text Fields and insert it into the Update Details button
selected row of the database Table. Additionally, the script will check to ensure that a row selected, and that only one row is selected. We wouldn't
want to confuse users who may have accidentally selected multiple rows at a time, since our button will only update a single row.

Create a new Named Query which we will use to update a row of data. Set up to fit your needs and name it appropriately. For more security
information on creating Named Queries, see .Using Named Queries - Example

Set the Query Type to Update Query.
Create four Value type Parameters.

The first will be a string data type and will be used for the truck name of row so it can be called "truckName".
The second will be a string data type and will be used for the truck description of row so it can be called "truckDescription".
The third will be a string data type and will be used for the operator name of row so it can be called "operName".
The fourth will be a Int4 data type and will be used for the id of row so it can be called "id".

Create the update query.

SQL - Deleting a Truck

UPDATE trucks SET Name = :truckName , Description = :truckDescription , Operator = :operName
WHERE id = :id

https://legacy-docs.inductiveautomation.com/display/DOC81/Using+Named+Queries+-+Example#UsingNamedQueriesExample-CreatingaNamedQueryandAddingSecurity

1.

c.

2.

a.

3.

Back on our window with components, right click on the and select . Navigate to the tab on the Update Button Scripting Script Editor action
 Event Handler.Performed

Here we can add some code that will update the users selected row with data pulled from the Text Fields. First we check to ensure
that only one row is selected. Next the script asks them to confirm that the user wants to update the selected row. If the user
confirms, the script then pulls in the values of all three Text Fields and uses those values along with the selected rows id to update
the database table with new data. It will then refresh the table after updating so that the new data can be brought into the table.

Python - Deletes the Row or Rows

Check to make sure only one row is selected.
if len(event.source.parent.getComponent('Power Table').getSelectedRows()) == 1:

 # If a row is selected, ask for confirmation before updating the row.
 if system.gui.confirm("Are you sure you want to update the selected row?", "Are You
Sure?", 0):

 # Grab the values from the text fields.
 name = event.source.parent.getComponent('Truck Name').text
 description = event.source.parent.getComponent('Truck Description').text
 operator = event.source.parent.getComponent('Truck Operator').text

 # Grab the selected row.
 selRow = event.source.parent.getComponent('Power Table').selectedRow

 # Using the selected row, we need to get the value of the id column in that
row.
 id = event.source.parent.getComponent('Power Table').data.getValueAt(selRow,
"id")

 # Run a query that will update the values of the row matching the id.
 system.db.runNamedQuery("Update Truck", {"truckName":name, "truckDescription":
description, "operName":operator, "id":id})

 # Refresh the table to immediately show the updated data.
 system.db.refresh(event.source.parent.getComponent('Power Table'), "data")

 # If the user said no to the update.
 else:
 system.gui.messageBox("User canceled the update.", "Update Canceled")

If there more than one row selected, or no rows selected.
else:

 # Have a popup asking the user to select one row.
 system.gui.messageBox("Please select one row to edit.", "Select One Row")

Now that we added this last bit of code, we can test it by selecting a row, adding data to each , and clicking the Text Field Update Details
. You should see the data populate the row of the Table, since the table in the database has been updated. Additionally, you should button

notice how the Text Fields will automatically update when selecting a new row. Try adding a few rows of valid data to your Table.

3.

Related Topics ...

Inserting Data into a Database
Updating the Database through the Power Table
Editing Multi-Selected Rows from Table
Named Query Caching

Basic SQL Troubleshooting

Learning when something is wrong with your database queries and learning how to resolve the problem
is key to getting the best possible use out of the database connection to Ignition. Typically, the biggest
problem that users face with queries is the data taking too long to load on the window, but an error in a
query can also be difficult to track down. This section details what to look for when the query fails to
execute, as well as what to do when facing slow queries and how to optimize them within the project to
help return data to the window as quickly as possible.

Error Message Box

If a query fails to execute, chances are there was an error box that popped up. Resist the urge to close it!
The Error Box usually contains a lot of useful info that can help troubleshoot why the query is failing.
When looking at the error message, there are a few things to look for. First, you will want to click on the D

 tab in the upper left corner of the Error Box. This will bring up the details of the error, which etails
contains the information we need to track down the error.

In the image below, you can see the yellow highlighted part shows us what our query is, as well as where
it is executing from. This helps to ensure we are looking at the correct error message for the query we
are trying to fix. Next, you want to look for the words ' ' in the text of the error details, which tell caused by
us the reason for the error. You can see in the image below, there are two of ' ' messages caused by
highlighted in green.The first one is from the Gateway, and the second one is from the database (in this
case, a MySQL database).

After locating the ' ', the following message will help to pinpoint what the error is. In this caused by
example, we have an error with our syntax in our SQL statement. The most helpful portion of the error is
at the end of the message highlighted in purple. This lets us know where the syntax error is in the SQL
statement. The trick is to look immediately before the quoted query. In the image below, it starts to quote
the original query with ' ', so in my original query, I need to look at what FROM alarm_events WHERE.....
was right before the ' '. You can see in my original query highlighted in yellow, there is a comma FROM
right before the ' ', which is incorrect, as the last column in the statement should not have FROM SELECT
a comma after it.

On this page ...

Error Message Box
Other Common SQL Errors

Checking the Database
Connection
Testing Query Results
Checking for Slow Queries

Other Common SQL Errors

Unknown Column

Typically, the name of the column is wrong because of a misspelling. In this case, the correct spelling was 'eventtime', but there was an accidental 's'
added to the name.

Unknown Table

If the table is not found in the database, it may also be because of a misspelling. Here, the correct table name should be 'alarm_events'.

Any Database Error

The previous error examples have all been from a MySQL database, but the same principles apply to any database. Simply locate the 'caused by',
and look at the message afterwards. In this MSSQL syntax error, instead of displaying everything after the syntax error, it only displays the part
immediately after. The problem in this query is an extra comma before the word 'FROM'.

Checking the Database Connection

Checking the Database Connection in the Gateway can also be useful to ensure there is a valid connection and there is nothing blocking the
execution of queries. The page of the Gateway can be used to determine if queries are taking too long, while the Database Connections page Status
can be used to alter the settings of the database to better handle the number of queries running from the Gateway to the database. See the Slow

 page for more information on changing these settings.Queries

Testing Query Results

Using the is a good way to test out a query before actually running it on a component. This can help you see what results Database Query Browser
will be returned so that the query can be modified to narrow down how the query should be formatted.

Checking for Slow Queries

There are several ways that slow running queries can cause improper behavior. See for more details.Slow Queries

https://legacy-docs.inductiveautomation.com/display/DOC81/Slow+Queries#SlowQueries-SlowQueryintheDatabaseManagementSoftware
https://legacy-docs.inductiveautomation.com/display/DOC81/Slow+Queries#SlowQueries-SlowQueryintheDatabaseManagementSoftware

Related Topics ...

SQL in Ignition

In This Section ...

Slow Queries

Slow running queries can be a big problem. Not only can data take a long time to display on the screen,
but it can end up slowing down the whole client. Here, we take a look at some of the things that you can
do when your project has a slow running query.

Identify the Slow Query

The first step in dealing with slow queries is identifying which query is actually running slowly. It is
typically obvious when a window is opened and a component takes time before database data is
displayed. Chances are, the query is on that component somewhere. However, it may also be a good
idea to check the queries that are being run against that . From the database connection in the Gateway
Gateway webpage, navigate to to see a list of all database Status Connections Databases
connections. Clicking on the button to the right of the database connection will show all of the Details
currently running queries, the most recent long running queries, as well as some basic metrics for that
connection. Here, you can get a good idea of any queries that may be a little slower than the others.

On this page ...

Identify the Slow Query
Execute Against the Database
Management Software
Fast Query in the Database
Management Software

Check the Database
Connection
Check Currently Executing
Queries

Slow Query in the Database
Management Software

Execute Against the Database Management Software

The next step in identifying the type of slow query we are dealing with is to run the query directly within the database management software. By
cutting out Ignition, we can determine if the query is actually running slowly, or if there is a problem within Ignition that is making the query run slow.

Fast Query in the Database Management Software

If the query runs quickly in the database management software, then there are a few things we can take a look at that may help out.

Check the Database Connection

First, check to make sure the database connection is valid, and there are no warnings associated with it. You may want to go into the connection
settings for that database and take note of the value of the property, which determines the maximum number of active connections to the Max Active
database as well as the property, which is the number of milliseconds to wait for a connection to come available. To get to the database Max Wait
connections settings, go to page of the Gateway webpage and select , locate your database, and hit the Configure Databases Connections edit
button. Here, you can check the database settings. Open at the bottom of the screen, and you'll find the property Advanced Properties Max Active
as well as the property. Max Wait

Check Currently Executing Queries

Back in the section of the Gateway Webpage on the page mentioned above, we can see a list of currently running Status Database Connection
queries, as well as how many of the active connections are being used. If the max number of connections is being used, it may be that there are so
many queries running that each query needs to wait for an active connection to open up. If this is the case, you may want to increase the amount of
active connections to the database or take steps to .reduce the query load on the database

Slow Query in the Database Management Software

If the query also runs slow within the database management software, then the query is just a slow query. Unfortunately, nothing within Ignition can
speed up the execution of that query, so you would want to instead take a look at what the query is doing. If the query is pulling in lots of data, you can
try breaking the query down into smaller queries, or writing the query in a more efficient way.

For particularly large tables, it may also be helpful to add an index to one of the table's columns. Indexes are something that the user can't see, but
help the database speed up data retrieval. However, adding an index to a table will increase the amount of time that an update to the table takes,
because the index also needs to be updated. For this reason, it is recommended to only make indexes on columns that are frequently searched
against.

To make an index, most database management software have built in interfaces that allow you to customize the index on each table. An index can be
made for a single column, or a combination of columns in the table. Talk to your Database Administrator about adding or updating table indexes.

Alternately, you may need to take a look at the database system as a whole. As the size of the database grows, you may need to update the hardware
resources available to it. If the database is installed on a server with another system like Ignition, be aware that although the two systems are now
sitting next to each other, they now have to share the hardware resources available to them, which may cause issues for both systems. In many
cases, it is often better to have the database run on a separate server, which gives it ample room to grow.

Related Topics ...

SQL Query Volume Optimization
Connections - Databases

SQL Query Volume Optimization

Overview

Leveraging a SQL Database can drastically improve the quality of a project, but improper database
consideration while designing can lead to poor performance later on. This page contains some best
practices and considerations when incorporating SQL queries.

Optimizing Individual Queries

Optimizing individual queries to run faster and be more efficient is very difficult to do properly and can
vary widely depending on a number of factors such as the way the tables are set up in the database and
what data is being pulled out. Because each database can vary widely from another, there isn't any
general way of improving the efficiency of your queries. Instead we recommend becoming more familiar
with the SQL language as well as how the data is set up in your system and exactly what data you want
to retrieve. This knowledge can help you build better queries.

Your company may also have a database administrator who would manage the database system for your
company and would be familiar with figuring out the best way of retrieving data. They may be able to help
you retrieve the data that you need.

Always Think Large

Consider how many instances of a query may be running at any given point in time. A single SQL Query
 will be called for each instance of the window that is open, so if 50 clients are all looking at the Binding

same window, 50 separate queries will be called. If the binding is configured to poll, then 50 queries will
poll at the rate specified for this single binding. This is already a fair amount of work without factoring in
other systems, such as Tag Historian.

To provide context, you can always check the of the Gateway Webpage to check current Status Section
throughput of each database connection.

On this page ...

Overview
Optimizing Individual Queries
Always Think Large
Use Cached Named Queries
When Possible
Use the Expression Language to
Consolidate Multiple Queries
Restrict the Number of Query
Tags in a UDT

Single Database Tables
Multiple Database Tables

Use Cached Named Queries When Possible

Most resources in Ignition that can request a query will not cache the results for use by other resources: a SQL Query Binding that returns a result set
will only do so for the one component, and can't be utilized by other resources in the same project. Thus, if two clients have the same window, the
same query must be fired twice for both bindings to receive information from the database which is wasteful.

Named Queries are the exception. They can for use by other resources in the project, as well as other instances of the cache the resulting dataset
same project. In the previously mentioned scenario, one client would trigger the Named Query to execute, and the other client would simply utilize the
cached result set, reducing the number of queries running against the database.

If your project contains queries that poll slowly, or results sets that aren't frequently modified, then a Named Query with caching enabled is an efficient
alternative to a SQL Query or DB Browse binding.

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision

Use the Expression Language to Consolidate Multiple Queries

If multiple resources (such as multiple Tags, or multiple components) need separate values from the same database table, or a window contains
multiple components that are all querying data from the same table, such as multiple Numeric Labels, it may be more efficient to have a single query
run and fetch the large portions of the table, and then distribute the individual values to each component. This typically involves having some property
or Tag query for several rows of data from a database table, and then using expression bindings or Expression Tags to retrieve individual values from
the query.

Individual values may be retrieved from a dataset via the Expression Language: either an Expression binding on a property, or an Expression
Tag. Here are two commonly used approaches to extracting a single value from a dataset in the Expression Language:

The syntax. You may want to use the function in case the dataset is empty: Expression Language's Dataset Access try()

Pseudocode - Expression Language Dataset Access Syntax

{dataset}[rowIndex,columnIndex]

The function:lookup

Pseudocode - Expression Language Lookup Function

lookup({dataset}, lookupValue, noMatchValue)

Restrict the Number of Query Tags in a UDT

Each Query Tag in a UDT will run a separate query per instance of the UDT. Assuming a scan class of one second, if a UDT definition contains 5
Query Tags, and there are 5 instances of that UDT, then there will be 25 queries executing every second.

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Language+and+Syntax#ExpressionLanguageandSyntax-DatasetAccess
https://legacy-docs.inductiveautomation.com/display/DOC79/try
https://legacy-docs.inductiveautomation.com/display/DOC81/lookup

As , the Expression Language can be used to reduce load on the database if multiple Query Tags are retrieving data from the mentioned on this page
same database table. Furthermore, UDT parameters can be utilized in the Expression Tags, so new UDT Instances can easily be configured to look
up the appropriate values.

Single Database Tables

Below, the Tag named , as the name implies, is a Query Tag retrieving multiple rows of data from a database table. We Current Inventory Query Tag
see that the highlighted contains two members: and , UDT Instance 2 Inventory Column 1 Expression Tag Inventory Column 2 Expression Tag
which are simply Expression Tags that are referencing individual cells from the . Current Inventory Query Tag

The UDT definition can use a parameter to specify an individual row in the Query Tag that each instance should focus on.

Each Expression Tag could use an expression like the following to look up individual values:

Multiple Database Tables

To add values from a separate database table, we simply need a separate Query Tag. In the image below, a new Tag named Maintenance Query
 has been added, which is querying from a separate Database table. To incorporate this new data into our UDT instances, new Expression Tags Tag

have been added (, and) that simply reference specific values in Maintenance Column 1 Expression Tag Maintenance Column 2 Expression Tag
the new Query Tag. Now, regardless of how many UDT instances exist in the Tag provider, we only have two Tags that are executing queries against
the database.

For each separate table, we need to incorporate a single new Query Tag to collect all of the rows we want to show, add index parameters to the UDT
definition, and add Expression Tags to our UDTs.

Related Topics ...

Named Query Caching
Slow Queries

Scripting

What Is Scripting?

Most of the time when we talk about "scripting" in Ignition we are talking about Python scripting, or writing
code in the Python language. Python is a general purpose programming language that was developed in
the early 1990s and has gained significant popularity in the 2000s. It is extremely readable, elegant,
powerful, and easy to learn. As an added bonus, it gracefully interacts with Java, giving programmers an
extremely powerful tool when paired with Ignition, which is written in Java.

The Scripting Welcome tab will appear when you have either the Scripting window or one of its children
open. It allows you to create a script, and once you click Create, it immediately opens the window so you
can start writing your script. It's a quick and efficient way to get right to your scripting tasks. At a glance,
the Scripting Welcome tab will also show you any recently modified scripts along with the date it was
modified and who modified it. You can even double click on a recently modified script and open it.

The Scripting Welcome tab provides a quick way to create a new script and update existing ones. The We
lcome Tab should appear when the user has either Scripting, or one of its children items selected.

In Ignition, you will be mixing the core Python language with references to other components and a
variety of our built-in system functions.

On this page ...

What Is Scripting?
Is it Easy to Use?
Where Is Scripting Used?

Is it Easy to Use?

Luckily, Python is a simple language to get started with. Using it in an event-driven system takes away a lot of the extra code that normally makes
programming time consuming. For those that are already familiar with scripting (and those of you that are learning), we have a huge list of functions
inside Ignition to do some of the common tasks in a single line of code. These are available while typing. Just start with " " System Functions system

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions

and press "ctrl-space" to see a list of available functions. The list will filter itself as you continue typing.

Where Is Scripting Used?

Python is used in many places in Ignition. Each location has its own events that trigger your scripts to run, and add functionality to your projects in
different ways.

Components - Add actions to components like buttons, customize the look and feel of charts and tables, and even set up a custom
navigation schema.
Tags - Create a script that runs on a Tag change and when an alarm goes active!
Reports - Use scripting to create a customized datasource, or create your own unique action to use with the scheduling system.
Alarm Notification - Create custom rosters using scripting to dynamically change who gets notified with each new alarm event.
Client, Session, and Gateway - Add a script that will run when certain events happen, such as when the Client or Gateway starts up, or on
certain keystrokes.

Users that are new to Ignition focus mainly on the component binding system in or , and for good reason. It's simple, flexible, and Vision Perspective
generally easy to understand without much of a computer background. However, Ignition has a complete scripting system built into every place you
can think of. Using it is not a requirement, but it can add a significant degree of flexibility and customization to your projects. It allows you to create
exactly what you need, giving you total control where pre-canned options fall short.

The majority of your scripting will be done in Event Handlers inside of components. This system makes it very easy to get started scripting with little to
no experience. With the script builders, basic scripting like Navigation and setting Tag values takes just a few clicks. See also Script Builders in Vision
and .Component Events and Actions

Related Topics ...

Getting Started with Scripting in Ignition
Gateway Event Scripts
Client Event Scripts
Tag Event Scripts
Scripting in the Report Module

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Binding+Types+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Bindings+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events+and+Actions
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Reporting#Reporting-ScriptingintheReportModule

Python Scripting

About Python

While it is entirely possible to create a complete and powerful project in Ignition without writing a line of
script, many designers will find that in order to complete projects with specific requirements, they need to
learn at least a little Python. In our experience, most industrial projects involve lots of very complex and
specific requirements.

This section is a short tutorial specifically for Python, which should help get you started. It goes over all of
the core concepts you will need for scripting in Ignition but then next section () goes Scripting in Ignition
over using Python directly inside Ignition.

Python Variables, Data Types, and Operators: Learn what a variable is and how to create it,
what the various data types are, and what operators you can use on them.
Conditions and Loops: Learn the common if/else type of statements, as well as loops.
Functions: Learn about the that can do complex work with a simple command, built-in functions
as well as , which help compartmentalize the code.user defined functions
Libraries: Learn about our built-in system functions, as well as pulling in outside libraries.

Python or Jython?

You'll often hear Python referred to as "Jython" by advanced users of Ignition. Python is the language,
Jython is the implementation of the language that we use. Most users of Python use the implementation
called "CPython" - they just don't realize it. See http://en.wikipedia.org/wiki/Python_

.(programming_language)#Implementations

One of the powerful things about using Jython is that your script has access to the entire Java standard
library. For more information, see .Accessing Java

Many scripting users are blown away by their script's speed. We can't take credit for this - the Jython
engine compiles the code when it is run. your Jython code is converted to Java bytecode, which means it
runs natively in the JVM, which in turn can compile it to machine code. It's fast.

Which Version of Python Is Used?

Ignition uses Jython 2.7. Jython is the Python programming language implemented over the Java Virtual
Machine. When looking at outside documentation, such as on , verify that you are www.python.org
looking at the correct version.

Jython 2.7 allows us to use the standard functions and tools in Python 2.7, so if you want to look up
something in the Python docs, make sure to use version 2.7 ().https://docs.python.org/2/

On this page ...

About Python
Python or Jython?

Which Version of Python Is
Used?

Scripting Basics
Hello World
Variables
Strings
Whitespace

Comments
Individual Lines
Blocks of Lines
Comment Many Lines with a
Keyboard Shortcut

Control Flow
If and Else
For and While

Scripting Basics

Python is easy to learn, and with some understanding of its basic syntax, you can get started making
your own scripts.

Hello World

Let's get right to everyone's favorite example, "Hello World." The following script will print out "Hello
World to the" Output Console.

The keyword is a handy tool in Python, allowing you to write text to the Output Console. This print
is useful for debugging your scripts. You can print multiple things by separating them with commas.

Variables

Variables are created by simply assigning a value to them. Variables do not need to be declared,
because Python has a dynamic type system. That means Python figures out the type of the variable on
the fly when the script is executed.

The following script would print out: 15

Python - Using Variables

x=5
y=3
print x*y

Basic Python -
Variables and
Comments

Watch the Video

http://en.wikipedia.org/wiki/Python_(programming_language)#Implementations
http://en.wikipedia.org/wiki/Python_(programming_language)#Implementations
https://legacy-docs.inductiveautomation.com/display/DOC81/Libraries#Libraries-AccessingJava
http://www.python.org/
https://docs.python.org/2/
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://www.inductiveuniversity.com/videos/basic-python---variables-and-comments/8.0/8.1

Strings

Strings are defined in Python with a matching pair of 1 or 3 single or double quotes. There are few times
when the type of quotation mark you use matters - but one common reason to choose one or the other is
for 'escaping' other quotes inside your content. Some of the rules are shown here:

Python - Using Single and Double Quotes

print "This is my text" # Using double quotation marks
print 'This is my text' # Using single quotation marks
print "This is my text' # This will not work because Python
does not allow mixing the single and double quotation marks
print "My name is 'David'" # This will print: My name is 'David'
print 'My name is "David"' # This will print: My name is "David"
print 'My name is Seamus O\'Malley' # This will print: My name is Seamus
O'Malley

Triple quotes (single or double) can be used to make 'escaping' both single and double quotes inside
your string easier, or to write multi-line comments:

Python - Multiple Lines of Comments Using a Triple Quote

'''
This is a lot of text
that you want to show as multiple lines of
comments.
Script written by Professor X.
Jan 5, 1990
'''
print 'Hello world'

Strings can also be prefixed with certain characters to change how they are interpreted - for instance, a
leading character marks a string as Unicode, allowing for characters outside of the ASCII range to be u
used.

Python - Unicode Prefix on String

print u"äöü"

Whitespace

Perhaps Python's most unique feature is logical blocks which are defined by an indentation in Python. A
colon (:) starts a new block, and the next line must be indented (typically using a tab or 4 spaces). The
block ends when the indentation level returns to the previous level. For example, the following will print
out "5 4 3 2 1 Blast-off" with each value on a new line. The final print is not part of the while loop
because it isn't indented.

Python - Logical Blocks / Indentation

countdown = 5
while countdown > 0:
 print countdown
 countdown = countdown - 1
print "Blast-off!"

Comments

Comments are a way to document your Python script. There are several ways to use comments, but the best advice we can give is to use them as
much as possible! There are a few ways to make a comment in Python.

Individual Lines

You can start a line with a pound/hash (#) sign, or put one anywhere in a normal line of code.

Python - Document Scripts Using Comments

this is a comment
print 'Hello world' # this is also a valid comment

Blocks of Lines

While Python doesn't explicitly have a way to block comment (comment out multiple lines), are functionally similar, and a common multi-line strings
convention.

Comment Many Lines with a Keyboard Shortcut

In Ignition, you can use the Ctrl-/ keyboard shortcut to comment several lines of code at once. Just highlight one or more lines of code and hold the
Ctrl key and press "/". This will prepend all of the selected lines of code with the pound/hash (#) sign. Press Ctrl-/ again to remove the pound/hash
sign.

Control Flow

Control Flow statements, that is the ifs and loops, make the language do things differently based on the
various conditions. Python has all of the basic control flow statements that you'd expect from a
programming language.

If and Else

An if statement allows you to check if a condition is true or not true. Depending on the condition, you can
either execute a block of code, or do something else. Many of these can be chained together to
determine under what conditions should certain code execute.

Pseudocode - If Statement

if condition == True:
 print value1

For and While

Looping can be done with a for, which executes a block of code a set number of times, or a while, which
executes a block of code until a certain condition is met. Both can be incredibly useful.

Pseudocode - For Statement

for item in myList:
 print item

Basic Python -
Flow Control

Watch the Video

Related Topics ...

Scripting in Ignition
Getting Started with Scripting in Ignition

In This Section ...

https://www.inductiveuniversity.com/videos/basic-python---flow-control/8.0/8.1

Variables, Data Types, and Objects

Without incorporating any Ignition-specific objects, it is important to understand the basics of
Python. This section seeks to introduce three main Python principles: Variables, Data Types, and
Operators. Additionally, this page and the sub-pages herein will provide plenty of examples to get you
started.

This section of the manual attempts to introduce these principles so that they may later be used in
conjunction with Ignition. The information in this section is far from comprehensive, as Python's official

 is a better reference for all things Python. However, this page serves as a great way to documentation
jump right into the action.

Variables

Variables are created by simply assigning a value to them. Variables do not need to be declared,
because Python has a dynamic type system. That means, Python figures out the type of the variable on
the fly when the script is executed.

The following script would print out: 15

Python - Declaring and Assigning Variables

x=5
y=3
print x*y

On this page ...

Variables
Built-in Data Types

None
Booleans
Strings
Numeric Types
Colors
Lists and Tuples
Dictionaries
JSON
Datasets
Dates

Using the In-Keyword
Basic Operators

Operator Reference
Order of Operations

A space may be included on either side of the assignment operator ('='), but is not required. Thus, the
following example would be functionality identical as the example above.

Python - Declaring and Assigning Variables with Spaces

x = 5
y = 3
print x * y

Python Variables

Watch the Video

Built-in Data Types

Python features several built-in data types. Below is an overview and links to appropriate pages where
applicable.

None

There is a special value in Python called None (with a capital N). This is simply a special value that
 means no value. This value is equivalent to Java's null value. None can be used to initialize a

variable, but is best when checking to see if something exists before doing extra work:

Python - None

If some value is not equal to None...
if something != None:
 # ...then do some work
 doWork()

Booleans

Python has two built-in values to represent true and false values: and , respectively (note True False
the capital letters). These can be used when testing for truth, and are implicitly returned when the
comparison operator is used:

Python Datatypes

Watch the Video

https://www.python.org/doc/versions/
https://www.python.org/doc/versions/
https://inductiveuniversity.com/video/python-variables/8.1
https://inductiveuniversity.com/video/python-datatypes/8.1

Python - Booleans

Prints True
print 1 == 1

Prints False
print 1 == 0

When using Booleans, suchs as predicates in an if-statement, you typically don't have to use True or
False directly. Instead, many other values are considered True or False. The following values are also
considered False:

None
Numeric values of 0, such as 0
Empty Sequences and Dictionaries, like [] or {}

Values aside from the ones mentioned above are considered true, so you can easily utilize the existence
of a non-zero value as a True. Note that for integers both positive and negative numbers are True, only a
value of 0 is False.

Working with
Different Datatypes

Watch the Video

Strings

Literal can be typed in using either double quotes or single quotes. This can be handy when your string contains one quote or the other. You strings
can also use the backslash character to escape special characters including these quotes. See the page for more information.Strings

Numeric Types

Numbers can just be typed in normally, like or . Adding a decimal point differentiates an Integer from a Float. More information on 42 3.14159
Numeric types can be found on the page. Numeric Types

Colors

Working with colors in is remarkably easy. You can simply use any tuple of 3 or 4 integers to represent a color in RGB or RGBA. For example, Python
to set a label's text color to red, you can simple do something like this:

Python - Tuple as Color

label = event.source
label.foreground = (255,0,0) #(red,green,blue)

Additionally, the function allows you to pick a color in a similar fashion:system.gui.color

Python - System Function as Color

newColor = system.gui.color(255,0,0)

Lists and Tuples

Python offers a variety of sequence types: most notably . These are ordered collections, meaning they are indexed and the sorted Lists and Tuples
order is maintained. More information on these types can be found on the page. Lists and Tuples

Python - System Function as Color

newList = [1,2]
newTuple = (2,5,7)

Dictionaries

https://inductiveuniversity.com/video/working-with-different-datatypes/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.color

A is a very useful type that holds a set of key-value pairs. Unlike sequences, they are not ordered, so there is no need to sort them. Instead Dictionary
you give each Value in the dictionary a Key, which handles as a reference to Value. You may have used these in other languages and know them as
hashmaps, maps, associative memories, or associative arrays. More information on Dictionaries can be found on the page.Dictionaries

Python - System Function as Color

newDictionary = {"itemName":5}

JSON

 stands for JavaScript Object Notation. While it is not a data type, it is a way of defining data in a human readable format, and is commonly used JSON
in many applications. It comes from the Javascript programming language, but it is language independent. Each object contains lists and JSON
objects. A is a series of ordered values separated by commas that is commonly used within Python. The object works like a , using any list dictionary
number of name/value pairs, where each value could be any basic data type, a list, or even another object with its own name/value pairs. Because JS

 is just a way of defining data, it ON can be used in many different programming languages, including . This makes it a useful tool for defining Python
data in a way that humans can easily read.

Ignition also has two scripting functions that allow you to convert between a JSON string and a native Python object: and system.util.jsonEncode syste
.m.util.jsonDecode

Official Documentation

For more information on , see JSON .http://www.json.org

Datasets

A is a multidimensional collection of values, stored in a manner similar to how values on a spreadsheet appear. Python does natively Dataset not
have a Dataset type. Instead these datasets were created for use inside of Ignition. There are two types of datasets:

Dataset: Sometimes called a "Standard Dataset", this type is commonly used on many Vision Components, such as the or Power Table Chart
, to display multiple values simultaneously.
PyDataset: Short for "Python Dataset", these datasets act in a manner very similar to a Python Sequence when it comes to accessing
specific values, or iteration (see Lists and Tuples). Ignition's built-in system functions that interact with the database typically return a
PyDataset.

While there are two types of datasets, you can easily convert one type of dataset to the other. Additionally, you can easily create a dataset from a
script.

Python - Creating a Dataset

header = ["The Only Column"]
rows = [[1],[2],[3]]

myDataset = system.dataset.toDataSet(header, rows)

Dates

Dates and times can be created in Python with the and libraries. However, the Ignition's built-in system.date functions can also be datetime time
used instead without having to import either library.

Python - Show the Current Datetime

currentTime = system.date.now()

print "The current time is: %s" % currentTime

Using the In-Keyword

Python's keyword can be used to check the contents of something for a specific instance of another object. One use is to check the contents of a in
string for a certain substring:

Python - Using In Keyword to Look for a Substring

https://legacy-docs.inductiveautomation.com/display/DOC81/Lists+and+Tuples#ListsandTuples-Lists
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.jsonEncode
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.jsonDecode
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.jsonDecode
http://www.json.org/
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Power+Table
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Chart

myString = "Hello World"
subString = "World"

Here we are using an if-statement to look for the substring. If the substring exists inside of myString,
the expression returns True.
if subString in myString:
 # This will print out, because the substring "World" exists in the string "Hello World"
 print "The word 'World' appears in myString"

The keyword can be used to look for a certain object inside of a sequence:in

Python - Check for the Presence of an Object

myList = [1,2,3,4]

If the integer 3 exists in myList, then this will print True, otherwise it will print False.
print 3 in myList

Python - Check for the Presence of an Object

Check for the Administrator role.
if "Administrator" in system.security.getRoles():
 print "Administrator found"

Additionally, the keyword can be used in an expression on a loop:in while

Python - Check for the Presence of a Keyword in an Expression

myList = [1,2,3,4]

As long as the integer 4 is in myList, the while loop will continue to iterate.
while 4 in myList:
 # pop(0) will remove the first element in the list
 myList.pop(0)
else:
 print "all done!"

Basic Operators

Python has many common operators as you would expect, or are at least familiar with if you've worked with other scripting languages.

These are just the basics. There are other operators, like bit shift operators and more. Read about them at: http://docs.python.org/library/stdtypes.html

Operator Reference

Arithmetic Operators

Operator Meaning Example Output

+ Addition. Note that the data type of the returned object depends on the data type of the arguments being
used: print 5 + 9

print 5.0
+ 9

14

14.0

In regards to Arithmetic Operators, the precision of the returned value depends on the data types of the arguments: including at least one will return float
a , otherwise, an is returned.float integer

http://docs.python.org/library/stdtypes.html

- Subtraction
print 5 - 9

-4

* Multiplication
print 5 * 9

45

/ Division
print 10 /
4.5

2.22222222222
22223

// Floored Division: will divide and return just the nearest integer value, even if dividing floats.
print 10
// 4.5

2.0

% Modulo: returns just the remainder of the dividend (the left argument) after being divided by the right
argument.

In the example on the right, the 4.5 divides evenly twice, leaving 1.0 as a remainder.

print 10 %
4.5

1.0

** Power: raise the the number on the left to the power of the number on the right.
print 5 **
3

125

Boolean Operators

Operator Meaning Example Output

or Returns True if either argument is True. If both are False, then returns False.
x = False
y = True
print x or
y

True

and Returns True only if both arguments are True. Otherwise, returns False.
x = False
y = True
print x
and y

False

not Returns a boolean value that represents that opposite value of the trailing expression: False becomes
True, and True becomes False. x = True

print not x

False

Comparison Operators

Operator Meaning Example Output

< Less than
print 10 <
5
print 10 <
10

False

False

<= Less than or equal to
print 10
<= 5
print 10
<= 10

False

True

> Greater than
print 10 >
5
print 10 >
10

True

False

>= Greater than or equal to
print 10
>= 5
print 10
>= 10

True

True

== Equal
print 10
== 10
print 10
== 0

True

False

!= Not equal
print 10 !
= 10
print 10 !
= 0

False

True

is Returns True if both arguments are referring to the same object, otherwise, returns False.
x = 10
y = 5
print x is
y

False

is not Returns True if both arguments are referring to different objects.
x = 10
y = 5
print x is
not y

True

Order of Operations

Note that there is an order of operations for Arithmetic and Boolean operators that can be modified with parenthesis. For arithmetic they are grouped
in tiers and evaluated left-to-right within a given tier:

Parenthesis
Exponents
Multiplication, Division, Modulo
Addition, Subtraction

Python - System Function as Color

6+10*2 # produces 6+(10*2) = 26
6*10+2 # produces (6*10)+2 = 62

10*6%2 # produces (10*6)%2 = 0
10%6*2 # produces (10%6)*2 = 8

For Boolean operators:

Not
And
Or

Related Topics ...

Conditions and Loops

In This Section ...

Numeric Types

The Differences Between the Types

Within Python, there are a few numeric types that we will often use within the scope of Ignition: integers,
floats and booleans. have at least 32 bits of precision and consist of non decimal values (1, 2, Integers
50, 246). When working with larger numbers, Python also supports a type that has unlimited long
precision. consist of numbers with decimal values (1.0, 2.4, 50.7, 246.8734). are a Floats Booleans
unique subset of integers. They are either or , but can also be represented using a 1 or 0, True False
respectively.

On this page ...

The Differences Between the
Types

Numbers in Arithmetic
Operators and Functions

Numbers in Arithmetic

When using numeric values in expressions or equations, Python is very flexible in how it handles multiple types in the same operation. When using
two of the same type in an expression, the outcome will always be of that type. Adding two integers together yields an integer, while multiplying two
floats will yield a float. With division, using integers will always result in a floor division so that the answer remains an integer. Floor division will simply
remove the decimal, and will not round up at any point.

When using different types, the more precise type will be used for the outcome. Doing an operation with one integer and one float will produce an
outcome that is a float. Adding a float and an integer together will yield a float.

Below, we have some examples that show off some of the different ways that Python handles expressions. You can try these out in the interactive
interpreter of the .Script Console

Type of
Arthimetic

Description Example Output

Addition and
Subtraction

Adding/Subtracting integers will return an Integer.

If at least one of the numbers is a float, then the resulting number will also be a float.
Otherwise the result will
be an integer

4 + 5 # int + int = int
4.0 + 5 # float + int =
float
4.0 + 5.3 # float +
float = float

9

9.0

9.3

Multiplication Similar to Addition and Subtraction, multiplication will only return a float if at least one
of the numbers is a float 4 * 5 # int * int = int

4 * 5.0 # int * float =
float

20

20.0

Division Dividing an integer by another integer results in floor division: meaning the remainder
of division
is never returned. Note that this is not the same as rounding to the nearest integer.

To include the remainder, at least one of the numbers needs to be a float

4 / 5 # int / int = int
4 / 5.0 # int / float =
float

0

0.8

Operators and Functions

Python offers a wide range of operators that can be used to perform calculations on numeric values. Additionally, there are many functions that can
perform specific operations to numeric values. The tables below contain some of the most common operations and functions, but this is not an
exhaustive list.

Operators

Operator Description Example Types that use the
Operator

+ Used to find the sum of two numeric values

Can also be used to concatenate string values

5 + 1 = 6

"Hello " + "
World"

Numeric Types, Strings

- Used to find the difference of two values 5 - 1 = 4 Numeric Types

* Used to find the product of two values 5 * 2 = 10 Numeric Types

/ Used to find the quotient of two values 4 / 2 = 2 Numeric Types

% Modulus operator. When used with numeric types, returns the remainder of the quotient of
two values

The operator is also seen in .string formatting

5 % 2 = 1 Numeric Types, Strings

** Used to find a value to the power of another value 5 ** 2 = 25 Numeric Types

Functions

Function Description Example

int(x) Converts x to an integer int(4.8) = 4

long(x) Converts x to a long long(5.7) = 5

float(x) Converts x to a float float(4) = 4.0

abs(x) Absolute value of x abs(-4.6)=4.6

round(x[, n]) Rounds x to n digits. If n is not specified, default is 0 round(5.674)=6.0

round(5.674, 2)=5.67

Related Topics ...

Strings
Lists and Tuples
Dictionaries
Datasets
Dates

https://legacy-docs.inductiveautomation.com/display/DOC81/Strings#Strings-StringFormatting

Strings

What are Strings?

In Python, as well as most other programming languages, a string is a grouping or string of characters
that are used literally instead of as names of variables or other objects. In Python, they can be enclosed
in either single quotes or double quotes:

Python - Print Statements

These two print statements will both print out a sentence that looks the
same as the other.
print 'These will both print the same!'

print "These will both print the same!"

Strings are also considered sequences, which means they can be much like a list. iterated through

String Escape Character

Strings use a special character called an "escape" character to denote when something different should
be happening within the string. In Python, the escape character is the backslash (\). The escape
character is mainly used in a few different ways:

On this page ...

What are Strings?
String Escape Character
Multi-Line Strings
Raw Strings
Unicode Strings

Combining Strings
String Indexing

Slicing Strings
String Formatting
String Search Example
String Functions

The Escape Character and Quotation Marks - "" and ''

Comments Example Output

Here, we use the escape character to let Python know we want to ignore the second single
quote and directly print it.

This works with either single or double quotes.

print 'doesn\'t'
doesn't

Alternately, we can enclose the string in the opposite quotes that we are using in the string.

Because we enclose the string in double quotes here, the single quote prints normally. print "doesn't"

doesn't

This also works in reverse, where we can enclose the string in single quotes and use
double quotes within.

print '"Test", he
said.'

"Test", he
said.

Of course, we can also use the escape character with double quotes enclosing the string.

print "\"Test\", he
said."

"Test", he
said.

New Lines and Tab Spacing

A new line may be specified with the escape character and "n".

Alternatively, a may be used to add line breaks to a string literal.multi-line string

print "First
line\nSecond line"

First line

Second line

Tab-spacing may be added to a string literal with the escape character and "t"
print "Hello \tWorld"

Hello World

Specifying a Backslash

https://legacy-docs.inductiveautomation.com/display/DOC81/Conditions+and+Loops#ConditionsandLoops-forandwhileLoops

If you need to place a backslash inside of a string literal, simply use the escape character
twice. print "Folder\\file.

txt"

Folder\file.
txt

Multi-Line Strings

If a string literal should contain multiple lines, you can use a multi-line string, which is created by using three quotation marks.

Example Output

print '''This
is
on
multiple
lines'''

This
is
on
multiple
lines

This is useful when using the functions, as full SQL queries are typically passed to these functions, so using a multi-line string allows you to system.db
write the query in an easy to read format.

Python - Multi-line String

query = ''' SELECT * FROM myTable
 WHERE id < 10'''

system.db.runPrepQuery(query,[])

Raw Strings

Sometimes, it is necessary to print the raw string without allowing escaped characters. This is done by placing the letter "r" in front of the string.

Python - Raw String

print r'This string \n will print out directly as written.'

This is especially useful in cases where a file path needs to be hard coded as a string literal:

Python - File Path as a Raw String

Specifying a Windows file path
myPath = r"C:\Folder\Another Folder\file.txt"
print myPath

Specifying a Linux file path
myPath = r"/home/Directory/Another Directory/file.txt"
print myPath

Unicode Strings

Strings that contain characters beyond 7-bit ASCII, such as é or ? need to be marked as unicode strings by placing the letter in front of the string. u
Implementing unicode can be additionally useful when working with as some functions will fail if tags paths include special system functions
characters.

Python - Unicode String

print u'été'

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db
https://docs.inductiveautomation.com/display/DOC81/System+Functions

Combining Strings

Two different string type variables can actually be combined or concatenated using the plus (+) sign. It is important to understand that they are
concatenated exactly.

Python - Concatenated String Type Variables

a = "this"
b = "that"

Will print 'thisthat' because there was no space at the end of a or the beginning of b.
print a + b

Will print 'this that' because we added a space between them.
print a + " " + b

String Indexing

Strings in Python are actually indexed, with the first character having an index of 0. To grab a value at a specific index, you place a value within
square brackets ([]) after the string variable.

Python - Indexed Strings

a = "Ignition"

Will print out 'I', since it is in the zero position.
print a[0]

Will print out 't', since it is in the fourth position.
print a[4]

You can also use a negative index, which will start from the right side of the string with the last character having a index value of -1. This is useful for
getting the last character when you aren't sure how long the string is.

Python - Negative Indexed String

a = "Ignition"

Will print out 'o', since it is the second to last character.
print a[-2]

Slicing Strings

Using the string index values, we can actually grab slices or parts of the string. Similar to grabbing an individual character, we place two values
separated by a colon within square brackets. You can think of these numbers as the slices between characters, with 0 before the first character, 1
before the second, and so on. It should look like this: string[4:7] The first value is the start location, while the second value is the end location.

Python - Sliced Strings

a = "Inductive Automation"

Will print out 'ctive Auto'. Note how the space is counted as a character,
and the 14th location is before the m, which is not included.
print a[4:14]

If left blank, the first value will default to 0, while the second value will default to the length of the string. Additionally, negative values can be used as
well, just like with the index.

Python - Negative Value Sliced Strings

a = "Inductive Automation"

From index 0 to index 12.
print a[:12] # Will print out: Inductive Au

From index 12 to the end of the string.
print a[12:] # Will print out: tomation

From the 4th character from the end to the 5th index. Note this prints nothing because the start character
is after the end character.
print a[-4:5] # Will print out:

From the 8th character from the end to the 2nd character from the end.
print a[-8:-2] # Will print out: tomati

From index 5 to the 5th character from the end.
print a[5:-5] # Will print out: tive Autom

You can use all of these together (and with integer variables or functions) to have a very flexible way to format strings.

String Formatting

Also known as string substitution, it allows you to enter in values into a string, similar to having a variable inside of the string. This is useful when doing
a database query where you can build the query as a string, and then add in the query parameters when executing the query.

Doing this requires the use of the percent (%) sign followed by the parameter type within the string. After the string, you then use the percent sign
followed by the parameter values within parentheses in order.

Python - String Substitution

a = "I have %i apples."

Will print exactly as written, because we are not substituting any values in.
print a

Will print with an 8 substituted in for the %i. I have 8 apples.
print a % (8)

Instead of using literal values, you can also use variables as parameter values instead. This is useful when pulling the value from a function. Each
string can also have multiple values substituted, as long as the parameters are in the order that they are in the string.

Python - String Substitution using Variables as Parameters

apples = 10
oranges = 14
peaches = 5

a = "I have %i apples, %i oranges, and %i peaches."

Will print with the variable values substituted in for the %i. I have 10 apples, 14 oranges, and 5 peaches.
print a % (apples, oranges, peaches)

There are a few different types used with string formatting, the most common of which are listed here. The character values are what go after the
percent sign.

Type Character

Signed Integer i

Floating Point Decimal Format f

Floating Point Exponential Format e

String s

String Search Example

You can bring all this together for a simple way to print out just the last word in a string.

Python - Find the Last Word of a String

Find just the last word of a string.
myString = "Inductive Automation"

lastSpaceIndex = myString.rfind(" ")

Add one to not include the space.
print myString[lastSpaceIndex+1:] # Will print out: Automation

String Functions

Python strings have many functions available that can manipulate the string or give information on the string. The most common are in the table below.

Function Description Example Output

len(string) Returns the length of the .string
a =
"Inductive
Automation"

print len(a)

20

x in string Will return if is within the string, if not.True x False

Can also be used to iterate through the string.
string =
"Inductive
Automation"

if 'd' in
string:

print "There
is a d in
the string"

for letter
in string:

print letter

There is a d
in the string

I

n

d

u

c

t

i

...

string.find
(x, [, start[,
end]])

Returns the first location of the substring from the string. Returns -1 if the substring is not found.x
string =
"Inductive
Automation"

print string.
find(" ")

9

string.rfind
(x, [, start[,
end]])

Similar to find, but returns the last location of the substring . Returns -1 if not found.x
string =
"Inductive
Automation"

print string.
find("i")

17

string.
upper()

Returns a copy of the string with all characters uppercase. This is useful when comparing user input
to a string value, as the user may use a different case for certain letters. userInput =

"administrati
on"

print
userInput.
upper()

ADMINISTRATION

string.
lower()

Returns a copy of the string with all characters lowercase. This is useful when comparing user input
to a string value, as the user may use a different case for certain letters. userInput =

"ADminIStrati
on"

print
userInput.
lower()

administration

string.
capitalize()

Returns a copy of the string with the first character capitalized and all other characters lowercase.
string =
"here is my
sentence."

print string.
capitalize()

Here is my
sentence.

string.title() Returns a copy of the string with the first letter of each word capitalized and all other characters
lowercase. string =

"here is my
sentence."

print string.
title()

Here Is My
Sentence.

string.strip
([x])

Returns a copy of the string with leading and trailing characters removed, where is the string of x
characters.. If is omitted, then removes whitespace from the leading and trailing edges of the string. x

lstrip() and may instead be used to strip characters from the leading or trailing edgerstrip()

string =
" This
string has
some empty
space"

print string
print string.
strip()

fencedString
=
"|||||___My
String___||||
|"

print
fencedString.
strip("|_")

print
fencedString.
lstrip("|_")

print
fencedString.
rstrip("|_")

 This
string has
some empty
space
This string
has some
empty space
My String
My
String___|||||
|||||___My
String

string.count
(x[, start[,
end]])

Returns the number of occurrences of in the string. A and can be specified that will limit x start end
the count to that area. string ="

Inductive
Automation"

print string.
count('i')

print string.
count('i',
4, 9)

2

1

string.split
([delimiter[,
maxsplit]])

Returns a list of the words in the string. Optionally, specifying a will split the string on the delimiter
delimiter string. Specifying a will split the string a maximum number of times, with the maxsplit
remainder of the string as the final list object. The number of items in the list will not be more than
maxsplit + 1

sentence =
"This is an
example of
split"

print
sentence.
split()

dashedSentenc
e = "Yet-
another-
sentence-
here"

print
dashedSentenc
e.split("-",
2)

['This',
'is', 'an',
'example',
'of', 'split']
['Yet',
'another',
'sentence-
here']

string.rsplit
([delimiter[,
maxsplit]])

Similar to split, but splitting is performed from right to left. Thus if is smaller than the total maxsplit
number of delimiter in the string, only the rightmost words will be split off as separate items. sentence =

"This is an
example of
split"

print
sentence.
rsplit()

dashedSentenc
e = "Yet-
another-
sentence-
here"

print
dashedSentenc
e.rsplit("-",
2)

['This',
'is', 'an',
'example',
'of', 'split']
['Yet-
another',
'sentence',
'here']

string.join(x) Returns a copy of the string that is the concatenation of the strings in the iterable . The string calling x
the join is what will separate the values of the iterable. a = '-'

b = 'abcdef'

print a.join
(b)

a-b-c-d-e-f

string.
replace(old,
new[,
count])

Returns a copy of the string where occurrences of the substring are replaced with the old new
substring. Optionally, if count is specified, will only replace the first number of occurrences.count string ="

Ignition is
good!"

Ignition is
awesome!

print string.
replace
("good",
"awesome")

Related Topics ...

Numeric Types
Lists and Tuples
Dictionaries
Datasets
Dates

Lists and Tuples

Sequences

Like , Python has two other common sequence types: Lists and Tuples. While lists and tuples are Strings
similar to strings in that they share many of the same functionality, they are unique in that they are used
to group other values together. Both lists and tuples define a number of values separated by commas,
but lists are enclosed in square brackets and are mutable, meaning their contents can change, while []
tuples are enclosed in parentheses and are immutable, meaning their contents can't change.()

Lists

As stated above, lists are groups of comma separated values enclosed in square brackets, but can utilize
many of the features available to other sequences like strings.

Python - Lists

Lists are very simple to create.
myList = [1, 2, 3]

print myList # Will print out: [1, 2, 3]

Empty lists can also be created, to have items added to them later.
myList = []

Lists are not confined to hold values of a single data type either.
myList = [1, "hello", 3.3]

Lists can even hold other lists! In this case, myList would actually
hold 5 elements:
1, a list, 4, 'that', and another list. The last list also contains a
list as well.
myList = [1, ["this", 3.3], 4, 'that', [6, [7.7, 'other'], 9]]

On this page ...

Sequences
Lists

List Concatenation
List Indexing
Appending to Lists

List Functions
Tuples
Tuple Functions

Basic Python -
Lists and
Dictionaries

Watch the Video

List Concatenation

Like strings, lists also support concatenation and can be combined to form a single larger list.

Python - List Concatenation

a = [1, 2, 3]
b = ['four', 'five', 'six']

print a + b # Will print out [1, 2, 3, 'four', 'five', 'six']

List Indexing

Like strings, lists are also indexed, which allows you to grab single values or splice them to get ranges of values. Just like everything else in Python,
lists start with 0.

Python - List Indexing

myList = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

print myList[3] # Will print out: d

print myList[-2] # Will print out: f

print myList[2:5] # Will print out: ['c', 'd', 'e']

When trying to index a nested list, we simply need to add a second index after the first.

https://www.inductiveuniversity.com/videos/basic-python---lists-and-dictionaries/8.0/8.1

Python - Index a Nested List

myList = [1, 2, [3, [4, 5, 6, 7], 8], 9, 10]

print myList[2][1][3] # Will print out: 7

Appending to Lists

You can add values directly to the end of a list with the append() function. You can add anything that is normally allowed in a list.

Python - Appending to a List

myList = []

myList.append('Hello')
myList.append('World')

print myList # Will print out ['Hello', 'World]

List Functions

Below is a list of common list functions. Some of them are similar to other sequences like strings, while others are unique to lists because lists are
mutable.

Function Description Example Output

len(list) Returns the length of the list .
list = [1, 2, 3, 4, 5]

print len(list)

5

x in list Will return True if x is within the list, False if not.

Can also be used to iterate through the list.
list = [1, 2, 3, 4, 5]

if 4 in list:
 print "There is a
4 in the list"

for value in list:
 print value

There is a 4 in
the list

1

2

3

4

5

list.index(x) Will return the index number of item . Throws an error if item is not found.x
list = [1, 2, 3, 4, 5]

print list.index(3)

2

min(list) Returns the smallest item of .list
list = [1, 2, 3, 4, 5]

print min(list)

1

max(list) Returns the largest item of .list
list = [1, 2, 3, 4, 5]

print max(list)

5

list.count(x) Will return the number of times appears in the list.x 2

list = [1, 2, 3, 4, 5, 4]

print list.count(4)

list.append
(x)

Will add to the end of the list.x
list = [1, 2, 3, 4, 5]

list.append(6)

print list

[1, 2, 3, 4, 5, 6]

list.insert(i,
x)

Will insert at position .x i
list = [1, 2, 3, 4, 5]

list.insert(1, 5)

print list

[1, 5, 2, 3, 4, 5]

list.remove
(x)

Will remove the first from the list.x
list = [1, 2, 3, 2, 4, 5]

list.remove(2)

print list

[1, 3, 2, 4, 5]

list.pop([i]) Will remove the item at index , and return it. If no index is specified, it will i
remove and return the last item in the list. list = [1, 2, 3, 4, 5]

list.pop(2)

print list

list.pop()

print list

3

[1, 2, 4, 5]

5

[1, 2, 4]

list.reverse() Will reverse the items in the list.
list = [1, 2, 3, 4, 5]

list.reverse()

print list

[5, 4, 3, 2, 1]

Tuples

Tuples look similar to lists in that they are defined as a group of comma separated values, but they are enclosed by parenthesis and they are
immutable like strings, meaning they can't be altered. Besides that, they are sequences, like lists and strings. This means that tuples have the
functionality that other sequences have, such as concatenation, indexing and slicing, and even nesting.

Python - Tuples

Tuples are very simple to create.
myTuple = (1, 2, 3)

print myTuple # Will print out: (1, 2, 3)

Empty tuples can also be created, to have items added to them later.
myTuple = ()

Like lists, tuples are not confined to hold values of a single data type either.

myTuple = (1, "two", 3.3)

Tuples can even hold other tuples!
myTuple = (1, ("two", 3.3), 4, 'five', (6, (7.7, 'eight'), 9))

a = (1, 2, 3)
b = (4, 5, 6)

Combine two tuples to make a new tuple
print a + b # Will print out: (1, 2, 3, 4, 5, 6)

myTuple = ('a', 'b', 'c', 'd', 'e', 'f', 'g')

print myTuple[2:5] # Will print out: ('c', 'd', 'e')

Tuple Functions

All of the functions that work on tuples work on lists, so these should look familiar. However, because they are immutable, not all of the list functions
work on tuples. Check out the common tuple functions below.

Function Description Example Output

len(tuple) Returns the length of the tuple .
tuple = [1, 2, 3, 4, 5]

print len(tuple)

5

x in tuple Will return if is within the tuple, if True x False
not.

Can also be used to iterate through the tuple.

tuple = [1, 2, 3, 4, 5]

if 4 in tuple:
 print "There is a 4 in the
tuple"

for value in tuple:
 print value

There is a 4 in the
tuple

1

2

3

4

5

min(tuple) Returns the smallest item of tuple .
tuple = [1, 2, 3, 4, 5]

print min(tuple)

1

max(tuple) Returns the largest item of tuple .
tuple = [1, 2, 3, 4, 5]

print max(tuple)

5

Related Topics ...

Numeric Types
Strings
Dictionaries
Datasets
Dates

Lists and tuples can also be nested within each other!

Dictionaries

Mapping Type

A Dictionary is a mapping object. Where sequences are indexed with a numeric index value, dictionaries
are indexed using keys. These keys then have a matching value pair that is associated with a particular
key. For example, with a list we can extract the object at index 0, which we may have decided is the
name, whereas with dictionaries, I can instead extract the a value using a key "name". Because of how
they work, dictionaries are sometimes known as associative arrays in other programming languages.

Dictionaries are created using braces { } , where each key/value pair is separated by a comma (,) and
keys are separated from their values using a colon (:). In the example below, I created a dictionary with
two keys: name, id.

Python - Creating a Dictionary

In this dictionary, I associated the name John Smith to the key "name",
and the id number 12345 to the key "id".
myDictionary = {"name":"John Smith", "id":12345}

On this page ...

Mapping Type
Using a Dictionary

Dictionary Functions

Basic Python -
Lists and
Dictionaries

Watch the Video

Using a Dictionary

The keys in a dictionary can be numbers, strings, or tuples, but typically a string is used to make a key that best describes the value. Any given key
may only appear once in a dictionary, so trying to set another value for a key that already exists will overwrite the previous value for that key.
Alternately, attempting to access the value of a key that does not exist will throw an error, while setting a value to a key that does not exist will create a
new key/value pair within the dictionary.

To access a value in a dictionary works much like accessing a value in a list; simply place brackets containing the key after the dictionary object.

Python - Accessing Values in a Dictionary

Creates a dictionary with three key/value pairs.
myDictionary = {'Bob': 89.9, 'Joe': 188.72, 'Sally': 21.44}

print myDictionary['Joe'] # Will print out: 188.72

Adds a key for 'Amir', and alters the value associated with the key 'Sally'.
myDictionary['Amir'] = 45.89
myDictionary['Sally'] = 146.23

print myDictionary # Will print out the whole dictionary: {'Joe': 188.72, 'Amir': 45.89, 'Bob': 89.9,
'Sally': 146.23}

It is also easy to loop through all of the values of a dictionary using the keys() function. For example:

Python - Keys Function

The keys() function provides us with a list of keys, which we can iterate through and print out in
addition to using in the value lookup.
for key in myDict.keys():
 print key, myDict[key]

https://www.inductiveuniversity.com/videos/basic-python---lists-and-dictionaries/8.0/8.1

There are many use cases for dictionaries, but they are commonly used in Ignition when passing values into a Message Handler or creating a
 for alarms.dynamic roster

Dictionary Functions

Dictionaries have a few functions that allow for greater control over the dictionary object and the values contained within.

Function Description Example Output

len(dictionary) Returns the number of items in the
dictionary. myDictionary = {"name":"John Smith", "id":

12345}

print len (myDictionary)

2

del [key]dictionary Will remove the named key.
myDictionary = {"name":"John Smith", "id":
12345}

del myDictionary["id"]

print myDictionary

{'name': 'John
Smith'}

key in dictionary Will return True if the dictionary has that key.

Can also use "key not in dictionary"
myDictionary = {"name":"John Smith", "id":
12345}

if "name" in myDictionary:
 print myDictionary["name"]

John Smith

dictionary.clear() Remove all of the items in the dictionary.
myDictionary = {"name":"John Smith", "id":
12345}

myDictionary.clear()

print myDictionary

{}

dictionary.keys() Returns a list of the dictionary's keys.
myDictionary = {"name":"John Smith", "id":
12345}

print myDictionary.keys()

['name', 'id']

dictionary.
values()

Returns a list of the dictionary's values.
myDictionary = {"name":"John Smith", "id":
12345}

print myDictionary.values()

['John Smith', 12345]

Related Topics ...

Client Message Handler
Gateway Message Handler
Numeric Types
Strings
Lists and Tuples
Datasets
Dates

https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Block#NotificationBlock-Calculated
https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Block#NotificationBlock-Calculated
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts#ClientEventScripts-MessageScripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-MessageScripts

Datasets

Datasets and PyDatasets

A dataset can be thought of as a two dimensional list, or rather a list where each object is another list of
objects. Datasets are not normally native to Python, but are built into Ignition because of their usefulness
when dealing with data from a database. It is very common to deal with datasets in scripting, as datasets
power many of the interesting features in Ignition, like charts and tables.

The main confusion when dealing with datasets is the difference between the dataset object and
the PyDataset object. Dataset is the kind of object that Ignition uses internally to represent
datasets. When you get the data property out of a component like a Table, you will get a dataset. The
PyDataset is a wrapper type that you can use to make datasets more accessible in Python. The biggest
differences are seen in how we access the data in the two different objects. However, you can easily
convert between the two with and , making it system.dataset.toDataSet system.dataset.toPyDataSet
simple to use the object that you find easier to use.

Creating Datasets

Because datasets are not native to Python, there is no way to naturally create them within scripting.
Instead they must be created using the function, which also allows you to system.dataset.toDataSet
convert a PyDataset to a Dataset. It requires a list of headers and a list of each row's data. Each data
row list must be the same length as the length of the headers list.

Python - Creating a Dataset

First create a list that contains the headers, in this case there are 4
headers.
headers = ["City", "Population", "Timezone", "GMTOffset"]

Then create an empty list, this will house our data.
data = []

Then add each row to the list. Note that each row is also a list object.
data.append(["New York", 8363710, "EST", -5])
data.append(["Los Angeles", 3833995, "PST", -8])
data.append(["Chicago", 2853114, "CST", -6])
data.append(["Houston", 2242193, "CST", -6])
data.append(["Phoenix", 1567924, "MST", -7])

Finally, both the headers and data lists are used in the function to
create a Dataset object
cities = system.dataset.toDataSet(headers, data)

On this page ...

Datasets and PyDatasets
Creating Datasets
Accessing Data in a Dataset

Looping Through a Dataset
Accessing Data in a PyDataset

Looping Through a PyDataset
PyRow

Altering a Dataset

Working with
Datasets

Watch the Video

Note: All code snippets on this page will reference the cities dataset we created above, so place that code at the beginning of every code snippet.

Accessing Data in a Dataset

To access the data inside of a dataset, each dataset has a few functions that can be called on to access different parts of the dataset. These are listed
in the table below.

Function Description Example Output

data.
getColumnAsList
(colIndex)

Returns the column at the
specified index as a list. print cities.

getColumnAsList(0)

[New York, Los Angeles, Chicago, Houston, Phoenix]

data.
getColumnCount()

Returns the number of columns
in the dataset. print cities.

getColumnCount()

4

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toDataSet
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toPyDataSet
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toDataSet
https://inductiveuniversity.com/video/working-with-datasets/8.1

data.
getColumnIndex
(colName)

Returns the index of the column
with the name colName. print cities.

getColumnIndex
("Timezone")

2

data.
getColumnName
(colIndex)

Returns the name of the
column at the index colIndex. print cities.

getColumnName(1)

Population

data.
getColumnNames()

Returns a list with the names of
all the columns. print cities.

getColumnNames()

[City, Population, Timezone, GMTOffset]

data.
getColumnType
(colIndex)

Returns the type of the column
at the index. print cities.

getColumnType(3)

<type 'java.lang.Integer'>

data.
getColumnTypes()

Returns a list with the types of
all the columns. print cities.

getColumnTypes()

[class java.lang.String,class java.lang.Integer,cl
ass java.lang.String, class java.lang.Integer]

data.
getRowCount()

Returns the number of rows in
the dataset. print cities.

getRowCount()

5

data.getValueAt
(rowIndex,
colIndex)

Returns the value at the
specified row and column
indexes.

print cities.
getValueAt(1, 2)

PST

data.getValueAt
(rowIndex,
colName)

Returns the value at the
specified row index and column
name.

print cities.
getValueAt(2,
"Population")

2853114

Looping Through a Dataset

Oftentimes you need to loop through the items in a dataset similar to how you would loop through a list of items. You can use the functions above to
do this.

Python - Looping Through a Dataset

We use the same cities dataset from above. Using the range function, we can come up with a range of values
that represents the number of columns.
for row in range(cities.getRowCount()):
 for col in range(cities.getColumnCount()):
 print cities.getValueAt(row, col) # Will print out every item in our cities dataset,
starting on the first row and moving left to right.

Accessing Data in a PyDataset

Note: PyDatasets can be accessed in the same ways that Datasets can. This means that all of the above functions (getColumnCount(),
getValueAt(), etc) can be used with PyDatasets too.

PyDatasets are special in that they can be handled similarly to other Python sequences. Any dataset object can be converted to a PyDataset using
the function . All of the functions listed above can be used on a PyDataset, but the data can also be accessed much system.dataset.toPyDataSet
easier, similar to how you would a list.

Python - Accessing Data in a PyDataset

First convert the cities dataset to a PyDataset.
pyData = system.dataset.toPyDataSet(cities)

The data can then be accessed using two brackets at the end with row and column indexes. This will print
"PST"
print pyData[1][2]

Looping Through a PyDataset

Looping through a PyDataset is also a bit easier to do, working similar to other sequences. The first for loop will pull out each row, which acts like a list
and can be used in a second for loop to extract the values.

Python - Looping Through a PyDataset

Convert to a PyDataset
pyData = system.dataset.toPyDataSet(cities)

The for loop pulls out the whole row, so typically the variable row is used.
for row in pyData:
 # Now that we have a single row, we can loop through the columns just like a list.
 for value in row:
 print value

Additionally, a single column of data can be extracted by looping through the PyDataset.

Python - Extract a Column of Data by Looping Through a PyDataset

Convert to a PyDataset
pyData = system.dataset.toPyDataSet(cities)

Use a for loop to extract out a single row at a time
for row in pyData:
 # Use either the column index or the column name to extract a single value from that row.
 city = row[0]
 population = row["Population"]
 print city, population

PyRow

A PyRow is a row in a PyDataset. It works similarly to a Python list.

The examples and outputs are based on the results in the table below. In addition, "print" commands are used, but should be replaced by appropriate
logging methods (such as) depending on the scope of the script.system.util.getLogger

A B

Apple Orange

Banana Orange

Apple Apple

Method Description Syntax Example Output

index() Returns the index of first occurrence of the element. Returns a
ValueError if the element isn't present in the list.

index
(element) for row in pyDataset:

 try:
0
No apples

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toPyDataSet
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger

 print row.
index("Apple")
 except:
 print "No
apples in this row"

in this row
0

count() Calculates total occurrence of given element in the row. count
(element) for row in pyDataset:

 print row.count
("Apple")

1
0
2

Repeating Elements

You can also have repeating elements in a row:

Example Output

for row in PyDataset
 print row * 2

[u'Apple', u'Orange', u'Apple', u'Orange']
[u'Banana', u'Orange', u'Banana', u'Orange']
[u'Apple', u'Apple', u'Apple', u'Apple']

Altering a Dataset

Technically, you cannot alter a dataset. Datasets are immutable, meaning they cannot change. You can, however, create new datasets. To change a
dataset, you really create a new one and then replace the old one with the new one. There are system functions that are available that can alter or
manipulate datasets in other ways. Any of the functions in the section can be used on datasets, the most common ones have been system.dataset
listed below:

system.dataset.addRow

system.dataset.deleteRow

system.dataset.setValue

system.dataset.updateRow

The important thing to realize about all of these datasets is that, again, they do not actually alter the input dataset. They return a new dataset. You
need to actually use that returned dataset to do anything useful.

For example, the following code is an example of the setValue function, and would change the population value for Los Angeles.

Python - Altering a Dataset Using the setValue Function

Create a new dataset with the new value.
newData = system.dataset.setValue(cities, 1, "Population", 5000000)

The cities dataset remains unchanged, and we can see this by looping through both datasets.for row in range
(cities.getRowCount()):
for row in range(cities.getRowCount()):
 for col in range(cities.getColumnCount()):
 print cities.getValueAt(row, col)

for row in range(newData.getRowCount()):
 for col in range(newData.getColumnCount()):
 print newData.getValueAt(row, col)

Related Topics ...

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.addRow
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.deleteRow
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.setValue
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.updateRow

Numeric Types
Strings
Lists and Tuples
Dictionaries
Dates

Dates

Dates can normally be tricky since they generally require very specific formats. Furthermore, some
functions/objects require a date object instead of a string. Fortunately, there are several ways to create
and alter date objects with scripting in Ignition.

Python has some to create and manipulate dates and times. However, most users find built-in libraries
both Ignition's built-in and even Java's Calendar class easier to use. Regardless, this system functions
section will demonstrate some examples from each approach.

Ignition's System Functions

Ignition's library has a large number of functions that provide easy access to datetime system.date
creation and manipulation. This page has just a few simple examples. Additional examples and functions
can be found in the .scripting appendix

Creating Dates

New datetimes can be created by using either the or . The system.system.date.now system.date.getDate
date.getDate function returns a datetime, but the time is set to midnight. However, we can use system.

 to change the time. date.setTime

Python - System Functions - Creating Dates

Get the current datetime.
print system.date.now()

Create a date. The time will be set to midnight.
newDate = system.date.getDate(2018, 10, 28)
print newDate

Change the time on the new date to 11:30 am.
print system.date.setTime(newDate, 11, 30, 0)

On this page ...

Ignition's System Functions
Creating Dates
Formatting Dates
Date Arithmetic
Date Formatting Characters

Java's Calendar Class
Creating Dates
Date Arithmetic

Python's Time and Datetime
Libraries

Creating Dates - Python's
Time Library
Creating Dates - Python's
Datetime Library
Date Arithmetic

Basic Python -
Dates, Colors, and
JSON Strings

Watch the Video

Formatting Dates

When printed, datetimes default to a format like the following: . However, this can be manipulated by using special Sun Jan 1 00:00:00 TZ 2018
characters in the function:system.date.format

Python - System Functions - Date Formatting

rightNow = system.date.now()

Demonstrating the standard format.
print rightNow

Demonstrating the modified format.
print system.date.format(rightNow, "yyyy-MM-dd HH:mm:ss")

Date Arithmetic

The functions can be used to add to or subtract some amount of time from a date. See the functions for more system.date.add* system.date.add*
information.

Python - System Functions - Date Arithmetic

Get the current datetime.
newDate = system.date.now()

https://legacy-docs.inductiveautomation.com/display/DOC81/Libraries#Libraries-PythonLibraries
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.now
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.getDate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.setTime
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.setTime
https://www.inductiveuniversity.com/videos/basic-python-dates-colors-and-json-strings/8.0/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.format
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58603988
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=58603988

Change the time on the new date to 30 minutes ago.
print system.date.addMinutes(newDate, -30)

Date Formatting Characters

The following is a reference of date formatting characters that can be used by or Java's DateFormat class. Additionally, there are system.date.format
many other non-scripting uses in Ignition (such as the component's Format String property) that can utilize this reference. Vision - Calendar

Symbol Description Presentation Example Other Notes

G Era designator Text G=AD

y Year Year yyyy=1996; yy=96 Lowercase y is the most commonly used year symbol

Y Week year Year YYYY=2009; YY=09 Capital Y gives the year based on weeks (ie. changes to the new year up
to a week early)

M Month in year Month MMMM=July; MMM= ; MM=Jul 07

w Week in year Number 27 If Dec31 is mid-week, it will be in week 1 of the next year

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in
month

Number 2 2nd Sunday of the month

E Day name in
week

Text EEEE=Tuesday; E=Tue

u Day number of
week

Number 1 (1 = Monday, ..., 7 = Sunday)

a Am/Pm marker Text PM

H Hour in day (0-
23)

Number 0

h Hour in am/pm
(1-12)

Number 12

k Hour in day (1-
24)

Number 24

K Hour in am/pm
(0-11)

Number 0

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time
zone

zzzz=Pacific Standard Time
; z=PST

Z Time zone RFC 822 time
zone

Z=-0800

X Time zone ISO 8601 time
zone

X=-08; XX= ; XXX=-0800 -08:00

Java's Calendar Class
While Java's Calendar class if useful, in many cases Ignition's built-in functions are simpler to use. Furthermore, the system.date system.date
functions typically use the Calendar class to retrieve the current time, so you are not losing any functionality by using the system functions.

Ignition's System Functions vs Java's Calendar Class
It is highly advisable to use to generate and manipulate dates. The information on this page pertaining to the Calendar Ignition's system functions
class is maintained in the interest for legacy installations.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.date.format
https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Calendar
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#month
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#rfc822timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date

Creating Dates

To create an arbitrary date, you can use the class. It has various functions to alter the calendar fields, like Calendar.HOUR, java.util.Calendar
Calendar.MONTH, and so on. After you're done manipulating the Calendar, you can use its function to retrieve the Date represented by getTime()
the calendar. It also has a handy function that takes the common parameters of a Date. The one major "gotcha" here is that January is month set()
zero, not month one. For example:

Python - Calendar Class - Creating Dates

from java.util import Calendar
cal = Calendar.getInstance()

set year, month, day, hour, minute, second in one call
This sets it to Feb 25th, 1:05:00 PM, 2010
cal.set(2010, 1, 25, 13, 5, 0)
myDate = cal.getTime()

Date Arithmetic

Often you'll have a Date object from a component like the and want to alter it programmatically. Say, subtracting 8 hours from it, or Popup Calendar
something like that. The class is used for this as well. Following the example above, this code would subtract 8 hours from java.util.Calendar
the variable .myDate

Python - Calendar Class - Date Arithmetic

from java.util import Calendar
cal = Calendar.getInstance()
cal.setTime(myDate)
cal.add(Calendar.HOUR, -8)
myNewDate = cal.getTime()

Python's Time and Datetime Libraries

Many components in Ignition that contain a Date property actually expect a Java calendar object. Creating a datetime object using Python's built-in
libraries and passing them to a date property on a component will result in an exception.

Ignition's System Functions vs Python's Libraries
It is highly recommended to use functions.Ignition's built-in system.date

Creating Dates - Python's Time Library

The time library can be use to return dates as well as time. Times are created as a tuple of integers. The integers represent the following values: year,
month, day of the month, hour, minute, second, weekday, day of the year, daylight savings time)

Check out for more information. Python's time library documentation

Python - Python Library - time

import time

Finds the current local time. The time is returned as a tuple of integers.
myTime = time.localtime()

Print the time into a 24-character string with the following format: Sun Nov 20 12:00:00 2017
print time.asctime(myTime)

Alternatively, we can reformat the time in a custom manner, then print it
print time.strftime('%H:%M:%S %b %d %Y', myTime)

Creating Dates - Python's Datetime Library

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Popup+Calendar
https://legacy-docs.inductiveautomation.com/display/DOC81/system.date
https://docs.python.org/release/2.5.3/lib/module-time.html

Python's datetime library offers a bit more flexibility since arithmetic can easily be applied. Additional information on the datetime library can be found
in . Python's official documentation

Notice the double use of 'datetime' in the example below. This is because the 'datetime' library has a class named 'datetime.'

Python - Python Library - datetime

import datetime

Returns the current datetime.
print datetime.datetime.now()

However, we can clean up the above by importing in the datetime class from the library:

Python - Python Library - datetime

Imports the class named 'datetime' from the 'datetime' library, so we don't have to state it twice.
from datetime import datetime

Returns the current datetime.
print datetime.now()

If you need to create a specific datetime, instead of just using the current, you can pass in the values directly when creating an instance of datetime:

Python - Python Library - Creating a New Time

from datetime import datetime

Prints out the following datetime: 2018-01-02 03:04:05.000006
print datetime(2018,1,2,3,4,5,6)

Finding the difference between two datetime objects can easily be accomplished by using the '-' character

Python - Python Library - Date Difference

from datetime import datetime

rightNow = datetime.now()
someTime = datetime(2018,1,1,1,1,1,1)

Find the difference between the two dates.
print someTime - rightNow

Date Arithmetic

With Python's built-in libraries, the timedelta class provides the simplest way to perform arithmetic on a date: It simply creates an object that effectively
represents a duration. The duration can then be applied to a datetime.

Python - Python Library - Date Arithmetic

We're including the timedelta class here
from datetime import datetime, timedelta

rightNow = datetime.now()

Creating a timedelta object, and setting the hours to 8
offset = timedelta(hours = 8)

Print the current time, and then print the time minus the offset.
print rightNow
print rightNow - offset

https://docs.python.org/release/2.5.3/lib/datetime-datetime.html

Related Topics ...

Numeric Types
Strings
Lists and Tuples
Dictionaries
Datasets

Conditions and Loops

If-Statements

The statement should be familiar to anyone with a passing knowledge of programming. The idea of an if if
is that you want your script to execute a block of statements only when a certain condition is true.

Python's is simple to use, and has some additional keywords to provide more flexibility.if

Simple If-Statement Example

The syntax for is as follows:if

Pseudocode - If Statement

Note that 'if' uses lowercase characters.
Additionally, a colon is placed after the expression.
if expression:

 # The statements that should execute when the expression is true
 # MUST be indented.
 statement

Example Output

x = 5
z = 15
if x < 10:
 # Since the condition "x < 10" is true,
 # the following line will execute
 print "'x' is less than 10"
if z < 10:
 # This condition "z < 10" is false,
 # so the following line will not execute
 print "this will never show"

'x' is less than 10

On this page ...

If-Statements
Simple If-Statement Example
If and Else
Elif (Else If)

For-Loops and While-Loops
For-Loop
While-Loop
The Break and Continue
Statements

The Pass Keyword

Control Flow Logic

Watch the Video

If and Else

You can use the form of an statement to do one thing if a condition is true, and something else if the condition is false. if...else if

Example Output

x = 15
if x < 10:
 print "x is less than 10"
else:
 print "x is not less than 10"

x is not less than 10

Elif (Else If)

Lastly, you can use the form. This form combines multiple condition checks. stands for " . This form can optionally have a if...elif elif else if"
catch-all clause at the end. For example, this script will print out :else three

Example Output

x = 3
if x == 1:
 print "one"
elif x == 2:
 print "two"

three

https://inductiveuniversity.com/video/control-flow-logic/8.1

elif x == 3:
 print "three"
else:
 print "not 1-3"

You can use as many items as you want, and the else is not required at the end.elif

For-Loops and While-Loops

For-Loop

Python's loop may be a bit different than what you're used to if you've programmed any C. The loofor for
p is specialized to iterate over the elements of any sequence, like a list. A loop uses an iterator for
variable to reference each item as it steps through the sequence. This means it's very simple to write a
loop!

Note that the syntax of the for-loop requires use of the in-keyword.

Pseudocode - For Loop

In this example, "item" is a variable created specifically by the "for"
loop to act as an iterator.
The name "item" is not a keyword, and a different variable name may be
used.
Additionally, note that "for" and "in" are lowercase, and a colon is
present at the end of the line.
for item in sequence:
 # All statements that should execute each iteration must be
indented after the "for" statement
 statement

Control Flow Loops

Watch the Video

Example Output

listOfFruit = ['Apples', 'Oranges', 'Bananas']
for fruit in listOfFruit:
 print fruit

Apples
Oranges
Bananas

You don't need to manually create a sequence to repeat a task several times in a for loop. Instead, the built-in function function can generate range()
a variable-size list of integers starting at zero. For example, calling will return the list [0, 1, 2, 3]. range(4)

Example Output

Even though this example isn't using the value of "x",
the print statement will still be executed once for each item
in the list returned by range().
for x in range(4):
 print "this will print 4 times"

this will print 4 times
this will print 4 times
this will print 4 times
this will print 4 times

While-Loop

A while loop will repeat a block of statements as long as a condition is true. This code will print out the contents of the items in the list.

Pseudocode - While Loop

https://inductiveuniversity.com/video/control-flow-loops/8.1

A while loop simply needs the keyword "while", the condition that
determines when we should stop iterating, and a colon at the end of the line.
while condition:
 # All statements that should be repeated each iteration must be indented after the "while" statement
 statement.

This code uses a function called len() , which is a built-in function that returns the length of a sequence.

Example Output

listOfFruit = ['Apples', 'Oranges', 'Bananas']
x = 0
while x < len(listOfFruit):
 print listOfFruit[x]
 x = x + 1

Apples
Oranges
Bananas

The Break and Continue Statements

You can stop a loop from repeating in its tracks by using the break statement. This code will print out " Loop " exactly two times, and then print " Fini
 shed ".

Example Output

for x in range(10):
 if x >= 2:
 break
 print "Loop"
print "Finished"

Loop
Loop
Finished

You can use the statement to make a loop stop executing its current iteration and skip to the beginning of the next iteration. The following continue
code will print out the numbers 0-9, skipping 4

Example Output

for x in range(10):
 if x == 4:
 continue
 print x

0
1
2
3
5
6
7
8
9

Infinite Loops

It is incredibly easy to create an infinite loop when using a statement. Depending where the infinite loop was created, it could cause you to lose while
your work in the Designer, or create a large amount of overhead on the Gateway.

Python - Infinite Loop Created by While Statement

x = 0
while x < 10:
 x += 1 # Forgetting to add a way to increment "x" will cause an infinite loop
 print x

In many cases, a loop could be used instead of a , but this is not always possible. When using , the best way to avoid an infinite loop is for while while
to make sure you always have a way to exit the loop: a simple approach involves using a counter that can eventually trigger a statement, or add break
the counter as an additional condition to the .while

Python - Preventing Infinite Loops Using the Break Keyword

###Example 1: using the break keyword
The counter variable will be used as a guaranteed way out of the While.
counter = 0

Normally, using True as a condition in a While would be a quick
way to generate an infinite loop, but the counter helps prevent that.
while (True):

 # Increase the counter
 counter += 1

 # Check the value of the counter. If it's at the point where we can assume we're going to be looping
indefinitely...
 if counter >= 1000:

 # Break out of the loop
 break

Python - Preventing Infinite Loops Using an Additional Condition

###Example 2: using an additional condition
Again, the counter variable will be used as a guaranteed way out of the While.
counter = 0

Instead of using nested logic, we can simply add counter's value as an additional condition with "and"
while (True and counter < 1000):

 # Increase the counter. Once counter >= 1000, the while loop will be forced to end.
 counter += 1

The Pass Keyword

When using conditional statements and loops, the pass keyword can be especially useful when writing a new script. When called, the pass keyword
does nothing, which may seem useless. However it is great when you find yourself in a situation where you need a line of code to meet a syntax
requirement, but don't want the code to do any additional work.

Python - Pass Keyword

myVar = system.tag.read(tagPath).value

if myVar == 0:
 firstFunction()
elif myVar == 1:
 secondFunction()
elif myVar == 2:
 # I haven't implemented the thirdFunction() yet, so I can use pass here as a placeholder
 pass.

Related Topics ...

Error Handling
Getting Started with Scripting in Ignition

1.
a.
b.

2.

Error Handling

What is Error Handling

The concept of error handling is recognizing when an error might occur in a block of code, and instead of
throwing the error, handling it gracefully. This can involve giving the user a more distinct error message,
letting the user know that their attempt to run the code failed, or even undoing something that your code
set it motion so that it can be started again from the same starting point.

Error Handling in Python, Java, and Jython

Within Python, we can use the and blocks to handle errors. We would first use and write try except try:
the code we would like to try indented underneath it. We then must have an with code that will except:
run if there is an error.

On this page ...

What is Error Handling
Error Handling in Python,
Java, and Jython
The Pass Keyword
Error Handling Examples

Exception-Specific Failover
Displaying Error Text
Determining the Error Object

Pseudocode - Error Handling (Python)

With try, we can attempt any amount of code
try:
 some code
 more code
 even more code

If any of lines in the try block were to throw an error, then we move down and run the block under except.
The except statement is NOT optional: you must define what your code should do in the event an exception
occurs.
except:
 failover code

When running the code above, there is a specific order to the way it executes.

The try block is run, and the code within is executed line by line.
If an error occurs, the code in the try block will immediately stop and the except block will begin to execute.
If no error occurs after all code in the try block has been executed, the try block will be finished and the code in the except block will
be skipped.

After either outcome, any code after the except will then execute.

Because of the way the try and except blocks work, it is very useful on situations that require user input, where something may have been incorrectly
entered which would usually result in an error.

Much of the scripting in Ignition is done in Python; however, because Ignition is written in Java, many internal system calls may throw Java exceptions
that Python won't catch without modifications.

Within Java, we can use the try and catch blocks to handle errors:

Pseudocode - Error Handling (Java)

// Use try to test our code
try {
 testing code goes here
}

// Handle any errors the code throws
catch(Exception e) {
 code to handle exceptions
}

However, since we are running Jython, we can use Python's and blocks for Java error handling by using Java's class.try except Exception

Pseudocode - Error Handling (Jython)

Import the Exception class
import java.lang.Exception

With try, we can attempt any amount of code
try:
 code you want to test
 more code
 code that will throw an exception

If any of lines in the try block were to throw an error, then we move down and run the block under except.
The except statement is NOT optional: you must define what your code should do in the event an exception
occurs.
except java.lang.Exception, e:
 failover code

The Pass Keyword

The keyword is unique in that it does nothing except to fill in a spot where code is required. This is useful if we want to handle the exception so pass
that it doesn't throw an error message, but we don't actually want to do anything with it. In this case, we can use pass to tell the script to continue.

Pseudocode - Pass Keyword

try:
 some code
 more code
 even more code

except:
 # The error will bring the code to the exception, and then the exception will simply do nothing.
 pass

Error Handling Examples

An easy way to demonstrate how error handling works is with a division example, since it is easy to cause an error by dividing by 0. Take the code
below:

When we run it, we get a printed value of 50. There was no error in the division, and the try block finished successfully. However, if we were to change
the value of x to 0, we can see that "An error occurred!" is printed.

Python - Error Handling Division

We start with a value, which could represent some user input.
x = 2

We use that value in our try block, and have a simple print statement if there is an error.
try:
 value = 100/x
 print value
except:
 print "An error occurred!"

Continuation of DOC-1021

The following code block is also with a division example, but in Java:

Java - Error Handling Division

// We start with a value, which could represent some user input.
int x = 2;

// We use that value in our try block, and have a simple print statement if there is an error.
try {
 int value = 100/x;
 System.out.println(value);
}

https://youtrack.ia.local/issue/DOC-1021

catch (Exception e) {
 System.out.println("An error occurred!");
}

Finally, the following code block is with the same division example, but in Jython:

Jython - Error Handling Division

Import the Exception class
import java.lang.Exception

We start with a value, which could represent some user input.
x = 2

We use that value in our try block, and have a simple print statement if there is an error.
try:
 value = 100/x
 print value
except java.lang.Exception, e:
 print "An error occurred!"

Exception-Specific Failover

While each try block must be followed by at least one except block, there can be multiple except blocks to handle different types of errors. This is done
by listing the error object after the except keyword and before the colon. Looking back at the example above, I know that my most common error is
going to be a divide by zero error. So I can make an exception that is specific to divide by zero errors.

Python - Exception-Specific Failover

We start with a value, which could represent some user input.
x = 0

Use the user input in division in our try block.
try:
 value = 100/x
 print value

If the exception that would occur is of type ZeroDivisionError, we can run a specific block of code
except ZeroDivisionError:
 print "Dividing by zero is not allowed. Please stop trying to divide by zero"
We can then have a second exception without a specific error. This except acts as a catch-all;
if the user caused an exception we didn't account for above, we can failover to the block of code below.
except:
 print "An error occurred!"

The except blocks in the code above cover all possible errors as represented in the table below. Now, we have a more tailored approach to how we
handle errors while still catching all of them that may occur.

Inputs (x value) Output

2 50

0 Dividing by zero is not allowed. Please stop trying to divide by zero

'a' An error occurred!

Each try block can have many except blocks, and each except block can also name multiple types of errors as shown below. However, an error that
happens within a try block will only ever trigger a single except block.

Pseudocode - Try Block with Except Blocks

try:
 some code
except (ZeroDivisionError, RuntimeError, TypeError):
 failover code

Displaying Error Text

Sometimes you want to get the actual text from an error in addition to protecting your script. There's an easy way to fetch that information that's built
into Python. When you are inside an except section of code, sys.exc_info() gives you access to the error text as a list of values. You can use this to
print out your message, display it on the screen, send it to the database, or anything else.

This example should be put on a button, and will write the error text to a Label component that is a sibling to the button. This is useful in Perspective to
get error messages out of views and event actions.

try:
 # cause an error
 x=[1,2]
 val = x[5]
except:
 # push the error text to a sibling label
 self.getSibling("Label").props.text = sys.exc_info()

You can also use the Ignition loggers to push these error messages out to the Gateway console. You can find these in the Gateway Webpage under
the Status section, on the page.Logs

This code would log an error to the gateway
try:
 # cause an error
 100/0
except:
 # push the error text to the logger
 logger = system.util.getLogger("myLogger")
 # convert the sys.exc_info() to a string and log it
 logger.info(str(sys.exc_info()))

Determining the Error Object

To determine the name of the error object that will be thrown from certain errors, we can take a look at the error to figure that out. We already
mentioned that dividing by zero gives a ZeroDivisionError, but what about when we divide by a string? If I divide 100 by the letter a without error
handling, this is the error I get:

Traceback (most recent call last):
 File "<buffer>", line 3, in <module>

TypeError: unsupported operand type(s) for /: 'int' and 'str'

The last line of that error gives the name of the error object "TypeError" followed by the cause of that error. This makes sense, because the string 'a' is
the wrong type to be using in division. However, not all errors are so simple and may require a bit more to find the name of the error. For a list of
python error names check out this page in the python docs: https://docs.python.org/2.7/library/exceptions.html#Exception

Additionally, some exceptions may be returned by Java. In these cases, Oracle's documentation on the Exception class is more useful: https://docs.
oracle.com/javase/8/docs/api/java/lang/Exception.html
A list of common exceptions are listed below.

Exception Description Exception Demonstration

ArrayIndexOut
OfBoundsExce
ption

This typically occurs when a line of code attempts to access an
index in a collection,
but the index specified doesn't exist. This exception is unique to
datasets in Ignition. Lists,
and other built-in Python objects will return the IndexError
below.

myDataset = system.dataset.toDataSet
(["colName"],[[0]])

This will fail because the dataset only
has a single row,

https://docs.python.org/2.7/library/exceptions.html#Exception
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html

so trying to read the value at row index
5 means we're trying to
read something that doesn't exist.
print myDataset.getValueAt(0,5)

AttributeError Typically seen when a script tries to access a property that
doesn't exist.

Example: a script tries to get the value of a property on a
component, but the property name is misspelled.

myVar = 10

integers do not natively have a name
variable, so this will fail with an
AttributeError:
there isn't an 'attribute' on an integer
by the name of 'name'
print myVar.name

IndexError Similar to ArrayIndexOutOfBoundsException above, but occurs
when Python specific object, such as a list. myList = [1,2,3]

There isn't an element in the list at
index 4, so this will fail.
print myList[4]

NameError Occurs when the local or global name is not found. Typically
happens when referencing a variable that hasn't been assigned
a value.

We haven't given a value to the variable
myValue, so it will fail.
print "The value of the variable is: " ,
myValue

TypeError A TypeError occurs when a function or similar operation is
applied to another object of an incorrect type. myList = [1,2,3]

The first argument for pop() expects an
integer, so passing a string value is
innappropriate.
Passing a string to pop() will return a
TypeError.
print myList.pop("0")

ValueError A ValueError is returned when the value of an argument is
inappropriate. Typically the exact issue is returned in the
returned exception.

myVar = "Hello"
Strings can be passed to the int()
function, but the value needs to be
something that
can be coerced into an integer, like "0".
Because "Hello" can't be easily
converted, the line below will fail.
print int(myVar)

Related Topics ...

Conditions and Loops

Built-In Functions

Python Built-In Functions

Functions are code that can be called repeatedly from other places. Functions can have parameters
passed into them and may return a resulting value. Some functions, like , are built-in. Some len()
functions, like , are part of the provided by Ignition. Some system.gui.messageBox() scripting libraries
functions, like , are provided by the Python Standard Library.math.sqrt()

Functions are by using their name followed by an argument list surrounded in parentheses. If invoked
there are no arguments, you still need an open and close parenthesis.

This section details several useful Built-in Functions, along with some simple examples. See the official
 for more information.docs

Type Casting Functions

Python has many functions to convert between data types. Some common type casting functions are
listed below

On this page ...

Python Built-In Functions
Type Casting Functions
Checking an Object's Type
Generating a Range of Values
Rounding Numbers

Function Notes Example Output

bool() When casting a numeric value to a boolean, a zero value is false, while all non-zero
numbers are True

When casting a String or Unicode value to a boolean, an empty string is False, any other
string is True.

Results in False
print bool("")

Results in True
print bool("Test")

False
True

int() and
long()

When casting a float, rounding will not occur automatically to the decimal value. Instead, the r
 should be called.ound() function

When casting a String or Unicode value, the string literal needs to be a valid integer or long:
decimal values contained in the string will result in a ValueError

Integers have at least 32 bits of precision, while Longs have unlimited precision.

Float to Integer
print int(123.8)

Float to Long
print long(321.8)

String to Integer
print int("400")

ValueError: the value
is not base 10
print int("400.5")

123
321
400
ValueEr
ror

float() When casting a string literal as a float, non-numeric characters in the string will result in an
exception, except for a decimal point ("."). # Integer to Float

print float(123)

String to Float
print float("400.5")

123.0
400.5

str() and
unicode()

Most objects can be cast as a string representation of some sort, including sequences.
print "First line:" +
str(80)

Even sequences can be
cast as a string,
making for easy
concatenation
myList = [1,2,3]
print str(myList)

80
[1, 2,
3]

https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html

Checking an Object's Type

Checking the data type of an object can easily be done with both the and functions. type() isinstance()

Function Description Example Output

type(object) When passed a single parameter, this function returns the type of the .object
var = 10
print type(var)
print type(str(var))

type
'int'>
<type
'str'>

isinstance
(object,
classinfo)

Returns True if the is an instance or subclass of , object classinfo
otherwise, returns false.

If checking for a string or unicode type, a of "basestring", which is the base classinfo
class for both strings and unicode types, would return True.

var = 10
print isinstance
(var,int)

strVar = "string"
print isinstance
(strVar,basestring)

True
True

Python - Type Validation: type vs isinstance

type() Example
This example attempts to validate the type of a variable. As written, this will evaluate as True, and thus
the print statement would execute.
var = "My String"
if type(var) == type(""):
 print "Variable 'var' is a string"

isinstance() Example
The isinstance() function can offer the same functionality as above.
var = "My String"
if isinstance(var, str): # Note the lack of quotation marks around the classinfo parameter. We want to
reference the class str, not the string "str".
 print "Variable 'var' is a string"

Generating a Range of Values

In some cases, it is useful to generate a range of integers for iteration. Python's function will return a list of integers. range()

Function Description Example Output

range([start,] stop
[, step])

Returns a list of progressively greater integers.

start - Integer value denoting the initial value in the list. If omitted, defaults to 0.
This parameter is inclusive.

stop - Integer value, determines when to cease generating integers. This
parameter is exclusive.

step - Integer value to increment each new integer by. If omitted, step defaults to 1.

If is positive, integers will be generated as long as (* step start + i st
 is true. ep < stop)

If is negative, integers will be generated as long as (* step start + i st
 is true.ep > stop)

print range(5)
print range(1,
5)
print range(1,
10, 3)
print range(15,
0, -3)

[0, 1, 2,
3, 4]
[1, 2, 3, 4]
[1, 4, 7]
[15, 12, 9,
6, 3]

Assume we need to read from five separate Tags with a nearly identical Tag path in a single script:

Pseudocode - Tag Path

[Provider]Folder/Sub_Folder_1/Tag
[Provider]Folder/Sub_Folder_2/Tag
[Provider]Folder/Sub_Folder_3/Tag
[Provider]Folder/Sub_Folder_4/Tag
[Provider]Folder/Sub_Folder_5/Tag

Instead of manually typing each path, we could use in a for loop that would write the paths automatically. range()

Python - Range in a For Loop

Initialize an empty list that will ultimately hold all the Tag paths.
tagPaths = []

Use range to repeatedly append 5 tag paths to the tagPaths list: starting with a value of 1, and ending
with a value of 5.
for num in range(1,6):
 # Use String Formatting to create a Tag path with the iterator's (num) value.
 tagPaths.append("[Provider]Folder/Sub_Folder_%i/Tag" % num)

Now that tagPaths contains all our tag paths, we can use the list to interact with the tag, such as by
reading their values simultaneously.
tagValues = system.tag.readAll(tagPaths).value

Rounding Numbers

You can round numbers inside Python with a few simple functions.

Function Description Example Output

round(number
[, digits])

When passed a single parameter, this function returns a rounded integer value of a number. If the decimal
is greater than or equal to .5, the it rounds up, less than .5 rounds down.

If the optional digits argument is used, then it rounds to that many decimal places.

var =
10.236981
print round
(var)
print round
(var,3)

10
10.237

math.floor
(number)

Returns a truncated integer from the number given. The largest integer value less than or equal to .number

Note that the example needs to before being able to call floor().import that math library
import math

var =
100.938
print math.
floor(var)

100.0

math.ceil(number) Returns the ceiling integer from the number given. The smallest integer value greater than or equal to numb
.er

 Note that the example needs to import that math library before being able to call ceil().

import math

var =
100.138
print math.
ceil(var)

101.0

Python - Simple Casting

stringVar = "40"

Without using int(), this line would cause an exception. However int() is able to cast
the type of stringVar's value to an integer.
print 20 + int(stringVar)

Type casting is also useful in cases where a string parameter is required, but a numerical value
should be given, such as the message parameter in system.gui.messageBox().
intVar = 60

Note that this could also be accomplished with String Formatting instead of using str().
system.gui.messageBox(str(intVar))

Related Topics ...

User Defined Functions
Libraries

Libraries

The System Library

Ignition comes with a group of system functions, called the System Library. Using a system function is
simple. For example, the following code will access the value of a Tag.

Pseudocode - Reading a Tag Value

value = system.tag.read("tagPath").value

The is full of built-in functions such as this. scripting appendix

Python Libraries

Python Libraries are packages of extra functions that expand the functionality of the code and can be
imported into a script. We do this by using the keyword:import

Pseudocode - Import a Library

This pseudo code will import a library, and then call a function of that
library.
import myLibrary

myLibrary.specialFunction()

The import keyword imports that entire library and allows you to use all of the functions inside of it by
calling them off of the imported library. You can also import a piece of a library:

Pseudocode - Import a Function of a Library

This pseudo code will import a function from a library, and then call
that function.
from myLibrary import specialFunction

specialFunction()

Note, that since we are directly importing in the function, we can directly call it instead of having to call it
off of the library.

On this page ...

The System Library
Python Libraries
Python Standard Library

Importing 3rd Party Libraries
Accessing Java

Subclassing Java

System Library

Watch the Video

Python Standard Library

Python has an extensive standard library that provides a host of new functionality to the scripting language. The python documentation goes over all
of the libraries in its standard library as well as how to use them here: https://docs.python.org/2/library/index.html

Let's take a look at an example of using a common library:

Python - Accessing Files in a Python Standard Library

The csv library provides an easy way to read csv files, regardless of how they are formatted.
import csv

We first grab our filepath, and feed it into the open function, which opens the file.
filepath = "C:\\test.csv"
csvFile = open(filepath, 'r')

We then pass our opened csv file object into the csv.reader function, which will read the file.
This can be looped through in a for loop to print every row of the csv.

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://inductiveuniversity.com/video/system-library/8.1
https://docs.python.org/2/library/index.html

reader = csv.reader(csvFile)
for row in reader:
 print row

Importing 3rd Party Libraries

In addition to the standard libraries, 3rd party libraries can also be imported into Ignition's scripting environment. A Python Library or individual module
file will consist of a python file (.py) that contains the code that implements the functions of the library. You can often find python libraries built by other
users on the web, or can even create your own. These files can then be placed into a folder within your Ignition server.

Windows folder: C:\Program Files\Inductive Automation\Ignition\user-lib\pylib
Linux folder: /usr/local/bin/ignition/user-lib/pylib
Mac OS X folder: /usr/local/ignition/user-lib/pylib

Once the python file is in that folder, you can then import the library into a script just like any of the standard libraries.

Accessing Java

Scripting in Ignition executes in the java based implementation of Python called Jython. (See). While this doesn't have any great Python or Jython?
effect on the Python language itself, one of the great side benefits is that your Python code can seamlessly interact with Java code as if it were Python
code. This means that your Python code has access to the entire Java standard library.

To use Java classes, you simply import them as if they were Python modules. For example, the following code will print out all of the files in the user's
home directory. This code uses the Java classes and java.io to look up the user's home directory and to list the files. java.lang.System .File
Notice that we can even use the Python-style for loop to iterate over a Java sequence.

Python - Accessing Java

Importing the appropriate java libraries.
from java.lang import System
from java.io import File

Used to look up the files in the users home directory.
homePath = System.getProperty("user.home")
homeDir = File(homePath)

Loops through the list of files and prints them.
for filename in homeDir.list():
 print filename

You can find the reference documentation for the Java standard class library (also known as, the " ") at: JavaDocs http://docs.oracle.com/javase/8/docs
/api/

Subclassing Java

You can also create Python classes that implement Java interfaces. You do need some understanding of Java and object-oriented programming
concepts, which are outside the scope of this manual. To create a Python class that implements a Java interface, you simply use the interface as a
superclass for your Python class. For example, we could augment the example above to use the overload . To do this, java.io.File.list(FilenameFilter)
we'll need to create a , which is an interface in Java that defines a single function: FilenameFilter

boolean accept(File dir, String name)

To implement this interface, we create a Python class that has as its superclass, and implements that Java-style java.io.FilenameFilter
function in a Python-esque way.

Python - Implementing Java Interfaces

Importing the appropriate java libraries.
from java.lang import System
from java.io import *

Ignition uses Python version 2.7. This means that any imported libraries must be compatible with Python 2.7.

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting#Scripting-PythonorJython?
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/java/io/File.html#listFiles(java.io.FilenameFilter)

This sets up an extension filter that can check the file extension. Txt is the default.
class ExtensionFilter(FilenameFilter):
 def __init__(self, extension=".txt"):
 self.extension=extension.lower()

 def accept(self, directory, name):
 # make sure that the filename ends in the right extension
 return name.lower().endswith(self.extension)

Used to look up the files in the users home directory.
homePath = System.getProperty("user.home")
homeDir = File(homePath)

Prints out all .txt files. Txt is provided if nothing is specified.
for filename in homeDir.list(ExtensionFilter()):
 print filename

Prints out all .pdf files.
for filename in homeDir.list(ExtensionFilter(".pdf")):
 print filename

Related Topics ...

Built-in Functions

User Defined Functions

Functions

A function is code that can be called repeatedly from other places. Functions can have parameters
passed into them, and may return a resulting value. Some functions, like , are built-in. Some len
functions, like , are part of the provided by Ignition. system.gui.messageBox() scripting libraries
Some functions, like , are provided by the . However, functions can math.sqrt() Python standard library
also be defined in a script that can be used later on in the script. In these user defined functions, you give
the function a name and some code that will run when the function is called. Then later on in the script,
you can call the function by its name and it will run the code specified in the function. This is useful,
because it allows you to run a segment of code many times without having to repeat it within the script.

Functions are by using their name followed by an argument list surrounded in parentheses. If invoked
there are no arguments, you still need an open and close parenthesis.

Defining Functions

Functions are defined using the def keyword. A function needs a name and a list of the arguments that it
can be passed. For example, this code defines a function that prints "Hello World!".

Python - Defining a Function

First we define our function.
def printHW():
 print "Hello World!"

We can then call our function.
printHW()

On this page ...

Functions
Defining Functions
Functions Arguments
Keyword Arguments
Functions Are Objects
Where Can Functions Be
Defined

Function Scope

Functions

Watch the Video

Functions Arguments

When a function accepts arguments, the names of those arguments become variables in the function's namespace. Whatever value was passed to
the function when it was invoked becomes the value of those variables. Arguments can have default values, which makes them optional. If an
argument is omitted, then its default value will be used. The following code defines a function called , which will check if a number is within an cap
upper and lower limit. The default lower limit is 0, and the default upper limit is 100.

Python - Defining Arugments

We first define our function. Notice that we have 3 different arguments.
x, min, and max. The min and the max are set to equal 0 and 100 respectively.
def cap(x, min=0, max=100):

 # Check if x is less than the min, return the min if true.
 if x < min:
 return min

 # Check if x is greater than the max, return the max if true.
 elif x > max:
 return max

 # Return the value if it is within the bounds.
 else:
 return x

We can then see the outcome by running our function with a few different parameters.
This will print out a 40, since it is within the bounds.
print cap(40)

This will print out "0", since it is less than the min of 0.
print cap(-1)

This will print out "100", since it is greater than the max of 100.
print cap(150)

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Libraries#Libraries-PythonStandardLibrary
https://inductiveuniversity.com/videos/functions/7.9/8.1

This will print out "150", because it uses a max of 200 instead of the default 100.
print cap(150, 0, 200)

Keyword Arguments

In Ignition, some complicated script functions are designed to take keyword arguments instead of normal parameters. In the description for those
functions, you may see the following info box in this User Manual:

Arguments can also be specified by keyword instead of by position. In the example above, the only way someone would know that the 200 in the last
call to specified the max is by its position. This can lead to hard-to-read function invocations for functions with lots of optional arguments. You can cap
use keyword-style invocation to improve readability. The following code is equivalent to the last line above, using 200 for the and the default for max
the .min

Python - Using Keyword Arguments

print cap(150, max=200)

Because we used a keyword to specify that 200 was the , we were able to omit the argument altogether, using its default. However, using a max min
keyword argument before a non-keyword or positional argument is not allowed.

Python - Non-keyword Argument

This would fail, because the function isn't sure what 150 is being used for.
print cap(max=200, 150)

Functions Are Objects

Perhaps one of the most foreign concepts for new Python users is that in Python, functions are first-class objects. This means that functions can be
passed around to other functions (this concept is similar to the idea of function pointers in C or C++).

Suppose we wanted a general way to filter a list. Maybe sometimes we want the odd entries, while other times we want even ones. We can define a
function called that takes a list and another function, and returns only entries that "pass" through the other function. extract

Python - Functions Passed to Other Functions

We define a function that checks if the value passed in is odd.
def isOdd(num):
 return num % 2 == 1

We define a function that checks if the value passed in is even.
def isEven(num):
 return num % 2 == 0

We define a function that inserts our list into the appropriate function and returns valid values.
def extract(filterFunction, list):
 newList = []
 for entry in list:
 if filterFunction(entry):
 newList.append(entry)
 return newList

Prints out [0, 2, 4, 6, 8]
Notice that isEven as not invoked, but passed to the filter function.
print extract(isEven, range(10))

Where Can Functions Be Defined

This function accepts .keyword arguments

User Defined Functions can be defined anywhere that a script is used. As stated before, they are useful to run segments of code multiple times
without having to repeat it. They are also used extensively in where multiple functions can be defined in a single script module. Finally, project scripts
some special Ignition System functions like or the Expression function use functions as arguments.system.gui.createPopupMenu runScript

Function Scope

The concept of scope is very important in all programming, and Python is no exception. Scope defines what names are directly accessible without any
qualifiers. Another way to put this is that the scope determines what variables are defined. In Python, a variable is defined at the time that it is
assigned. What scope it belongs to is also defined by where the assignment occurs.

Pseudocode - Defining a Function for Scope

On this line, there is no variable 'x' in scope.
doSomeWork()

Now 'x' is defined in our scope, because we've assigned a value to it
x = 5

This will work because x is in scope.
print x

When you define a function, that function gets its own scope. Variables that are assigned within that function body will not be available outside of the
function.

Python - Variables Defined within a Function Not Available Outside Scope

x is local to myFunction() because this is where it is defined.
def myFunction():
 x = 15
 print x

This will fail, because x is not available in the outer scope
y = x + 10

Related Topics ...

Built-in Functions
Libraries

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.createPopupMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/runScript

Scripting in Ignition

Where Is Scripting Used?

Python is used in many places in Ignition. Each location has its own events that trigger your scripts to
run, and add functionality to your projects in different ways. The most apparent place is in event handlers
on components and other objects in Vision Clients and Perspective Sessions.

Script Scope

One important thing to keep in mind before scripting in Ignition, is to understand the concept of scope.

Within Ignition, there are different scopes:

Gateway Scope - The script runs on the gateway. Scripts running in this scope cannot interact
with components in the other two scopes.
Perspective Session Scope - The script runs as a part of a Perspective Session. Note that
scripts in Perspective execute on the gateway, not in the browser, but this scope is still distinct
from the Gateway Scope.
the Vision Client Scope - The script runs inside of an instance of a Vision Client.

Where a script was written determines which scope it executes in. For example, Tags are in the Gateway
Scope, so execute in the Gateway Scope.Tag Event Scripts

This means that the script will not be able to access any client level resources such as windows or
components that you may have open in the Client. Additionally, some of the system functions like system.

 only work in the "Client Scope," so you will not be able to use them in the script on the Tag.gui.errorBox

System Functions, Hints, and Autocomplete

Ignition comes with a group of system functions, which are built-in functions that interact with Ignition
features.

Python - Simple Script Using a System Function

value = system.tag.readBlocking(["tagPath"]).value

A complete list of these functions (with their definitions) is available from the autocomplete popup.
Wherever you can add a script, type and then press to get a list of all the functions system. Ctrl+Space
available. If you keep typing, the list will be automatically narrowed down for you. Additionally, the Syste

 page in the appendix contains complete documentation for the built-in system functions. m Functions

Note: The autocomplete popup always shows all system functions scoped to the current script. If a
system function does not appear in the list, that means the function is not available in the current scope,
or has been deprecated.

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

Starting in 8.1.18, the autocomplete popup is enabled by default and will appear after typing "."

On this page ...

Where Is Scripting Used?
Script Scope
System Functions, Hints, and
Autocomplete

Components
Client, Gateway, and Session
Event Scripts
Project Scripts
Tag Scripts
Reporting
Alarming
Sequential Function Charts

Scripting in Ignition

Watch the Video

System Library

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.errorBox
https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.errorBox
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18
https://inductiveuniversity.com/video/scripting-in-ignition/8.1
https://inductiveuniversity.com/video/system-library/8.1

The new editor also offers parameter completion assistance; if you auto-complete a method with multiple
required parameters, you’ll automatically enter a “parameter assistance” mode, where you can tab
through the parameters and enter them one at a time:

To disable these features, right-click anywhere within the Script Editor window and deselect Automatic
and/or Activation Parameter Assistance.

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

Autocomplete hints are now also displayed for code other than Ignition's system functions. If Ignition
detects a function or project script, a popup will automatically appear, from which you can select which
function or project script you are trying to reference. You can also bring up this popup by pressing "ctrl-
space".

The following feature is new in Ignition version 8.1.32
 to check out the other new featuresClick here

Autocomplete hints will for extract method parameters, return information, and limited type awareness
project script functions and class docstrings written in docstring format. An Google Python Style Guide's
example of the expected format is as follows:

Code Snippet

def setMode(mode):
 """Changes the mode of the running system

 Args:
 mode: An integer representing the mode to switch to.

 Returns:
 A boolean that indicates if the attempt at switching to the given
mode was successful.

 Raises:
 Error: If communications are down, an exception will be thrown.
 """
 # Function code goes here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.32
https://google.github.io/styleguide/pyguide.html#383-functions-and-methods

The code above will display the description, parameter, and return information when autocomplete hints
render the docstring:

Script Hint Scope

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

You can choose the scope of your scripting hints and suggestions come from by selecting the dropdown
menu in your Project Library's scripts:

The table below lists possible values you can choose from in the dropdown menu:

Value Description

None The project library will not use the Designer nor the Gateway to populate scripting hints.

Designer The project library will use the Designer scope to populate scripting hints.

Gateway The project library will use the Gateway scope to populate scripting hints.

All The project library will use both the Designer and Gateway scope to populate scripting
hints.

Components

Both Perspective and Vision offer component based scripting triggers, providing a means to execute a script under a number of different situations,
such as a user interacting with a component or a component property value changing. For more information on how both module handle component
based scripts, take a look at the and sections. Scripting in Perspective Scripting in Vision

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Perspective
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision

Client, Gateway, and Session Event Scripts

Scripts can be set to activate on specific events that occur during runtime. For example, you can trigger a script to run when a vision client starts, or on
certain time intervals.

More information on these events can be found on the , , and pages. Client Event Scripts Gateway Event Scripts Perspective Session Event Scripts

Project Scripts

You can create your own reusable blocks of code in the . Once configured, these functions can be called from anywhere in a project, Project Library
just like our functions.system.*

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions

Tag Scripts

Once Enabled, these scripts are fired whenever a or an alarm event happens. You can use them for additional diagnostics, to set Tag value changes
additional Tags, or to react to an alarm event. Because these events are on Tags, they are Gateway Scoped.

Reporting

Reporting uses scripting in many different ways to help increase the effectiveness of the report. Scripting in Reports is used to create and modify data
, , and set up a script as a .sources manipulate charts scheduled report action

Alarming

The Alarm Notification system can also use scripting to great effect. A allows a script to be run within the pipeline, allowing data to be script block
manipulated as the alarm event travels through the pipeline. Additionally, scripting can be used to generate a of users at runtime, giving custom roster
full customization to who gets notified by the alarm event.

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/Report+Charts#ReportCharts-ChartScripting
https://legacy-docs.inductiveautomation.com/display/DOC81/Scheduling+Actions#SchedulingActions-RunScriptAction
https://legacy-docs.inductiveautomation.com/display/DOC81/Pipeline+Blocks#PipelineBlocks-ScriptBlock
https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Block#NotificationBlock-Calculated

Sequential Function Charts

Sequential Function Charts (SFCs) are a flowchart of blocks that run scripts. They are executed in a specific sequential order along with some logic to
potentially loop or call other charts. The scripts here can interact with the Gateway, and provide greater control when each step needs to complete
before the next one can begin in multi-step processes.

Related Topics ...

Scripting Data Source
Sequential Function Charts
Notification Block
Tag Event Scripts
Client Event Scripts
Gateway Event Scripts
Perspective Component Methods
Perspective Session Event Scripts
Project Library

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/Sequential+Function+Charts
https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Block
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Component+Methods
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts

1.

2.

3.

Getting Started with Scripting in Ignition

Overview

The best way to get started with scripting in Ignition is to write some very simple scripts and print them
within Ignition. Let's take the phrase, "Hello World," and print it within Ignition. To show how flexibile
Ignition is, there are actually a few ways to easily do this. One way is to use the Scripting Console, and
another way is to use a Button component. Both examples are shown below.

Example - "Hello World" Using the Script Console

When testing or writing a new script, the is very useful since you can immediately get Scripting Console
some feedback on the results of the script. When learning Python, it is a great place to start since you
don't have to create a window or component before you begin writing your code.

On this page ...

Overview
Example - "Hello World" Using
the Script Console
Example - "Hello World" on a
Button Component
Example - Using a Message Box

In the , open the Script Console from the Menu Bar: Designer Tools > Script Console.

The Script Console will appear. Type the following code, or simply copy and paste it into the text area in the Multiline Buffer on the left side of
the Script Console:

Python - Simple Print

print 'Hello World'

Click the button at the bottom of the Script Console. You should see the message "Hello World" appear in the Interactive Interpreter Execute
on the right side of the Script Console.

Example - "Hello World" on a Button Component

1.

2.

3.

4.

5.

6.

Scripts are commonly located on components in a window. In this example, let's add a script on a Button component, and print out "Hello World" when
the Button is pressed.

In the , create a new . Give it a meaningful name if you like. (We won't need to reference the name of the window in Designer Main Window
any of these examples).
Drag a standard component to your window. Button

Let's add a script that triggers when the Button is pressed. With the Button component selected, right click on to open the Scripting Compon
 window.ent Scripting

Under Event Handlers, select the option, and click the tab. Make sure the event action > actionPerformed Script Editor actionPerformed
is highlighted. If an event is not selected, all of the remaining features in this window will be disabled, so we will not be able to write a script.
Additionally, if the wrong event is selected, then our script will not trigger when we expect it to.

In the Script Editor, you will see a large editable Text Area. This is where we will type our script.

https://legacy-docs.inductiveautomation.com/display/DOC81/Window+Types

6.

7.

8.

Let's generate a message that shows "Hello World!" Use the following code to get started. Make sure the word "print" lines up exactly to the
left edge. Indention in Python means something, so we need to avoid starting our lines with a space or tab unless we're denoting a block of
code under something like an or . Click to close the window.if-statement function definition OK Component Scripting

Python - Simple Print

print "Hello World!"

Notice the event is blue and bold. This means there is a script on this event. This is useful to know in situations where a actionPerformed
component has scripts on multiple events.

Additionally, an asterisk character (*) is next to the event. This means you have not applied/saved the changes to the script. The asterisk
will disappear when you press either or , and reappear whenever you make a change to the script. If you see this, then it means OK Apply
you may want to save any changes you made.

The tab also has a blue color, denoting where the script is. An event will only ever have a script located on a single tab at any Script Editor
time. If a new tab is selected and configured, it will wipe out the work on the prior tab, for example, writing a script on and then Script Editor
configuring the tab will erase the script on the tab. Navigation Script Editor

Now we can test the script. Place the into Preview Mode, and press the Button. If everything is working as intended, then it should Designer
appear as if nothing happened. This is because we used in our script, which always outputs to a console, as opposed to popping up print
at the user. This means we need to open the Designer's to see the results of our script. At the Designer's menu bar, select Console Tools >

. This will make the console appear.Console

There may be a large amount of text in the Output Console. The Designer logs many different types of activities and events here, including
polling events from components on other windows that are currently open in the Designer. However, the most recent events should be
towards the bottom. As a quick tip, you can also click the eraser icon to clear out the console, and then press your again to Button
generate a new entry like we did in this example.

8.

1.
2.

3.

We can now see where print statements go when called from a component, but this isn't too useful, as we don't want our users to open the
console to see messages. Print statements are very useful when troubleshooting a problematic script, or even when testing a new script.
Keep this in mind as you start to delve into scripting more.

Example - Using a Message Box

Now that we've seen how to print to the Output Console, lets make our message appear when we call it. This time, we will modify the script on the
Button component to bring up a window that the user will see.

Open the window again, and find the script on the Button.Component Scripting
We will use one of Ignition's built-in functions, called , to display the message. This will make a message box appear, system.gui.messageBox
which is a modal window that we can pass a string to. Remove your old code on the Button, as we will be replacing it. Start by typing the
following:

Pseudocode - Built-in Functions Begin with system.

system.

With the Text Cursor just to the right of the ".", hold The key and press the . This will make the Autocompletion popup Ctrl/Cmd Spacebar
appear. This lists all of the available system functions. Start by clicking on , and then . Note, that you can still type while the gui messageBox
popup is open to filter the results in the list.

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.messageBox
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18

3.

4.
5.

6.

Starting in 8.1.18, the Autocompletion popup appears by default after typing "."

Once you've selected , click on it, and it should start some of the code for you automatically.messageBox
Complete the code by placing some parentheses and a message as a string. Alternatively, you can copy the example below.

Python - Using a System Function to Write to a Message Box

system.gui.messageBox('Hello World')

Place the into , and click your Button. You will see a Message Box appear displaying the message we passed to the Designer Preview Mode
function.

Related Topics ...

Python Scripting
System Functions
Component Events

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events

Gateway Event Scripts

Gateway Event Scripts Overview

Gateway Event Scripts are scripts that run directly on the Gateway. They are useful because they always
run, regardless if any sessions or clients are open. They also provide a guaranteed way to make sure
only a single execution of a particular script occurs at a time, as opposed to placing a script in a window,
as there could be multiple instances of the window open at a given point of time.

Note that even though Gateway Event Scripts run on the Gateway, they're still considered a project
resource. Project backups will include any Gateway Event Scripts.

The Gateway Event scripting workspace is located in the Scripting menu of the Designer or in the Project
Browser under .Scripting > Gateway Events

On this page ...

Gateway Event Scripts Overview
Other Event Scripts

Startup Script
Gateway Startup Behavior

Update Script
Shutdown Script

Gateway Shutdown Behavior
Timer Scripts

Timer Script Settings
Tag Change Scripts

Tag Change Script Interface
Tag List
Tag Change Objects

Message Scripts
Gateway Message Handler
Settings
The Payload
Calling Message Handlers

Gateway Scheduled Scripts
Settings Tab
Script Tab

Troubleshooting Gateway Scripts

Other Event Scripts

The content on this page will focus primarily on Gateway Event Scripts. However, there is some overlap
with Client Event Scripts, as they have similar events. More information can be found on the Client Event

 and pages.Scripts Perspective Session Event Scripts

Note: System functions are available for both Client Event Scripts and Gateway Event Scripts, but
some system functions are specific to either one or the other. When you're writing event scripts, it's
important to remember the scope of where you're writing the script: Client or Gateway. You can check S

 in the Appendix to see list of all system functions, their descriptions, and what scope ystem Functions
they run in.

Gateway vs Client
Event Scripts

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://inductiveuniversity.com/video/gateway-vs-client-event-scripts/8.1

1.

2.

Startup Script

The Startup Script event runs at the startup of the Gateway. Additionally, if the project is restarted in
someway, such as by making a change to a Gateway Event Script and saving, then the Startup Script
will be called. This means that while editing scripts frequently in the Designer, the startup and shutdown
events may happen frequently.

Gateway Startup Behavior

There is a specific order to when the various startup scripts are run. When troubleshooting your Gateway
startup times, consider the following:

Gateway starts - The Gateway will start as an OS service, and start the context. No startup
scripts can run before this is complete.
Projects are started - This includes all of the Gateway scoped items in the projects such as
Transaction Groups, SFCs, etc. This does not refer to launching clients, and no clients can be
automatically launched at this time. All are run at this time for each Gateway Startup Scripts
project. Note: if you copied a project, always check for Gateway scoped events such as these.
You generally don't want a Gateway Startup Script to run twice because it is in two projects.

Startup Scripts

Watch the Video

Update Script

The Update Script event runs after a project is saved or updated on the Gateway. This enables you to insert a script that will run every time a project
is saved.

The following feature is new in Ignition version 8.1.14
 to check out the other new featuresClick here

https://inductiveuniversity.com/video/startup-scripts/8.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.14

This script now reports which resources were modified during a project save. The following parameters have been added:

Parameter Description Type

actor The user or system responsible for the project update. String

resources A dictionary that holds the following keys:

Key Description

added List of dictionaries containing information about resources that were added to the project.

removed List of dictionaries containing information about resources that were removed from the project.

modified List of dictionaries containing information about resources that were modified.

manifestChang
ed

A boolean variable indicating whether or not a change has been made to the project settings on the
Gateway.

Dictionary

Shutdown Script

The Shutdown Script event runs at the shutdown of the project, which means it can be used as a way to
trigger a script when the Gateway has to be restarted. It allows you to run a piece of code as the
shutdown is occurring. After the script completes, the shutdown will finish.

Note that the Shutdown Script event only gets called if the Gateway is requested to shut down: if the
computer power is lost abruptly (power outage, hard restart, etc.) this shutdown script will not run.

Gateway Shutdown Behavior

Similar to how a behaves, "Shutdown" in the context of this event Gateway Event Scripts#Startup Script
means "project shutdown", so shutting down the Gateway would trigger this event, as well as disabling
the project containing a script on this event. Additionally, making a change to a Gateway Event Script in
the Designer, and then saving the project will cause the project to restart, which means this event can get
called by simply making changes in the Designer and saving.

Shutdown Scripts

Watch the Video

Timer Scripts

The Timer Scripts execute periodically on a timer at a fixed delay or rate. This allows you to set up a sort
of heartbeat that can run on the Gateway. This is the ideal event to use if you need the Gateway to
periodically perform some scripting task.

Timer Scripts

Watch the Video

https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72418525#GatewayEventScripts-StartupScript
https://inductiveuniversity.com/video/shutdown-scripts/8.1
https://inductiveuniversity.com/video/timer-scripts/8.1

Since multiple Timer Scripts can be added, there are separate buttons that allow you to manage each Timer Script.

 Add Timer Script - Adds a new Timer Script.

 - Will delete the selected Timer Script.Remove Timer Script

 - Will modify the settings for the selected Timer Script.Modify Timer Script

Timer Script Settings

Below is an overview of the settings for a Timer Script.

Name: The name of the Timer script. Names must be unique per project, so two timer scripts in the same project cannot have the same
name.
Delay: The delay period in milliseconds. The meaning of this setting is dependent on the setting.Delay Type
Enabled: Allows you disable the Timer Script when set to false.
Delay Type: Determines how the setting is utilized. Delay

A timer script (the default) waits for the given between each script invocation. This means that the script's rate Fixed Delay Delay
will actually be the delay plus the amount of time it takes to execute the script. This is the safest option since it prevents a script
from mistakenly running continuously because it takes longer to execute the script than the delay.
Fixed Rate scripts attempt to run the script at a fixed rate relative to the first execution. If the script takes too long, or there is too
much background process, this may not be possible. See the documentation for for more java.util.Timer.scheduleAtFixedRate()
details.

Threading: Determines which thread this script should run in. In other words, this setting allows you to specify if you want this timer script to
share execution resources or not. The rule of thumb here is that quick-running tasks should run in the shared thread, and long-running tasks
should get their own dedicated thread.

The setting means that all timer scripts will share a thread. This is usually desirable, as it prevents creating lots of Shared
unnecessary threads: threads have some overhead, so a small amount of resources are used per thread. However, if your script
takes a long time to run, it will block other timer tasks on the shared thread.
The setting will create a separate thread specifically for the timer script to use. This setting is desirable when your scripts Dedicated
executions must be as consistent as possible, as other timer scripts can't slowdown or otherwise impact the execution of a script in
a separate thread.

Tag Change Scripts

The Tag Change Script event allows you to specify any number of Tags, and trigger a script when one of
them change. Since these execute based on a Tag changing value, Tag Change Scripts are ideal when
you need a script to run based on some signal from a PLC.

Having the Tag Change Scripts run in the Gateway Scope means that the scripts are active as long as
the Gateway is running. Thus, you do not need a client or session to be open for a Gateway Tag Change
Script to execute. When executing, each Tag Change Script runs in a separate thread. This prevents
long running scripts from blocking the execution of other Tag Change Scripts. Tag Change Scripts

Watch the Video

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Timer.html#scheduleAtFixedRate(java.util.TimerTask,%20long,%20long)
https://inductiveuniversity.com/video/tag-change-scripts/8.1

Note: Due to their nature, Client Tags will not trigger Gateway Tag Change Scripts. However, there are
other similar events, such as a , that enable you to trigger a script based on a Client Client Event Script
Tag changing value.

Tag Change Script Interface

Tag List

Lists all of the available Tag Change scripts in the project. Two icons are available below the list:

 Add Script - Adds a new Tag Change Script to the list.

 Remove Script - Removes the currently selected script from the list.

Tags Tab

The tab contains settings for the script. See the description belowTags Script Settings

Script Name - The name of the script. Script names must be unique per project.
Enabled - Determines if the script is active or not. Set to false to disable the script.
Change Triggers - When the Tag changes, the script can trigger based on the , , and/or . Note that regardless of Value Quality Timestamp
how many triggers changed, the script only executes once per tag, so leaving all triggers enabled will not trigger three executions each time
the Tag changes.
Tag Paths - A list of Tag paths to monitor. When any of the Tags listed in this area change, the script will trigger. Note that the list is not
comma separated: new paths are specified each line.

 - Opens a Tag Browser window, allowing you to quickly lookup and add Tag paths to the Tag Change Script. Tag Browser

 - Click this icon to verify the paths specified under the list. This is useful for checking for typos in Path Diagnostic Tag Paths
the list.
Wildcards can be used at the end of configured tag paths. Using a wildcard will execute the script for all tags within the same folder.
In the below example, the script "New Script" will run when the value of any tag in the "folder" folder changes.

Note: Wildcards can only be used at the folder level and cannot be used at the tag level. For example, configuring a tag path like [
 will execute a script on all tags within the folder, but will not.default]folder/* [default]folder/ramp*

https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts

Script Tab

The tab is where the Python script associated with this event will be placed. Script

Tag Change Objects

Tag Change Scripts contain several built-in objects that are useful for inspecting the event, such as seeing what value the Tag changed to. These
objects are listed below.

The initialChange Value

The boolean initialChange variable indicates if an event is due to an initial subscription. This is useful as you can filter out the event that is the initial
subscription, preventing a script from running when the values haven't actually changed.

if not initialChange:

 # Do something useful here

The executionCount Value

An integer representing a number of event executions since gateway scripts were restarted (typically by applying a change to a script and saving the
project).

if executionCount <= 1:
 pass

The newValue Object

A object that represents the current value on the tag. QualifiedValue

Method Returns Description Usage Example

getValue() Varies Returns the new value on the tag newValue.getValue()

getQuality() QualityCode Returns the new quality on the tag newValue.getQuality()

getTimestamp() Date Returns the new timestamp value newValue.getTimestamp()

The previousValue Object

A object that represents the previous value of the tag. QualifiedValue

Method Returns Description Usage Example

getValue() Varies Returns the previous value on the tag previousValue.getValue()

getQuality() QualityCode Returns the previous quality on the tag previousValue.getQuality()

getTimestamp() Date Returns the previous timestamp value previousValue.getTimestamp()

The Event Object

This object offers some additional utility, such as accessing the previous values on the tag.

Method
/Attribute

Returns Description Usage Example

getCurren
tValue()

QualifiedV
alue

Returns a object (similar to the newValue object), representing the current value on the QualifiedValue
tag.

event.
getCurrentValue().
getValue()

getPrevio
usValue()

QualifiedV
alue

Returns a object, representing the values on the tag before the change.QualifiedValue event.
getPreviousValue().
getValue()

getTagPat
h()

TagPath Returns a TagPath object, that can be further examined for details about the path on the tag that
changed. See the TagPath Object table below. Additionally, the TagPath object can easily be turned into
a string, providing quick access to the path of the tag that changed value.

event.getTagPath()

getValue() QualifiedV
alue

Returns a object (similar to the object), representing the current value on the QualifiedValue newValue
tag. This method is functionally identical to getCurrentValue(), and maintained mostly for backwards
compatibility reasons.

event.getValue().
getValue()

changes TagChang
eType

A RegularEnumSet typed attribute that describes what changed: the value, quality, or timestamp. Values
in the set are objects, which can be converted to string with either Python's built-in str() TagChangeType
or Java's toString().

for i in event.
changes:
 if i.
toString() ==
"ValueChange":

foo()

tagPath An attribute that describes the tag path on the tag that changed. event.tagPath.
getItemName()

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+Object+Reference#ScriptingObjectReference-QualifiedValue
https://files.inductiveautomation.com/sdk/javadoc/ignition81/8.1.16/com/inductiveautomation/ignition/common/util/FilteredTagChangeListener.TagChangeType.html

Method
/Attribute

Returns Description

getItemNa
me()

string Returns the name of the item at the end of the tag path, which can be
used to get the name of the tag that changed.

getParent
Path()

BasicTagP
ath

Returns a BasicTagPath of the tag's parent folder. Python's str() method
can be used to convert the path to a string.

event.tagPath.
getParentPath()

Message Scripts

Message Handlers allow you to write a script that will run in the scope they are located in, but they can
be invoked by making a call from other projects or even other Gateways. They can be called using three
different scripting functions: , , and system.util.sendMessage system.util.sendRequest system.util.

.sendRequestAsync

Under the list of handlers, three small buttons allow you to add, remove and manage your handlers.

 Add Message Handler - Will add a message handler.

 Remove Message Handler - Will delete the highlighted message handler.

 Modify Message Handler - Will modify the settings for the highlighted message handler.

Gateway Message Handler Settings

When adding or modifying a message handler, a Message Handler settings window will popup.

The following settings are available:

Name - The name of the message handler. Each message handler must have a unique name
per project.
Threading - Determines the threading for the message handler. Contains the following options:

Shared - The default way of running a message handler. Will execute the handler on a
shared pool of threads in the order that they are invoked. If too many message
handlers are called all at once and they take long periods of time to execute, there may
be delays before each message handler gets to execute.
Dedicated - The message handler will run on its own dedicated thread. This is useful
when a message handler will take a long time to execute, so that it does not hinder the
execution of other message handlers. Threads have a bit of overhead, so this option
uses more of the Gateway's resources, but is desirable if you want the message
handler to not be impeded by the execution of other message handlers.

Script Messaging

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequest
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequestAsync
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequestAsync
https://inductiveuniversity.com/video/script-messaging/8.1

Security - Allows you to specify security zone and role combinations that are allow to request
this message handler.

The Payload

Inside the message handler is your script. The script will have a single object available to it, the . payload
The payload is a dictionary containing the objects that were passed into it. In essence, the payload is the
mechanism that allows you to pass the message handler values.

The payload is simply a python dictionary, so extracting values involves specifying the key:

Pseudocode - Payload Values

value1 = payload["MyFirstValue"] # "MyFirstValue" is the key that is
associated with a value. We are taking the value associated with
MyFirstValue, and assigning it to value1.
value2 = payload["MySecondValue"] # Similarly, we are taking the value
associated with MySecondValue and assigning it to value2.

Calling Message Handlers

Once you have your message handlers created, you can then call them from a script using one of three
scripting functions: , , and system.util.sendMessage system.util.sendRequest system.util.

. These functions allow you to call a message handler in any project, even if the sendRequestAsync
project that the message handler resides on is different from the one you are calling it from. The
message handler will then execute in the scope in which it was created, and will use any parameters that
you pass in through the payload.

Pseudocode - Calling a Message Handler

project="test"
messageHandler="My Message Handler"
myDict = {'MyFirstValue': "Hello", 'MySecondValue': "World"}
results=system.util.sendMessage(project, messageHandler, myDict)

Gateway Scheduled Scripts

The following feature is new in Ignition version 8.1.6
 to check out the other new featuresClick here

Scheduled scripts are events that execute at fixed times of the day, based off of the Gateway's system time. Configuration for the event is split
 between two tabs: Settings and Script .

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendMessage
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequest
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequestAsync
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.sendRequestAsync
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.6

Settings Tab

The settings tab allows you to give the event a unique name and determine how often it executes. Schedules are driven by cron job scheduling.

The dropdown contains several common selections, which can be further modified with the fields and dropdowns under each unCommon Settings it
of time.

Each unit of time consists of a field, and corresponding dropdown. The dropdown is filled with suggestions and simple options, but more complex
values can be provided in the field on the left. See . Crontab Formatting Reference

Script Tab

The script tab houses the Python script that will execute when the scheduled event executes.

Troubleshooting Gateway Scripts

While they are technically project resources, remember that Gateway Event Scripts technically run on the Gateway. Thus the Status section of the
is useful for diagnosing issues with Gateway Event Scripts. Gateway

Related Topics ...

Client Event Scripts
Perspective Session Event Scripts

https://legacy-docs.inductiveautomation.com/display/DOC81/Crontab+Formatting+Reference
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts
https://legacy-docs.inductiveautomation.com/display/DOC81/Perspective+Session+Event+Scripts

Project Library

Scripts under the Project Library are a project-based resource that allows user created Python scripts to
be configured. Objects and functions created in a Project Library script can be called from anywhere in
the project. Project Library scripts are accessible from the Project Browser, under the Scripting item.

Additionally, a single project can be designated as the , meaning that scripts Gateway Scripting Project
defined in the stated project can be called from the Gateway scope.

On this page ...

Add a Script
Scripts and Packages
Usage Example
Project Libraries and
Execution

Gateway Scripting Project
Example

Add a Script

To add a a Project Library script, right click the item and click the option.Project Library New Script

Scripts and Packages

There are two main types of resources under the Project Library.

Scripts - Each script resource can contain many and objects.functions
Packages - Each package effectively acts as a folder, allowing you to better organize each script resource.

Usage Example

For example, let's suppose you added the following script module named , whose body is shown below.myFuncs

Python

def hello():
 return "Hi there!"

Once we our project, we can now call this function from anywhere within the project using the following syntaxsave

Python - Calling the Project Script

myFuncs.hello()

Note: Project Library scripts are not accessible to the other resources until the project is saved.

For example, we could open the Script Console (Tools menu > Script Console), write the following, and execute the script.

Each script resource can contain multiple functions and objects. As you add new function definitions, the list on the right will populate giving you a
quick way to navigate through long scripts.

Project Libraries and Execution

Because Python is a dynamic language, any code inside of a project library must be run to build the function and class definitions. This is a common
behavior across interpreters. Within Ignition, these project libraries will run under certain conditions. For example, such as when the Script Console in
the Designer starts up, if changes are made to third-party libraries inside of the gateway's installation directory, when saving changes to these project
libraries, and several other conditions.

When this occurs, code inside of a project library is executed. Meaning classes and functions are defined, and any code that is not contained within
either a class or function will execute.

Because of this process, it's generally recommended that all code within a project library is wrapped inside of a function or class definition.

Gateway Scripting Project

Project Library scripts are normally only accessible from the project they were defined in. Thus objects that exist in other scopes, such as Tags that
exist in the Gateway scope, are unable to call Project Library scripts. Attempting to do so will result in Gateway log errors stating that "global name
'yourScript' is not defined".

The exception to this rule is the Gateway Scripting Project. This project is specified by the property, which is set in the Gateway Scripting Project Con
Gateway fig section of the Webpage under Gateway Settings. Entering the name of a project under this property allows the Gateway access to Project

Library scripts configured in the specified project.

Thus, if the library in the prior section was configured in a project named Tester, we would enter Tester in the Gateway Scripting Project myFuncs
field.

Once the name of the project is entered, select .Save Changes

Now, you can start calling any of the global scripting events, such as tag event scripts or runScript calls, from the Tester Project Library.

1.

2.
3.

4.
5.
6.
7.

Note: The Gateway Scripting Project has no impact to Gateway event scripts defined in the Designer (startup, shutdown, update, message handler,
etc.) as those are Project Resources and thus only function for the project they run under.

Example

This example demonstrates how to call scripts in your Gateway Scripting Project from a tag.

Set up your Gateway Scripting Project under Config > Gateway Settings:

Open your Gateway Scripting Project and add a library called .myFuncs
Define a new function in this library called thankYou:

def thankYou(user):
 system.gui.messageBox("Thanks for noticing me, " + user)

Save your Gateway Scripting Project and exit.
Open a new project.
Choose a tag and configure a on the Alarm Acknowledged event.Tag Event Script
You can call any function within the library in your Gateway Scripting Project:myFuncs

myFuncs.thankYou(user = ackedBy)

Note: You do not need to specify the name of your Gateway Scripting Project when calling any of its functions.

1.
2.

3.
4.
5.

Web Services, SUDS, and REST

Web Services Overview

Web services are software solutions that allow for interacting with machines residing on a network. In
short, web services are nothing more than web pages for machines. They provide a standard way for a
third party to request and receive data from a piece of hardware on the network without having to know
anything about how that machine works.

Protocols

There are two common approaches to Web Services in Ignition: making a HTTP (HyperText Transfer
Protocol) method call, or making a SOAP (Simple Object Access Protocol) call.

HTTP methods, such as GET and POST, are called using the built-in system functions, such as
. More information on HTTP calls can be found on the page.system.net.httpGet() HTTP Methods

SOAP is XML based, and typically requires a third party Python library. There are many third
, however, documenting them goes outside the scope of party Python libraries that utilize SOAP

this manual (as do all third party libraries).

On this page ...

Web Services Overview
Protocols
Can Ignition Make RESTful
Calls?

Common Web Services Workflow

The approach you choose typically depends on the server you're trying to make calls to: more specifically, the protocol(s) it supports.

Can Ignition Make RESTful Calls?

Yes it can! However, it is important to understand that REST is an architecture, a protocol. Instead, REST utilizes and describes how a protocol NOT
should be used. Thus, a RESTful architecture could use both of the protocols mentioned on this page, although HTTP is far more common.

Common Web Services Workflow

While all Web Services follow the same standards, they all do different things. They wouldn't be worth anything if you didn't get the information you
need, or if they contained a lot of excess data. If you are unfamiliar with a particular Web Service, there are a few things that you can do to figure out
what data is available and how to get it.

Identify a Web Service that you will be using. Usually the Web Service has an API somewhere documenting how requests should be made.
Write a script to pull some information from the Web Service. If using HTTP, this could mean starting with a GET call, where as SOAP would
involve retrieving the WSDL (Web Services Description Language). In both cases, you may need to find a way to authenticate against the
server (usually with some user credentials or an auth token, the API for the service would have more details).
Once you have the results from the GET/WSDL, identify the information or functions you want to use.
Write a script to use that function and return your values.
Parse the results and use them. This can be for display, saving to a database, or anything else you need.

Note: Web Services sometimes take a lot of time to return results, especially the first time they are called. If you put your Web Services script in a
button, the client will freeze until the call is complete (this is because the event handlers are run on the GUI thread). It's a good idea to use system.util.

 or add a waiting image to your screen to let the user know Ignition is working as expected.invokeAsynchronous()

Related Topics ...

WebDev Module

In This Section ...

What About the SUDS Library?

The SUDS library, a library that used to come included with the Python Standard Library, offered SOAP based functionality. However,
SUDS development has been halted, and is no longer included in the standard library.

In the interest of posterity, the legacy SUDS documentation has been condensed and can be found on the page. SUDS - Library Overview
Note that the legacy documentation should be considered deprecated.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.net.httpGet
https://wiki.python.org/moin/WebServices
https://wiki.python.org/moin/WebServices
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeAsynchronous
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeAsynchronous
https://legacy-docs.inductiveautomation.com/display/DOC81/WebDev+Module

HTTP Methods

Overview

Web services calls typically require some protocol to make requests. HTTP is an incredibly common
protocol, so this page will introduce how to incorporate these calls in a Python script. Note that all of the
examples on this page can be easily called with the Script Console, but can be utilized through some
other means (like the actionPerformed event on a Button).

Finding an Endpoint

Ignition doesn't natively expose an endpoint for web services calls, so we'll have to utilize a service of
some sort for the examples on this page. Fortunately, there are many public services we can utilize, such
as . From here, we can generate an endpoint to use. At the time of this writing, we're using OpenWeather
the following endpoint URL template:

Endpoint URL Template

https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid=
{API key}

The following table describes the various parameters in the endpoint URL:

Parameter
Key

Description

lat, lon Geographical coordinates (latitude, longitude).

appid Your unique API key.

Note: The code snippets on this page use "Your API key" as a placeholder for
unique API keys. You will need to substitute the placeholder with your own API key
for the code snippets to function as expected.

The following code snippets are using the geographical coordinates for the Inductive Automation
corporate headquarters located in Folsom, CA.

On this page ...

Overview
Finding an Endpoint
Making the Call
Parsing the Results
Make the Results Human
Readable
Troubleshooting HTTP Methods

HTTP Response Codes

Making the Call

To retrieve the results of this information in Ignition, we can use system.net.httpClient() to fetch the results of this call. We can try the following script in
the Scripting Console:

Python - Creates a variable to Store the Endpoint and Retrieves Results

#Set the endpoint URL
url = "https://api.openweathermap.org/data/2.5/weather"

#Declare a variable for system function we are using
myClient = system.net.httpClient()

#Declare a variable and set the parameters for the endpoint URL
#Instead of specifying the API call parameters for the endpoint URL in the beginning
response = myClient.get(url, {"lat":38.652330, "lon":-121.189773, "appid":"Your API key"})

#Print the output
print response.getText()

Printing this results in the following Python string:

Python - Results

https://openweathermap.org/current
https://docs.inductiveautomation.com/display/DOC81/system.net.httpClient
https://docs.inductiveautomation.com/display/DOC81/Script+Console

{"coord":{"lon":-121.1898,"lat":38.6523},"weather":[{"id":800,"main":"Clear","description":"clear sky","
icon":"01d"}],"base":"stations","main":{"temp":310.34,"feels_like":310.11,"temp_min":308.88,"temp_max":
312.74,"pressure":1013,"humidity":26},"visibility":10000,"wind":{"speed":4.12,"deg":290},"clouds":{"all":0},"
dt":1654893775,"sys":{"type":2,"id":2006213,"country":"US","sunrise":1654864794,"sunset":1654918128},"
timezone":-25200,"id":5349705,"name":"Folsom","cod":200}

Parsing the Results

If we wanted to extract a single value ouf of the results, we have a number of approaches. One useful approach would be to turn this JSON string into
a Python Dictionary. This way we can single out a key instead of using regex or looking for substrings (both valid approaches in their own regard).

When presented with a JSON string, we can call to turn a JSON string into a native Python Object. Thus, we can modify our system.util.jsonDecode()
code to the following:

Python - Parsing the Results Code

#Set the endpoint URL
url = "https://api.openweathermap.org/data/2.5/weather"

#Declare a variable for system function we are using
myClient = system.net.httpClient()

#Declare a variable and set the parameters for the endpoint URL
response = myClient.get(url, {"lat":38.652330, "lon":-121.189773, "appid":"Your API key"})

#Set a variable for the contents of the API call
results = response.getText()

Convert the JSON string into a Python object. In this case, it results in a Dictionary.
decodedDict = system.util.jsonDecode(results)

Now we can treat the results like a nested dictionary, thus we can specify the "weather" key,
and then the nested "description" key to return a description of the current weather conditions.
"[0]" is needed to specify the index of the list before specifying the "description" key.
print decodedDict.get("weather")[0].get("description")

Now we can easily retrieve a single value by specifying key names on the results. Printing this results in the following Python string (at the current
time):

Python - Results

clear sky

Make the Results Human Readable

Now that we know how to extract the results, we should clean up the output of the GET call. The JSON string returned by the endpoint could
potentially be long and cumbersome to read through for a human, but we can use Python's built-in library to pretty print the results. pprint

Python - Now with Pretty Print

Import the pprint library
import pprint

We'll instantiate an instance of PrettyPrinter, and store it in a variable named pp.
pp = pprint.PrettyPrinter(indent=4)

#Set the endpoint URL
url = "https://api.openweathermap.org/data/2.5/weather"

#Declare a variable for system function we are using
myClient = system.net.httpClient()

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.jsonDecode

#Declare a variable and set the parameters for the endpoint URL
response = myClient.get(url, {"lat":38.652330, "lon":-121.189773, "appid":"Your API key"})

#Set a variable for the contents of the API call
results = response.getText()

Convert the JSON string into a Python object. In this case, it results in a Dictionary.
decodedDict = system.util.jsonDecode(results)

Print out the dictionary in an easy to read format.
print pp.pprint(decodedDict)

The resulting output, which is much easier to read, looks like the following:

Python - Results

{ u'base': 'stations',
 u'clouds': { u'all': 0},
 u'cod': 200,
 u'coord': { u'lat': 38.6523, u'lon': -121.1898},
 u'dt': 1654896566,
 u'id': 5349705,
 u'main': { u'feels_like': 310.59,
 u'humidity': 25,
 u'pressure': 1013,
 u'temp': 310.84,
 u'temp_max': 313.46,
 u'temp_min': 309.19},
 u'name': 'Folsom',
 u'sys': { u'country': 'US',
 u'id': 2006213,
 u'sunrise': 1654864794,
 u'sunset': 1654918128,
 u'type': 2},
 u'timezone': -25200,
 u'visibility': 10000,
 u'weather': [{ u'description': 'clear sky',
 u'icon': '01d',
 u'id': 800,
 u'main': 'Clear'}],
 u'wind': { u'deg': 330, u'speed': 4.12}}
None

From here we can see all of the keys that lead to our final value:

To get to the value for the description key, we simply need to address each key along the way:

Python - To Get Value for the Sunset Key

"[0]" is needed to specify the index of the list before specifying the "description" key.
print decodedDict.get("weather")[0].get("description")

Troubleshooting HTTP Methods

When making HTTP calls, it is helpful to be familiar with the status codes that are returned by errors. To demonstrate, we could modify an earlier
example:

Python - Returns Error Status Codes

#Set the endpoint URL
url = "https://api.openweathermap.org/data/2.5/weather"

#Declare a variable for system function we are using
myClient = system.net.httpClient()

Note that instead of replacing the "appid" parameter with a unique API key, we will leave it as the
"Your API key" placeholder.
#Declare a variable and set the parameters for the endpoint URL
response = myClient.get(url, {"lat":38.652330, "lon":-121.189773, "appid":"Your API key"})

#Print the output
print response.getText()

This will return an error, which looks like the following:

Python - IOError: Response Code 400

{"cod":401, "message": "Invalid API key. Please see http://openweathermap.org/faq#error401 for more info."}

Note that HTTP response code , which means , was referenced. This error code is correct because we intentionally used an 401 unauthorized
incorrect API key!

HTTP Response Codes

The World Wide Web Consortium has a , which details all possible error codes. However, several common page dedicated to HTTP response codes
codes are listed below:

Response
Code

Description

400 Bad Request - The server could not understand the request due to malformed syntax.

401 Unauthorized - The request requires some sort of authentication. Potentially some user credentials or an auth token of some kind.

403 Forbidden - The server understood what you requested, but is intentionally refusing the request. In some cases, the error message
may include a reason why the request was not fulfilled (but not always). Typically, if the server doesn't include a reason, they'll use
a 404 error code instead

404 Not Found - Your syntax was correct, but the server could not find the resource you were asking for. This could mean a typo, or
missing portion of the URL you are using. In this case, double check the address you're specifying. Depending on the configuration,
this could also mean that the server does actually have the resource you requested, but doesn't want to confirm its existence
(typically due to a security policy. See error code 403 above).

Related Topics ...

system.net

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://legacy-docs.inductiveautomation.com/display/DOC81/system.net

1.

SUDS - Library Overview

The SUDS Library

The SUDS library is a SOAP-based web services client developed for Python. It is extremely simple to
use and practically eliminates the need for the user to understand or even view the WSDL of a web
service.

Disclaimer
The SUDS library used to be included in the Python Standard Library. However it has since been
removed, meaning you may not have access to it when performing a fresh install of Ignition.
Additionally, development on the library has mostly ceased, so any copies you find online may be
drastically outdated.

The information on this page will be maintained for legacy users that need to be familiar with the old
SUDS library. As a result, this page and its contents should be considered deprecated.

The SUDS library interprets the WSDL file for you and through a couple simple function calls allows you
to get a list of the available methods provided to you by the web service. You can then invoke these
methods in Ignition through event scripting to send and receive data in your projects. You will have to
familiarize yourself with the SUDS library in order to make use of it.

On this page ...

The SUDS Library
Simple Example
Beyond the Example

Complex Arguments

Simple Example

If you read through the SUDS documentation, you'll see that the Client object is the primary interface for most users. It is extremely simple using this
object and a few print statements to view a list of available methods provided by the web service you are connecting to. This example will illustrate
how to make an initial connect to a web service, print out the list of available methods, and then call one of these methods and display the resulting
value in a label on an Ignition window at the push of a button. The below example uses a public web service and is available for anyone to test against.

First, we can use the script playground to test out some scripting calls and see the output. The below example shows how to get a reference
to a client object. By printing this client object to the console we get an output of all the available methods, types, and other information about
the web service as defined in the WSDL file.

Python - W3Schools WSDL

from suds.client import Client
client = Client("http://www.w3schools.com/xml/tempconvert.asmx?WSDL")
print client

This WSDL defines two functions: CelsiusToFahrenheit(string tempCelsius) and FahrenheitToCelsius(string tempFahrenheit). These are the
functions that this web service makes available to you. Don't worry about the fact that the methods are listed twice. This is just because the
WSDL has two definitions of the functions that are formatted for different SOAP version standards. To call these functions in Ignition

1.

2.

3.

4.

scripting, you have to make use of the "service" member of the client object. You can see printing the returned results shows the conversion.

To make a simple conversion window in an Ignition project you can add a button, a numeric textbox, and a label to a window. Then on the
button to calculate a Fahrenheit to Celsius calculation, you would place something like the following:

Python - Fahrenheit to Celsius

from suds.client import Client
client = Client("http://www.w3schools.com/xml/tempconvert.asmx?WSDL")

far_value = event.source.parent.getComponent('Numeric Text Field').floatValue
cels_value = client.service.FahrenheitToCelsius(far_value)

event.source.parent.getComponent('Label').text = cels_value

Then you can make a second button to do the opposite: calculate Celsius to Fahrenheit.

Python - Celsius to Fahrenheit

from suds.client import Client
client = Client("http://www.w3schools.com/xml/tempconvert.asmx?WSDL")

cels_value = event.source.parent.getComponent('Numeric Text Field').floatValue
far_value = client.service.CelsiusToFahrenheit(cels_value)

event.source.parent.getComponent('Label').text = far_value

4. With your scripts in place your window should now function as a simple temperature conversion tool!

Beyond the Example

While the example is relatively simple, it can easily be expanded upon. However, always keep the general workflow in mind when using the SUDS
library:

Pseudocode - WSDL Workflow

#Import the SUDS Client object
from suds.client import Client

#Instantiate a new Client Object
client = Client("url_to_your_wsdl")

#Call the desired method using the service instance variable
client.service.MyMethod(myArgument)

Complex Arguments

In the overview, the methods provided by the web service were very simple and took simple argument types. Sometimes however, the web service will
describe complex types and allow you create instances of these types that can then be added to the system/machine that the web service is providing
an interface for.

A simple, hypothetical example of this would be a system that stores contact information of clients and can be used as an address book of sorts by
other systems on the network. It may provide not only a way to pull contact information for a certain individual out, but also a way to insert new
contacts. We'll keep the example simple and say that contacts have only a name and a phone number.

Note: This example is completely hypothetical. It is intended to give insight into complex types. It does not make use of an an actual functional web
service.

For example, say we create and print the client object we associated with our web service in the following manner:

Pseudocode - Client Object

from suds.client import Client
url = 'http://localhost:7575/webservices/hypothetical_webservice?wsdl'
client = Client(url)
print client

And the resulting output is the following:

Python - Results

Suds (https://fedorahosted.org/suds/) version: 0.4 GA build: R699-20100913

Service (hypothetical_webservice)
 Prefixes (0):
 Ports (1):

 (Soap)
 Methods:
 addContact(Contact contact,)
 getContactList(xs:string str, xs:int length,)
 getContactByName(Name name,)
 Types (3):
 Contact
 Name
 Phone

Here you can see that, while not too complicated, the web service defines more than just methods that take simple type arguments and return the
same. Under the Types section, you can see there are three "complex" types. These are basically just objects like one creates in an object oriented
programming language like java. The SUDS Client object has an instance variable called "factory" that allows you to create these complex types so
you can use them to invoke methods defined by your web service that take complex arguments.

If we wanted to add a contact using the addContact() method, we have to create a contact object first:

Pseudocode - Using a Method

contact = client.factory.create('Contact')
print contact

The create function creates a new contact object that knows its own structure. We can view this structure by calling print on this new object and see
that it prints the following:

Python - Structure

(Contact)=
 {
 phone = []
 age = NONE
 name(Name) =
 {
 last = NONE
 first = NONE
 }
 }

By examining the Contact type object, we can see its structure and know what we need to create in order to have a valid Contact to add to the
address book. We could then do the following to supply the necessary information for the Contact object and then call our addContact function.

Pseudocode - Adding a Contact

contact = client.factory.create('Contact')

phone= client.factory.create('Phone')
phone.areacode = '916'
phone.number = '5557777'

name = client.factory.create('Name')
name.first = 'John'
name.last = 'Doe'

contact.name = name
contact.phone = phone
contact.age = 30

client.service.addContact(contact)

After execution a new contact will have been added via the web service!

Steps to remember when using complex types:

Pseudocode - Complex Type Reminders

#Create a new type object using the factory instance variable of the Client object
my_type = client.factory.create('MyType')

#If you don't know the structure of the newly created object then print it to the console
print my_type

Related Topics ...

Web Services, SUDS, and REST

JSON Format

About JSON

JavaScript Object Notation () is a language-independent data format. It's a lightweight format for JSON
storing and transporting data (i.e., when data is sent from a server to a web page). JSON is easy for
users to read and write and for machines to parse and generate.

JSON Rules

JSON has a few simple rules:

Data is in name/value pairs.
Data is separated by commas.
Curly braces hold objects.
Square brackets hold arrays.

On this page ...

About JSON
JSON Rules
How JSON Works

JSON Data - Name and a
Value
JSON Objects
JSON Arrays

Where JSON Is Used in Ignition
Perspective Component
Properties
Tags
JSON in Tag UDTs
Looping through JSON
Objects with Scripting

How JSON Works

JSON Data - Name and a Value

JSON data is written as name/value pairs. A name/value pair consists of a field name in double quotes, followed by a colon, followed by a value.

{
 "companyName":"Inductive Automation"
}

JSON Objects

JSON objects are written inside curly braces.

Note: The properties of a JSON object have no defined order. If you need a defined order, use a or an array instead.dataset

{
 "firstName":"Sally",
 "lastName":"Smith"
}

JSON Arrays

JSON Arrays are written inside square brackets. An array can contain objects. In the following example, the object "companies" is an array and
contains three objects.

{
 "companies":[
 {
 "companyName":"Inductive Automation",
 "cityName":"Folsom",
 "stateName":"CA"
 },
 {
 "companyName":"Hewlett Packard",
 "cityName":"Palo Alto",

 "stateName":"CA"
 },
 {
 "companyName":"Apple",
 "cityName":"Cupertino",
 "stateName":"CA"
 }
]
}

Where JSON Is Used in Ignition

Ignition uses the JSON format to store much of its data internally, including Tags and Perspective component properties.

Perspective Component Properties

Components have properties (props), which are simply named values. These properties are arranged in a tree structure following the structure and
data model of the common JSON document format. Component properties are defined as a JSON structure, and are variable according to the type of
component that the config object represents. All components registered in the module have a set of default properties included. These defaults are
provided to the instantiated component at runtime, and so default props are not saved. Instead, only those which have a value that differs from the
default are stored, serialized and sent to the client during loading.

Example - Sample Data from Table Component

[{ "city": "Helsinki", "country": "Finland", "population": 635591 }, { "city": "Jakarta", "country":
"Indonesia", "population": 10187595 }, { "city": "Madrid", "country": "Spain", "population": 3233527 }, {
"city": "Prague", "country": "Czech Republic", "population": 1241664 }, { "city": "San Diego", "country":
"United States", "population": 1406630 }, { "city": "Tunis", "country": "Tunisia", "population": 1056247 }]

Tags

Ignition exports and imports Tag configurations to and from JSON. Tags are defined as JSON objects, which consist of properties, arrays, and sub-
objects. The system.tag.configure function can take either a String document definition, or a JSON object that defines one or more Tags. Overrides for
UDTs are created by simple redefinition of properties, and complex structures like Event Scripts and Alarm configurations will be merged with inherited
definitions.

You can copy the JSON or one or or more Tags in the Tag Browser. This copies them into the system clipboard. In addition, pasting the JSON into a
different provider/designer will create or overwrite tags.

Example 1 - Tag Export

{
 "name": "Tank Instance",
 "typeId": "Tank UDT",
 "tagType": "UdtInstance",
 "tags": [
 {
 "value": "80",
 "name": "Tank Level",
 "tagType": "AtomicTag"
 },
 {
 "value": 80,
 "name": "sliderValue",
 "tagType": "AtomicTag"
 }
]
}

Example 2 - Tag Export

{
 "tags": [
 {
 "valueSource": "memory",
 "dataType": "Boolean",
 "alarms": [
 {
 "setpointA": 1,
 "name": "Above Normal"
 }
],
 "name": "Boolean Tag",
 "value": false,
 "tagType": "AtomicTag"
 },
 {
 "valueSource": "memory",
 "dataType": "Boolean",
 "name": "One Shot Trigger",
 "tagGroup": "Driven One Shot",
 "value": true,
 "tagType": "AtomicTag",
 "enabled": true
 },
 {
 "valueSource": "opc",
 "opcItemPath": "ns\u003d1;s\u003d[Generic]_Meta:Random/RandomDouble1",
 "dataType": "Float8",
 "name": "Pressure3",
 "tagGroup": "Driven One Shot",
 "tagType": "AtomicTag",
 "enabled": true,
 "opcServer": "Ignition OPC UA Server"
 },
 {
 "valueSource": "opc",
 "opcItemPath": "ns\u003d1;s\u003d[Generic]_Meta:Random/RandomDouble2",
 "dataType": "Float8",
 "name": "Thickness3",
 "tagGroup": "Driven One Shot",
 "tagType": "AtomicTag",
 "opcServer": "Ignition OPC UA Server"
 }
]
}

JSON in Tag UDTs

You can also set JSON strings as properties in an Ignition Tag. Any properties of a Tag can be set to a string that represents a JSON object.

Note: In a UDT, the { } braces are used to denote a property reference. Make sure you don't have any properties with names that look like JSON
objects so there is no overlap. Strings will appear as black text, parameter references will appear as grey and italicized.

Looping through JSON Objects with Scripting

Traversing a JSON object in scripting is simple as long as the structure is known. If there are objects within objects, you can use multiple loops to get
through it all.

Let's use the JSON Array object above for a simple example. You can loop through the list to get the repeating items by name.

loop through the JSON data
fetch the data, this will change depending on where the script is in relation to the table
json = self.items
access the companies object (which is a list)
companies = json["companies"]

loop through the companies list
for company in companies :
 # get each item out of the row object
 name = company["companyName"]
 city = company["cityName"]
 state= company["stateName"]
 # now do something with the data

Related Topics ...

JSON Functions

https://legacy-docs.inductiveautomation.com/display/DOC81/JSON

1.
2.

Basic Python Troubleshooting

When learning how to code in Python, most Ignition users tend to place most of their learning efforts on
memorizing syntax or other aspects of the language. While being comfortable with the language is
useful, there are plenty of references available: countless books and websites that describe syntax and
usage already exist.

In truth, the best thing you can do to make yourself a better programmer is to learn some basic
troubleshooting behaviors. While syntax examples are all over the Internet, examples detailing exactly
what you want your code to do, to the extent you want it to, will be difficult if not impossible to find.

This section details how to troubleshoot a script in Ignition. You won't walk away from this section having
exact answers to specific problems, but rather examples and concepts that you can apply to your own
scripts.

Coding Best Practices

The following are some general and helpful best practices that can help minimize the amount of time you
spend troubleshooting, as they can help better direct you to a problem.

On this page ...

Coding Best Practices
Look for Errors
If You Find an Error, Read It!
Use Print Statements
Add Comments
Test Early, Test Often
Avoid Hard-Coding
Arguments: Use Variables
Instead
Decide on a Naming
Convention
The Simplest Approach Really
Is the Best Approach

Look for Errors

When code fails mid-execution, it always generates an error message. Where the message appears depends on where the script executed:

Scope Print
Command

Print Output Location

Gateway

Note: anything
that isn't in the
Client or Session
scopes listed
below uses this
scope

system.util.
getLogger

Scripts on Gateway-scoped resources (Tags, Alarm Pipelines, SFCs, etc.,) will appear on the Logs page of
. Additionally, the wrapper.log file in Ignition's installation directory will have the Status section on the Gateway

these messages. Here are the default wrapper.log file paths for each operating system:

Windows: Program Files/Inductive Automation/Ignition/logs
Linux: /var/log/ignition
Mac OS X: /Users/UserName/Documents/Ignition-osx-x.x.x/logs

Vision Python's pri
 commannt

d, or

system.util.
getLogger

The Client Console will contain any errors generated in the client: press to open the console, Ctrl + Shift + F7
or using the menubar in the client to go to then click on the . Additionally, a Help > Diagnostics Console Tab
red Error Box should appear with details on the error if a Component Event Handler threw the exception:
Extension Functions do not generate the Error Box. If you don't see the error box then it might be minimized,
or open in the background (behind the Client).

Perspective system.
perspective.
print

Web browsers generally offer a way to inspect a page, which usually contains a console of some sort.

Designer Depends.
See the
output
location.

The Designer reports errors in a similar manner to Clients: errors appear in the (Designer's Console Ctrl +
), Component Event Handlers will generate a red Error Message. Note that events some events, such Shift + c

as Client Startup Scripts, will not trigger in the Designer, so get in the habit of launching a Client when testing
non-component scripting events.

While in the Designer, and working on Perspective resources, calls to will appear in system.perspective.print
the Designer's Console as well.

What happens if I don't see any errors?

If there truly isn't an error message somewhere, but your code isn't doing what you expected, then ask yourself the following questions:

What is your script supposed to do?
What is it actually doing?

Question #2 is harder to answer: if you knew what it was doing, you wouldn't be stuck! The best way to answer this question is by adding state print
ments to your code.

When a script doesn't perform to expectations, it can suggest a problem with the script's workflow. Some of the can offer some pages in this section
suggestions on what to do.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.getLogger
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.print
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.print
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.print
https://legacy-docs.inductiveautomation.com/display/DOC81/General+Designer+Interface#GeneralDesignerInterface-ToolsMenu
https://legacy-docs.inductiveautomation.com/display/DOC81/system.perspective.print

If You Find an Error, Read It!

It is common for users that are new to scripting to see an error message, immediately close it without much thought, and then stare at their code as if
the problem will politely make it self known. While looking over your code line-by-line will eventually lead you to the problem, the error messages can
provide you with a shortcut to the issue. . Check out some of the pages in this section for more information on reading an error message

Use Print Statements

When testing your scripts, the print command can help you verify that your code is behaving the way it should. This allows you to reconstruct what
your code did when it executed. Don't be afraid to add helpful print statements to your code.

Once your code works as expected, remember to either remove or comment out the print statements, so they don't flood the console during normal
use as this makes troubleshooting other issue more difficult. Just be mindful of the scope of the script, as that determines how you generate print
messages, as well as where the console is.

Python - Using print to Troubleshoot

myVar = system.tag.read("folder/tag")

printing out variables you are going to use in an if-statement later allows you to confirm that the values
are what you expect them to be.
print "myVar is set to: " + str(myVar)

Sometimes viewing the data type of the variable can prove helpful.
print "myVar is a: " + type(myVar)

Should your code have multiple if-statements, adding a print statement before and after can show you where
the flow of the script went.
print "Starting if-statement"

if myVar > 100:

 # If you don't see this print statement, then your if-statement evaluated to False.
 print "Inside if-statement"
 doWork()

Printing the end of your script doesn't give you any useful troubleshooting information, but if you need
to trigger the script multiple times, it helps delineate each execution.
print "Script Ended"

Add Comments

While comments are useful to remind you how your code works, you can also use them to plan your script before you write any code. Break down
what you want the code to do into several smaller steps, and then leave comments describing those steps in order. This provides you a chance to
review the script's workflow before worrying about syntax. It also provides natural points to stop and test your code, to make sure it is doing what you
think it should do.

Test Early, Test Often

Unless the script is very simple, avoid writing the entire script and then testing at the end. You may have missed an important line early on, so now
you have to adjust all of the code below that line to make the script run. As mentioned above, add print statements, and run your script to make sure it
is doing what you think it should.

Additionally, stopping to test your code provides an excellent opportunity to . Get into the habit of saving before you execute any save your project
new code.

Avoid Hard-Coding Arguments: Use Variables Instead

Instead of doing this:

Python - Hard Coded Message Box

system.gui.messageBox("Hello you. Glad to see you")

Try to get into the habit of doing this:

Python - Message Box Variable

message = "Hello you. Glad to see you"
system.gui.messageBox(message)

Simple examples like the above don't make for the best use case, but when you have a large script that references a value multiple times, it is easier
to declare the value once in a variable, and then just reference the variable throughout your code. If you need to change the value later, then you can
simply change it once where you initialize the variable, and you don't have to search every line of your code looking for the value.

Decide on a Naming Convention

When creating variables, try to adopt a naming convention that comes natural to you, and stick to it. If you consistently write variables using the same
conventions, you will be less likely to end up with a typo when referencing that variable later in your code. Remember that code is case-sensitive, so
something as simple as forgetting to capitalize a letter will cause an error.

This is especially important if you are working in a group on the same project. It's better to get together with your colleges and agree upon some
naming conventions before you write any code.

Ignition's use the camelCase naming convention. That is, the first letter of each word is capitalized except for the very first letter. system.* functions
We recommend that you use it for variable names because It is easy to remember to use camelCase for both functions and variable names instead of
for just one.

The Simplest Approach Really Is the Best Approach

When learning how to code, it's not uncommon to run into multiple issues that require you to find a workaround. However, these workarounds can
cascade into other issues and make your script more complicated. Consider the following:

"The goal of my script is to access A and then output B...
Shoot, B requires C, so I'll add C...
Wait, C requires that D exists, so I'll create that...
Oh, D needs interfaces E, F, and G, so let's add those in...
Hmm. E needs H and I, F needs J and K, while G needs Y, Z and...A ?!?"again

Take a step back and ask yourself "what is this script doing"? If you can't do that in a sentence or two, you may want to rethink the script. If the scope
of the script is too large, then it considerably increases the complexity of the code, which in turn could add a plethora of problems later.

If you keep adding workarounds, but you're code is not getting any closer to achieving its end goal, there may be an easier way to accomplish what
you're trying to do with a different approach.

Related Topics ...

Python Scripting

In This Section ...

Reading Error Messages

When an error occurs in the execution of a script, an error message box will pop up. The popup box
appears in front of any open Designer windows, and will remain in view until you close it or click on
something behind it.

There are two modes for the Error box selectable by the Send to Front and Send to Back ico

ns.

Send to Front means additional error messages will cause the popup to reappear on top.

 Send to Back will cause the errors to remain hidden below the Designer.

Error Message Box Overview

Exceptions usually include a line number. Take note of the number in the Details tab, and start your
search for the problem there. Be aware, however, that the line reported may not be the cause of the
issue. The actual problem may be higher up in the code due to a faulty initialization, or some other issue.
When troubleshooting, always start looking at the line reported, and work your way back towards the top.

On this page ...

Error Message Box Overview
Troubleshooting Errors Using the
Error Message Box

Broken Example - Incorrect
Attribute
Broken Example - Undefined
Broken Example - Type Error

When testing a script, you may come across an Error Message Box like the following. Your first inclination may be to close the error without closer
examination: resist it!

The error messages generated from failed script executions are incredibly helpful. The tab on the error describes the that Message Event Handler
encountered the exception; in this case, the actionPerformed event handler. This is important in cases where multiple Event Handlers on the same
component have scripts. Without knowing which Event Handler generated the script, we could waste time trying to troubleshoot the wrong script.

Additionally, it shows the name of the component, which is "NavButton_MyWindow". Again, this is helpful if multiple scripts from multiple components
are triggering in quick succession. The tab will clearly point you towards the source of the exception. This is another reason to give Message
meaningful names to your components: doing so makes the process of tracking an error much easier.

The Details tab has even more information, specifically the line number that the exception occurred on, as well as the error message. The message
here states that the window at path "MyWindow" does not exist, so we can check the Project Browser to see if we simply mistyped the name of the
window.

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events

Troubleshooting Errors Using the Error Message Box

When we don't get our expected results from our script, as in the following examples, always read both the Message and Details tabs in the Error
Message Box. They are pretty good about pointing you to the root cause of your error. From there, you can easily find and fix any errors in your script.

The following examples show how to troubleshoot some of these error messages from the Error Message Box. Keep in mind that every script is
unique, but at least you'll become familiar with what some of the error messages mean, and gain a little insight of the troubleshooting process.

Broken Example - Incorrect Attribute

In the following script, when a Button is pressed a Message Box is supposed to open on a window and display "Hello World".

Python - Broken: Incorrect Attribute

system.gui.messagebox("Hello World")

From the error message box, you know two important things right away:

The script is using the actionPerformed event on the Hello Button.
Line 1 displays the description of the error.

Check to be sure you used the correct attribute. Then check the spelling, case sensitive letters, spacing, and operators in your script. If you are
familiar with Ignition's , you can probably spot the error immediately. If not, you might want to use the Built-in Scripting Functions autocompletion popup

 to retype your 'messageBox' scripting function. This will automatically fix any syntax errors. feature

The error in this example is in the attribute name. It uses case sensitive letters (i.e.,). messageBox

In this case, "messagebox" must be spelled with a capital "B" since we're trying to use Ignition's function. We corrected the system.gui.messageBox
script by changing our code to the following:

https://legacy-docs.inductiveautomation.com/display/DOC81/System+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Ignition#ScriptinginIgnition-SystemFunctions
https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Ignition#ScriptinginIgnition-SystemFunctions
https://legacy-docs.inductiveautomation.com/display/DOC81/system.gui.messageBox

Python - Corrected: Incorrect Attribute

system.gui.messageBox("Hello World")

Broken Example - Undefined

Here is a similar script. When a Button is pressed, it's supposed to open a Message Box on a window and display "Testing".

Python - Broken: Undefined

system.gui.messageBox(Testing)

The Error Message Box displays an error on the actionPerformed script on the button component in line 1 with an name. The Details tab is undefined
simply telling us that something is not defined in the script. You can either define a variable or create a string by putting "Testing" in quotes to correct
the error.

For this example, we corrected the code by turning the argument passed to system.gui.messageBox into a string literal with quotation marks:

Python - Corrected: Undefined

system.gui.messageBox("Testing")

Broken Example - Type Error

Similar to the other scripts, this script opens a Message Box and is supposed to display "100" when a Button is pressed.

Python - Broken: TypeError

system.gui.messageBox(100)

Since this script failed to execute successfully, the Error Message Box popped up and displayed an error on the actionPerformed script on the button
component in line 1 with a . This error tells us that the first parameter is expecting a string, not an integer. TypeError

For this example, we corrected the code by changing the argument passed to system.gui.messageBox into a string literal with quotation marks.

Python - Corrected: TypeError

system.gui.messageBox("100")

You can see from the examples above, that the Error Message Box provides quite a bit of information that points to the root cause of an error on an
Event Handler script. As you learn from the Error Message Boxes about what these messages mean, you'll be able to quickly spot them in your script
and quickly correct any errors you encounter.

Related Topics ...

Basic Python Troubleshooting
Scripting in Ignition
Getting Started with Scripting in Ignition

Troubleshooting - Nothing Happened

Did it Work?

When testing a script, you may find yourself in a situation where the script appears to be running, but
doesn't seem to work. Furthermore, you may not see any error messages stating there is a problem.

When a script doesn't perform to expectations and doesn't throw an exception, it can suggest a problem
with the script's workflow. This page describes a couple of common scenarios.

Before You Begin...

Make certain that there isn't an Error Message Box hiding somewhere, otherwise you'll waste absolutely
time applying the troubleshooting tips outlined below, when the real the error message was hiding in the
background behind another window the whole time.

If a button component on a window is running a script, the output will be displayed on the Designer/Client
Output Console. You can check for any error messages by navigating to the Console. From the Client
menu bar, go to and select the . From the menu bar, select Help > Diagnostics Console tab Designer T

. ools > Console

On this page ...

Did it Work?
Before You Begin...

Common Scenarios when
Nothing Happens

An Important Line Is Missing
The Script Is not Being Called
Important Lines Are Being
Skipped

Determining the Cause

Common Scenarios when Nothing Happens

An Important Line Is Missing

Some critical part of your code is missing or commented out. It could be something simple, like your code is supposed to increment a value, but you
forgot to write the line that increments the value.

Pseudocode - Missing Code

myVar = 0

def doSomething():
 print "Doing work!"

We're not modifying the value of myVar directly after it is initialized,
so the current implementation of this code means the expression in our if-statement will never return True.
Perhaps doSomething() returns a value that needs to be assigned to myVar.
if myVar == 10:
 doMoreStuff()

A quick way to test your code is by running your script in the before attaching it to a scripting event or specific component. You can see Script Console
that running the code above in the Script Console that nothing happened, thus, suggesting an error.

The Script Is not Being Called

The script doesn't appear to be working because the mechanism that is supposed to be triggered hasn't been called. This can be caused by using the
wrong event: (i.e., perhaps you placed the code on a Button's event, when you meant to place it on).propertyChange actionPerformed

Alternatively, perhaps you defined a function in your script, but you forgot to call the function.

Additionally, if you're testing the script in the , make sure it is in . Event based scripts will not run in the Designer unless it is in Designer Preview Mode
Preview Mode.

Important Lines Are Being Skipped

This can be caused by incorrect indentation, or a misconfigured condition in an if-statement's expression. For example, you used " " when you ==
meant to use " ". Verify that you are using the correct operators in if-statements.!=

Pseudocode - Skipping Code

myVar = 0

if myVar == 10:
 print "Hello, the value of myVar matches the condition in the if-statement"

Test your code for any errors by running your script in the Script Console. You can see nothing happened by running the code above in the Script
Editor, once again suggesting an error.

Determining the Cause

The easier step to take when troubleshooting your script is to start adding print statements to your code. From here, you can start piecing together
what the code is doing:

Print the value of variables to make sure they are coming in the way you expect.
Place statements at the start and end of your code. This allows you to determine when your script is being called, and when it finishes. print
Adding a statement before and after an if-statement can show you the flow of your script went as expected, or was filtered out by the if-print
statement.

Related Topics ...

Script Console
Basic Python Troubleshooting
Reading Error Messages

Troubleshooting Workflow

Troubleshooting a script is an iterative process. Since the script stops executing at the first error, we
won't see if there are any other errors on later lines unless, of course, we spot them ourselves while
writing the code. As a result, we will have to keep trying our script until it executes successfully.

It is important to understand that scripts always execute from top to bottom, and each line must complete
before the next line may move on. In the event, our code returns an exception, we can assume that our
troubleshooting process should always start at the line reported in the error, and then work up until we
find the problem.

On this page, we will take an indepth look at a script with multiple problems, and work through each one.
Note, that this is not a comprehensive list of all possible types of exceptions that could occur when
writing a script, but instead, this page attempts to demonstrate the troubleshooting process.

To learn more about troubleshooting specific script errors, refer to the following sections:

Reading Error Messages
Troubleshooting - Nothing Happened

Scenario Overview

Here we have a window with two components: a and . The purpose of the button is Button Power Table
to find which cell in the Power Table the user selected, and write the value to a Tag.

The code on the button is listed below.

Python - Sample Code Block

Create a variable that references the Power Table
table = event.source.parent.getComponent('Power Table')

Find the cell the user currently has selected, and store the value in a
variable
userSelectedValue = table.data.getValueAt(table.selectedrow, table.
selectedColumn)

Write the User Selected Value to a tag
system.tag.write("Scripting/ButtonError/WriteTarget", userSelectedValue)

On this page ...

Scenario Overview
First Error - NoneType Object

Exception Error Explained
What Should We Look For?
Solution

Second Error - Checking
Attributes

Exception Error Explained
What Should We Look For?
Solution

Third Error -
ArrayIndexOutOfBounds

Exception Error Explained
What Should We Look For?
Solution

First Error - NoneType Object

When the button is pressed, we are presented with an error. The tab in the Error Box describes the that encountered the Message Event Handler
exception.

The tab tells us where to start looking, specifically the line number where the exception occurred as well as the error message. Line 5 is Details
referenced, so the troubleshooting process should start there.

Exception Error Explained

When an error message refers to a object, that simply means a null, or None in Python. The word ' ' is used to reference a NoneType attribute
property on an object. In this case, this means the script was trying to access the property on nothing. The message is telling us that it couldn't 'data'
find a property named on a nothing, which is correct since NoneType objects don't have any properties named 'data'.'data'

If we were to reword this message to something a bit more straightforward, it would say the following: "I tried to access the 'data' property on 'null', but
it doesn't have a property by that name."

What Should We Look For?

If your exception is referring to a NoneType object, then some line of code probably tried to reference something else (i.e., Tag value, property,
another variable, etc.), but couldn't find anything at the location you specified. It is also helpful to note what attribute was mentioned in the error, which
was . If we look at our code, we see the following on line 5.data

https://legacy-docs.inductiveautomation.com/display/DOC81/Component+Events

Python - Line 5

userSelectedValue = table.data.getValueAt(table.selectedrow, table.selectedColumn)

Based on this information, we should take a closer look at the table variable since our code is specifying as an attribute of the table. The error 'data'
states that it could not find the data attribute on a NoneType object, but our code only references data in regards to the table object, so maybe there is
something wrong with how that table object was referenced or initialized. If we look further up in our code, we see that was initialized on line 2:table

Python - Line 2

table = event.source.parent.getComponent('Power Table')

Since this script was placed on the Button component's event, we can trace back to the source of the issue:actionPerformed

event = actionPerformed event
source = Button this script is placed on
parent = Container that the Button was placed in. Based on the Button's position in the window, this appears to be the Root Container.
getComponent(' ') = Should return a reference to a component named ' ' directly inside of the Root Container, assuming one Power Table Power Table
exists. If we take a look at the Project Browser, we see the following:

There is no component named ' ' in the Root Container. However, there is a Power Table component named ' ', so it appears Power Table My Table
someone renamed the component, which caused our script to initialize the variable as a ' ' instead of a reference to a component.table NoneType

Solution

To fix this issue, we can simply update our code to use the new name of the Power Table, which is ' '. We can type this in manually, but since My Table
it is case sensitive, it must match exactly. It may be easier to find the property on the component, copy the name to the system clipboard (Name Ctrl-C
), and paste it () into the script. Our code now looks like the following:Ctrl-V

Python - Updated Code Block

Create a variable that references the Power Table
table = event.source.parent.getComponent('My Table')

Find the cell the user currently has selected, and store the value in a variable
userSelectedValue = table.data.getValueAt(table.selectedrow, table.selectedColumn)

Write the User Selected Value to a tag
system.tag.write("Scripting/ButtonError/WriteTarget", userSelectedValue)

Second Error - Checking Attributes

If we try our button again, we get the following exception error.

Exception Error Explained

Like the last exception, the problem has to do with our code trying to access an attribute (property) on an object, but the given attribute doesn't exist
on the object.

What Should We Look For?

Again, the exception refers to line 5, but note that the error mentions a different object and attribute this time. Without knowing what a 'com.
object is, we can tell that our script is trying to reference an attribute named inductiveautomation.factorypmi.application.com' 'selected

. This gives us a starting point for troubleshooting the error. If we check line 5, we see the following:'row

Python - Line 5

userSelectedValue = table.data.getValueAt(table.selectedrow, table.selectedColumn)

We see as the first parameter being passed to the getValueAt() function. We checked into the variable earlier, so this table.selectedrow table
doesn't necessarily mean that the variable is the problem, although there is no harm in double checking, especially if you have not personally verified
the variable. Assuming that the table variable is correct, let's check the attribute. We can check the Property Editor in the Designer to find a matching
property, or head over to the Power Table component page in the manual and check the property reference. We can see that there is a Selected Row
property on the Power Table, but it should be spelled with a capital . "selectedRow" "R"

We also know that the getValueAt() function takes a row index as the first parameter, so it would make sense that our code has a typo.

Solution

We should fix the typo in the attribute name.

Python - Line 5 Updated

userSelectedValue = table.data.getValueAt(table.selectedRow, table.selectedColumn)

Third Error - ArrayIndexOutOfBounds

After making our most recent change, the button works great! Users are able to select a cell, and write to the Tag. The one exception, is if the user
does not have a cell selected before clicking the button. In this case, the following error occurs:

Exception Error Explained

Our code attempted to look up something in a collection of some sort (i.e., sequence, dataset, etc.,) by index, but was told to check index -1, which is
out of bounds. Indexes in Ignition are typically zero-based, meaning they start at 0, and increment from there, so an index of -1 doesn't exist.
Commonly, when a property in Ignition refers to index -1, that means nothing is selected, so our code failed because nothing was selected.

What Should We Look For?

Fortunately, the exception told us what the issue is: the user did not have anything selected before pressing the button, so we don't have to search
further.

Solution

The solution to this issue is more open ended, as there are many ways to suggest to our user that they need to select a cell in the table first. The Selec
 and properties on the Power Table will have -1 values if none of the cells are selected, so we could use an statement ted Row Selected Column 'if'

checking the values of one of those properties. Our new code could look like the following:

Python - Code Block Update #3

Create a variable that references the Power Table
table = event.source.parent.getComponent('My Table')

Make sure a cell in the Power Table is selected first
if table.selectedRow != -1:
Find the cell the user currently has selected, and store the value in a variable
 userSelectedValue = table.data.getValueAt(table.selectedRow, table.selectedColumn)

 # Write the User Selected Value to a tag
 system.tag.write("Scripting/ButtonError/WriteTarget", userSelectedValue)

If a cell isn't selected, then let the user know
else:
 system.gui.messageBox("Please select a cell in the table first!")

Related Topics ...

Reading Error Messages
Troubleshooting - Nothing Happened

Scripting Vs. SQL Vs. Expressions

Expression Language & SQL Queries vs Scripting

There are three major languages in Ignition, the , the , and Expression language SQL Queries Python
. It is important to understand the differences between the three and to know where each is Scripting

used. Scripting is used in the event handlers that are available all over Ignition, but Expressions and SQL
are in the locations shown here.Property Binding

Spot the Difference - Comments

When starting out with Ignition, it can be difficult to know which syntax you should be using for a
particular area of text. One little trick that may help is to be familiar with how each language handles
comments, and then utilize the command which automatically adds the characters that comments Ctrl + /
out a line of code in the language are you are typing in. Once you remember to use , you simply Ctrl + /
need to be familiar with the characters that each language uses.

Expression Language - Comment

// The Expression Language uses double forward slashes.

SQL - Comment

-- Areas in Ignition that accept SQL syntax use double dashes.

Python - Comment

Python uses the pound/number/hash character.

In addition to comments, interfaces for each of the languages usually contain other signs or reminders
about the language. These will be covered in their respective sections on this page.

On this page ...

Expression Language & SQL
Queries vs Scripting
Spot the Difference - Comments
Python Scripts

Overview
How Can I Tell If I'm Writing a
Python Script?
Where Are Python Scripts
Used?

SQL Queries
Overview
How Can I Tell If I Should Be
Using SQL Syntax?
Where Is SQL Used in
Ignition?
SQL in Python

Expression Language
Overview
How Can I Tell If I'm Writing
an Expression?
Where Is The Expression
Language Used?

Python Scripts

Overview

Python is featured prominently throughout Ignition and many different resources can contain a Python Script.

How Can I Tell If I'm Writing a Python Script?

Python Scripts typically use the words or in the interface. Additionally, Python requires a particular Event to be selected so if you see Script Event
event Handlers on the left, you know you are looking at a Python script.

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Binding+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Property+Bindings+in+Vision

Where Are Python Scripts Used?

Python Scripts are used all throughout Ignition. Some resources, such as components, even have multiple places to write scripts! Below are some
common locations for scripts:

Scripting in Vision
Extension Functions
Tag Event Scripts
Client Event Scripts
Gateway Event Scripts

SQL Queries

Overview

The SQL language is used for selecting information from a database. It can be used in a variety of ways, but most of them will either make
modifications to the database or return a set of values (with a few notable exceptions like Stored Procedures). The majority of users will be returning
large chunks of data into a Table or Report in Ignition. This means a complete dataset will be returned based on a user selection, a time range, or any
combination of factors.

How Can I Tell If I Should Be Using SQL Syntax?

Typically, the words and appear in the interface somewhere. Additionally, there is usually a way to specify a .Query Database Database Connection

https://legacy-docs.inductiveautomation.com/display/DOC81/Scripting+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Extension+Functions
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Event+Scripts

Where Is SQL Used in Ignition?

Below is a reference of the most common areas in Ignition where SQL queries may be used.

SQL Query Bindings
Named Queries
Database Query Browser
Reporting Data Source: and SQL Query Data Source Basic SQL Query
Query Tags
Python Scripts - See the SQL in Python header below for more details

SQL in Python

SQL queries can be called from a script. There are several system functions in Ignition that allow a script to run a query against the database, Python
such as . This is a more advanced technique, as you need to adhere to both language's syntax. Furthermore, when typing a system.db.runPrepQuery
SQL query in a Python script interface, the syntax highlighting can not help with the SQL portions. The syntax highlighting in a Scripting Window is
only looking for Python syntax, not SQL.

In cases where you plan on calling a SQL query from a Python script, it is highly recommended to write the query in the Database Query Browser
first (substituting parameters with static values for testing purposes), and then move the query over to the script once the query executes successfully
on its own. This approach can save you some time troubleshooting, as there will be less ambiguity when an error occurs since you know the query
runs.

Below we see an example of calling a SQL query in a script. Line 5 creates a variable called "query", and assigns it a string consisting of a prepared
statement (using SQL). The query is then executed with the function. system.db.runPrepUpdate

For more examples of using a query in a Python Script, check out the functions.system.db.*

https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Data+Source
https://legacy-docs.inductiveautomation.com/display/DOC81/Basic+SQL+Query
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-SQLQueryTags
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db

Expression Language

Overview

The Expression Language is a simple programming language that we invented (very similar to many other existing expression languages), and is
different from the Python scripting you will find in Ignition. The expression language is a very simple kind of language where everything is
an expression - which is a single piece of code that returns a value. This means that there are no statements, and no variables, just operators,
literals, and functions.

The most common expression language that most people are familiar with is the one found in Microsoft Excel. You can have Excel calculated a cell's
value dynamically by typing an expression like . Our expression language has similar functionality, but different syntax. It is mainly =SUM(C5:C10)
used to define dynamic values for and . In Ignition's Expression Language, you will use component properties and Tags component properties
functions like if({Root Container.type}="Type C",True,False).

How Can I Tell If I'm Writing an Expression?

Typically interfaces that expect the Expression Language use the word . Additionally, you'll commonly find the Expression Expression Function

button towards the right side of the text area.

Where Is The Expression Language Used?

Below is a list of resources that commonly utilize the Expression Language

Expression Bindings on Property Bindings and Alarm Bindings
Expression Tags and Derived Tags
Several , including the , , and .Alarm Pipeline Blocks Expression Block Switch Block Notification Blocks
Expression Items in Transaction Groups
Parameters on Reports
SFC Transitions

Related Topics ...

Expression Language and Syntax
SQL in Ignition
Scripting
Python Scripting

https://legacy-docs.inductiveautomation.com/display/DOC81/Expression+Binding+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/Configuring+Alarms#ConfiguringAlarms-Bindings
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-ExpressionTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Types+of+Tags#TypesofTags-DerivedTags
https://legacy-docs.inductiveautomation.com/display/DOC81/Pipeline+Blocks
https://legacy-docs.inductiveautomation.com/display/DOC81/Pipeline+Blocks#PipelineBlocks-ExpressionBlock
https://legacy-docs.inductiveautomation.com/display/DOC81/Pipeline+Blocks#PipelineBlocks-SwitchBlock
https://legacy-docs.inductiveautomation.com/display/DOC81/Pipeline+Blocks#PipelineBlocks-NotificationBlock
https://legacy-docs.inductiveautomation.com/display/DOC81/Item+Types#ItemTypes-ExpressionItems
https://legacy-docs.inductiveautomation.com/display/DOC81/Report+Parameters
https://legacy-docs.inductiveautomation.com/display/DOC81/SFC+Elements#SFCElements-Transitions

Scripting Examples

This section contains examples for items we've identified as "common" tasks: undertakings that many
users are looking to utilize when first starting out with a specific module or feature in . Additionally, Ignition
this section aims to demystify some of the more complex or abstract tasks that our users may encounter.

The examples in this section are self-contained explanations that may touch upon many other areas of Ig
. While they are typically focused on a single goal or end result, they can easily be expanded or nition

modified after the fact. In essence, they serve as a great starting point for users new to , as well Ignition
as experienced users that need to get acquainted with a new or unfamiliar feature.

Below is a list of common tasks related to this section of the manual.

Reading and Writing to Tags

There are simple interfaces in Ignition that allow you to easily write to a Tag on some Event, and Reading
can be as simple as creating a Tag binding. Sometimes, however, the built-in approaches can be too
simplistic or limiting. The page details how to better interact with Tags from Reading and Writing to Tags
scripting.

Importing and Exporting a CSV

CSV files are used by many software programs to export data so that other systems may utilize the
information contained within. The page demonstrates how to both import Importing and Exporting a CSV
a CSV into Ignition, as well as export data from Ignition into a CSV.

Reading a Cell from a Table

Once data is populated into a Table component, it's useful to know how to read and extract a data from a
cell in a Table, particularly if users can select a row in a Table. The page has Read a Cell from a Table
some good examples for retrieving data from a single cell and multiple cells in a Table.

Export Tag Historian to CSV

The Tag Historian Data can be great, but it's sometimes difficult to view it outside of Ignition. The Export
 page details how to pull out a subset of Tag history data and export it to a CSV file.Tag Historian to CSV

On this page ...

Reading and Writing to Tags
Importing and Exporting a CSV
Reading a Cell from a Table
Export Tag Historian to CSV

Related Topics ...

Basic Python Troubleshooting

In This Section ...

https://legacy-docs.inductiveautomation.com/display/DOC81/Read+a+Cell+from+a+Table

1.

2.
3.

Location Based Vision Startup Scripts

Client Startup Scripts

Security can be created on a Vision Client using a Startup Script that checks certain user information and
then customizes the level of access within the project based on that information. We can pull user
information from places like for Vision Clients or for Perspective System Tags Session Properties
Sessions. Using that information, the script can then customize which windows or views the user sees,
provide some additional information to the user, or even prevent the user from accessing the project
completely. An additional example is located .here

Location Based Vision Client Restrictions

Each Client has access to distinct hostname and IP addresses. These can be used in Client startup
scripts that evaluate the Client's information and compares it to a list of acceptable host names or IP
addresses. This information can come from a database or a set of Tags. In this example, we will prevent
access to the client if the user is logging in from an incorrect location.

On the Project tab, choose Client Events.

 Select the Startup icon.
Add the following script:

Prevent access if user is not logging in from the correct location

Grab the hostname that the user is logging in from
hostname = system.tag.readBlocking(["[System]Client/Network
/Hostname"])[0].value

if hostname != "Machine A Computer":
 # If the user logs in on a computer that is not called
Machine A Computer,
 # inform them that the project can only be accessed from the
Machine A computer,
 # and then log them out.
 system.gui.messageBox("This project can only be accessed
from the 'Machine A Computer'.")
 system.util.exit(1)

On this page ...

Client Startup Scripts
Location Based Vision Client
Restrictions
Location Based Startup Display

Custom Security

Watch the Video

https://legacy-docs.inductiveautomation.com/display/DOC81/Session+Properties
https://legacy-docs.inductiveautomation.com/display/DOC81/Open+Dynamic+Windows+on+Startup
https://inductiveuniversity.com/video/custom-security/8.1

3.

4.
5.

1.

2.
3.

Click to save the script.OK
Save your project and launch the client. You will get a popup that informs you that the project
must be launched using the Machine A Computer.

Location Based Startup Display

Another common use for startup scripts on Vision Clients is to open a specific window depending on the location of the log in. In this example, if the
user logs in on Machine A Computer, then the Machine A Details window will be displayed. If they log in on a different computer, the Overview window
is displayed.

On the Project tab, choose Client Events.

 Select the Startup icon.
Add the following script:

Open a window based on location

Grab the hostname that the user is logging in from
hostname = system.tag.readBlocking(["[System]Client/Network/Hostname"])[0].value

if hostname == "Machine A Computer":
 # If the user logs in on a computer that is called Machine A Computer,
 # then open the Machine A details window.
 system.nav.openWindow("Machine A Details")
else:
 # Otherwise, open the overview
 system.nav.openWindow("Overview")

3.

4.

5.

Click to save the script. OK

Note: Any windows that are set to will still open in addition to the window specified in the startup script. You should disable Open on Startup
any main windows from opening on startup if using this method.

Save your project.

Related Topics ...

Client Tags for Indirection

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+Windows#VisionWindows-OpenonStartup
https://legacy-docs.inductiveautomation.com/display/DOC81/Client+Tags+for+Indirection

Reading and Writing to Tags

In many cases, the binding system is the most appropriate way to display a Tag value on the screen.
However, you may wish to access a Tag's value in a script. Using the system functions, you can read
from a Tag and write to a Tag in Ignition.

Script Builder

If you simply need to write to value to a Tag from a script, you can use the Set Tag Value tab of the
Script Editor. To learn more, refer to the sections on for more information. However, if you Script Builders
need to do more than just send a single write, see the section below.

Know Your Scope

Whenever a script from a Shared resource (such an Alarm Pipeline) attempts to interact with a Tag, the
script must specify the Tag Provider, otherwise, the script could return an exception. Tag Providers are
always included at the start of the Tag Path and look like the following: [tagProvider]

When interacting with a Tag from the Project scope (such as a script on a component) you may
optionally include the Tag provider. If omitted, the Project default Tag provider will be used.

Pseudocode - Tag Read Scope

Reading a Tag without the Tag Provider. You would not want to use this
from the Shared scope.
system.tag.readBlocking(["My/Tag/Path"])

Reading from the same Tag, but specifying the Tag Provider. This format
may be used safely in either scope.
system.tag.readBlocking(["[default]My/Tag/Path"])

On this page ...

Script Builder
Know Your Scope
Manual Tag Reads

Reading from a Single Tag
Reading from Multiple Tags

Relative Tag Paths
Manual Tag Writes

Writing to a Single Tag
Writing to Multiple Tags

Reading and
Writing Tags

Watch the Video

Manual Tag Reads

Reading from a Single Tag

Reading a Tag from a script is accomplished with the function, which requires the Tag path you wish to read from. system.tag.readBlocking()
This function returns a 'Qualified Value'; this object is more than just the value. A Qualified Value is the Tag value that has three attributes; Value,
Quality, and TimeStamp.

The function normally expects a list of Tag paths, but can be used with a single Tag: simply provide a list of only a single Tag path.

When handling the results of the read, the results will be returned in a list of qualified values, so you'll need to specify which qualified value you're
interested in via Python slicing, even if there is only a single qualified value in the list.

Pseudocode - Reading Tag Attributes

get the Tag value
value = system.tag.readBlocking(["tagPath"])[0].value

get all three attributes
tag = system.tag.readBlocking(["tagPath"])[0]
value = tag.value
quality = tag.quality
timestamp= tag.timestamp

Reading from Multiple Tags

The function can easily be used to read multiple Tags in a single call: system.tag.readBlocking()

Python - Reading Multiple Tags and Printing the Values

https://legacy-docs.inductiveautomation.com/display/DOC81/Script+Builders+in+Vision#ScriptBuildersinVision-SetTagValueScriptBuilder
https://inductiveuniversity.com/video/reading-and-writing-tags/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.readBlocking
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.readBlocking

Create a List of Tag Paths to read
paths = ["Scripting/Tags/Alarm_1", "Scripting/Tags/Alarm_2", "Scripting/Tags/Alarm_3"]

Read the Tags, and store the complex results in a variable
values = system.tag.readBlocking(paths)

For each Tag Path, iterate through our results...
for index in range(len(paths)):

 # ...and do something with the individual values
 print values[index].value

Relative Tag Paths

Like elsewhere in Ignition, relative paths may be used from within a script. This is especially useful when writing a Tag Event script inside of a UDT, as
you can specify relative members in the same UDT with "[.]".

Pseudocode - Reading with Relative Tag Paths

Assuming a UDT with two sub-members, a script from one can read from one member to the other using the
following code:
system.tag.readBlocking(["[.]otherMember"]).value

Manual Tag Writes

Writing to a Single Tag

Much like reading, there is a function you can use to write to Tags: . It requires a list of Tag paths, as well as a list of system.tag.writeBlocking
values to write to those Tags.

Pseudocode - Tag Write

system.tag.writeBlocking(["tagPath"],["Hello World"])

Writing to Multiple Tags

The function can also write to multiple Tags, again by providing multiple paths and values. system.tag.writeBlocking

Python - Multiple Tag Writes

Create a List of Tag Paths to write to
paths = ["Scripting/Tags/Alarm_Setpoint_1", "Scripting/Tags/Alarm_Setpoint_2"]

Create a List of values to write
values = [72, 72]

Send of the write requests
system.tag.writeBlocking(paths, values)

Related Topics ...

Tags

https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.writeBlocking
https://legacy-docs.inductiveautomation.com/display/DOC80/system.tag.writeBlocking

1.

2.

3.

4.

Exporting and Importing a CSV

A CSV file, (comma separated values) is one of the most simple structured formats used for exporting
and importing datasets. It is a convenient and flexible way to edit and share data across applications.
Ignition has a built-in function to convert a dataset to data called . You can CSV system.dataset.toCSV
even convert the contents of a CSV to a script and move it to an Ignition component, such as a Power
Table.

This section contains examples for exporting and importing data to a CSV as well as converting the
contents of a CSV to a script.

Exporting Data to a CSV

You can export a dataset from a query or table to a CSV file.

Identify the dataset that you want to export to a CSV file. In this case, we can generate some
data on a Power Table and export that data. Drag a component on to your window Power Table
and toggle its property to generate some data.TestData

Drag a component on the window, and double click on the Button to open the Button Compone

 window. nt Scripting

Next, let's add our script on the Button component's actionPerformed event. Select the actionPe
 event, and click on the tab. rformed Script Editor

Copy the contents from one of the examples below, and paste the contents to the . Script Editor
Notice the scripting function is used in the first example to export the system.dataset.exportCSV
dataset to a CSV file:

Python - Hard Coded Filepath

Create a variable that references our Power Table. You could
modify this part
of the example to point to a different component in the window.
component = event.source.parent.getComponent('Power Table')

Use system.dataset.toCSV to turn the dataset into a CSV string
csv = system.dataset.toCSV(component.data)

Write to local file system. Note the "r" character right before
the directory path.
This denotes a raw string literal, meaning we ignore escape
sequences (like the "/")
system.file.writeFile(r"C:\myExports\myExport.csv", csv)

On this page ...

Exporting Data to a CSV
Importing Data from a CSV
Converting the Data into a
Dataset

Calling the system.dataset.
fromCSV Function
Calling the csv.reader
Function

Exporting Data to
CSV

Watch the Video

The examples on this page make use of Vision components, and run in the Vision Client
scope.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toCSV
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.exportCSV
https://inductiveuniversity.com/video/exporting-data-to-csv/8.1

4.

5.

6.

Instead of hardcoding the path as we did in the above example, we could ask the user to select
a directory on the local system with :system.file.saveFile

Python - User Selected Directory

Create a variable that references our Power Table. You could
modify this part
of the example to point to a different component in the window.
component = event.source.parent.getComponent('Power Table')

Use system.dataset.toCSV to turn the dataset into a CSV string.
csv = system.dataset.toCSV(component.data)

Use system.file.saveFile to have the user find a directory to
write to.
filePath = system.file.saveFile("myExport.csv", "csv", "Comma
Separated Values")

We can check the value of filePath to make sure the user picked a
path before
attempting to write.
if filePath:
 system.file.writeFile(filePath, csv)

To test your scripts, put the Designer in , and press the . Open your Preview Mode Button myEx
 file and check your data. port.csv

Importing Data from a CSV

There are several ways to import data from a CSV file. First, we could use to read the entire file as a string. Note, that this system.file.readFileAsString
will read the file as is, meaning " can be used to denote new lines. " \n

Python - Using system.file.readFileAsString()

Ask the user to find the CSV in the local file system.
path = system.file.openFile("csv")

Use readFileAsString to read the contents of the file as a string.
This string will be the parameter we pass to fromCSV below
stringData = system.file.readFileAsString(path)

https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.saveFile
https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.readFileAsString

1.

2.

Split stringData into a List of strings, delimited by the new line character
stringData = stringData.split("\n")

Iterate through the list, and do something with each line
for i in range(len(stringData)):

 # We're printing the row here, but you could do something more useful with the data.
 print stringData[i]

Alternatively, Python's CSV Library could be use to read in the contents of a CSV. In some cases, this is the easier approach, as the reader object is
ready to be iterated over. Note, that this approach does read in each row as a List of strings:

Python - Using csv.reader()

Import Python's built-in csv library
import csv

Ask the user to find the CSV in the local file system.
path = system.file.openFile("csv")

Create a reader object that will iterate over the lines of a CSV.
We're using Python's built-in open() function to open the file.
file = open(path)
csvData = csv.reader(file)

Iterate through the reader object, and do something with each line
for row in csvData:

 # We're printing the row here, but you could do something more useful with the data.
 print row

Close the file once we're done with it
file.close()

Converting the Data into a Dataset

Once you've read in the contents of a CSV into a script, you may wish to move it elsewhere. It is not uncommon to move the data to a , Power Table
or other components on the screen. The main difficulty with this is converting the CSV data into a dataset so that it fits into the componenPower Table
t's property. We have a couple of approaches listed below.Data

Calling the system.dataset.fromCSV Function

The function can take a string and convert it to a dataset. Note, that the function expects a very specific format:system.dataset.fromCSV

CSV File Content

#NAMES
Col 1,Col 2,Col 3
#TYPES
I,str,D
#ROWS,6
44,Test Row 2,1.8713151369491254
86,Test Row 3,97.4913421614675
0,Test Row 8,20.39722542161364
25,Test Row 4,20.39722542444222
33,Test Row 5,20.39722542232323
62,Test Row 6,20.39722542111999

Example

Create a Text file on your local system named " ."example.csv

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.fromCSV

1.

2.

3.

4.

Open the Text file, copy the contents of the " " box above, and paste the contents to the file. Save the changes to the CSV file Content examp
 file.le.csv

Let's move the contents of a CSV file to a Power Table. Add a and a component to your window. Double click on the Power Table Button B
 component, and paste the following code into the of the event:utton Script Editor actionPerformed

Python - Using system.dataset.fromCSV()

Ask the user to find the CSV in the local file system.
path = system.file.openFile("csv")

Use readFileAsString to read the contents of the file as a string.
stringData = system.file.readFileAsString(path)

Convert the string into a dataset
data = system.dataset.fromCSV(stringData)

Pass the dataset to the data property on the Power Table.
event.source.parent.getComponent('Power Table').data = data

To execute your script, put the Designer into , and press the . A window will open for you for you to navigate and Preview Mode Button
choose your CSV file, then click Open.

4.

5. Your data will be displayed in the Power Table as shown below.

Calling the csv.reader Function

As mentioned, system.dataset.fromCSV() requires a specific format, which may not match the format of your file. In this case, we can use Python's
CSV Library to parse the file and convert it to a dataset.

CSV File Content

Col 1,Col 2,Col 3
44,Test Row 2,1.8713151369491254
86,Test Row 3,97.4913421614675
0,Test Row 8,20.39722542161364
25,Test Row 4,20.39722542444222
33,Test Row 5,20.39722542232323
62,Test Row 6,20.39722542111999

Here is the code to import the above CSV data.

Python - Using Python's csv Library

Import Python's built-in csv library.
import csv

Ask the user to find the CSV in the local file system.
path = system.file.openFile("csv")

Create a reader object that will iterate over the lines of a CSV.
We're using Python's built-in open() function to open the file.
file = open(path)
csvData = csv.reader(file)

Create a List of strings to use as a header for the dataset. Note that the number
of headers must match the number of columns in the CSV, otherwise an error will occur.
The simplest approach would be to use next() to read the first line in the file, and
store that at the header.
header = csvData.next()

Create a dataset with the header and the rest of our CSV.
dataset = system.dataset.toDataSet(header ,list(csvData))

Store it into the table.
event.source.parent.getComponent('Power Table').data = dataset

Close the file
file.close()

Related Topics ...

system.dataset.exportCSV

https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.exportCSV

Adding a Delay to a Script

Overview

In some cases, having a script execute after a delay is preferable. A common use case is waiting for
some event elsewhere in the system to finish: a Tag change script executes that needs to wait for a new
value from a separate Tag. One approach to this is to trigger our script, and then hold or wait until the
other event occurs. On this page, we'll take a look at a couple of different approaches to this problem.

It is important to note that pausing a script can cause your client to lock. It is often preferred to look for
another event to trigger the script you need. For the example above where we are waiting on a Tag to
change, you might be able to use the Tag change to fire your script instead of waiting in the original
script. It is up to you to determine the best trigger based on what exactly your script does.

Using the system.util.invokeLater Function

The function is a great way to add a delay mid-way through the script. Simply system.util.invokeLater
create a function that represents all of the work that should occur after the delay, and pass the function to
invokeLater, along with a delay period.

The example below calls two Message Boxes: once initially when pressed, and the other after a three
second delay.

Python - Two Message Boxes

message = "All Done!"

Create a function that will be called by invokeLater.
def runThisLater():
 system.gui.messageBox(message)

Call invokeLater with a 3000ms delay. Note that our function will not
run immediately
because invokeLater always executes once the rest of this script is
complete.
system.util.invokeLater(runThisLater, 3000)

Bring up another Message Box. This will appear before the "All Done!"
message, because of invokeLater.
system.gui.messageBox("Waiting...")

On this page ...

Overview
Using the system.util.invokeLater
Function
Using a Timer from Python's
Threading Library
Calling time.sleep from Python's
Time Library
Using a While Loop
Approaches to Avoid - Locking
the Client

Reasons to Avoid time.sleep
and While Loops
Recommended Alternative

Demonstration - Executing a
Delay Between User Keyboard
Input

Workflow for a Delay Using
Two Scripts

One of the main limitations with invokeLater is that you can not pass parameters to the function that will be called. Parameters need to be initialized
and determined elsewhere in your script, usually in the function definition.

Using a Timer from Python's Threading Library

The Threading Library has a Timer function that works in a very similar fashion to invokeLater. The main difference is that you can pass parameters to
the function parameter when calling the Timer. Take a look at for more details on the Timer object.Python's official documentation

The example below will again call two Message Boxes with a three second delay between them. However, the text that is defined in the second
Message Box is specified when starting the Timer.

Python - Python Threading Timer

from threading import Timer

Create a function that will be called by the Timer.
def runThisLater(param):
 system.gui.messageBox(str(param))

Constructs a Timer object that runs a function after a specified interval of time has passed.
Note the start() at the end: this is required to start the Timer. Don't forget this part!
Timer(3.0, runThisLater, ["Stop Waiting, I'm done"]).start()

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeLater
https://docs.python.org/release/2.5.3/lib/timer-objects.html

Bring up another Message Box. This will appear before the "All Done!" message, because of the Timer
system.gui.messageBox("Waiting")

Another benefit to using the Timer, is you can cancel the execution of the Timer's action using the cancel() function, but it only works if the Timer is still
in its waiting stage.

Calling time.sleep from Python's Time Library

The simplest approach to pausing a script is to use the sleep() function in Python's Time Library:

Python - Sleeping the Code

from time import sleep

This will pause execution of the script for 3 seconds. After that time, the script will continue.
sleep(3)

print "I'm awake!"

Using a While Loop

The is another simple approach to adding a delay: simply keep looping until the other event occurs. As always, you will want to take steps While Loop
to ensure that an infinite loop never occurs: easiest by initializing a counter variable before iterating in the loop, and breaking out if the counter
reaches a certain value.

Python - While Loop Safeguard

counter = 0

while not otherEvent:

 checkOtherEvent()
 counter += 1

 # Use this to break out if the event takes too long. You'll need the rest of your script to account
for this possibility.
 if counter >= 10000:
 print "Took too long. Leaving the While Loop"
 break

Approaches to Avoid - Locking the Client

While the sleep() and while loop functions are simple to use, they can cause problems by locking up the client and because of this, we generally
recommend avoiding them if possible. Typically, system.util.invokeLater on a delay can accomplish the same task.

Note, that there are use cases for both approaches outlined below especially so in regard to the While Loop. However, neither function should be used
to force a delay in a Client.

Reasons to Avoid time.sleep and While Loops

If used on a component, these approaches could lock up the Client or Designer. Scripts called from a component run in the same thread that the
Client and Designer use to refresh the screen. Whenever a script on a component triggers, the screen is unable to refresh until the script finishes. In
most cases, this is so fast that no one notices. If your script is intentionally calling sleep() or using a long running While Loop, then the Client will lock
up for the duration.

Using either of these methods to pause or delay a script can lock up the entire client, which may be very dangerous.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeLater

Additionally, these approaches run an extended period of time, and block other component based scripts from executing. They do not yield to other
scripts while waiting.

Because of these two reasons, the sleep() and While Loop functions can cause your clients to appear unresponsive, when really they are just running
a script that prevents the screen from refreshing.

Recommended Alternative

As mentioned earlier, the function () can provide the same functionality. If a sleep() or While Loop system.util.invokeLater also mentioned on this page
function must be used, then they should be called from to prevent blocking any other scripts.system.util.invokeAsynchronous

Editor notes are only visible to logged in users

Demonstration - Executing a Delay Between User Keyboard Input

In many cases, you may need to show your users a large number of entries on a Table or Template Repeater. As more entries are added to the
system, adding a search field that can filter results becomes more appealing. Furthermore, being able to filter as the user types (as opposed to
forcing them to hit enter every time) adds some polish to the window. However, if the entries are backed by the database, you will not want to run a
query every time a user presses a key. Instead, it would be preferable to wait for a delay in input, and run one query to limit strain on the database.

The following is not a traditional example that you would find here in the User Manual, and assumes you are comfortable with many concepts in
Ignition.

Workflow for a Delay Using Two Scripts

One approach to adding a delay involves two scripts:

Pre-Delay Script: This script fires before the delay. In this case, we will use a script on the Text Field's keyReleased event. This will call the
script everytime a new key is entered into the Text Field, and calls the Post-Delay Script on a delay. It also passes the text that is currently
in the Text Field, and increments an edit count (could be configured as a custom property on the same component).

Post-Delay Script: This script runs after the delay, so it needs to check if there were any new keystrokes that occurred during the delay. If
there were no new keystrokes, then it can run the query. In this demonstration, we will use a Custom Method not the Text Field component.

This entire section is in an Editor Note macro because the final script in this section could potentially open people to SQL injection

attacks. Leaving in Editor Note macro for now in case we want to revise the example in the future.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeLater
https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeAsynchronous

Additionally, we will need some criteria that our script can use to determine if it is safe to run our query. You can have multiple criteria here, but for
the sake of simplicity we will use the . This way we will know what the user typed before the delay, and then can Text Property on the Text Field
compare it back to the Text property after the delay. If the Text on the component after the delay is different, then we don't want to run the query as
the user may still be typing.

The keyReleased script is shown below. It is using a .05 second delay, but could of course can be modified. We're creating a new Timer object every
time a key is released, so there will be many of these scripts firing as the user types. However, they are fairly lightweight, and don't directly interact
with the database, so having many executions of this script isn't taxing on the system.

Python - Pre-Delay Script

We're using the Timer object for this because we want to pass parameters to the function that will run
after the delay.
from threading import Timer

Ignoring arrow keys.
if (event.keyCode < 37 or event.keyCode > 40):

 # Grab the text in the component currently.
 currentText = event.source.text

 # Calls the function after 0.5 seconds, and pass the currentText.
 Timer (0.5, event.source.sendingQuery,[currentText]).start()

Below is the sendingQuery script. As mentioned, this script will determine if the user ceased keyboard activity before running a query against the
database. This example is using a Custom Method on the Text Field, so it uses the argument to reference the source component. self

Python - Post-Delay Script

def sendingQuery (self, oldText):

 # Read the value of the text property, since it may have changed during the delay.
 currentSearchText = self.text

 # If the text before the delay is the same as the after the delay, there has been a pause in
keyboard activity, so we should run the query.
 if (currentSearchText == oldText):

 # If the text field isn't empty, then we need to filter the results with a WHERE clause
and our criteria.
 if(currentSearchText != ""):
 newQuery = "SELECT * FROM employees WHERE CONCAT(firstname, ' ', lastname) like
'%" + currentSearchText + "%'"
 # If the Text Field Is blank, then we should run the query again, but this time without a
filter, so all results appear.
 else:
 newQuery = "SELECT * FROM employees"

We can now run our query in between user keyboard activity.

Related Topics ...

system.util.invokeLater
Timer Scripts

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.invokeLater
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+Event+Scripts#GatewayEventScripts-TimerScripts

Export Tag Historian to CSV

Obtaining Historian Data

Sometimes, it may be useful to export the values from the Tag Historian. There are many ways that this
can be done, but the easiest way is to use the built in function. This allows system.tag.queryTagHistory
you to specify a list of Tag paths to query history for.

Python - Grabbing History Data

First we start by creating a start and end time that we will be query
history for.
endTime = system.date.now()
startTime = system.date.addMinutes(endTime, -30)

Next we call our queryTagHistory function, using the start and end dates
as well as a Tag path.
The other parameters listed for this function can be altered to fit your
need.
data = system.tag.queryTagHistory(paths=["[default]myTag"],
startDate=startTime, endDate=endTime, returnSize=10, aggregationMode="
Average", returnFormat='Wide')

This simple script will query Tag History for a Tag called myTag. It will query the last 30 mins of data,
return 10 records, each record will be an average of the time slice, and the return format will be wide. For
more information on the function parameters and the different options available, see the queryTagHistory
function page. The data returned is then being stored in a variable , and we can use it later in the data
script in anyway we want.

On this page ...

Obtaining Historian Data
Exporting to CSV
History Tag Search and Export

Exporting to CSV

Now that we have our data, it is really easy to export it to a CSV file. Ignition has a built-in function to convert a dataset to CSV data called system.
. This CSV data can then be written to an actual file using .dataset.toCSV system.file.writeFile

Python - Export History to CSV

First we start by creating a start and end time that we will be query history for.
endTime = system.date.now()
startTime = system.date.addMinutes(endTime, -30)

Next we call our queryTagHistory function, using the start and end dates as well as a Tag path.
The other parameters listed for this function can be altered to fit your need.
data = system.tag.queryTagHistory(paths=["[default]myTag"],
startDate=startTime, endDate=endTime, returnSize=10, aggregationMode="Average", returnFormat='Wide')

Turn that history data into a CSV.
csv = system.dataset.toCSV(data)

Export that CSV to a specific file path. The r forces it to use the raw path and not require double
backslashes.
system.file.writeFile(r"C:\myExports\myExport.csv", csv)

History Tag Search and Export

If you have a lot of Tags storing history, it can be difficult to list them all out in the function above. This example makes things easier by specifying a
folder of Tags instead of individual Tags. The script first grabs all of the historical Tags from a particular folder and gets the Tag paths using the system

 function, runs those through the function, and then exports the results to a CSV file. This script .tag.browseHistoricalTags system.tag.queryTagHistory
is great, because it can be run from the , or from a button on the client. However, everything in the script is hardcoded to work with a scripting console
specific system, though that can be easily changed to fit any system. Below are the list of parts that can be changed with what each of them is used
for.

Part of Script Description

https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toCSV
https://legacy-docs.inductiveautomation.com/display/DOC81/system.dataset.toCSV
https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.writeFile
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.browseHistoricalTags
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.browseHistoricalTags
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory

path='histprov:
myDB:/drv:
myIgnitionGateway:
myTagProvider:/tag:
myFolderOfTags'

The path to the parent folder that we are searching through for history Tags. Each part of the string corresponds to a
different part of your system.

histprov:myDB:/ - This is the name of your Historical Tag Provider that you are searching in. Replace with myDB
the name of your historical Tag Provider.
drv:myIgnitionGateway:myTagProvider:/ - The first thing is the name of your Ignition Gateway. Replace myIgnition

 with the name of your Ignition Gateway, which can be found by going to the Gateway Configure Gateway
Webpage and navigating to . It is the . The second thing is the name System > Gateway Settings System Name
of the Realtime Tag Provider where the Tags reside. Replace with the name of your Tag Provider.myTagProvider
tag:myFolderOfTags - This is the name of the folder you want to search for historical Tags. Replace myFolderOfT

 with the name of a folder in your Tag Browser to search through.ags

Note: Paths to (such as those used by Edge Gateways) do not need to include the Internal Historian providers
Gateway name.

system.tag.
queryTagHistory
(...)

This is what will actually query for historical data. While the path parameter should be kept the same, the other
parameters can be altered to fit your needs. Currently, the function is querying the last 30 mins of history, has a return
size of 10, an aggregation mode of Average, and a return format of wide. Of course, all of this can be changed. See sys

 for more information on the parameters that can be used here.tem.tag.queryTagHistory

r"C:
\myExports\myExport
.csv"

This is the path that the CSV file will save at. This can be changed to be any location you want. You can even use syste
 to first ask the user for a save location and filename, and then passing the path returned from that m.file.saveFile

function into the writeFile function. The r at the beginning of the string is important as it allows us to not have to use
double backslashes.

Caution:

This script can be dangerous! It recursively looks through a folder to find all historical Tags, and then uses all of those Tags to look up Tag history.
Looking through a folder that has too many history Tags, or querying history for too large a period of time can potentially result in locking up your
system. Use caution when using this function, and never search through too large a set of Tags or query too much history.

Python - Recursively Browse for History and Export to CSV

Our browse function that will browse for historical tags.
By setting this up as a function, it allows us to recursively call it to dig down through the specified
folder.
Pass in an empty list that we can add historical paths to, and the path to the top level folder.
def browse(t, path):

 # Loop through the results of the historical tag browse, and append the path to the empty list.
 for result in system.tag.browseHistoricalTags(path).getResults():
 t.append(result.getPath())

 # If the result is a folder, run it through the browse function as well.
 # This will continue until we are as deep as possible.
 if result.hasChildren():
 browse(t, result.getPath())

Start with an empty list to store our historical paths in.
historyPaths = []

Call the browse function, passing in an empty list, and the folder that we want to browse for historical
tags.
This path is a placeholder. It should be replace with your valid path.
browse(historyPaths, path='histprov:myDB:/drv:myIgnitionGateway:myTagProvider:/tag:myFolderOfTags')

Create another empty list to store our tag paths that we will pull out of the historical paths.
tagPaths = []

Loop through the list of historical tag paths, split out just the tag path part,
and push it into our tag path list.
for tag in historyPaths:
 tagPaths.append("[myTagProvider]" + str(tag).split("tag:")[1])

https://legacy-docs.inductiveautomation.com/display/DOC81/Tag+History+Providers#TagHistoryProviders-InternalHistoryProvider
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.queryTagHistory
https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.saveFile
https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.saveFile

Now that we have a list of tag paths, we need to grab the historical data from them.
Start by creating a start and end time.
endTime = system.date.now()
startTime = system.date.addMinutes(endTime, -30)

Then we can make our query to tag history, specifying the various parameters.
The parameters listed for this function can be altered to fit your need.
data = system.tag.queryTagHistory(paths=tagPaths, startDate=startTime, endDate=endTime, returnSize=10,
aggregationMode="Average", returnFormat='Wide')

Turn that history data into a CSV.
csv = system.dataset.toCSV(data)

Export that CSV to a specific file path. The r forces it to use the raw path with backslashes.
system.file.writeFile(r"C:\myExports\myExport.csv", csv)

Related Topics ...

Exporting and Importing a CSV

Parsing XML with the Etree Library

What is the xml.etree Library?

The etree (ElementTree) library is a part of the python standard library, and contains many tools that
make it simple to parse through and pull information out of an XML document. There are other libraries
that can parse through XML documents, but etree is commonly used and very easy to get started with.
The etree library will break up the XML into easily accessible elements, each representing a single node
in the entire XML tree. For more information on using the etree library beyond the scope of this page, see
the .python documentation

On this page ...

What is the xml.etree Library?
Using the xml.etree Library

A Simple Book Example

Using the xml.etree Library

There are a couple of different ways to import the XML data from etree, depending on how it is being stored. It can pull the data in from an XML file
using the filepath, or it can read a string. Notice how regardless of how we import the XML, we end up with a root object.

Python - Reading a File

The library must first be imported no matter how we pull in the data.
import xml.etree.ElementTree as ET

Here we can grab the filepath using Ignition's built in openFile function, parse that into a tree, then
grab the root element.
filepath = system.file.openFile()
tree = ET.parse(filepath)
root = tree.getroot()

Python - Reading from a String

The library must first be imported no matter how we pull in the data.
import xml.etree.ElementTree as ET

Alternately, we can start with a string of the xml data.
xmlString = """
<employee id="1234">
 <name>John Smith</name>
 <start_date>2010-11-26</start_date>
 <department>IT</department>
 <title>Tech Support</title>
</employee>
"""

Then parse through the string using a different function that takes us straight to the root element.
root = ET.fromstring(xmlString)

Each Tag is considered an element object. In the example above, the root element would be the employee Tag. Elements can also have attributes,
which are within the Tag itself. In the example above, the employee element has an attribute id with a value 1234. Finally, each element can also have
additional data, typically in the form of a string. This additional data is usually placed in between the element's start and end Tags. In the example
above, the employee element has no additional data, but its children do. The name element would have an additional data value of John Smith. All of
this data can be accessed using the Element object's built-in functionality. The major functions are listed below, and each example uses the reading
from a string root XML example from above.

Function Description Example Output

Element.tag Returns the name of the Element's Tag.
print
root.tag

employee

Element.
attrib

Returns a dictionary of the Element's attributes. {'id':'1234'}

https://docs.python.org/2/library/xml.etree.elementtree.html

print
root.
attrib

Element.
text

Returns the additional data of the Element. The example here will return nothing because the root does not have any
text. The next example uses children which do have text. print

root.
text

for child in
Element

Will iterate through the Element's children. Each child is then its own element, complete with Tag, attrib, and text
properties. for

child
in root:

print
child.
tag,
child.
text

name
John
Smith
start_date
2010-11-
26
departme
nt IT
title Tech
Support

Element
[index]

Allows direct reference to an Element's children by index. Since Tags can be nested many times, further nested
children can be accessed by adding an additional index in square brackets as many times as necessary: Element[1][4]
[0] From the original element, we would go to the child located in the first position, that child's fourth position child, and
that child's zero position child.

When direct referencing child elements in this way, they still have access to the Tag, attrib, and text properties.

root[2].
tag
root[3].
text

departme
nt

Tech
Support

A Simple Book Example

Using the functions above, we can now easily parse through an XML file and use the results for something. Lets keep it simple, and parse through a
document and then place the values into a table. First we need to start with an XML document. We have one below for you to test with in a string
form, which would need to be pasted at the top of the script.

XML String

document = """
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications
 with XML.</description>
 </book>
 <book id="bk102">
 <author>Ralls, Kim</author>
 <title>Midnight Rain</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-12-16</publish_date>
 <description>A former architect battles corporate zombies,
 an evil sorceress, and her own childhood to become queen
 of the world.</description>
 </book>
 <book id="bk103">
 <author>Corets, Eva</author>
 <title>Maeve Ascendant</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-11-17</publish_date>

 <description>After the collapse of a nanotechnology
 society in England, the young survivors lay the
 foundation for a new society.</description>
 </book>
 <book id="bk104">
 <author>Corets, Eva</author>
 <title>Oberon's Legacy</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2001-03-10</publish_date>
 <description>In post-apocalypse England, the mysterious
 agent known only as Oberon helps to create a new life
 for the inhabitants of London. Sequel to Maeve
 Ascendant.</description>
 </book>
 <book id="bk105">
 <author>Corets, Eva</author>
 <title>The Sundered Grail</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2001-09-10</publish_date>
 <description>The two daughters of Maeve, half-sisters,
 battle one another for control of England. Sequel to
 Oberon's Legacy.</description>
 </book>
 <book id="bk106">
 <author>Randall, Cynthia</author>
 <title>Lover Birds</title>
 <genre>Romance</genre>
 <price>4.95</price>
 <publish_date>2000-09-02</publish_date>
 <description>When Carla meets Paul at an ornithology
 conference, tempers fly as feathers get ruffled.</description>
 </book>
 <book id="bk107">
 <author>Thurman, Paula</author>
 <title>Splish Splash</title>
 <genre>Romance</genre>
 <price>4.95</price>
 <publish_date>2000-11-02</publish_date>
 <description>A deep sea diver finds true love twenty
 thousand leagues beneath the sea.</description>
 </book>
 <book id="bk108">
 <author>Knorr, Stefan</author>
 <title>Creepy Crawlies</title>
 <genre>Horror</genre>
 <price>4.95</price>
 <publish_date>2000-12-06</publish_date>
 <description>An anthology of horror stories about roaches,
 centipedes, scorpions and other insects.</description>
 </book>
 <book id="bk109">
 <author>Kress, Peter</author>
 <title>Paradox Lost</title>
 <genre>Science Fiction</genre>
 <price>6.95</price>
 <publish_date>2000-11-02</publish_date>
 <description>After an inadvertant trip through a Heisenberg
 Uncertainty Device, James Salway discovers the problems
 of being quantum.</description>
 </book>
 <book id="bk110">
 <author>O'Brien, Tim</author>
 <title>Microsoft .NET: The Programming Bible</title>
 <genre>Computer</genre>
 <price>36.95</price>
 <publish_date>2000-12-09</publish_date>
 <description>Microsoft's .NET initiative is explored in
 detail in this deep programmer's reference.</description>
 </book>

 <book id="bk111">
 <author>O'Brien, Tim</author>
 <title>MSXML3: A Comprehensive Guide</title>
 <genre>Computer</genre>
 <price>36.95</price>
 <publish_date>2000-12-01</publish_date>
 <description>The Microsoft MSXML3 parser is covered in
 detail, with attention to XML DOM interfaces, XSLT processing,
 SAX and more.</description>
 </book>
 <book id="bk112">
 <author>Galos, Mike</author>
 <title>Visual Studio 7: A Comprehensive Guide</title>
 <genre>Computer</genre>
 <price>49.95</price>
 <publish_date>2001-04-16</publish_date>
 <description>Microsoft Visual Studio 7 is explored in depth,
 looking at how Visual Basic, Visual C++, C#, and ASP+ are
 integrated into a comprehensive development
 environment.</description>
 </book>
</catalog>
"""

We can then place a Table component and a Button component on the window, and place this script on the Button's actionPerformed event.

Python - Complete XML Parsing

Start by importing the library
import xml.etree.ElementTree as ET

######
Here is where you would paste in the document string.
Simply remove this comment, and paste in the document string.
######

We can then parse the string into useable elements.
root = ET.fromstring(document)

This creates empty header and row lists that we will add to later.
These are used to create the dataset that will go into the Table.
We could fill in the names of the headers beforehand, since we know what each will be.
However, this allows us to add or remove children keys, and the script will automatically adjust.
headers = []
rows = []

Now we can loop through each child of the root.
Since the root is catalog, each child element is an individual book.
We also create a single row empty list. We can add all of the data for a single book to this list.
for child in root:
 oneRow = []

 # Check if the book has any attributes.
 if child.attrib != {}:

 # If it does contain attributes, we want to loop through all of them.
 for key in child.attrib:

 # Since we only want to add the attributes to our header list once, first check if
it is there.
 # If it isn't add it.
 if key not in headers:
 headers.append(key)

 # Add the attribute value to the oneRow list.
 oneRow.append(child.attrib[key])

 # Loop through the children of the book.
 for child2 in child:

 # Similar to above, we check if the tag is present in the header list before adding it.
 if child2.tag not in headers:
 headers.append(child2.tag)

 # We can then add the text of the Element to the oneRow list.
 oneRow.append(child2.text)

 # Finally, we want to add the oneRow list to our list of rows.
 rows.append(oneRow)

Once the loop is complete, this will print out the headers and rows list so we can manually check them in
the console.
print headers
print rows

Convert to a dataset, and insert into the Table.
data = system.dataset.toDataSet(headers, rows)
event.source.parent.getComponent('Table').data = data

Related Topics ...

system.file.openFile
Libraries

https://legacy-docs.inductiveautomation.com/display/DOC81/system.file.openFile

1.
2.
3.
4.

5.
6.
7.

8.

Audit Log and Profiles

Ignition's built-in auditing system automatically records certain actions that occur in the system, such as a
Tag writes or User Source authentication, into a SQL database table. Utilizing the system involves
creating an Audit Profile, followed by enabling auditing in a project. Once both prerequisites have been
met, the Gateway will automatically create a database table named AUDIT_EVENTS, and use the table
to start tracking user actions.

The Remote Audit Log configuration option allows audit events to be automatically sent to a remote
Gateway's audit log. The remote Gateway you plan to connect to must have a Audit Profile created. To
learn more about sending audit events to a remote Gateway, refer to section Creating a Remote
Gateway Audit Profile on this page.

Note: You can use Audit Profiles for Gateway events and project events. See the Enabling Auditing for
 or the Gateway-Scoped Actions sections for more details.Enabling Auditing in a Project

Auditing Actions

For a list of actions that are recorded by an audit profile, see the page. Auditing Actions Reference

On this page ...

Create a Database Audit Profile
Create an Internal Audit Profile
Creating a Remote Gateway
Audit Profile
Enabling Auditing for Gateway-
Scoped Actions
Enabling Auditing in a Project
Viewing Information in an Audit
Log
Audit Log Table Descriptions

Create a Database Audit Profile

Go to the Config section of the Gateway Webpage.
Scroll down to the from the menu on the left. Security > Auditing Audit ProfilesThe page is displayed.
Click the link.Create a new Audit Profile
You have the option of storing audit logs into an external database or sending them to a remote Gateway. For this example, select Database.

 (Configuring audit events to be sent to a remote Gateway's audit log is addressed in Creating a Remote Gateway Audit Profile section on this
page).

Enter the of the audit log and (optional). Name Description
In the Retention field, set a value in days for how long you want audit records kept. (The default is 90 days.)
Under the , select the where the table will be stored, select the check box, and enter the desired Database Settings Database Auto Create T

.able Name
Click .Create New Audit Profile

8.

Once some changes have been made to a Tag or a Database table, Ignition will begin recording.

Database Audit Profile Properties Table

Main

Name The default name, is the name of the Audit Profile.

Description Description of the audit profile. Optional.

1.
2.
3.
4.

5.
6.
7.

Retention

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

How long (in days) should audit records be kept? Values less than or equal to 0 will disable pruning. Default is 90 days.

Database Settings

Database The database connection to use to store audit events.

Auto Create If true (selected), the table schema specified here will be automatically verified and created if necessary. Default is true.

Pruning
Enabled

The following feature is new in Ignition version 8.1.3
 to check out the other new featuresClick here

If false, this audit profile will never prune records, regardless of the retention field. Otherwise, the retention field will be followed. De
fault is false.

Table Name The name of the table to store audit events. Default is AUDIT_EVENTS.

Create an Internal Audit Profile

The Internal Audit Profile option allows an Ignition Gateway to store audit records without an external SQL database. The only way to interact with the
Internal Audit Profile is via the Status page of the Gateway webpage.

Go to the Config section of the Gateway Webpage.
Scroll down to the from the menu on the left. Security > Auditing Audit ProfilesThe page is displayed.
Click the link.Create a new Audit Profile
Select . Internal

Enter a name for the audit log and a description (optional).
In the Retention field, set a value in days for how long you want audit records kept. (The default is 90 days.)
Click Create New Audit Profile.

Internal Audit Profile Properties Table

Main

Name The default name, is the name of the Audit Profile.

Description Description of the audit profile. Optional.

Retention

The following feature is new in Ignition version 8.1.1
 to check out the other new featuresClick here

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.3
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.1

1.

2.

3.

Value in days for how long you want audit records kept. (The default is 90 days.)

Creating a Remote Gateway Audit Profile

Just like configuring audit events to be logged into an external database, it is done from the Gateway Webpage, Config > Security > Auditing.

To have your audit events automatically sent to a remote Gateway's audit profile, select , and click . Remote Next

A list of known Gateways will be displayed. If you don't see a G that you expected to see, check your settings to ateway Gateway Network
verify that the connections are valid. You also have the option to specify a G manually. This example selects a valid G . Click ateway ateway Ne

.xt

3.

4.

If an Audit profile exists, the fields will auto-populate. The name of the Gateway will appear in the field prefaced with the audit profile Name
name (i.e., Ignition_Test_Auditing), as shown in the following example. Click .Create New Audit Profile

You will receive a successful message stating your new Audit Profile was created.

Remote Gateway Audit Profile Properties Table

Main

Name The default name, is the name of the Remote Gateway and Audit Profile.

Description Description of the audit profile. Optional.

1.

2.
3.

1.
2.

3.

Enabled By default, the journal profile is enabled.

Remote Settings

Target System The remote system to send audit events to over the Gateway network.

Target Profile The audit profile on the remote system to log events into.

Advanced

Use Store and
Forward

The following feature is new in Ignition version 8.1.23
 to check out the other new featuresClick here

If enabled, audit events will be stored through the Store and Forward system. If not enabled, they will be stored directly against
the remote Gateway. Default is true.

Enabling Auditing for Gateway-Scoped Actions

After setting up an Audit Profile, you can have the audit log record Gateway events.

Navigate to the page. This is located at your . Gateway General Security Settings Gateway's Config page > Security > General

Set the setting to the audit profile you want to record with, then save your settings.Gateway Audit Profile
Once you press save, a confirmation banner will appear at the top of the page and your Gateway will begin recording events to the specified
audit profile.

Enabling Auditing in a Project

Go to the Designer, open the project that you want to enable auditing on, then go to .Project > Properties
Go to the General section, select the check box, and select your from the drop-down menu. The audit profile Enable Auditing Audit Profile
is used to record audit actions for your project. If the new audit profile does not show up, click . Refresh
Click .OK

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.23

4.

1.
2.
3.

Save your Project.

Viewing Information in an Audit Log

There are a few ways to : using a Table component, interface on the Gateway, or the Database Query Browser. Here is one view audit information
example of viewing an Audit Log using the Database Query Browser.

In the Designer, go to Tools > Database Query Browser.
Under the area, double click on a , and it will expand the query in the Database Query Browser area. Schema table
Click . All the audit log data will be displayed in the Resultset1 area. Execute

Audit Log Table Descriptions

A description of the columns used by the audit log's database table can be found on the page. Ignition Database Table Reference

Related Topics ...

Database Query Browser
Audit Log Display

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-AuditLog

In This Section ...

1.

2.

3.

4.

Alarm Notification Auditing

Alarm Notification profiles can be set to store information in an Audit Profile.

How to Store Alarm Notifications in an Audit Profile

Once you have an created in Ignition, you can configure your to audit profile Alarm Notification Profile
start using it.

Go to the section of the Gateway.Config

Choose from the menu on the left.Alarming > Notification
The Alarm Notification Profiles page is displayed.

Edit the appropriate notification profile by clicking the link.edit

The Edit Alarm Notification Profile page is displayed.
Scroll down to the section, and select an from the drop-down menu.Auditing Audit Profile
Click , and Ignition will automatically begin storing information. Save Changes

On this page ...

How to Store Alarm Notifications
in an Audit Profile

Alarm Notification
Auditing

Watch the Video

Now that the Alarm Notification Profile is storing data into the Audit system, you have a complete log of all alarm emails and acknowledgements that
you can review.
See for more info on how to retrieve information from the Audit Log. Audit Log Display

Related Topics ...

Alarm Notification
Database Connections
Audit Log Display

https://legacy-docs.inductiveautomation.com/display/DOC81/Notification+Profile+Types
https://inductiveuniversity.com/video/alarm-notification-auditing/8.1
https://legacy-docs.inductiveautomation.com/display/DOC81/Alarm+Notification

1.

2.

3.

4.
a.
b.
c.
d.
e.
f.

5.

1.

Audit Log Display

This page documents several ways to view results from the Audit Log System. For more information on
how the Audit Log works, see the page. Audit Log and Profiles

Access the Audit Log with Table Functions

Since Ignition makes accessing data from databases seamless, it is possible to bind a data property of a
table directly to database table. Alternatively, it is possible to access the contents of the audit log with
table functions.

Once you have an , you can go back to that project and see Audit Log set up and attached to a project
what information is in that audit log. This example uses the Table Functions to extract data from the Audit
Log.

In , drag a component on to a window.Designer Table

In the , click on the binding icon from the table's property.Property Editor Data
The Property Binding window is displayed.

Select the Binding Type. Functions

Select from the various binding options.Functions

Binding Function, select the from the drop-down menu.Audit Log
Audit Profile Name, select or the name of your Audit Profile.Audit
Start Date, enter the appropriate start date.
End Date, enter the appropriate end date.
Polling Mode, select .Relative
Select any other appropriate function options from the menu, and click .OK

The table will populate with all the information stored in the audit log based on the Table
Functions you selected. You can use the to configure how you want the table Table Customizer
to look by reorganizing and hiding columns, making columns sortable, and assigning meaningful
headers.

On this page ...

Access the Audit Log with Table
Functions
Access the Audit Log Using the
Database Query Browser
Access the Audit Log on the
Gateway

View Audit
Information

Watch the Video

Access the Audit Log Using the Database Query Browser

The Database Query Browser makes it easy to search your database tables to view audit information.

In the under the menubar, select . The Database Query Browser opens.Designer Tools Database Query Browser

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Table+Customizer
https://www.inductiveuniversity.com/video/view-audit-information/8.1

2.

1.
2.

3.

On the right side of Browser window under , will be a list of tables from the currently selected database. Double click on the Schema audit_ev
 table, and click ents Execute.

The data from the audit_events table will appear in the Resultset 1 tab.

Refer to the to learn more about how it works.Database Query Browser

Access the Audit Log on the Gateway

Ignition provides a simple interface to view Audit Logs on the Gateway.

On the Gateway webpage in the section, scroll down to .Config Security > Auditing
The Audit Profile page will be displayed. Select the Audit Profile where your information is stored, and click .More > view log

 Choose the parameter settings if you're looking for something specific, otherwise, enter a and , and click . Start Date End Date Search

Related Topics ...

Scripting
Database Query Browser
Table Customizer

https://legacy-docs.inductiveautomation.com/display/DOC81/Vision+-+Power+Table+Customizer

Security

Auditing Actions Reference

The auditing system in Ignition records actions originating from the
Gateway, Perspective and Vision projects. This page lists which actions are logged by
the auditing system.

A description of the audit table can be found on the page. Ignition Database Table Reference

Gateway Audit Actions

The following actions are recorded in an audit log when the Gateway has a is Gateway Audit Profile
configured.

Project System

The following project-based actions are tracked by the auditing system.

Project Property changes made from the Designer.
Project setting changes made from the gateway's web interface.
Creating or deleting a project.
Saving a project (action recorded as "project update").

Gateway Systems

In addition, project files on the Gateway's file system are closely monitored. If a user or third-party
system modifies any of the project files, an entry will be recorded in the auditing system. The following

 Gateway-level actions are recorded in an audit log when the Gateway has a Gateway Audit Profile is
configured.

Modules

Installing modules on the Gateway.
Restarting a module.
Deleting a module.

Gateway - General

Gateway startup
Gateway shutdown (assuming the gateway was requested to shutdown: unintended shutdowns
from power failures and such will not be recorded).

The following feature is new in Ignition version 8.1.17
 to check out the other new featuresClick here

Gateway Login
Gateway Logout

Gateway - Restore

Restoring the Gateway from a Gateway backup. Specifically, the Gateway will log that it was
asked to before a restore, then perform the restoration.

Licensing Changes

Activating a license.
Unactivating a license.
Updating a license.

Redundancy

Saving after making any changes to the Redundancy Settings page.

Web Server Page

Installing or removing a security certificate.
Making changes to the Web Server Settings page.

Gateway Network

On this page ...

Gateway Audit Actions
Project System
Gateway Systems
Remote Gateway Tag Writes

Perspective Auditing Actions
Vision Auditing Actions

Tags
Vision Tag Writes
Vision Component Database
Writes
Vision User Login/Logout
Database Query Browser
Vision Scripting

Designer
Designer Login and Closing
Database Query Browser

Alarm Notification
Alarm Notification Attempts

Reporting Module
Report Execution

https://legacy-docs.inductiveautomation.com/display/DOC81/Ignition+Database+Table+Reference#IgnitionDatabaseTableReference-Audit_Events
https://docs.inductiveautomation.com/display/DOC81/Gateway+General+Security+Settings#GatewayGeneralSecuritySettings-GatewayAuditProfile
https://legacy-docs.inductiveautomation.com/display/DOC81/Gateway+General+Security+Settings#GatewayGeneralSecuritySettings-GatewayAuditProfile
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.17

Saving changes to Gateway Network General Settings .
Creating, editing, or deleting outgoing connections.
Approving incoming connections.

Email Settings

Creating, editing, or deleting an SMTP Profile.

Audit Profile

Creating, editing, or deleting an Audit Profile.

User Sources

Creating, editing, or deleting a User Source.
Creating, editing, or deleting a user.
Creating, editing, or deleting a role.

The following feature is new in Ignition version 8.1.14
 to check out the other new featuresClick here

User Lockout Events will also be recorded. Note that the audit log will record only the initial
lockout event, rather than each failed authentication attempt.

Service Security

Editing and saving a policy.

Identity Providers

Creating, editing, or deleting an Identity Provider configuration.
Making changes to a User Attribute Mapping.
Creating, editing, or deleting a User Grant.
Saving changes on a Security Level Rule.

Security Levels

Creating, editing, and deleting security zones

Security Zones

Creating, editing, and deleting security zones

Database - Connections

Creating, editing or deleting a database connection.

Database - Drivers

Creating, editing or deleting a JDBC driver
Creating, editing or deleting a Translator

Store and Forward

Creating, editing or deleting a Store and Forward engine.

Alarming - General

Saving changes on the Alarming General settings page.

Alarming - Alarm Journal

Creating, editing or deleting an Alarm Journal Profile

Alarming - Notification

Creating, editing, or deleting an Alarm Notification Profile.

Schedules

Creating, editing or deleting a schedule.
Creating, editing or deleting a holiday.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.14

Tags - Realtime

Creating, editing or deleting a Realtime Tag Provider

Tags - Historical

Creating, editing or deleting a Historical Tag Provider.

OPC Client Connections

Creating, editing or deleting an OPC connection.

OPC UA - Device Connections

Creating, editing, or deleting a device connection (editing/saving a device connection
configuration without making any changes will be recorded as an edit).
Editing a Modbus address mapping via gateway interface on Modbus device connections.
Editing DNP3 Aliased Points via gateway interface on DNP3 device connections.
Editing tags via gateway interface on Omron NJ device connections.
Adding FINS tags via gateway interface on Omron FIN device connections.

OPC UA - Server Settings

Editing the OPC UA Settings page.

Enterprise Administration

Configuring a gateway to be either an Agent or Controller.

Enterprise Administration - Event Thresholds

Changes made to Event thresholds.

Enterprise Administration - Controller Settings

Making changes to the Controller Settings page, including uninstalling the controller.

Enterprise Administration - Agent Settings

Making changes to the Agent Settings page, including uninstalling the agent.

Enterprise Administration - Agent Management

Creating, editing, deleting an Agent Group.

Enterprise Administration - License Management

Adding or removing a license from the License Management page.

Enterprise Administration - Agent Tasks

Creating, editing, or deleting an agent task
Separate records are taken each time a task executes.

Sequential Function Charts

Changes made to the SFC Settings page.

Add a Record Manually

You can also add a record into the audit profile using the function .system.util.audit

Remote Gateway Tag Writes

This feature was changed in Ignition version :8.1.34

Actions on tags from remote servers are recorded in the audit log for versions 8.1.16+. The
'System' column shows the originating Gateway name. Note that 'Host', and 'Context' will
appear unknown for these records, but auditing events will now include the actor.

https://legacy-docs.inductiveautomation.com/display/DOC81/system.util.audit

Perspective Auditing Actions

Perspective Sessions generate entries in an assigned audit profile. The following actions are recorded in the Audit Profile:

Tag changes from a component binding.
Authentication level changes (a user's security level changes).
Login Request - Indicates a user is requesting to log into an Identity Provider (IdP). The user should have been redirected to the IdP with a
login request and Ignition is awaiting the IdP’s login response. Note that the user is not logged in until the IdP redirects the user back to
Ignition with a login response and Ignition validates the login response.
Login Response - Records when a login response is received from the IdP. It’s possible that a login response will never be received for a
login request. For example: if the user bails out of the login flow by closing their web browser before completing the login, Ignition will never
receive the login response and will time out the request.
Logout Request - Indicates a user is requesting to log out of an IdP. The user may be redirected to the IdP to log out of their IdP session.
Regardless the user will be redirected back to the Perspective Session in a logged out state.
Logout Response - Records when a logout response is received from the IdP after a user logged out of their IdP session. This event will not
occur if the IdP does not support logout or if Ignition is not configured to redirect the user to the IdP for logging out.

The following feature is new in Ignition version 8.1.18
 to check out the other new featuresClick here

Tag changes from a Perspective script. Specifically:
Writes, such as, but not limited to, those from system.tag.writeBlocking
Edits and renaming, such as those caused by system.tag.configure
Deletions, such as those caused by system.tag.deleteTags
Moves, such as those caused by system.tag.move

Vision Auditing Actions

The Vision project needs an audit profile configured and auditing enabled. Vision Clients will then log records to an assigned audit profile. Here is a list
of audit actions that will be tracked in the Ignition auditing system:

Tags

The following Tag related actions generate entries in the audit log. Note that the functions below must originate from the Tag Browser, the Designer's
Scripting Console, or Vision component-based scripts.

Tag Creation - Including tags created with the Tag Editor and the function.system.tag.configure
Tag Deletion - Including those deleted from the Tag Browser's UI and the function. system.tag.deleteTags
Tag Edits - Including edits made to tags from the Tag Editor and the function.system.tag.configure
Moving Tags - Including moves made by drag-and-drop in the Tag Browser or by calling the function.system.tag.move
Tag Renames - Renaming a tag generates an entry.

Vision Tag Writes

Write requests sent from a tag either through a standard Tag Binding, Indirect Tag Binding, or manual entry from the Tag Browser.

Vision Component Database Writes

The system explicitly captures modifications made to database tables through the following methods:

SQL Query Bindings - modifications from the UPDATE Query will be recorded.
DB Browse Binding - modifications made with the Enable Database Writeback area will be recorded.

Vision User Login/Logout

Logging into a Vision Client will generate an entry in the auditing system, as will logging out of the client.
Closing the client while logged in is treated as a logout. Note that the entry is only recorded if the client is aware that it is closing, which
excludes cases where the client closed unexpectedly.

Database Query Browser

If the project opened in the Designer has an assigned Audit Profile, then changes made to database tables using the database query browser
are automatically recorded to the audit log. "Changes" in this case refer to UPDATE, DELETE, or INSERT statements manually typed and
executed from the database query browser.
Enabling edit mode and applying changes, including typing in new values, adding rows, removing rows, and clearing out fields, are recorded
as queries called from the project.

Vision Scripting

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.18
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.writeBlocking
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.configure
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.deleteTags
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.move
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.configure
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.deleteTags
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.configure
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.move
https://legacy-docs.inductiveautomation.com/display/DOC81/SQL+Query+Bindings+in+Vision
https://legacy-docs.inductiveautomation.com/display/DOC81/DB+Browse+Bindings

The following functions generate entries in the audit log if called from Vision component-based scripts, or from the Designer's Scripting Console.

system.db.execSProcCall
system.db.runPrepUpdate
system.db.runUpdateQuery
system.tag.writeBlocking
system.tag.writeAsync
system.report.executeAndDistribute
system.report.executeReport

Designer

Designer Login and Closing

Opening a project in the Designer that has auditing enabled will also generate a login entry in the auditing system. Note that this occurs when
the user opens the project, not when they log in using the Designer's login screen: auditing is project-based, so the user has to select a
project that is being edited first.
Closing the Designer effectively counts as logging off, and will generate a "logout" entry. Similar to vision, should the designer close
unexpectedly, then an entry will not be recorded.

Database Query Browser

If the project opened in the has an assigned Audit Profile, then changes made to tables using the query browser are Designer database database
automatically recorded to the audit log. "Changes" in this case refer to UPDATE, DELETE, or INSERT statements manually typed and executed from
the query browser. database

Enabling edit mode and applying changes, including typing in new values, adding rows, removing rows, and clearing out fields, are recorded as
queries called from the project.

Alarm Notification

Alarm Notification Attempts

Attempts to send out alarm notifications are recorded in the auditing system. Specifically, the Gateway will record when it attempted to send out a
notification, as well as if the attempt failed (such as the SMTP server refusing the request). It is important to note that the auditing system can not
report failures that occur outside of the Gateway. Thus, if a voice notification fails to send due to some error in the VOIP system, it's possible that the
Gateway won't report the VOIP error, but the audit log will have an entry stating that the Gateway attempted to send the notification.

Reporting Module

Report Execution

Reporting Module Reports generate an entry in the auditing system when a report is executed. Thus:

Reports running on a schedule will generate an entry.
Report schedules executed on demand will generate an entry.
Navigating to a Vision window (in either the Designer or a Vision Client) will trigger a report execution, generating an entry in the auditing
system.

Related Topics ...

Audit Log and Profiles
Audit Log Display

https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.execSProcCall
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runPrepUpdate
https://legacy-docs.inductiveautomation.com/display/DOC81/system.db.runUpdateQuery
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.writeBlocking
https://legacy-docs.inductiveautomation.com/display/DOC81/system.tag.writeAsync
https://legacy-docs.inductiveautomation.com/display/DOC81/system.report.executeAndDistribute
https://legacy-docs.inductiveautomation.com/display/DOC81/system.report.executeReport

Docker Image
Overview

The Ignition Platform offers a container image for use on popular container runtimes such as
Docker. You can find the image on Docker Hub at . https://hub.docker.com/r/inductiveautomation/ignition
Our official image is a Linux container, based on .Ubuntu Linux

The following feature is new in Ignition version 8.1.16
 to check out the other new featuresClick here

Ignition's Docker Image build is now multi-architecture and supports linux/amd64, linux/arm64, and linux
/arm/v7. Users can and get an image that docker pull inductiveautomation/ignition
automatically matches their system architecture.

Getting Started

In order to get started with Ignition running as a container, you'll need a container runtime. Docker
, available for Windows and macOS, includes both the container runtime as well Desktop Docker Engine

as container tooling and supporting tools such as . If you are running Linux, you'll need Docker Compose
to download and install the container runtime and tools such as Docker Compose individually. Guidance
for the installation and configuration of Docker (on all platforms) are available here: Get Docker

Configuration

Various aspects of the Ignition Gateway can be configured through the use of either command-line
arguments to the container, or environment variables. This section will detail the available configuration
options and how best to use them.

Environment Variables

The available environment variables can either accept explicit values or load the target values from a
file. Specifying any of the environment variables below with a suffix will direct the system to take _FILE
that environment variable value as a path to a file containing the value of interest. This is useful for
secrets management systems where you want to keep the values out of the process environment (which
might be able to be inspected by individuals with access to , for docker inspect <container>
example).

Note:

Some of the variables descriptions below make use of a # character. In these cases you can specify the
same variables multiple times. Replace the # character with a number.

GATEWAY_NETWORK_0_HOST=1.2.3.4
GATEWAY_NETWORK_0_PORT=8088
GATEWAY_NETWORK_0_DESCRIPTION="For tag server"

GATEWAY_NETWORK_1_HOST=5.6.7.8
GATEWAY_NETWORK_1_PORT=8089
GATEWAY_NETWORK_1_DESCRIPTION="For edge server"

On this page ...

Overview
Getting Started
Configuration

Environment Variables
Runtime Arguments
Supplemental JVM and
Wrapper Arguments
Gateway Arguments
Logging Settings

Examples
Deploying an Ephemeral
Gateway for Testing
Preserving Gateway State
Automating the Restore of a
Gateway Backup
Automate the Commissioning
of a Fresh Gateway
Customizing JVM/Wrapper
/Gateway Arguments on
Container Launch
Using Docker Compose
Integrate Third-Party Modules
After an Upgrade
User Migration

Licensing

Variable Requires Description

TZ Any Set to a valid TZ database name, like . See for complete selection.America/Los_Angeles List of tzdata Entries

ACCEPT_I
GNITION_
EULA

8.1.7+ Set to to accept the Ignition EULA automatically (see section below).Y Licensing

GATEWAY_
RESTORE_
DISABLED

8.1.7+ Set to to have the restored gwbk disabled on startup.true

GATEWAY_
ADMIN_US
ERNAME

8.1.8+ Defaults to when not specified, used to set value for initial gateway auto-commissioning.admin

https://hub.docker.com/r/inductiveautomation/ignition
https://hub.docker.com/_/ubuntu
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.16
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/
https://docs.docker.com/compose/
https://docs.docker.com/get-docker/
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List

GATEWAY_
ADMIN_PA
SSWORD

8.1.8+ Password value or salted hash to be used for initial gateway auto-commissioning.

GATEWAY_
HTTP_PORT

8.1.8+ Defaults to when not specified, used to override the HTTP port used by the gateway container.8088

GATEWAY_
HTTPS_PO
RT

8.1.8+ Defaults to when not specified, used to override the HTTPS port used by the gateway container.8043

GATEWAY_
GAN_PORT

8.1.8+ Defaults to when not specified, used to override the Gateway Network port used by the gateway container.8060

IGNITION
_EDITION

8.1.8+ Set to , , or , used to set value for initial gateway auto-commissioning.standard edge maker

IGNITION
_LICENSE
_KEY

8.1.8+ 8-character license key (XXXX-XXXX) for leased activation (e.g. Maker Edition), used to set value for initial gateway
auto-commissioning

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

You can activate multiple 8-character license keys at the same time in a comma-delimited format, such as: ABCD-
.1234,DCBA-4321,WXYZ-6789,ZYXW-9876

This feature was changed in Ignition version :8.1.20

Changes to this variable will now update the leased activation license configuration after initial commissioning.
Previously, they would only be absorbed if an existing leased activation configuration was not present.

IGNITION
_ACTIVAT
ION_TOKEN

8.1.8+ Activation token for the license key.

The following feature is new in Ignition version 8.1.19
 to check out the other new featuresClick here

You can activate multiple 8-character license keys at the same time in a comma-delimited format, such as: abcdef123
.4...789,bcdef2345...890

This feature was changed in Ignition version :8.1.20

Changes to this variable will now update the leased activation license configuration after initial commissioning.
Previously, they would only be absorbed if an existing leased activation configuration was not present.

GATEWAY_
NETWORK_
#_HOST

8.1.10+ Hostname (or IP) for Outgoing GAN Connection Definition for #.

GATEWAY_
NETWORK_
#_PORT

8.1.10+ Port Number to use for connection n (defaults to 8060 when not specified)

GATEWAY_
NETWORK_
#_PINGRA
TE

8.1.10+ Ping Rate (ms) for connection # (defaults to 1000 when not specified)

GATEWAY_
NETWORK_
#_PINGMA
XMISSED

8.1.10+ Number of missed pings allowed for connection # (defaults to 30 when not specified)

GATEWAY_
NETWORK_
#_ENABLED

8.1.10+ Set or to mark connection # enabled or disabledtrue false

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.19

GATEWAY_
NETWORK_
#_ENABLE
SSL

8.1.10+ Set or to enable SSL on connection # (defaults to).true false true

GATEWAY_
NETWORK_
#_WEBSOC
KETTIMEO
UT

8.1.10+ Timeout (ms) for web socket # (defaults to 10000 when not specified)

EAM_SETU
P_INSTAL
LSELECTI
ON

8.1.10+ Set or to define the EAM target config (defaults to when not specified)Agent Controller Agent

EAM_AGEN
T_CONTRO
LLERSERV
ERNAME

8.1.10+ Gateway Name (not hostname) of EAM Controller to bind to

EAM_AGEN
T_SENDST
ATSINTER
VAL

8.1.10+ Interval (seconds) to send statistics to the EAM Controller (defaults to 5 when not specified)

EAM_CONT
ROLLER_A
RCHIVEPA
TH

8.1.10+ Filesystem path to store EAM Archives (gateway backups, etc) (defaults to when not specified)data/eam_archive

EAM_CONT
ROLLER_D
ATASOURCE

8.1.10+ The database connection name to use for recording agent history.

EAM_CONT
ROLLER_A
RCHIVELO
CATION

8.1.10+ When set to , the path set in will be used. Defaults to , if MANUAL EAM_CONTROLLER_ARCHIVEPATH AUTOMATIC
omitted.

EAM_CONT
ROLLER_L
OWDISKTH
RESHOLDMB

8.1.10+ Value is in megabytes. Errors will be reported in this Gateway when the disk used for archiving drops below this value.

GATEWAY_
MODULES_
ENABLED

8.1.17+ A comma-delimited set of identifiers that will whitelist the set of built-in modules that will remain installed prior to
gateway startup. This feature will help with container re-creation events where you want to ensure only a subset of
modules remain enabled.

Module
Identifier

Module Filename

alarm-
notification

Alarm Notification-module.modl

allen-
bradley-
drivers

Allen-Bradley Drivers-module.modl

bacnet-
driver

BACnet Driver-module.modl

dnp3-driver DNP3-Driver.modl

enterprise-
administrati
on

Enterprise Administration-module.modl

iec-61850-
driver

The following feature is new in Ignition version 8.1.25
 to check out the other new featuresClick here

IEC 61850 Driver-module.modl

logix-driver Logix Driver-module.modl

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.25

mitsubishi-
driver

Mitsubishi-Driver.modl

modbus-
driver-v2

Modbus Driver v2-module.modl

omron-
driver

Omron-Driver.modl

opc-ua OPC-UA-module.modl

perspective Perspective-module.modl

reporting Reporting-module.modl

serial-
support-
client

Serial Support Client-module.modl

serial-
support-
gateway

Serial Support Gateway-module.modl

sfc SFC-module.modl

siemens-
drivers

Siemens Drivers-module.modl

sms-
notification

SMS Notification-module.modl

sql-bridge SQL Bridge-module.modl

symbol-
factory

Symbol Factory-module.modl

tag-
historian

Tag Historian-module.modl

udp-tcp-
drivers

UDP and TCP Drivers-module.modl

vision Vision-module.modl

voice-
notification

Voice Notification-module.modl

web-
browser

Web Browser Module.modl

web-
developer

Web Developer Module.modl

IGNITION
_UID

8.1.17+ Numeric user ID for the target user. Passing this variable and allows Ignition to run within a container IGNITION_GID
as an user rather than as the user. When set, the entrypoint will automatically update file ownerships ignition root
for the Ignition installation on startup to match the target user prior to stepping down from the user to launch the root
Gateway.

This feature was changed in Ignition version :8.1.26

The default user, as well as default file ownership, has been changed from the user (UID 0) to a standard root igniti
 user (UID 2003).on

If upgrading from a version prior to 8.1.26, you may need to take . Attempting additional steps to migrate your users
to launch a container against an old data volume without migrating your users can result in file permission errors. You
may also continue running your container as a user by explicitly setting the UID and GID to 0, but this is root
discouraged due to security concerns. See the User Migration section

IGNITION
_GID

8.1.17+ Numeric group ID for the target user. Passing this variable and allows Ignition to run within a IGNITION_UID
container as an user rather than as the user. When set, the entrypoint will automatically update file ignition root
ownerships for the Ignition installation on startup to match the target user prior to stepping down from the user to root
launch the Gateway.

This feature was changed in Ignition version :8.1.26

The default user, as well as default file ownership, has been changed from the user (GID 0) to a standard root igniti
 user (GID 2003).on

If upgrading from a version prior to 8.1.26, you may need to take . Attempting additional steps to migrate your users
to launch a container against an old data volume without migrating your users can result in file permission errors. You
may also continue running your container as a user by explicitly setting the UID and GID to 0, but this is root
discouraged due to security concerns. See the on this page for more details.User Migration section

DISABLE_
QUICKSTA
RT

8.1.23+ Boolean to decide whether or not the "Enable Quick Start" prompt will appear when new Gateway Containers are
created. A setting of will skip the Quick Start prompt.true

GATEWAY_
NETWORK_
#_DESCRI
PTION

8.1.26+

The following feature is new in Ignition version 8.1.26
 to check out the other new featuresClick here

Documentation about how the connection is used if entered.

GATEWAY_
NETWORK_
ENABLED

8.1.32+ Set to false to disable using the Gateway Network.

GATEWAY_
NETWORK_
REQUIRES
SL

8.1.32+ If true, only connections that use SSL to encrypt traffic will be allowed. This setting only applies to incoming
connections.

GATEWAY_
NETWORK_
REQUIRET
WOWAYAUTH

8.1.32+ Enforces two-way SSL authentication. If true, you will need to install the remote machine's certificate on this machine,
in addition to manual approval of this machine's certificate on the remote machine.

GATEWAY_
NETWORK_
SENDTHRE
ADS

8.1.32+ The maximum number of threads that will be used to upload messages. Applies to outgoing connections.

GATEWAY_
NETWORK_
RECEIVET
HREADS

8.1.32+ The maximum number of threads that will be used to download messages. Applies to outgoing connections.

GATEWAY_
NETWORK_
RECEIVEM
AX

8.1.32+ Number of received messages that can be held until they are processed by the local system. When this capacity is
exceeded, new messages are rejected and errors are reported to the remote Gateway. Applies to incoming connections.

GATEWAY_
NETWORK_
ALLOWINC
OMING

8.1.32+ If false, only outward connections defined on this Gateway will be allowed.

GATEWAY_
NETWORK_
SECURITY
POLICY

8.1.32+ Dictates what connections are allowed. If set to 'ApprovedOnly', incoming connections must be approved from the
Incoming Connections page. Other options include `Unrestricted` and `SpecifiedList`.

GATEWAY_
NETWORK_
WHITELIST

8.1.32+ If connection policy is set to Specified List, this is the comma-separated list of Gateway names which will be allowed to
connect.

GATEWAY_
NETWORK_
ALLOWEDP
ROXYHOPS

8.1.32+ The maximum number of proxy hops which could be used to reach the destination Gateway. Any number less than or
equal to zero is equivalent to no proxy hops allowed.

GATEWAY_
NETWORK_
WEBSOCKE
TSESSION
IDLETIME
OUT

8.1.32+ The maximum number of milliseconds that a websocket is allowed to remain idle before it is closed. This value should
always be set higher than outgoing connection ping rates to avoid premature connection termination.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.26

Runtime Arguments

The following are accepted by the container as runtime arguments. should be followed by a value, are stand-alone. Note that these Options flags
arguments are passed after the in a Docker Run statement.image name

Options

Option Requires Arguments Description

-n 8.1.0+ String Gateway name to be applied to the Ignition Gateway on startup

-a 8.1.0+ String Public web address*

-h 8.1.0+ Integer Public HTTP port*

-s 8.1.0+ Integer Public HTTPS port*

-m 8.1.0+ Integer Max memory for JVM

-r 8.1.7+ String Path to Gateway Backup for Automated Restore

* - Specify Public address/HTTP/HTTPS ports together, all three must be specified

Flags

Flag Requires Description

-d 8.1.0+ Debug mode, applicable to development - attaches port 8000 for remote JVM debugging. Port 8000 will also likely need to
be published on the container.

Supplemental JVM and Wrapper Arguments

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

You can also specify JVM and Java Service Wrapper arguments to your Docker containers runtime arguments by adding a double-hyphen to delimit
these arguments from the other runtime arguments listed above. Wrapper arguments (starting with) will be merged and JVM arguments wrapper.*
added to those specified in the file. ignition.conf

Gateway Arguments

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

The image also supports the use of gateway arguments, allowing you to modify the gateway.xml file when launching a container. Like JVM and
wrapper arguments, gateway arguments must be specified after a double-hyphen. Only entries in the file that follow the pattern of "gateway.#" can be
modified in this way.

This feature was changed in Ignition version :8.1.16

Docker image entrypoint will no longer forcibly recreate the gateway.xml file on each launch, allowing for settings adjustments from the gateway web
UI to properly persist without static definition in the container configuration.

Logging Settings

Unlike the non-containerized version of Ignition, the Ignition container image is designed to emit logs to stdout (“standard out”) so they can be
leveraged by various logging drivers in the container engine. This is done by directing what would normally be stored in the logs/wrapper.log file to
stdout. As a result, Ignition itself doesn’t control rotating the wrapper.log based on size, which can result in container logs growing unbounded. You
can configure the default logging driver to constrain maximum log sizes. Reference the Docker logging configuration page to specify logger size limits.

Examples

This section will contain some example run configurations for the Ignition Docker image. Review these examples to learn a bit more about how to run
and configure the Ignition Docker image, as well as some typical best practices.

Deploying an Ephemeral Gateway for Testing

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10
https://docs.docker.com/config/containers/logging/configure/

The run statement below will launch a container in detached mode , publishing port from the host to port in the container. The -d 9088 8088
container will be named and use the image. Finally, the runtime arguments provided will set the to ignition-test 8.1.7 Gateway name docker-

 with public address of on HTTP port and HTTPS port .test localhost 9088 9043

docker run -d -p 9088:8088 --name ignition-test inductiveautomation/ignition:8.1.7 \
 -n docker-test -a localhost -h 9088 -s 9043

Preserving Gateway State

When using containers, it is common for stateful applications (such as the Ignition Gateway) to leverage volumes to persist that state across image
updates, container remove/create cycles, etc. This can be done by applying a named volume to the path within /usr/local/bin/ignition/data
the container. This is especially important if you need to make a change to your container configuration. Since container configurations are
immutable, the only way to change it is to stop/remove the old container and start a new one (with a new configuration).

Similar to the above, but this time with a named volume attached to within the container. If the volume gw-data /usr/local/bin/ignition/data
doesn't already exist, it will be created automatically. Note the additional option to make sure that the tag is always pulled before --pull latest
running--without this, the tag is only pulled if one isn't already present on your system.latest

docker run -d -p 9088:8088 --name ignition-test \
 -v gw-data:/usr/local/bin/ignition/data \
 --pull always inductiveautomation/ignition:latest \
 -n docker-test -a localhost -h 9088 -s 9043

By using named volumes, you're now able to stop and remove the container and create a new one with a different configuration. As ignition-test
long as you attach your volume, your gateway will start up with all of your tags and projects in their previous state.

Preserving KeyStores

The following feature is new in Ignition version 8.1.12
 to check out the other new featuresClick here

Starting in 8.1.12, the following KeyStores are also preserved across image updates.

Gateway Network Certificate

This PKCS #12 KeyStore contains the certificate and private key used for gateway network communications, and is created automatically on Gateway
startup if not present. Typically this is maintained independently on a per-installation basis to avoid issues from operations such as gateway backup
restorations. The situation within a container is somewhat different, and it is usually preferable to track this KeyStore with the rest of the gateway state
preserved by a volume. Docker image now redirects, via sym-link, Gateway Network KeyStore creation from to webserver/metro-keystore data

. This will allow the underlying image for the container to be upgraded without generating a new Gateway Network certificate (thus breaking /local
existing approved certificates and connections).

SSL Configuration

When SSL is enabled on a Gateway, is created as a PKCS #12 KeyStore with the private key, server certificate, and root/intermediate CA ssl.pfx
certificates. This file is automatically read by the Gateway on startup to enable SSL. Similar to the , this resides outside of Gateway Network Certificate
the volume since it is intended to persist across a gateway restore operation. Docker image now redirects, via sym-links, SSL KeyStore data/
creation from and to . This allows a Docker container's SSL configuration to persist via webserver/ssl.pfx webserver/csr.pfx data/local
the data volume without relying on extra bind-mounts. Disabling SSL now recognizes the presence of sym-links when removing the KeyStore and
removes the final target of the link, leaving the sym-link in place.

Automating the Restore of a Gateway Backup

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

You can automate the restore of a gateway backup on first-launch of your gateway container. This allows for having a new Ignition Gateway restore to
a known initial state automatically, without waiting for the commissioning steps.

Multiline commands

Note that for Linux/macOS/WSL, you can use the backslash for multi-line commands for better readability. You can substitute the backtick `
 for Powershell and caret for Windows Command prompt, these characters technically "escape" the newline character, so make sure ^
they are the last character on a given line.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.12
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8

To leverage this feature, bind-mount a gateway backup into the container and then use the runtime argument to specify the location and command -r
the restore. Additionally, supply the environment variable to accept the Ignition EULA (see the section below) ACCEPT_IGNITION_EULA=Y Licensing
and bypass that gateway commissioning step.

docker run -d -p 9088:8088 --name ignition-test \
 -v gw-data:/usr/local/bin/ignition/data \
 -v /path/to/gateway.gwbk:/restore.gwbk \
 -e ACCEPT_IGNITION_EULA=Y \
 inductiveautomation/ignition:8.1.7 \
 -n docker-test -a localhost -h 9088 -s 9043 \
 -r /restore.gwbk

Automate the Commissioning of a Fresh Gateway

The following feature is new in Ignition version 8.1.8
 to check out the other new featuresClick here

You can automate the commissioning steps that normally require manual user interaction on the very first launch of the Ignition Gateway. By
 supplying specific environment variables , you can seed the commissioning steps with the required information to start the rest of the Gateway

automatically.

docker run -d -p 9088:8088 --name ignition-test \
 -e ACCEPT_IGNITION_EULA=Y \
 -e GATEWAY_ADMIN_PASSWORD=password \
 -e IGNITION_EDITION=standard\
 inductiveautomation/ignition:8.1.8 \
 -n docker-test

Customizing JVM/Wrapper/Gateway Arguments on Container Launch

This example shows how to leverage the supplemental JVM/wrapper args feature.

docker run -d -p 9088:8088 --name args-test \
 -e ACCEPT_IGNITION_EULA=Y \
 -e GATEWAY_ADMIN_PASSWORD=changeme \
 -e IGNITION_EDITION=standard\
 inductiveautomation/ignition:8.1.8 \
 -n args-test \
 -- wrapper.java.initmemory=256 -Dignition.allowunsignedmodules=true \
 -XX:MaxGCPauseMillis=200

The following feature is new in Ignition version 8.1.10
 to check out the other new featuresClick here

The following demonstrates how to enable the gateway's Resolve Host Names and Use Proxy Forwarded Headers settings by modifying the entries
in the :gateway.xml

What if I restart the container?

The gateway restore will only apply on a fresh gateway launch. Subsequent restarts of the container will not restore the indicated gateway
backup.

Reading Environment Variables from a file

You can also specify environment variables in the form of in order to have the environment variable <env var>_FILE=/path/to/file
value resolved by reading it from a file. This is helpful for secrets management systems within container orchestrators such as Docker
Swarm and Kubernetes.

https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.8
https://legacy-docs.inductiveautomation.com/pages/viewpage.action?pageId=72421442#DockerImage-EnvironmentVariables
https://docs.inductiveautomation.com/display/DOC81/New+in+this+Version#NewinthisVersion-Newin8.1.10

docker run -d -p 9088:8088 --name ignition-test inductiveautomation/ignition:8.1.10 -n docker-test -a
localhost -h 9088 -s 9043 \
 -- gateway.resolveHostNames=true gateway.useProxyForwardedHeader=true

Using Docker Compose

A common practice is to leverage to start your container and bundle the configuration with other services, such as databases and Docker Compose
MQTT brokers. Below is an example file that you can create inside of a new, empty folder. The example below incorporates docker-compose.yml
many of the configurability features mentioned in the various sections above.

Compose Example

Docker Compose Example for inductiveautomation/ignition
Compose Spec: https://github.com/compose-spec/compose-spec/blob/master/spec.md

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.8
 ports:
 - 9088:8088
 - 9043:8043
 volumes:
 - gw-data:/usr/local/bin/ignition/data
 # env_file: ignition.env # optionally specify variables in a file, or using `environment:` below
 environment:
 - ACCEPT_IGNITION_EULA=Y
 - GATEWAY_ADMIN_USERNAME=admin
 - GATEWAY_ADMIN_PASSWORD_FILE=/run/secrets/gateway-admin-password
 - IGNITION_EDITION=standard
 - TZ=America/Chicago # see https://en.wikipedia.org/wiki/List_of_tz_database_time_zones#List
 secrets:
 - gateway-admin-password
 command: >
 -n docker-test
 -m 1024
 --
 wrapper.java.initmemory=512
 -Dignition.allowunsignedmodules=true

secrets:
 gateway-admin-password:
 file: secrets/GATEWAY_ADMIN_PASSWORD

volumes:
 gw-data:

Once defined, you can bring up the solution using `docker compose` commands. See the animated example below:

https://docs.docker.com/compose/

Integrate Third-Party Modules After an Upgrade

When upgrading Ignition in Docker, third-party modules are not included with new images, so they will need to be re-installed. You can do this by
creating a Docker derived image and use the derived image to copy these modules to the upgraded container. The example below describes how to
conduct a derived image build to integrate third-party modules.

For this example, a module subfolder with the modules we are attempting to integrate will be labeled gw-build. The subfolder will also include a
Dockerfile. The file needed for this process is located outside of this subfolder. docker-compose.yml We will be using a docker-compose.yml file
similar to the previous example, but instead of using an image tag, we will be using a build tag.

docker-compose.yml

services:
 gateway:
 build:
 context: gw-build
 ## Specify the upstream version to derive from for the build argument in the Docker file.
 args:
 IGNITION_VERSION: 8.1.28
 ports:
 - 8088:8088
 volumes:
 - gateway-data:/usr/local/bin/ignition/data
 environment:

1.

 ACCEPT_IGNITION_EULA: "Y"
 GATEWAY_ADMIN_PASSWORD: password
 IGNITION_EDITION: standard
 command: >
 -n Ignition-supp-66195

volumes:
 gateway-data:

The Dockerfile within the gw-build folder will define the derived image by containing a build argument for the Ignition version. Notice this does not give
a default version. This is because the version we want to build is specified and passed through our docker-compose definition. Next, we will add a
command to copy the module files from this folder to the user-lib module folder inside the new Ignition image.

Dockerfile

ARG IGNITION_VERSION
FROM inductiveautomation/ignition:${IGNITION_VERSION}

COPY *.modl /usr/local/bin/ignition/user-lib/modules/

With these files defined, we can now run docker compose build to pull the image, perform all derived image build steps, and create the new
image.

Note: Since docker compose build needs to be run each time a new module is added, you can alternatively add in the pull_policy: build
yml file to auto-rebuild each time.

User Migration

User Migration - Docker Compose

The following example uses Docker Compose to demonstrate how to migrate the container user and file ownership from the user to a standard, root
non-elevated user. If you are instead using the command line, see the for migrating users. Your environment may vary, ignition next example
depending on how your container is set up. This container is running Ignition version 8.1.25:

User Migration Example (Docker Compose)

User Migration Example (Docker Compose)

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.25
 volumes:
 - ignition-data:/usr/local/bin/ignition/data
 ports:
 - 8088:8088
 command: >
 -n docker-test

volumes:
 ignition-data:

Upgrade the container to the latest version by changing the image tag to the version you want to upgrade to:

User Migration Example (Docker Compose)

User Migration Example (Docker Compose)

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.26
 volumes:
 - ignition-data:/usr/local/bin/ignition/data

1.

2.

3.

4.

5.

 ports:
 - 8088:8088
 command: >
 -n docker-test

volumes:
 ignition-data:

Add the and environment variables to update the container permissions:IGNITION_UID=2003 IGNITION_GID=2003

User Migration Example (Docker Compose)

User Migration Example (Docker Compose)

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.26
 volumes:
 - ignition-data:/usr/local/bin/ignition/data
 ports:
 - 8088:8088
 environment:
 - IGNITION_UID=2003
 - IGNITION_GID=2003
 command: >
 -n docker-test

volumes:
 ignition-data:

Declare the root user ():user: "0:0"

User Migration Example (Docker Compose)

User Migration Example (Docker Compose)

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.26
 volumes:
 - ignition-data:/usr/local/bin/ignition/data
 ports:
 - 8088:8088
 environment:
 - IGNITION_UID=2003
 - IGNITION_GID=2003
 user: "0:0"
 command: >
 -n docker-test

volumes:
 ignition-data:

Save the Docker Compose file, then run . docker compose up -d

Note: By default, we are using the option in our Docker command. While you can also run the command without , the option runs -d -d -d
the container in detached mode, allowing the container to run in the background even after closing the terminal.

The container will now use the user when it starts up, but will launch Ignition as a standard user. All of the files in the root ignition
ignition-data volume have the proper ownership. We can now remove the IGNITION_UID and IGNITION_GID environment variables and the
user:"0:0" override:

5.

6.

7.

1.

2.

User Migration Example (Docker Compose)

User Migration Example (Docker Compose)

services:
 # Ignition Gateway
 gateway:
 image: inductiveautomation/ignition:8.1.26
 volumes:
 - ignition-data:/usr/local/bin/ignition/data
 ports:
 - 8088:8088
 command: >
 -n docker-test

volumes:
 ignition-data:

Finally, we can rerun the command to recreate the container. Since we removed the environment variables and docker compose up -d
updated container permissions, the container will launch with the default user being a standard user.ignition

To check if the user successfully migrated over, we see the process listing and who the user is for each process using the command docker
 in the terminalcompose exec gateway ps aux . Additionally, you can use the command to docker compose exec gateway whoami

see who the default user for the container is:

User Migration - Command Line

The following example uses the command line to demonstrate how to migrate the container user and file ownership from the user to a standard, root
non-elevated user. If you are instead using Docker Compose, see the . Your environment may vary, depending on how ignition preceding example
your container is set up. The following container is called and is running Ignition version 8.1.25:example-gw

User Migration Example (Command Line)

docker run --name example-gw -v example-gw-data:/usr/local/bin/ignition/data \
 -e IGNITION_EDITION=standard -e ACCEPT_IGNITION_EULA=Y -e GATEWAY_ADMIN_PASSWORD=password \
 -p 8088:8088 \
 inductiveautomation/ignition:8.1.25 \
 -n example-gw

Stop and remove your Docker container using the following commands. Keep in mind that you will need to replace with your example-gw
container name:

User Migration Example (Command Line)

Stop and remove container
docker stop example-gw
docker rm example-gw

Modify the container run configuration to declare the root user using (The UID and GID will both be 0):--user 0:0

User Migration Example (Command Line)

Declare the root user
docker run --name example-gw --rm -v example-gw-data:/usr/local/bin/ignition/data \

2.

3.

4.

5.

6.

 -p 8088:8088 \
 --user 0:0 \
 inductiveautomation/ignition:8.1.25 \
 -n example-gw

Update the container permissions by adding the and environment variables. You can do this by adding IGNITION_UID IGNITION_GID -e
 after :IGNITION_UID=2003 -e IGNITION_GID=2003 --user 0:0

User Migration Example (Command Line)

Update the container permissions
docker run --name example-gw --rm -v example-gw-data:/usr/local/bin/ignition/data \
 -p 8088:8088 \
 --user 0:0 -e IGNITION_UID=2003 -e IGNITION_GID=2003 \
 inductiveautomation/ignition:8.1.25 \
 -n example-gw

The container's Gateway should now be running under a standard user, using a UID of 2003 and a GID of 2003. You can run the ignition
following command to count the number of processes running as a standard user:ignition

User Migration Example (Command Line)

Count the number of running processes under the ignition user
docker exec example-gw pgrep -u 2003 -c

Note:

There should be 3 processes:

the entrypoint
the Java wrapper
the Java process

File ownership should now also belong to the standard user. You can use the following command to verify that there are no files ignition
owned by any other user aside from the standard user:ignition

User Migration Example (Command Line)

Verify file ownership
docker exec example-gw bash -c "find /usr/local/bin/ignition ! -user 2003 | wc -l"

Once you have verified file ownership and the user the processes are running under, you can now recreate the container against the new
image with the default user (UID = 2003) and update your Gateway to the latest version:ignition

User Migration Example (Command Line)

Recreate the container
docker stop example-gw
docker rm example-gw
docker run --name example-gw --rm -v example-gw-data:/usr/local/bin/ignition/data \
 -p 8088:8088 \
 inductiveautomation/ignition:8.1.<new> \
 -n example-gw

Licensing

The Inductive Automation software contained in this Docker container image is licensed under the terms of the Inductive Automation Software License
.Agreement

https://inductiveautomation.com/ignition/license
https://inductiveautomation.com/ignition/license

By passing the value , you agree that your use of Inductive Automation software running in this Docker container image ACCEPT_IGNITION_EULA=Y
is governed by the terms of the .Inductive Automation Software License Agreement

All third party software (whether open or closed) running in this Docker container image is licensed as indicated in this Docker Hub “License” section
or in the container itself, usually as a or file. You agree to comply with any relevant licenses for third party software contained in this NOTICE LICENSE
Docker container image.

https://inductiveautomation.com/ignition/license

	Ignition Platform
	Gateway
	Home
	Status
	Systems
	Connections
	Connections - EAM Agents
	Connections - Databases
	Connections - Designers
	Connections - Devices
	Connections - Gateway Network
	Gateway Network Connection Details
	Gateway Network Diagram

	Connections - Store & Forward
	Connections - MongoDB
	Connections - OPC Connections
	Connections - SECS/GEM Equipment
	Connections - Perspective Sessions
	Connections - Vision Clients

	Diagnostics - Execution
	Diagnostics - Logs
	Wrapper Logs

	Diagnostics - Running Scripts
	Diagnostics - Threads
	Diagnostics - Metrics Dashboard

	Config
	Gateway Settings
	Email Settings
	Web Server Settings
	Secure Communication (SSL / TLS)

	Gateway Backup and Restore
	Ignition Exchange
	Gateway Command-line Utility - gwcmd

	Licensing and Activation
	Emergency Activation
	Transfer a License Key Between Two Gateways

	Projects
	Project Inheritance
	Project Templates
	Project Settings
	Project Export and Import

	Ignition Redundancy
	Setting Up Redundancy
	Database Considerations
	Redundant Licensing

	Gateway Network
	Gateway Network Certificates and SSL

	Database Connections
	Installing Databases
	Installing IBM DB2
	Installing MySQL
	Installing Microsoft SQL Server Express
	Installing PostgreSQL

	Connecting to Databases
	Connecting to IBM DB2
	Connecting to MariaDB
	Connecting to Microsoft Azure SQL
	Connecting to Microsoft SQL Server
	Connecting to MySQL
	Connecting to Oracle Express
	Connecting to PostgreSQL
	Connecting to SQLite
	JDBC Drivers and Translators
	JDBC Driver and Database Translator Settings

	Store and Forward
	Using Store and Forward
	Configuring Store and Forward
	Controlling Quarantine Data

	Security
	Gateway General Security Settings
	Classic Authentication Strategy
	Managing Users and Roles
	Internal Authentication
	Database Authentication
	Active Directory Authentication
	AD Internal Hybrid
	AD Database Hybrid
	Fallback Cache Authentication
	Verify a User on a User Source

	Identity Provider Authentication Strategy
	Configuring Identity Providers
	User Attribute Mapping
	OpenID Connect 1.0 Example
	SAML Example

	User Grants
	Test Login and Logout
	Security Levels
	Security Level Rules
	Troubleshooting Identity Providers
	Referencing User Information

	Service Security
	Security Zones
	Project Security in the Designer
	Security Certificates
	OAuth 2.0 Clients

	Designer
	General Designer Interface
	Designer Tools
	Image Management Tool
	Script Console
	Database Query Browser
	Output Console
	Keyboard Layouts

	Project Properties
	Find and Replace
	Windows, Linux, and Mac Keyboard Shortcuts
	Saving Projects
	Designer Diagnostics

	Tags
	Tag Browser
	Types of Tags
	System Tags

	Creating Tags
	User Defined Types - UDTs
	UDT Parameters
	UDT Multi-Instance Wizard
	UDT Inheritance
	UDT Nesting

	Tag Groups
	Direct Tag Group Example
	Driven Tag Group Examples
	Leased Tag Group Example

	Tag Providers
	Tag Event Scripts
	Tag Properties
	Tag Alarm Properties
	Tag Scaling Properties
	Tag Security Properties

	Tag Data Types
	Tag Paths
	Quality Codes and Overlays
	Exporting and Importing Tags
	Tag Editor
	Tag Report Tool
	Tag Diagnostics

	Alarming
	Alarm Journal
	Configuring Alarms
	Dynamic Alarm Attributes
	Alarms in UDTs
	Alarm Associated Data

	Gateway General Alarm Properties
	Alarming Schedules

	Localization and Languages
	Creating Translation Lists
	Switching the Current Language
	Localization Best Practices
	Translating Built-in Terms

	Expression Language and Syntax
	SQL in Ignition
	Writing SQL Queries
	SQL Select Statements
	SQL Where Clauses
	SQL Table Joins
	SQL Common Functions
	SQL Stored Procedures

	Query Builder
	Named Queries
	Named Query Workspace
	Named Query Parameters
	Named Query Caching
	Named Query Conversions
	Using Named Queries - Example

	Queries in Scripting
	Common SQL Tasks
	Filter Rows in a Table
	Inserting Data into a Database
	Updating the Database through the Power Table
	Refreshing a SQL Query
	Editing Multi-Selected Rows from a Table
	Storing Files in a Database
	Simple Database Editor

	Basic SQL Troubleshooting
	Slow Queries
	SQL Query Volume Optimization

	Scripting
	Python Scripting
	Variables, Data Types, and Objects
	Numeric Types
	Strings
	Lists and Tuples
	Dictionaries
	Datasets
	Dates

	Conditions and Loops
	Error Handling
	Built-In Functions
	Libraries
	User Defined Functions

	Scripting in Ignition
	Getting Started with Scripting in Ignition
	Gateway Event Scripts
	Project Library
	Web Services, SUDS, and REST
	HTTP Methods
	SUDS - Library Overview

	JSON Format
	Basic Python Troubleshooting
	Reading Error Messages
	Troubleshooting - Nothing Happened
	Troubleshooting Workflow
	Scripting Vs. SQL Vs. Expressions

	Scripting Examples
	Location Based Vision Startup Scripts
	Reading and Writing to Tags
	Exporting and Importing a CSV
	Adding a Delay to a Script
	Export Tag Historian to CSV
	Parsing XML with the Etree Library

	Audit Log and Profiles
	Alarm Notification Auditing
	Audit Log Display
	Auditing Actions Reference

	Docker Image

